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Abstract 
 
	
  
I	
  shall	
  critically	
  review	
  some	
  interesting	
  ideas	
  about	
  how	
  to	
  understand	
  the	
  Aharonov–
Bohm	
  effect	
  physicists	
  and	
  philosophers	
  have	
  put	
  forward	
  since	
  the	
  acknowledgment	
  that	
  
Tonomura’s	
  experiments	
  provide	
  convincing	
  if	
  not	
  conclusive	
  evidence	
  of	
  a	
  magnetic	
  A-­‐B	
  
effect	
  in	
  regions	
  in	
  which	
  the	
  electromagnetic-­‐field	
  is	
  zero.	
  Some	
  of	
  these	
  are	
  very	
  recent.	
  
The	
  review	
  will	
  focus	
  on	
  three	
  issues.	
  

•What	
  is	
  the	
  appropriate	
  theoretical	
  framework	
  in	
  which	
  to	
  understand	
  the	
  effect?	
  
•What	
  concepts	
  of	
  locality	
  are	
  threatened,	
  and	
  how	
  should	
  that	
  threat	
  be	
  addressed?	
  
•What	
  physical	
  objects	
  and	
  properties	
  are	
  responsible	
  for	
  the	
  A-­‐B	
  effect?	
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Phase Change during a Cyclic Quantum Evolution

Y. Aharonov and J. Anandan

Department of Physics and Astronomy, University of South CarolinaC, olumbia, South Carolina 29208
(Received 29 December 1986)

A new geometric phase factor is defined for any cyclic evolution of a quantum system. This is in-
dependent of the phase factor relating the initial- and final-state vectors and the Hamiltonian, for a
given projection of the evolution on the projective space of rays of the Hilbert space. Some applications,
including the Aharonov-Bohm effect, are considered. For the special case of adiabatic evolution, this
phase factor is a gauge-invariant generalization of the one found by Berry.

PACS numbers: 03.65.—w

A type of evolution of a physical system which is often
of interest in physics is one in which the state of the sys-
tem returns to its original state after an evolution. We
shall call this a cyclic evolution. An example is periodic
motion, such as the precession of a particle with intrinsic
spin and magnetic moment in a constant magnetic field.
Another example is the adiabatic evolution of a quantum
system whose Hamiltonian H returns to its original value
and the state evolves as an eigenstate of the Hamiltonian
and returns to its original state. A third example is the
splitting and recombination of a beam so that the system
may be regarded as going backwards in time along one
beam and returning along the other beam to its original
state at the same time.

Now, in quantum mechanics, the initial- and final-
state vectors of a cyclic evolution are related by a phase
factor e'~, which can have observable consequences. An
example, which belongs to the second category men-
tioned above, is the rotation of a fermion wave function
by 2n rad by adiabatic rotation of a magnetic field'
through 2' rad so that p= ~tr. Recently, Berry has
shown that when H, which is a function of a set of pa-
rameters R', undergoes adiabatic evolution along a
closed curve I in the parameter space, then a state that
remains an eigenstate of H(R) corresponding to a simple
eigenvalue E„(R)develops a geometrical phase y„which
depends only on I. Simon has given an interpretation
of this phase as due to holonomy in a line bundle over
the parameter space. Anandan and Stodolsky4 have
shown how the Berry phases for the various eigenspaces
can be obtained from the holonomy in a vector bundle.
For the adiabatic motion of spin, this is determined by a
rotation angle a, due to the parallel transport of a Carte-
sian frame with one axis along the spin direction, which
contains the above-mentioned rotation by 2n radians as a
special case. The result of a recent experiment to ob-
serve Berry's phase for light can also be understood as a
rotation of the plane of polarization by this angle a.

In this Letter, we consider the phase change for all cy-
clic evolutions which contain the three examples above as
special cases. We show the existence of a phase associat-
ed with cyclic evolution, which is universal in the sense

p—=y+ 6 '& &il (t) l
H

l ilr(t))dt,

it follows from (2) that

p=g" &ilr li (d l y&/dt)dt.

(3)

Now, clearly, the same
l ilr(t)) can be chosen for every

curve C for which II(C) =C, by appropriate choice of

that it is the same for the infinite number of possible
motions along the curves in the Hilbert space P which
project to a given closed curve C in the projective Hilbert
space P of rays of & and the possible Hainiltonians
H(t) which propagate the state along these curves. This
phase tends to the Berry phase in the adiabatic limit if
H(t) —=H[R(t)] is chosen accordingly. For an electrical-
ly charged system, we formulate this phase gauge invari-
antly and show that the Aharonov-Bohm (AB) phase
due to the electromagnetic field may be regarded as a
special case. This generalizes the gauge-noninvariant re-
sult of Berry that the AB phase due to a static magnetic
field is a special case of his phase. This also removes the
mystery of why the AB phase, even in this special case,
should emerge from Berry's expression even though the
former is independent of this adiabatic approximation.

Suppose that the normalized state l ilr(t)) 6 & evolves
according to the Schrodinger equation

H(t)
l y(t)) =i h (d/dt ) l ilr(t)),

such that l y(r)) =e'~l y(0)), p real. Let II:P P be
the projection map defined by II( l y)) = [l y'):

l
ilr')

=c
l y), c is a complex number j. Then l ilr(t)) defines a

curve C: [O, r] P with C=II(C) being a closed curve
in P. Conversely given any such curve C, we can define
a Hamiltonian function H(t) so that (1) is satisfied for
the corresponding normalized l ilr(t)). Now define

l ilr(t)) =e ' '
l ilr(t)) such that f(r) —f(0) =p. Then

l ilr(r)) =
l ilr(0)) and from (1),

df 1=—&~(t) IH I y(t)&-&y«) li I v «)&.
t dt

Hence, if we remove the dynamical part from the phase
p by defining
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f(t) H. ence p, defined by (3), is independent of p and H
for a given closed curve C. Indeed, for a given C, H(t)
can be chosen so that the second term in (3) is zero,
which may be regarded as an alternative definition of p.
Also, from (4), p is independent of the parameter t of C,
and is uniquely defined up to 2trn (n =integer). Hence
e'~ is a geometric property of the unparametrized image
of C in P only.

Consider now a slowly varying H(t), with H(t) I n(t))
=E„(t)

~
n(t)), for a complete set [~ n(t))j. If we write

~
y(t)) =pa„(t)exp ——J E, dt

~
n(t)),

n i

and use (I ) and the time derivative of the eigenvector
equation, we have

a = —a &m
~
m) —g a„exp —„(E —E„)dt&m ~H~n) i

En Em-
where the dot denotes time derivative. Suppose that

(s)

h&m ~H ~n)

(E„—E )'
Then if a„(0)=8„,the last term in (5) is negligible and
the system would therefore continue as an eigenstate of
H(t), to a good approximation.

In this adiabatic approximation, (5) yields
r

a (t)=exp —„&m ~m)dt a (0).

For a cyclic adiabatic evolution, the phase i Jp&m ~
m) dt

is independent of the chosen
~
m(t)) and Berry regard-

ed this as a geometrical property of the parameter space
of which H is a function. But this phase is the same as
(4) on our choosing

~
y(t)) =

~
m(t)) in the present ap-

proximation. But p, defined by (3), does not depend on

any approximation; so (4) is exactly valid. Moreover,

~
y(t)) need not be an eigenstate of H(t), unlike in the

limiting case studied by Berry. Also, the two examples
below will show respectively that it is neither necessary
nor sufficient to go around a (nontrivial) closed curve in

parameter space in order to have a cyclic evolution, with
our associated geometric phase P. For these reasons, we
regard p as a geometric phase associated with a closed
curve in the projective Hilbert space and not the parame-
ter space, even in the special case considered by Berry.
But given a cyclic evolution, an H(t) which generated
this evolution can be found so that the adiabatic approxi-
mation is valid. Then p can be computed with the use of
the expression given by Berry in terms of the eigenstates
of this Hamiltonian.

We now consider two examples in which the phase p
emerges naturally and is observable, in principle, even
though the adiabatic approximation is not valid. Sup-
pose that a spin- 2 particle with a magnetic moment is in

a homogeneous magnetic field B along the z axis. Then
the Hamiltonian in the rest frame is H~ = —pBo.„where

1 0
0 —1

Also,

(())) Gos(0/2)=,sin (8/2),

so that

~ y(t)) =exp(ipBto, /h)
~
itl(0))

exp( ptBt/ h)cos(0/2)
,exp( —ipBt/h )sin(0/2), '

which corresponds to the spin direction being always at
an angle 0 to the z axis. This evolution is periodic with
period r =xh/pB. Then from (3), for each cycle,
p=tr(1 —cos8), up to the ambiguity of adding 2trn

Hence, P is —,
' of the solid angle subtended by a curve

traced on a sphere, by the direction of the spin state, at
the center. This is like the Berry phase except that in

the latter case (1) the solid angle is subtended by a curve
traced by the magnetic field B'(t) which is large [i.e.,
pB'/h)) to, the frequency of the orbit of B'(t)l so that
the adiabatic approximation is valid, and (2)

~
y(t)) is

assumed to be an eigenstate of this Hamiltonian.
Indeed, we may substitute such a Hamiltonian for the
above Hi or add it to H~ with co=2pB/h, without
changing p, in this approximation. The spin state will
also move through the same closed curve in the projec-
tive Hilbert space as above if the magnetic field
8 = (Bpcostot, Bpsintot, B3) with cot0 = (B3—h to/

2p)/Bp, where Bp&0. And p is the same for all such
Hamiltonians. This illustrates the statement earlier that
p is the same for all curves C in H with the same
C—:II(C). Also, p may be interpreted as arising from
the holonomy transformation, around the closed curve on
the above sphere traced by the direction of the spin state,
due to the curvature on this sphere, which is a rotation.
By varying appropriately a magnetic field applied to the
two arms of a neutron interferometer with polarized neu-
trons, it is possible to make the dynamical part of p [the
last term in (3)l the same for the two beams. ' Then
the phase diff'erence between the two beams is just the
geometrical phase, which is observable in principle, from
the interference pattern, even when the magnetic field is
varied nonadiabatically. In particular, a phase diAerence
of + x rad would correspond to a 2z-rad rotation of the
fermion wave function, which is thus observable.

As our second example, suppose that the magnetic
field is B(t) =Bp+Bi(t), where Bp is constant and Bi(t)
rotates slowly in a plane containing Bp with

~
B~(t)

~
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=
! Bp!. Suppose that at time t the angle between Bi

and Bp is tr —8(t) and the spin state ! y(t)) is in an ap-
proximate eigenstate of H(t) =pB o, where cr' are the
Pauli spin matrices. For 0 ~ 0((1, the adiabatic condi-
tion (6) gives 0 ~ —h 8/pBp8 && 1, assuming 8 ~ 0.
Hence 8»8pexp( pB—pt/h) )0. So 8 can never be-
come zero. That is, if B(T) =0 for some T then the adi-
abatic approximation, as defined above, cannot be
satisfied, regardless of how slowly B~ (t) rotates. Howev-
er, because of conservation of angular momentum,
! y(t)) remains an eigenstate of H(t) even at t =T. But
if 0 changes monotonically then a level crossing occurs at
the point of degeneracy (B=0) so that the energy eigen-
value corresponding to ! y(t)) changes sign at t =T. For
each rotation of B~ by 2z rad, ! y) rotates by tr rad, so
that the system returns to its original state after two ro-
tations of B(t). For this cyclic evolution, our p =tr
which can be seen from the fact that a spin- —,

' particle
acquires a phase tr during a rotation, or that the curve C
on the projective Hilbert space, which is a sphere, is a
great circle, subtending a solid angle 2' at the center.

This example is similar to Berry s phase in that ! y(t)) is
always an eigenstate of H(t), even though Berry's
prescription cannot be applied here because of the cross-
ing of the point of degeneracy at which the adiabatic ap-
proximation breaks down.

Consider now a system with electric charge q for
which H =Hk(p —(q/c) A(t), R; )+qA p(t) in (1).
Here, &x!A„(t)!y(t ')) =A„(x,t) y(x, t'), where A„(x,t)
is the usual electromagnetic four-potential, and R; are
some parameters. Under a gauge transformation,

! y(t)& —exp[i(q/c)A(t)]! y(t)),

Ap(t) A p(t) —c 'dA(t)/Bt,

and

Hk(t) exp[i(q/c)A(t)]Hk(t)exp[ —i (q/c)A(t)].

As before, define ! y(t)) =e 'f '
! y(t)). If we require

that ! y) undergo the same gauge transformation as
! y(t)), f(t) is gauge invariant. Then, from (1),

df d " 1

dt dt 6
(t) =&y(t)! —~Ap(t)! y(t)& ——&y(t)! Hk(t)! y(t)&.

We consider now a cyclic evolution so that

! y(r)) =e'~exp —~
J Apdt I y(0)&.

Choose f(t) so that p=f(r) —f(0). Then

f+ T

! y(z)) =exp i~ —Apdt ! y(0)).h~o

So we now define the gauge-invariant generalization of
(3) as

Qt
p=y+ &y(t) I

Hk—(t) I y(t))dt,
h "p (8)

which on use of (7) gives

P= &y(t)!i —~Ap(t)! y(t))dt. d
dt 6 (9)

Here, ! y(r)) is obtained by parallel transport of ! y(0)),
with respect to the electromagnetic connection, along the
congruence of lines parallel to the time axis. We could
have chosen, instead, any other congruence of paths from
t =0 to t =r in our definition of p and therefore ! y(r)).
This would correspondingly change p, which therefore
depends on the chosen congruence. But, again, p is in-
dependent of p and H(t) for all the motions in P that
project to the same closed curve C in P, for a given

N T

e "=&y(r)!exp —~ Apdt ! y(0)&,
c "o

are gauge invariant. In the adiabatic limit, ! y(t)) can
be chosen to be an eigenstate of Hk (t) and (9) is then a
gauge-invariant generalization of the Berry phase.

We illustrate this by means of the AB eA'ect. Berry
has obtained the AB phase from the gauge-noninvariant
expression (4) with ! y(t)) an eigenstate of H(t), for a
stationary magnetic field, in a special gauge. But a
gauge can be chosen so that the AB phase is included in

the dynamical phase instead of the geometrical phase
(4). Also, in general, there is no cyclic evolution in an
AB experiment. But our P defined by Eq. (8) or (9) is

gauge invariant and includes the AB phase in the special
case to be described now.

Suppose that a charged-particle beam is split into two
beams at t =0 which, after traveling in field-free regions,
are recombined so that they have the same state at t = r.
It is assumed here that the splitting and the subsequent
evolution of the two beams occur under the action of two
separate Hamiltonians. This is possible if we restrict
ourselves to the Hilbert space of a subset of the degrees
of freedom of a given system, as in the example con-
sidered by Aharonov and Vardi. ' This belongs to the
third example of a cyclic evolution mentioned at the be-
ginning of this Letter. The wave function of each beam
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at t =r, assuming that it has a fairly well defined momentum, is

f' l
y;(x, r) =exp ——

I F.; dt exp — A dx" exp — p dx y(x, 0), i =1 or 2,dp J r P t't ~ rr

where y; is a space-time curve through the beam and p
represents the approximate kinetic momentum of the
beam. Hence on using (8), we have

p= —+ft A„dx"+—f~ p dx,
1

c
(10)

where y is the closed curve formed from y~ and y2. But
this is only an approximate treatment and a more careful
investigation of this problem is needed.

In conclusion, we note that P* =P —10} is a princi-
pal fiber bundle over P with structure group C* (the
group of nonzero complex numbers), and the disjoint
union of the rays in i'V is the natural line bundle over P
whose fiber above any p E P is p itself. Then, clearly, P,
given by (4), arises from the holonomy due to a connec-
tion in either bundle such that

~
y(t)) is parallel trans-

ported if

«(t)
~
(dldt)

~
~(t)& =0,

i.e. , the horizontal spaces are perpendicular to the fibers
with respect to the Hilbert space inner product. Condi-
tion (11) was used by Simon to define a connection on a
line bundle over parameter space, which is diferent from
the above bundles. The real part of (11) says that
(y(t)

~
tit(t)) is constant during parallel transport. Since

this is true also during any time evolution determined by
(1), we may restrict consideration to the subbundle
7=)~ y) E iY: (y~ tir) =1I of P*. This 7 is the Hopf
bundle" over P. Then the imaginary part of (11)
defines the horizontal spaces in 2 which determine a
connection. This is the usual connection in 2 and e'~ is
the holonomy transformation associated with it. If "iY

has finite dimension N then P has dimension N —1. For
N =2, P is the complex projective space Pt(C) which is
a sphere with the Fubini-study metric'' on P being the
usual metric on the sphere. Opposite points on this
sphere represent rays containing orthogonal states. Our
geometric phase can then be obtained from the holono-

L

my angle a associated with parallel transport around a
closed curve on this sphere like in Ref. 4.

It is a pleasure to thank Don Page for suggesting the
relevance of the Hopf bundle and the Fubini-Study
metric to this work.
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Abstract

I argue that the metaphysical import of the Aharonov-Bohm effect has
been overstated: correctly understood, it does not require either rejection
of gauge invariance or any novel form of nonlocality. The conclusion that
it does require one or the other follows from a failure to keep track, in the
analysis, of the complex scalar field to which the magnetic vector potential
is coupled. Once this is recognised, the way is clear to a local account
of the ontology of electrodynamics (or at least, to an account no more
nonlocal than quantum theory in general requires); I sketch a possible
such account.

1 Introduction

In classical electromagnetism, the magnetic field can be represented either by
the field strength B, or by a vector field A such that ∇ × A = B, where in
the latter case A is determined only up to a family of transformations known
as gauge transformations. Prior to the discovery — and empirical confirmation
— of the Aharonov-Bohm (A-B) effect, it was possible to believe (and, I think,
widely was believed) that A had only mathematical significance and that a true
description of the magnetic field required only B. The A-B effect demonstrated
— as uncontroversially as anything in the foundations of physics — that there
are features of electromagnetism that transcend the local action of the magnetic
field strength on charged matter: electrons can move through a region of space
in which B = 0 but which surrounds a region of nonzero B, and their behaviour
is dependent upon the value of B in that latter region. Mathematically speaking
these results are possible because the quantum mechanics of electromagnetism
involves the interaction of a complex field ψ with the A-field, and the equa-
tions that govern that interaction — though gauge-independent — cannot be
rewritten in a local way via B alone.

But just what the conceptual import is remains controversial. In founda-
tional discussions of late it has been argued — and widely accepted — that the

∗Balliol College, Oxford; email: david.wallace@balliol.ox.ac.uk
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effect requires either that we accept some new form of non-locality beyond that
already encountered in quantum mechanics, or that we abandon the principle
that gauge transformations simply redescribe the same physical goings on. In
particular, the A-B effect rests on the fact that the values of B within a spatial
region need not determine the field A in that region even up to gauge transfor-
mations — but that the residual gauge-invariant features of A not captured by
B have an inherently local character to them.

In this paper I argue that much of this debate1 rests upon a mistake: that of
considering the A-field in isolation rather than in conjunction with the ψ-field.
After reviewing the A-B effect and the contemporary foundational literature
in section 2, I demonstrate this in section 3 by considering the gauge-invariant
features of ψ and A jointly, which are not exhausted by the gauge-invariant
features of ψ and A separately. I demonstrate that those joint features can in
general be given an entirely local characterisation, blocking the concern that
some gauge-invariant features are inherently non-local. In section 4 I show in a
different way how this apparent nonlocality arises in the study of A alone and
how it is blocked when we allow for A and ψ jointly.

In section 5 I attempt an interpretation of these results: my proposal is
that we should not think of ψ and A as representing separate entities but
as representing, jointly and redundantly, features of a single entity, with the
redundancy being localisable either to ψ or to A as a matter of pure convention;
I illustrate this proposal via brief consideration of the Higgs mechanism.

In sections 6-7 I address two possible concerns with the account I give, and in
doing so explore further the extent to which we can give a properly local account
of the physical goings on around the solenoid in the A-B effect. Section 8 is the
conclusion.

2 The A-B Effect Reviewed

The classical theory of a point electric charge moving under the influence of
a background magnetic field is straightforward. The particle is represented
mathematically by a vector function q(t) of time, and the field by a vector field
B(x, t). The field satisfies two of Maxwell’s equations,

∇ ·B(x, t) = 0 and ∇×B(x, t) = 4πJ(x, t), (1)

where J is the electric current density, and the force on it is given by the Lorentz
force law,

F(t) = eq̇(t)×B(q, t), (2)

where e is the particle’s charge. (I use Gaussian units with c = 1.) In general
we will be working in the background-field regime, where the back-reaction of
the particle on the field is ignored.

Mathematically, it is always possible to express B as the curl of another
vector field A, the vector potential : B = ∇ × A. In many cases in classical

1Including some parts to which I contributed: cf Wallace and Timpson (2007).
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magnetostatics, doing so can be mathematically convenient. For instance, since
the divergence of a curl is always zero, the first equation in (1) is automatically
satisfied if B is defined in terms of A. More relevantly for our purposes, the
standard way to put the Lorentz force law into Hamiltonian form uses the
Hamiltonian

H(q,p) =
1

2m
(p + eA(q))2. (3)

That is: it is expressed in terms of the vector potential, rather than the field
strength.

At least in classical electromagnetism, the standard assumption is that A
is merely a mathematical convenience, and that B fully represents the physical
features of the magnetic field. There are two interrelated reasons for this:

1. The definition of A in terms of B specifies A only up to the gradient of
an arbitrary smooth function Λ: if we replace A with A′ = A+∇Λ, then
∇×A′ = ∇×A.

2. Only B appears to be physically detectable.

In the Maxwell equations and the Lorentz force law, the dependence of the
physics on B alone rather than A is manifest. It is only tacit in the Hamil-
tonian formulation of the theory (there is no straightforward way to write a
Hamiltonian form of the Lorentz law in terms of B alone), but it is strongly
suggested by the fact that the classical gauge transformation

A −→ A +∇Λ; q→ q; p→ p− e∇Λ (4)

is a symmetry of the Hamiltonian, and furthermore, a symmetry that leaves the
trajectory of the particle unchanged.

In applications of the vector potential in electromagnetism, it is common to
impose some additional condition — a choice of gauge — such that exactly one
A-field is compatible with any given set of empirical data. A common choice, for
instance, is the Coulomb gauge, defined by the condition that∇·A = 0. If A and
A′ are two gauge-equivalent vector potentials related by a gauge transformation
Λ and both satisfying the Coulomb gauge condition, then ∇2Λ = 0, which
together with appropriate boundary conditions on the theory entails that Λ is
constant and hence that A = A′.

The quantum mechanics of a particle interacting with a background magnetic
field is obtained in the standard way by replacing q and p in the classical
Hamiltonian with the quantum-mechanical position and momentum operators.
The resultant Schrödinger equation (in units where h̄ = 1) in the position
representation is

∂ψ

∂t
(x, t) =

i

2m
(∇− ieA(x, t))

2
ψ(x, t). (5)

The Schrödinger equation is invariant under a quantum-mechanical version of
the classical gauge transformation. Since momentum in configuration-space

3



wave mechanics is given by the gradient of the phase of the wave-function, we
would expect that the classical momentum transformation becomes a phase
change, and so it does: the form of the transformation is

A −→ A +∇Λ; ψ −→ eieΛψ, (6)

again for an arbitrary smooth function Λ. And just as the classical transforma-
tion left particle trajectories unchanged, the quantum version leaves unchanged
the probability of finding the particle in any given location.

The gauge-invariance of the Schrödinger equation might suggest that, in
quantum just as in classical mechanics, it is the B-field rather than the A-
field that is of physical significnance. The Aharonov-Bohm effect calls this into
question: in its simplest form, it works as follows.

1. A beam of charged particles is separated into two; the two beams flow
round opposite sides of a solenoid and are then allowed to re-interfere.

2. In the absence of any current through the solenoid (and hence of any
induced magnetic field), there will be a set of interference fringes produced
by the reinterference of the two beams.

3. When the solenoid is turned on, there will be a shift in the interference
pattern. The magnitude of the shift will be proportional to the difference
of the integrals of the A-field along the paths traversed by the left and
right beams respectively. That is, the shift ∆ will be proportional to the
integral of A around the loop Γ formed by the two halves of the beam:

∆ ∝
∮

Γ

A · dx (7)

4. By Stokes’ theorem, the line integral of a vector field V around a closed
loop in a simply-connected region (that is: a region in which any closed
loop can be continuously deformed to a point without moving any part of
it out of the region) is equal to the surface integral of the curl of V over
any surface bounded by the loop. Since ∇×A = B, this means that ∆ is
proportional to the integral of the magnetic field over the interior of the
region enclosed by the beam, or in other words that it is proportional to
the magnetic flux through that region.2

The conceptual problem is that a sufficiently well-constructed and well-shielded
solenoid will result both in negligible magnetic field outside the solenoid, and
negligible wavefunction inside the solenoid. So the electron is moving (almost)
entirely through a region in which the magnetic field is zero — and yet, its
evolution is still detectably different from what would occur if the solenoid were
turned off.

2Of course, the electron will be quite delocalised, and indeed this delocalisation is central
to the observation of interference fringes, so “the” path taken by the electron is not really
well-defined. But since B vanishes outside the solenoid, by Stokes’ theorem any two paths
which pass the solenoid on the same side will have the same line integral of A.
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If we hold on to the idea that the magnetic field is completely represented by
the field strength B (what Healey (2007, p.54) calls a ‘no new EM properties’
view), this means action at a distance: the passage of the electron around the
solenoid is affected by the magnetic flux within the solenoid directly, without any
mediating field to transmit its influence. This is doubly embarrassing because
the equations governing the electron’s motion certainly look as if they involve
local action — but between ψ and A, not ψ and B.3

This suggests a natural alternative(called the “new localized EM properties”
view by Healey (2007, p.55)): take the A-field as a physical field. The problem,
of course, is gauge invariance: since two gauge-equivalent A-fields (that is, two
A-fields related by a gauge transformation) are empirically indistinguishable,
how is it to be determined which is the true A field? This can be thought
of as giving rise both to a problem of empirical inaccessibility of the present
electromagnetic state (no amount of evidence can tell us which of the vari-
ous gauge-equivalent A-fields is correct) and a problem of indeterminism (the
equations of electromagnetism determine a system’s evolution only up to gauge
transformations, so if Λ(x, t) = 0 for t < 0, they fail to tell us whether a given
set of t < 0 initial conditions will evolve into A or A +∇Λ).

It is possible to remove the underdetermination by imposing a particular
gauge condition (what Maudlin (1998) calls a “one true gauge” strategy4). But
given the gauge symmetry, there seem to be few grounds beyond aesthetic pref-
erence for selecting one gauge rather than another, and the problems of empirical
inaccessibility and indeterminism are replaced by a problem of underdetermi-
nation of theory by data. One need not be a crude verificationist to find this
level of underdetermination unattractive.

These concerns suggest looking for a gauge-invariant representation of the
theory. Our slogan might be: “the physical facts about the fields are represented
by the gauge-invariant features of A. One of those gauge-invariant features is
B = ∇×A , but the A-B effect shows us that there are others.” As stated, this
is a mathematical problem: find a complete characterisation of A, up to gauge
transformations, in any given region R. And there is a well-known answer: A is
characterised completely and gauge-invariantly by its line integral around every
loop in R (called the holonomies of the loops).

For future purposes, it will be useful to explain this a little further. Given
some functional f from A-fields to some other space, f can be said to charac-
terise the gauge-invariant features of the A-fields provided that f(A) = f(A′)
iff A and A′ are related by a gauge transformation. To see that this is the case

3There is a subtler problem: the problems of interpretation of the vector potential in elec-
tromagnetism generalise to so-called ‘non-Abelian gauge-theories’, but the no new properties
view does not generalise readily to these more exotic cases. See Healey (2007, p.84) and
references therein for details.

4In discussion I have found that Maudlin is often understood as advocating this strategy;
my own more minimal reading is that he is simply pointing out that it is possible as part of
a case to undermine analogies between the A-B effect and Bell’s inequality.
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for holonomies, suppose that A and A′ satisfy∮
Γ

A · dx =

∮
Γ

A′ · dx (8)

for any loop Γ. Then the integral of (A −A′) around any closed loop is zero,
or put another way, the integral of (A−A′) between x0 and x depends only on
x0 and x and not on the path connecting them. If we then choose arbitrary x0

and define

Λ(x) =

∫ x

x0

(A−A′) · dx, (9)

then ∇Λ = (A − A′) and so A,A′ are gauge-equivalent. Conversely, if they
are gauge-equivalent then (since the integral of ∇Λ around a closed loop always
vanishes) they have the same holonomies.

This suggests Healey’s own preferred interpretation of the magnetic field’s
ontology, the “new non-localized EM properties” view: the magnetic field is
represented by a map from loops to real numbers. By the definition of the curl,
the integral of A around an infinitesimal loop at point x is equal to B · nδS,
where n is normal to the surface enclosed by the loop and δS is the area of
that surface. So among the components of Healey’s ontology (in effect) is the
magnetic field. But that ontology is much larger than just the field.

Healey’s loop ontology faces three main objections. Firstly, just as with the
B-field ontology there is no natural way to write the equations of motion of the
theory in terms of the loop properties directly; the A-field remains indispens-
able mathematically. Secondly, the ontology is very redundant: loops can be
decomposed into smaller loops, and the real number assigned to the larger loop
must be the sum of those assigned to its components. (If a region R is simply
connected, any loop can be decomposed into infinitesimal loops, and the B field
of R actually completely determines the values of all the loops in R.) Not only
is this awkward, it is difficult to explain naturally except by defining the values
of each loop as the integral of some vector field around the loop.

Most strikingly, Healey’s ontology is non-separable: if X and Y are simply
connected spatial regions whose union is not simply connected, then fully spec-
ifying the values assigned to each loop in X and Y separately leaves some loops
in X ∪ Y unspecified. The A-B effect itself offers an illustration: consider X
and Y to be as given in diagram 1. Since X and Y are each simply connected,
and since in each B = 0, each is magnetically trivial: each loop integral is equal
to zero. Insofar as the magnetic field in a region is supposed to be represented
by the gauge-invariant facts about X in that region, in both X and Y the mag-
netic field is the same as in empty space (there is a gauge transformation that
transforms it to zero). But the field in X ∪Y is not the same as in empty space:
the value of loops that enclose the solenoid is non-zero.

So the A-B effect appears to present us with a trilemma. We would like an
understanding of electromagnetism that is separable, gauge-invariant, and has
no action at a distance. It appears that one of these has to be rejected.

Before going on I should note that while this discussion has been carried
out at a relatively elementary level, many proposed ways of understanding the
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Figure 1: Regions of space around the solenoid
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ontology of electromagnetism in the light of the A-B effect are much more so-
phisticated, and in particular, involve extensive appeal to the mathematics of
fibre bundles5. It is perhaps worth making clear that whatever the virtues of
these approaches, they cannot avoid the basic trilemma. For the A-field in re-
gion X is gauge-equivalent to what it would be if the solenoid where absent, and
so is the A-field in region Y, but the A-field in region X ∪Y is not. So any rep-
resentation of the field that is gauge-invariant must violate either separability
(by assigning a nontrivial electromagnetic state to region X ∪Y ) or local action
(by assigning a trivial electromagnetic state to the region in which the electron
moves).

Here ends my summary of the A-B effect.

3 The A-B effect and the complex field

The A-B effect arises because of certain features of the mathematical theory
of a complex scalar field ψ coupled to a real vector field A. It is therefore in

5See, for instance, Nounou (2003) or Leeds (1999).
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hindsight a little odd that the literature on the A-B effect has been almost wholly
concerned with the A field and hardly at all with the ψ field. In particular, the
line of reasoning that leads to the loop ontology — and to the argument that
any gauge-invariant representation of the magnetic field is non-separable — is
concerned purely with the gauge-invariant features of A and not with ψ at all.
Let us attempt to rectify this.

Prima facie, there are two obvious ideas as to how to think about the gauge-
invariant features of ψ:

1. Representing the gauge-invariant features of A by loop holonomies already
takes care of the gauge freedom. Any two complex fields ψ,ψ′ can thus
be thought of as representing different physical possibilities. The physical
states of the theory are thus represented by a complex field and a set of
loop holonomies.

2. Since there is a gauge transformation relating any two fields ψ,ψ′ satisfying
|ψ(x)| = |ψ′(x)|, the only gauge-invariant feature of ψ is its magnitude.
The physical states of the theory are thus represented by a real field |ψ|
and a set of loop holonomies.

Neither is satisfactory, for neither provides a complete characterisation of the
gauge-invariant features of the theory. To see why, suppose that (ψ,A) and
(ψ′,A′) are two possible pairs of fields. A given function f of the fields charac-
terises them completely up to gauge transformations provided that f(ψ,A) =
f(ψ′,A′) just if for some Λ, ψ′ = eiΛψ and A′ = A +∇Λ.

For the first suggested characterisation, f takes ψ to itself and A to the loop
holonomies. But here the only gauge transformations that leave ψ invariant are
those for which Λ(x) 6= 0 only when ψ(x) = 0. So in general this representation
is not itself gauge invariant. For the second suggestion, f takes ψ to its magni-
tude and A to its holonomies, and this clearly is gauge invariant. But consider
the pairs (ψ,A) and (eieσψ,A), for some arbitrary function σ. These have the
same holonomies and the same |ψ|. But they are gauge-equivalent only if, for
some Λ,

eieσψ = eieΛψ and A = A +∇Λ. (10)

This pretty clearly requires (i) Λ to be constant (at least on the connected
parts of the region of space we are considering) and (ii) Λ(x) = σ(x) + 2nπ/e
on any connected region where ψ 6= 0. In general (that is, for any choice of
σ which is not constant on any connected region where ψ 6= 0) this cannot
be satisfied. So the second suggested characterisation erroneously represents
gauge-inequivalent pairs of fields as physically equivalent. (And, in case it’s not
obvious, these gauge-inequivalent fields are definitely physically inequivalent:
two pairs of fields which at time t are gauge-inequivalent but agree on the
magnitude of the wavefunction and on the holonomies will not in general so
agree at later times, and |ψ| is empirically accessible.)

Our two suggestions share a common flaw. They attempt to characterise
the gauge-invariant features of the fields by separately representing the gauge-
invariant features of ψ and A. But the gauge transformations act jointly on
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the two fields, and there are joint features of the pair of fields that are gauge-
invariant but do not derive directly from gauge-invariant features of the field
considered separately.

In particular, consider the quantity |∇ψ− eiAψ|. This is gauge-invariant —
indeed, the fact that it is gauge invariant is the central heuristic of the gauge
principle in particle physics6 — but its gauge invariance does not derive from
gauge-invariant features of ψ and A separately but rather from the cancellation
of terms in the gauge transformations of both.

This suggests that a gauge-invariant characterisation of (ψ,A) will need to
consider joint features. A helpful way to get at such a characterisation starts
by decomposing ψ into its magnitude and phase:

ψ(x, t) = ρ(x, t) exp(ieθ(x, t)). (11)

(This decomposition is unique, up to an overall constant 2nπ/e in θ, provided
that ψ(x, t) is everywhere nonzero; I return to the ψ = 0 case later.)

Clearly, ρ is a gauge-invariant feature of ψ alone, and hence of (ψ,A) jointly.
More interestingly, consider the gauge-invariant quantity ψ∗(∇ − eiA)ψ. Ex-
pressed in terms of ρ and θ, it is

ψ∗(∇− iA)ψ = ρ∇ρ+ ieρ2(∇θ −A). (12)

Since ρ2 and ρ∇ρ are gauge-invariant, so is Dθ ≡ ∇θ −A, the gauge-covariant
derivative of θ (something that can also be verified directly).

So: we now have two gauge-invariant features of the theory: the scalar field
ρ = |ψ|2, and the vector field Dθ. In fact, no others are needed. For suppose
that ψ′ = ρ′eieθ

′
and A′ satisfy

ρ′ = ρ and ∇θ′ −A′ = ∇θ −A. (13)

Then it is easy to verify that

ψ′ = ψeie(θ
′−θ) and A′ = A +∇(θ′ − θ). (14)

In other words, (θ′ − θ) defines a gauge transformation from (ψ,A) to (ψ′,A′).
In particular, the holonomies can be recovered from the covariant derivatives of
the phase: ∮

Dθ · dx =

∮
∇θ · dx +

∮
A · dx =

∮
A · dx , (15)

since the integral of a gradient around a closed loop is zero.
The alert reader will have noticed something rather striking about this rep-

resentation. Both ρ and Dθ are local features of the theory: their values at a
point x depend only on ψ and A. The A-field alone may admit of no descrip-
tion which is both separable and gauge-invariant, but the ψ and A fields jointly
admit of both.

6Slightly more accurately, the central heuristic is that (∇ψ − eiAψ) transforms under the
gauge group in the same way as does ψ itself.
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Indeed, we can rewrite the Schödinger equation in a local and gauge-invariant
way in terms of these quantites; since the method of doing so is instructive for
later, I spell it out here. Firstly, let us make a choice of gauge: the unitary
gauge, in which ψ is always real. (This may seem unfamiliar: gauge conditions
are usually specified via a constraint on A rather than ψ. But mathematically
a gauge condition is just a condition which picks a unique element out of each
equivalence class of gauge-equivalent fields, and — again on the assumption
that ψ 6= 0 — the unitary gauge does that just fine. I return to its conceptual
significance later.)

In the unitary gauge we can write ψ = ρ; the Schrödinger equation becomes

1

2m

(
∇2ρ−A ·Aρ− 2iA · ∇ρ− i(∇ ·A)ρ

)
= iρ̇. (16)

Separating real and imaginary parts, we get

(∇2 −A ·A)ρ = 0; (17)

2A · ∇ρ+ (∇ ·A)ρ = 2mρ̇. (18)

Combined with the condition that the magnetic field strength B vanishes,

∇×A = 0, (19)

this is a complete and deterministic set of equations for ρ and A in the unitary
gauge.

(If you are wondering how the Schrödinger equation, which is supposed to
determine the evolution of the particle, has given rise to a joint equation for the
particle probability density and the vector potential, recall that in the unitary
gauge, phase information about the particle is carried by A. If this makes you
start to worry that we don’t have a clean separation any more between matter
and magnetic degrees of freedom, hold that thought!)

To get a gauge-invariant set of equations, we just note that in the unitary
gauge, ∇θ = 0 and so Dθ = A. So in this gauge, we can replace A with Dθ to
get

(∇2 − (Dθ)2)ρ = 0; 2Dθ · ∇ρ+ (∇Dθ)ρ = 2mρ̇; ∇×Dθ = 0. (20)

But this equation, being expressed entirely in terms of gauge-invariant quanti-
ties, does not depend on the unitary gauge. We have obtained a set of local,
deterministic, gauge-invariant differential equations for the A-B effect.

All this ought to suggest that the apparent nonlocal-action/ gauge-dependence/
non-separability trilemma of the A-B effect is just an artefact of our failure to
consider ψ as well as A. Indeed, I think this suggestion is correct. Before ex-
ploring the suggestion further, though, it will be helpful to get clear just how
that trilemma arises and how the introduction of matter blocks it.
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4 Origins of non-separability

Recall the definition of non-separability: the state of a region of space X ∪ Y
is nonseparable if specification of all properties of regions X and Y separately
does not completely specify the properties of X ∪ Y . In the case of electro-
magnetic gauge theory under the assumption that all physical properties are
gauge-invariant, the properties of a region are supposed to be in some way rep-
resented by gauge-invariant features of the fields, with two regions having the
same physical properties iff the fields on those regions are gauge-equivalent.

We can now express the presence or absence of non-separability mathemat-
ically: fields ψ,A defined on X ∪ Y give rise to non-separability iff there exist
other fields ψ′,A′ defined on X ∪ Y such that

(i) ψ′|X ,A′|X (the restrictions of ψ′ and A′ to X) are gauge-equivalent to
ψ|X ,A|X ;

(ii) likewise ψ′|Y ,A′|Y and ψ|Y ,A|Y are gauge-equivalent; but

(iii) ψ′,A′ and ψ,A are not gauge-equivalent.

For any possible state of X ∪ Y must be represented by some pair of fields on
X ∪ Y , and non-separability is the possibility of two such non-gauge-equivalent
pairs ψ,A and ψ′,A′ whose restrictions to X and to Y are gauge-equivalent.

Suppose (i) and (ii) are the case. Then there exist functions ΛX , ΛY on X
and Y respectively such that

1. On X, ψ′ = eieΛXψ and A′ = A +∇ΛX .

2. On Y , ψ′ = eieΛY ψ and A′ = A +∇ΛY .

It follows that on the intersection region X ∩ Y ,

1. eie(ΛX−ΛY )ψ = ψ;

2. ∇(ΛX − ΛY ) = 0.

So ΛX −ΛY is a real function on X ∩Y which (1) is equal to zero except where
ψ = 0 and (2) has vanishing gradient everywhere. These are strict conditions.
The first can be satisfied by ΛX − ΛY 6= 2nπ/e only in regions where ψ = 0.
The second entails that if x and y are points in X ∩ Y connected by a path
lying within X ∩ Y , then (ΛX − ΛY )(x) = (ΛX − ΛY )(y). Jointly, then, the
conditions can be satisfied by a function with non-vanishing gradient only if
X ∩Y is path-disconnected (if there are regions of X ∩Y that cannot be joined
by any path lying within X∩Y ) and if ψ is zero on at least one of the connected
components.

If these conditions are not satisfied, then ΛX and ΛY agree (up to a remov-
able 2nπ/e term) on the intersection of X and Y . We can then defined a single
function Λ consistently by declaring it equal to ΛX on X and to ΛY on Y ; this
function generates a gauge transformation between ψ,A and ψ′,A′, so that (iii)
is not satisfied.
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Conversely, if they are satisfied then we can choose arbitrary functions
ΛX ,ΛY which are constant on each connected component of X ∩ Y but which
are not equal to each other on at least one such component. The fields obtained
by applying a gauge transformation generated by ΛX to the restriction of ψ,A
to X, and likewise for Y , agree on X ∩ Y and so can be consistently combined
into a pair of fields on X ∪ Y , but they are not gauge-equivalent.

So we have found a necessary and sufficient condition for non-separability in
gauge theory: it can occur with respect to regions X, Y when their intersection
is disconnected and when the matter field vanishes on at least one connected
component. (In fact, the result generalises straightforwardly to more general
gauge theories: what is required there is not per se that ψ vanishes on a con-
nected component but that there is some element of the gauge group g such that
gψ = ψ on that region. This generally requires ψ to remain strictly confined to
some small subspace of the internal vector space.)

The first of these conditions is purely topological. A necessary (though not
sufficient) condition for it to occur is that X ∪Y is not simply connected;7 note
that this is satisfied by the region outside the solenoid in the A-B effect, and
recall that we have seen that non-separability occurs in the loop ontology only
where non-simply-connected regions are considered.

The second condition, however — the vanishing of ψ on an open set — is
implausibly, indeed unphysically, stringent. Notice that there is no ‘give’ in the
condition at all: even if |ψ| = 10−1000, there is no prospect of non-separability.
(The local facts about X and Y separately that determine the joint properties
of X∪Y might be extremely difficult to ascertain, but that is a limit of practice,
not principle.) In one-particle quantum mechanics, it is a theorem8 that ψ is
never exactly zero on an open set in spacetime, so that the condition can hold,
if at all, only for an instant. And in quantum field theory the most perspicuous
way (in this context) to think of the system is as a superposition of different
field configurations, in which the weight given to the configuration where ψ is
exactly zero will itself be exactly zero. (I consider the quantum-field-theoretic
case more carefully in section 7). I conclude that we can set aside this case.
Once set aside, there is no obstacle to a fully local, but fully gauge-invariant,
understanding of the theory.

7Proof sketch: suppose X ∪ Y is simply connected and let f be any smooth function
which is constant on each connected component of X ∩ Y . Then for arbitrary a, b, there is
a well-defined vector field v on X ∪ Y such that v|X = a∇f and v|Y = b∇f . For arbitrary
p, q ∈ X ∩ Y , let γX and γY be paths in X and Y respectively from p to q. Then the integral
of v along the loop from x to y along γX and back along γY is (a− b)(f(q)− f(p)). But since
∇ × v = 0, by Stokes’ theorem this integral must vanish. So f(p) = f(q), i. e. any function
constant on the connected components is constant.

8The result is proved under rather general conditions by Hegerfeldt (1998a, 1998b); see
also the discussion in Halvorson and Clifton (2002). To see intuitively why it is correct,
just notice that to confine a particle exactly to a finite region requires it to have arbitrarily
high-momentum Fourier components, corresponding to arbitrarily high momenta, and so to
components of the wavefunction that will spread out at arbitrarily high speeds.
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5 The interlinking of A and ψ

I have shown formally that the gauge-invariant features of ψ and A can generi-
cally be jointly represented in a fully local (i. e. , non-separable) way. But it is
still reasonable to ask what those gauge-invariant features are actually supposed
to represent: that is, what kind of ontology is compatible with the theory?

It is tempting to think that the question can be innocently rephrased as:
what kind of ontologies for the electromagnetic field, and for the matter field,
are compatible with the theory? Tempting, but mistaken — and this is one of
the main points of the paper. For since the gauge transformation thoroughly
mixes the two together, there is simply no justification — as long as we wish
our ontology to depend only on gauge-independent features of the theory —
in regarding the two mathematically-defined fields as representing two separate
but interacting entities, rather than as (somewhat redundantly) representing
aspects of a single entity.

To press the point, let us consider again the question of a choice of gauge.
Most gauge choices encountered in electromagnetism impose a constraint on the
A-field, and leave the ψ-field unconstrained: thus the Coulomb gauge, ∇·A = 0,
for instance, or the London gauge Az = 0, each place one constraint on A per
point of space. Hence the temptation to see the A-field, with its apparent three
degrees of freedom per space point, as really having two once gauge redundancy
is allowed for, and likewise to see the ψ field as genuinely having two degrees of
freedom per space point.

But this is pure convention. Consider again the unitary gauge, in which we
require that the phase of ψ vanishes (i. e. , that ψ is real). In this gauge, ψ has
only one degree of freedom, but there is no residual gauge invariance of A —
each of its three apparent degrees of freedom are physical. So do we have one
degree of freedom for matter and three for electromagnetism, or two for each?
The question is only meaningful if we persist in supposing that two distinct
entities are present.

To be sure, from the perspective of quantum field theory there is no con-
ventionality about the particles that are associated with the fields: whatever
gauge we choose, we will discover a particle spectrum consisting of a massless
vector boson (two degrees of freedom) and a charged scalar boson (one degrees
of freedom, but with both matter and antimatter versions9). But the particle
spectrum of a theory represents the expansion of the theory’s Hamiltonian in
normal modes around a (possibly local) minimum of energy, and is by its nature
holistic: the particle spectrum of the theory is a dynamical and not a metaphysi-
cal matter, and should not be thought to require the existence of metaphysically
distinct matter and electromagnetic fields.

Indeed, it need not always be the case that a complex-scalar-field-plus-vector-
potential field theory even has that particular particle spectrum. If the gauge
symmetry is spontaneously broken (that is, if the minimum-energy configura-
tion has a non-zero expected value of |ψ|) then the particle spectrum consists

9For more on the curious way in which complex classical degrees of freedom give rise to
antimatter, see Wallace (2009) and Baker and Halvorson (2009).
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instead of a massive vector field and a real scalar field (indeed, this is one of the
main applications of the unitary gauge). In popularisations of the Higgs mech-
anism, this phenomenon is sometimes described as the electromagnetic field
“eating” one of the degrees of freedom of the scalar field and thus gaining mass,
a metaphor that has been sharply criticised by Earman (2003) (see also Struyve
(2011)). But once we realise that the electromagnetic and scalar fields cannot
be thought of as separate entities, there need be no residual surprise that the
normal-mode expansion of the physical system that they jointly describe is best
analysed in different ways in different regimes.

But how are we to think about this “jointly described” entity? We know
that it can be characterised entirely by the magnitude of ψ (a scalar field) and
by its covariant derivative (a vector field, or more precisely a one-form field).
It is important to remember that these are conceptually and mathematically
very different entities. A scalar field, mathematically, is just an assignment of
a real number to every point of space, and can easily enough be thought of
as ascribing properties to points of space. A one-form field is not so simple
and cannot be so represented: to speak loosely, it is more like an assignation
of properties to infinitesimally small diffences between points of space. Or put
another way, if a vector is thought of loosely as an infinitesimal arrow from
one space point to a neighboring one, a one-form field assigns a real number to
each such infinitesimal arrow. A one-form is then something more like a set of
relations between (infinitesimally close) points of space.

That suggests that there are indeed two components of the ontology of the
system: a collection of properties of points of space, and a collection of relations
between infinitesimally close points of space. In certain circumstances (math-
ematically, when the holonomy vanishes) integrating the infinitesimal relations
from x to y along a given path gives a result which is in fact independent of
the path; in these situations we can consistently define a relation between those
finitely-separated points and call it the phase difference, and then the system
can be represented by a complex field with no remaining redundancy save for
a single choice of phase. Conversely, the holonomy — the integral of the in-
finitesimal relations around a closed loop — provides a measure of the extent to
which this representation of the systems is blocked, and the holonomy in turn
is mostly determined by the integral of the relations around infinitesimal closed
loops — the curvature.

The extent to which this somewhat loose talk of ‘infinitesimal relations’ can
be made more precise lies beyond the scope of this paper; it is perhaps worth
remembering, though, that in any case the empirical success of (classical or
quantum) electrodynamics provides no licence whatever to regard the theory as
a reliable description of the physical world on arbitrarily short lengthscales, so
that thinking about the relations between extremely but finitely close points of
space may actually be a more reliable way of approaching the theory’s ontology
than appeal to vector bundles or to actual infinitesimals.10

10For more consideration of the metaphysics of vector fields, see Butterfield (2006b, 2006a)
and references therein.
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Evidence for the Aharonov-Bohm effect was obtained with magnetic fields shielded from the
electron wave. A toroidal ferromagnet was covered with a superconductor layer to confine the
field, and further with a copper layer for complete shielding from the electron wave. The expected
relative phase shift was detected with electron holography between two electron beams, one passing
through the hole of the toroid, and the other passing outside. The experiment gave direct evidence
for flux quantization also.
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The Aharonov-Bohm (AB) effect' has recently re-
ceived much attention as an unusual but important
quantum effect. The predicted effect is the produc-
tion of a relative phase shift between two electron
beams enclosing a magnetic flux even if they do not
touch the magnetic flux. Such an effect is inconceiv-
able in classical physics and directly demonstrates the
gauge principle of electromagnetism.

Although the affirmative experimental test was of-
fered4 soon after its prediction, Bocchieri et aI.5 and
Roy questioned the validity of the test, attributing the
phase shift to leakage fields. The authors' recent ex-
periment using a toroidal magnet established the ex-
istence of the AB effect, under the condition of com-
plete confinement of the magnetic field in the magnet;
electron holography confirmed quantitatively the ex-
pected relative phase shift between the two beams.
Bocchieri, Loinger, and Siragusa still argued that the
phase shift could be due to the Lorentz-force effect on
the portion of the electron beam going through the
magnet. 9

The present experiment'0 is designed to provide a
crucial test of the AB effect. A tiny toroidal magnet
covered entirely with a superconductor layer and fur-
ther with a copper layer is fabricated. The two layers
prevent the incident electron wave from penetrating
the magnet. In addition, the magnetic field is confined
to the toroidal magnet by the Meissner effect of the
covering superconductor. Then the relative phase
shift between two electron beams, one passing through
a region enclosed by the toroid and the other passing
outside the toroid, is measured by means of electron
holography. The experimental results detected the
predicted relative phase shift, giving conclusive evi-
dence for the AB effect. This experiment also demon-
strated the flux quantization. "

Tiny toroidal samples were fabricated by use of pho-
tolithography. A Permalloy (80'/0 Ni and 20'k Fe) thin
film, 200 A thick, was prepared by vacuum evapora-
tion on a silicon wafer covered with Al (3000 A thick),
Nb (2500 A thick), and SiO (500 A thick); the SiO
layer serves to reduce the coercive force of the Per-
malloy. After evaporation of a 2000-A-thick layer of
SiO on the Permalloy, the toroidal shape was cut out to
the depth of the Nb surface. The NbO produced by
the lithography processes at the Nb surface had to be
removed to ensure a perfect contact with the Nb layer
(2500 A thick) that was subsequently sputtered on the
whole structure (see Fig. 1). The superconducting
contact was confirmed by another experiment. We
note that the thickness of the upper SiO layer de-
creased to 500 A after the ion sputtering.

A toroidal sample with a tiny support bridge (see the
scanning electron micrograph in Fig. 2) was then cut
so that the Permalloy toroid was completely covered

hoto mask

—Si wafer

FIG. 1. Schematic diagram for fabrication of the toroidal
magnet.
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FIG. 4. Optical reconstruction system for interference mi-
croscopy.

(a) (b)

FKr. 2. Toroidal magnet. (a) Scanning electron micro-
graph; (b) diagram. The toroid is connected to a Nb plate by
a tiny bridge for high thermal conductivity.

Somple

by the superconducting bulk Nb. The toroidal sample
was peeled off the wafer by dissolving the Al in NaOH
solution„and was placed on a Cu mesh. Finally, a
copper film 500-2000 A thick was evaporated on all of
its surfaces; the film serves to prevent penetration of
the electron wave, and to keep the sample from ex-
periencing charge-up and contact-potential effects.

Electron holograms were formed in a 150-kV field-
emission electron microscope (wavelength, 0.030 A)
that had a liquid-He-cooled specimen stage attached.
The object wave, phase shifted by the sample, and the
reference wave were brought together by the electron
biprism to form an interference pattern, as shown in

Fig. 3. The pattern was enlarged 1000 times by elec-
tron lenses and recorded on film as a hologram.

The phase shift due to the sample was reconstructed
by means of He-Ne laser light (wavelength, 6328 A)
in the optical system shown in Fig. 4. Two waves, A
and B, illuminated the hologram. Each wave produces
two diffracted waves, one which reconstructs the phase
shift due to the sample, and the other, its conjugate.

An interference micrograph is obtained when the
reconstructed image of beam A is superposed with
beam B after passage through an aperture. Moreover,
a twice-phase-amplified interference micrograph" is
formed when the reconstructed image of beam A and
the conjugate image of beam B are superposed by the
tilting of beam B.

The leakage fluxes of fabricated samples at room
temperature were quantitatively measured'3 by in-
terference electron microscopy, and only samples with
flux less than It/20e '4 were selected for this experi-
ment. Figure 5 shows an example of a twice-phase-
amplified interference micrograph, which indicates a
very large leakage flux of —2h/e.

Now, the AB effect is the production of a relative
phase shift of n@/(h/2e) between two electron beams
enclosing magnetic flux C. The interference micro-
graph in Fig. 6(a) is clear evidence for the AB effect.
Each interference fringe inside the ring, i.e., the image
of the toroidal sample, lies just in the middle of two
fringes outside the ring. This shows that there is a rel-
ative phase shift nrr (n odd), as expected from the
quantized magnetic flux nh/2e enclosed within the su-
perconducting Nb. That the relative phase shift here is
an integral multiple of m can be seen precisely from
the twice-phase-amplified micrograph obtained from
the same hologram [Fig. 6(b) j, in which there are no
relative displacements between the fringes inside and
outside the ring. We emphasize that the magnetic flux
is confined within the superconductor and that the

Reference-- Object
Nave

Electron

$P biprism

Hologrom

FIG. 3. Electron-optical system for hologram formation.

FlG. 5. Leakage fields from a toroidal magnet (phase am-
p(i«cation, 2X). Leakage flux can be quantitatively mea-
sured since a constant flux of h/2e flows between two adja
cent interference fringes.
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(c)

FIG. 6. Interference micrographs of a toroidal magnet at low temperatures. (a) T =-4.5 K (phase amplification, I x ); (b)
T = 4.5 K (phase amplification, 2 x ); (c) T = 15 K (phase amplification, 2 x ). The enclosed flux is quantized in units of h/2e
when T & T, ( = 9.2 K). The number of tluxons is odd.

field is shielded from the electron wave by the Cu and
Nb covering. It is estimated that the leakage flux is far
less than h/20e, since the leakage flux at room tem-
perature is less than h/20e and the minimum thickness
and penetration depth of Nb are 2500 and 1100 A,
respectively. Only a slight portion, approximately
10, of the incoming electron wave is estimated to
reach the magnetic field coherently, since a 150-kV
electron beam has to penetrate through the Cu
( —1000 A) and Nb (2500 A) layers for it. The suffi-
cient shielding of electron penetration is also support-
ed by the experimental result that the change in the
Cu-layer thickness from 500 to 2000 A had no effect
on the interference fringes around the quantized mag-
netic flux.

If the temperature T of the sample is raised, the in-
terference pattern changes abruptly when T crosses the
superconducting critical temperature T, ; the relative
phase shift is no longer an integral multiple of n. In
the case of Figs. 6(a) and 6(b), it in fact becomes
(0.32+ n) n as can be seen from Fig. 6(c). The transi-
tion was confirmed to be reversible. This behavior is
evidence for the effect of the superconductor that con-
fines the magnet flux quanta below T, .

Of course, there are cases of even n, in which no
relative displacements are observed, as shown in Figs.
7(a) and 7(b). With this sample, the relative displace-
ment can be seen only when its temperature is raised
above T, ; the displacement in Fig. 7(c) represents a
relative phase shift of (0.25+ n ) m (n even).

When the temperature T of the sample was further
raised to room temperature, the relative displacement
changed by half the fringe spacing in a twice —phase-
amplified interference micrograph; this corresponds to
the estimated decrease ( —5%) in the magnetization
of the Permalloy. This temperature dependence sup-
ports our view that the relative phase shift is con-
trolled by the magnetic flux of the Permalloy.

The experimental results described above provide
crucial evidence for the existence of the AB effect.
Furthermore, the quantization of the flux trapped by a
superconductor was directly observed with use of the
AB effect of an electron beam.

The most controversial point in the dispute over ex-
perimental evidence for the AB effect has been wheth-
er or not the phase shift would be observed when both
electron intensity and magnetic field were extremely
small in the region of overlap. Since experimental
realization of absolutely zero field is impossible, the
continuity of physical phenomena in the transition
from negligibly small field to zero field should be ac-
cepted instead of perpetual demands for the ideal; if a
discontinuity there is asserted, only a futile agnosti-
cism results.

The authors are grateful for the idea for this experi-
ment, which was proposed by Professor Chen Ning
Yang of the State University of New York. '5 Also
deserving of thanks are Dr. Ushio Kawabe of Hitachi,
Ltd. , for his advice and stimulation, Mr. Mikio Hirano
of Hitachi, Ltd. , for his help in preparing samples, and
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(a) (b) (c)
FIG. 7. Interference micrographs of a toroidal magnet at low temperatures. (a) T=4.5 K (phase amplification, I x ); (b)

T = 4.5 K (phase amplification, 2 && ); (c) T = 15 K (phase amplification, 2 && ). The number of fluxons is even.
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Mr. Shuji Hasegavva of Hitachi, Ltd. , for his assistance
in the experiment. %e also gratefully acknowledge the
valuable discussions and advice in preparing this
manuscript given by Professor Hiroshi Ezavva of
Gakushuin University, and also by Dr. Akira
Fukuhara of Hitachi, Ltd. Thanks are due to Professor
Ryozo Aoki of Kyushu University for his cooperation
in developing a liquid-He-cooled specimen stage.
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There is a consensus today that the the main lesson of the Aharonov-Bohm effect is that a picture of
electromagnetism based on the local action of the field strengths is not possible in quantum mechanics. Contrary
to this statement, it is argued here that when the source of the electromagnetic potential is treated in the framework
of quantum theory, the Aharonov-Bohm effect can be explained without the notion of potentials. It is explained
by local action of the field of the electron on the source of the potential. The core of the Aharonov-Bohm effect
is the same as the core of quantum entanglement: the quantum wave function describes all systems together.

DOI: 10.1103/PhysRevA.86.040101 PACS number(s): 03.65.Ta, 03.65.Ud, 03.65.Vf

Before the Aharonov-Bohm (AB) effect [1] was discovered,
the general consensus was that particles can change their
motion only due to fields at their locations, fields which were
created by other particles. The main revolutionary aspect of the
AB effect was that this is not generally true, and that in certain
setups two particles, prepared in identical states, move in the
same fields but end up in different final states. In particular,
the electromagnetic field can vanish at every place where
the electron has been, yet the electron motion is affected by
the electromagnetic interaction. The AB effect states that the
motion of an electron is completely defined by the potentials
in the region of its motion and not just by the fields. The
potentials depend on the choice of gauge, which cannot affect
the motion of particles, but there are gauge-invariant properties
of the potentials (apart from the fields) that specify the motion
of particles. The validity and the meaning of the AB effect
has been extensively discussed [2–15]. I argue that there is an
alternative to the commonly accepted mechanism which leads
to the effect, and that we might change our understanding of the
nature of physical interactions back to that of the time before
the AB effect was discovered. The quantum wave function
changes due to local actions of fields.

The discussion will be on the level of gedanken experi-
ments, without questioning the feasibility of such experiments
in today’s laboratory. Consider a Mach-Zehnder interferometer
for electrons tuned in such a way that the electron always
ends up in detector B; see Fig. 1. We can change the electric
potential in one arm of the interferometer such that there
will be no electromagnetic field at the location of the wave
packets of the electron but, nevertheless, the electron will
change its behavior and sometimes (or it can be arranged
that always) will end up in detector A. This is the electric
AB effect. Alternatively, in the magnetic AB effect, the
interference picture can be changed due to a solenoid inside
the interferometer which produces no electromagnetic field at
the arms of the interferometer.

Let us start our analysis with the electric AB effect. In the
original proposal, the potential was created using conductors,
capacitors, etc. While those are closer to a practical realization
of the experiment, a precise theoretical description of such
devices is difficult. I consider, instead, two charged particles,
the fields of which cancel at the location of the electron.

For simplicity of presentation, instead of the Mach-
Zehnder interferometer, I shall consider a one-dimensional

FIG. 1. Mach-Zehnder interferometer with electron as a test
bed of the AB effect. Introduction of a relative electric potential
between the arms of the interferometer or of a solenoid inside the
interferometer spoils the destructive interference in detector A.

interferometer; see Fig. 2. (In fact, for an observer moving
with a constant velocity in a perpendicular direction, this
interferometer looks very much like the one described in
Fig. 1.) The electron wave packet starts moving to the right
toward a barrier which transmits and reflects equal-weight
wave packets toward mirrors A and B. After reflection from
the mirrors, the wave packets split again on the barrier. The
interferometer is tuned in such a way that there is a complete
destructive interference toward mirror A, and the electron
reaches mirror B with certainty.

Another modification (the sole purpose of which is simplic-
ity of the quantitative analysis of the experiment) is design of
a special mirror for the electron which makes it spend a long
time τ near it. For this purpose we introduce an interaction
between the electron and the mirror with potential energy as
a function of the electron distance from the mirror shown in
Fig. 3. It goes to infinity at the surface of the mirror, smoothly
becomes a constant value V at x ∈ (0,d), and smoothly goes
to zero for x > d. The energy of the electron is only slightly
higher than V . The dimensions of the interferometer are much
larger than d and we state that the electron is near the mirror
when x ∈ (0,d).

The source of the AB potential will be two particles of mass
M and charge Q placed symmetrically on the perpendicular
axis at equal large distances from mirror A. They have equal
initial velocities toward the location of mirror A. At equal

040101-11050-2947/2012/86(4)/040101(4) ©2012 American Physical Society
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FIG. 2. A realization of the electric AB effect. Identical charges
brought symmetrically to the electron wave packet in the left arm of
the interferometer create a potential for the electron without creating
an electric field at its location.

distance r from the mirror, the charged particles bounce back
due to other similarly designed mirrors, which make the
charges spend a time T near these mirrors. We choose T < τ ,
so that the charges Q are near their respective mirrors during
the time the electron’s wave packets are near their mirrors.
We then can approximate the potential that the electron in the
left arm experiences as −2eQ

r
for the time T . Indeed, when

the charges are far away, their potential can be neglected, and
the time the charges travel toward and from the mirror is much
smaller than T . Thus, the phase difference between the two
wave packets of the electron is

φAB = −2eQT

rh̄
. (1)

The electron does not experience an electric field at any place
where its wave packet passed, but it exhibits an interference
pattern which is different from the pattern obtained in such an
experiment by a neutral particle.

How can this result be understood if we consider all
particles? The quantum state of the composite system is a
superposition of two product states which I name branches. In
the first one, the wave packet of the electron is on the left and in
the other, it is on the right. The energy in the left branch is equal
to the energy in the right branch, so energetic considerations
cannot explain the phase difference. The electron does not
experience any electric force, so the electron’s wave packets
are not shifted and thus cannot provide an explanation of
the effect. The charges Q, however, do experience different
forces in different branches. Thus, their wave packets in the
left branch are slightly shifted relative to their wave packets in
the right branch.

FIG. 3. The potential of the mirror forces. The potential energy of
the particle as a function of its distance from the mirror. The particle
with an energy slightly higher than V spends long time near the
mirror.

Let us calculate the shift of position of the wave packet of
one of the two Q charges due to its electromagnetic interaction
with the electron. The shift is developed during the time T

when this charge is near its mirror. The interaction with the
electron leads to a small perturbation in the motion of the
charge and, since d � r , the velocity of the charge during
this time, v, can be considered to be constant. The change in
the kinetic energy of the charge due to its interaction with the
electron allows us to find the change in its velocity and thus
the shift δx we are looking for:

−eQ

r
= δ

(
Mv2

2

)
� Mvδv ⇒ δx = −eQT

Mvr
. (2)

To observe the interference in the AB experiment, this shift
should be much smaller than the position uncertainty of the
charges. The de Broglie wavelength of the charge λ = h

Mv
.

Both charges Q are shifted in the same way, creating the AB
phase: 2 δx

λ
2π = φAB.

The entanglement between the electron and the charges,
which could be created if the uncertainty in the velocity of the
charges when they are near their mirrors is smaller than δv,
disappears when the charges Q travel back. Note, however, that
if, contrary to our assumption, the position uncertainty of the
charges is smaller than δx, then the entanglement will remain
and will lead to decoherence, washing out the AB effect.

Let us turn now to the magnetic AB effect. I will show that
the AB effect arises from different shifts of the wave packets
of the source which experiences different local electric fields
created by the left and the right wave packets of the electron.

Consider the following setup. The solenoid consists of two
cylinders of radius r , mass M , large length L, and charges
Q and −Q homogenously spread on their surfaces. The
cylinders rotate in opposite directions with surface velocity
v. The electron encircles the solenoid with velocity u in a
superposition of being in the left and in the right sides of the
circular trajectory of radius R; see Fig. 4.

The flux in the solenoid due to the two cylinders is

� = 2πr2 4π

c

Qv

2πrL
= 4πQvr

cL
. (3)

Thus, the AB phase, i.e., the change in the relative phase
between the left and the right wave packets due to the
electromagnetic interaction, is

φAB = e�

ch̄
= 4πeQvr

c2Lh̄
. (4)

To simplify the alternative calculation based on direct action
of the electromagnetic field, we assume r � R � L. Before
entering the circular trajectory, the electron moves toward the
axis of the solenoid and thus it provides zero total flux through
any cross section of the solenoid. During its motion on the
circle, the magnetic flux through a cross section of the solenoid
at distance z from the perpendicular drawn from the electron
is

�(z) = πr2euR

c(R2 + z2)3/2
. (5)

When the electron enters one arm of the circle, it changes
the magnetic flux and causes an electromotive force on the
charged solenoids which changes their angular velocity. In
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FIG. 4. The magnetic AB effect. The electron wave packet
coming directly toward the solenoid splits into a superposition of
two wave packets which encircle the solenoid from two sides and
come out almost in the same direction, interfering toward detectors
A and B.

order to calculate the change in the velocity of the surface of
the cylinder we have to integrate the impulse exerted on all
thin slices of the cylinder. For simplicity, I consider here the
surface motion as a linear motion. The contribution of a slice
with an infinitesimal charge dQ to the impulse is �(z)dQ

c2πr
, and

integration over the slices yields

δv = 1

M

∫ L/2

−L/2

πr2euR

c2(R2 + z2)3/2

1

2πr

Q

L
dz � uQer

c2MRL
. (6)

Then, the shift of the wave packet of a cylinder during the
motion of the electron is

δx = δv
πR

u
= πQer

c2ML
. (7)

The relevant wavelength of the de Broglie wave of each
cylinder is λ = h

Mv
. For calculating the AB phase we should

take into account that both cylinders are shifted and that they
are shifted (in opposite directions) in the two branches. This
leads to a factor 4 and provides the correct expression for the
AB phase: 4 δx

λ
2π = φAB.

If the uncertainty in the velocity of the cylinders is smaller
than δv, then, during the electron circular motion, the electron
and the cylinders become entangled. But when the electron
leaves the circular trajectory, it exerts an opposite impulse on
the cylinders and this entanglement disappears.

I have explained both electric and magnetic AB effects
through actions of local fields on the quantum wave function.
The electron in states |L〉e and |R〉e causes, via action of
its electromagnetic field, different evolutions for the quantum
state of the source: |�L〉S and |�R〉S . The total wave function
of the electron and the source is

1√
2

(|L〉e|�L〉S + |R〉e|�R〉S) . (8)

During the evolution, the source states |�L〉S and |�R〉S might
become orthogonal, or mostly differ only in their phase, but
at the end of the process, the states of the source are identical
except for the AB phase. Thus, the total wave function becomes

1√
2
|�〉S(|L〉e + eiφAB |R〉e), (9)

and the AB phase can be observed in the electron interference
experiment.

The celebrated manifestation of a quantum wave function
for a combined system is the nonlocal correlations which are
generated by entangled states. The AB effect is conceptually
different, since it can appear even if in the state (8) there is
almost no entanglement at all times.

One might wonder why, instead of performing exact cal-
culations in the framework of quantum mechanics, I consider
particles and cylinders pushed by fields in the framework of
classical mechanics and then use the correspondence principle
to calculate the shifts of the quantum wave packets of particles
and cylinders. I have to follow this path because the standard
formulation of quantum mechanics, and the Schrödinger
equation in particular, are based on potentials. I hope that a
general formalism of quantum mechanics based on local fields
will be developed. It will provide a solution to the problem
of motion of a quantum particle in a force field even if there
is no potential from which it can be derived. Meanwhile my
assertion provides one useful corollary: If the fields vanish at
locations of all particles then these fields yield no observable
effect.

Let us test this corollary. Consider a modification of the
electric AB effect described above in which the charges Q do
not automatically perform their motion toward mirror A and
back, but only when the electron on the path A triggers this
motion, i.e., only in the left branch. I choose a particular value
of the charge of the external particles, Q = 4e for which the
total electric field at the location of each particle created by
other particles is zero. Neither the electron nor the charges Q

experience an electromagnetic field in any of the branches. My
assertion is that there will be no AB effect in this setup, in spite
of the fact that the electron of the left branch has an electric
potential, while the electron of the right branch has not. The
original treatment of the AB effect is invalid since we do not
have here a motion of an electron in a classical electromagnetic
field, but a treatment of the problem using a “private potential”
created by induced charges [16] shows that indeed there is no
AB effect in this case.

I believe that we can find an explanation of the kind pre-
sented above for any model of the AB experiment. However,
the pictorial explanation of the creation of a relative phase due
to spatial shifts of wave packets disappears when we go beyond
the physics of moving charges. We can replace the charged
cylinders by a line of polarized neutrons producing magnetic
flux due to quantum spins. In this case there is no spatial shift
of wave packets. I am not aware of any pictorial explanation
of the change of the phase of the spin state of the neutron,
but in contrast to the phase of the electron in the standard
approach to the AB effect, the phases of neutrons are changed
locally due to the magnetic field of the electron. This is also
an explanation of the Aharonov-Casher (AC) effect [17]: the
local electric field acting on the moving neutron is responsible
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for the appearance of the AC phase. Note, however, that it
does not lead to a classical lag of the center of mass of the
neutron [18,19].

I have not presented a general proof that in order to have
an observable effect, the particles must pass through regions
of nonzero fields. Rather, what I have shown is that the setups
of the electric and magnetic AB effects do not contradict this
assertion. Note, however, that the last example, in which there
is an electric field almost everywhere except at the locations of
the particles and this field causes no effect, strongly supports
my claim.

Since the electromagnetic potential at any point along the
trajectory of the electron can be gauged away, the standard
approach to the AB effect leads to a paradoxical, in my
view, nonlocal feature of quantum mechanics: the AB phase
which has observable manifestation is acquired inside the
interferometer in spite of the fact that there is no particular
place or time where this happens. I have shown that this

peculiarity disappears when all relevant parts of the system
are considered: the phase is gradually acquired by the source
of the electromagnetic potential.

This result does not question the validity of the AB effect
and does not diminish the importance of its numerous ap-
plications. It removes, however, conceptual claims associated
with the AB effect regarding nonlocality and the meaning of
potentials. The AB effect does not prove that the evolution of
a composite system of charged particles cannot be described
completely by fields at locations of all particles. The potentials
might be just a useful auxiliary mathematical tool after all.
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Through an examination of the Bohm-Aharonov experiment an intrinsic and complete description of
electromagnetism in a space-time region is formulated in terms of a nonintegrable phase factor. This concept,
in its global ramifications, is studied through an examination of Dirac s magnetic monopole field.
Generalizations to non-Abelian groups are carried out, and result in identification with the mathematical

concept of connections on principal fiber bundles.

I. MOTIVATION AND INTRODUCTION

The concept of the electromagnetic field was
conceived by Faraday and Maxwell to describe
electromagnetic effects in a space-time region.
According to this eoneept, the field strenght f „
describes electromagnetism. It was later real-
ized, ' however, that f„„by itself does not, in
quantum theory, completely describe all electro-
magnetic effects on the wave function of the elec-
tron. The famous Bohm-Aharonov experiment,
first beautifully performed by Chambers, ' showed
that in a multiply connected region where f „=0
everywhere there are physical experiments for
which the outcome depends on the loop integral

A dx~

exp — A „dx' (2)

and not the phase (1), is physically meaningful. In
other words, the phase (1) contains more infor-
mation than the phase factor (2). But the addition-
al information is not measurable. This simple
point, probably implicitly recognized by many
authors, is discussed in Sec. II. It leads to the
concept of nonintegrable (i.e. , pa. th-dependent)
phase factor as the basis of a description of elec-
tromagnetism.

This concept has been taken' as the basis of the
definition of a gauge field. The discussions in
Ref. 3, however, centered only on the local prop-
erties of gauge fields. To extend the concept to

around an unshrinkable loop. This raises the
question of what constitutes an intrinsic and com-
plete descriPtion of electromagnetism. In the
present paper we wish to discuss this question and
also its generalization to non-Abelian gauge fields.

An examination of the Bohm-Aharonov experi-
ment indicates that in fact only the phase factor

global problems we analyze in Sec. III the field
produced by a magnetic monopole. We demon-
strate how the quantization of the pole strength,
a striking result due to Dirac, ' is understood in
this concept of electromagnetism. The demon-
stration is closely related to that in the original
Dirac paper. Dirac discussed the phase factor of
the wave function of an electron (which, among
other things, depends on the electron energy). Our
emphasis is on the nonintegrable electromagnetic
phase fa.etor (which does not depend on such quan-
tities as the energy of the electron).

The monopole discussion leads to the recognition
that in general the phase factor (and indeed the
vector potentials ) can only be properly defined
in each of many overlapping regions of space-
time. In the overlap of any two regions there ex-
ists a gauge transformation relating the phase
factors defined for the two regions. This discus-
sion is made more precise in Sec. IV. It leads to
the definition of global gauges and global gauge
transf ormations.

In Sec. V generalizations to non-Abelian gauge
groups are made. The special cases of SU, and

So, gauge fields are discussed in Secs. VI and VII.
A surprising result is that the monopole types are
quite different for SU, and So, gauge fields and for
electromagnetism.

The mathematics of these results is in fact well
known to the mathematicians in fiber bundle theo
~y. An identification table of terminologies is
given in Sec. V. We should emphasize that our in-
terest in this paper does not lie in the beautiful,
deep, and general mathematical development in
fiber bundle theory. Rather we are concerned with
the necessary concepts to descrtbe the physics of
gauge theories. It is remarkable that these con-
cepts have already been intensively studied as
mathematical constructs.

Section VII discusses a "gedankee" generalized
Bohm-Aharonov experiment for SU, gauge fields.

12
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Unfortunately, the experiment is not feasible un-
less the mass of the gauge particle vanishes. In
the last section we make several remarks.

II. DESCRIPTION OF ELECTROMAGNETISM
electron

beam

interference

plane

The Bohm-Aharonov experiment explores the
electromagnetic effect on an electron beam (Fig.
1) in a doubly connected region where the electro-
magnetic field is zero. As predicted' by Aharonov
and Bohm, the fringe shift is dependent on the
phase factor (2), which is equal to

F&G. 1. Bohm-Aharonov experiment (Refs. 1, 2). A
magnetic Qux is in the cylinder. Outside of the cylinder
the field strength f» =0.

exp 0

where 0 is the magnetic flux in the cylinder. Thus
two cases a and b for which

0, —Q, =integer && (hc je)

give the same interference fringes in the experi-
ment. This we shall state and prove as follows.

Theorem 1: If (3) is satisfied, no experiment
outside of the cylinder can differentiate between
cases a and b.

Consider first an electron outside of the cylin-
der. We look for a gauge transformation on the
electron wave function g, and the vector potential

(A„),for case a, which changes them into the
corresponding quantities for case b, i.e. we try
to find S=e ' such that

C ~~= exp A, dx' (7)

provided that an arbitrary gauge transformation

We conclude: (a) The field strength f„„under-
describes electromagnetism, i.e. , different
physical situations in a region may have the same
f„„. (b) The phase (1) overdescribes electromag-
netism, i.e. , different phases in a region may
describe the same physical situation. What pro-
vides a complete description that is neither too
much nor too little is the phase factor (2).

Expression (2) is less easy to use (especially
when one makes generalizations to non-Abelian
groups) as a fundamental concept than the concept
of a phase factor for any path from P to Q

S=S.,=(S,.)-',
g~=S 'g, , or g~=e' g, , (4)

exp A, dx'

(A ),=(A ),— S „, or (A„)~=(A ),+—
(5}

-exp —a exp — A„dx' exp a P

For this gauge transformation to be definable, S
must be single-valued, but n itself need not be.
Now (A ), —(A ), is curlless; hence (5) can always
be solved for n. But it is multiple-valued with an
increment of

an= — A ~
—A, dx

(6}

does not change the prediction of the outcome of
any physical measurements. Following Ref. 3,
we shall call the phase factor (7) a nonintegrable
(i.e., path-dependent) phase factor.

Electromagnetism is thus the gauge-invariant
manifestation of a nonintegrable phase factor. We
shall develop this theme further in the next sec-
tion.

every time one goes around the cylinder. If (3)
is satisfied, An=2m x integer and S is single-
valued. Case a and case b outside of the cylinder
are then gauge-transformable into each other, and
no physically observable effects would differentiate
them. The same argument obviously holds if one
studies the wave function of an interacting system
of particles provided the charges of the particles
are all integral multiples of e. Thus we have
shown the validity of Theorem 1.

III. FIELD DUE TO A MAGNETIC MONOPOLE

The definition of a nonintegrable phase factor
(7) in a general case may present problems. To
illustrate the problem, let us study the magnetic
monopole field of Dirac. 4 Consider a static mag-
netic monopole of strength gc0 at the origin
r = 0 and take the region R of space-time under
consideration to be all space-time minus the ori-
gin r =0. We shall now show the following:
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dered by the loop. Notice that because of Dirac's
quantization condition, the phase factor is the
same whichever way one chooses the cap provided
it does not pass through the point r =0 (any t).

We have satisfactorily resolved the difficulty
mentioned at the beginning of this section, pro-
vided Dirac s quantization condition (13) is satis-
fied. We shall now prove the following.

Theorem 8: If (13) is not satisfied (the above
method of resolving the difficulty would not work
since) there exists no division of R into overlap-
ping regions R„R„,R„.. . so that condition (i) and

(ii) stated above, properly generalized to the case
of more than two regions, would hold.

To prove this statement, observe that if such a
division is possible, one could generalize (15) and

arrive at a satisfactory definition of the phase
factor. The phase factor around a loop is then a
continuous function of the loop. Take the loop to
be a parallel on the sphere y fixed, t =0, 0 fixed,
Q =0-2w. The phase factor defined by the gener-
alization of (15) is equal to

4

exp — A(x, 8) = exp —2'(1 —cos8) . (1V)
@C SC

This is not equal to unity when 8 = v, since (13) is
assumed to be invalid. Thus we have a contradic-
tion.

Theorem 3 shows that if Dirac s quantization
condition (13) is not satisfied, then the field of a
magnetic monopole of strength g cannot be taken
as a realizable physical situation in R. (Of course,
if one excludes the half-line x=y =0, @ &0, or any
half-line starting from r =0 leading to infinity,
then it is possible to have any value for g.) This
conclusion is the same as Dirac's, but viewed
from a somewhat different point of emphasis.

IV. GENERAL DEFINITION OF GAUGE

AND GLOBAL GAUGE TRANSFORMATION

Assuming that (13) holds, to round out our con-
cept of a nonintegrable phase factor the question
of the flexibility in the choice of the overlapping
regions and the flexibility in the choice of A„ in the
regions must be faced. Both of these questions are
related to gauge transformations.

Consider a gauge transformation $ in R, (] will
be assumed to be many times differentiable, but
not necessarily analytic), resulting in a new po-

tential (A„)',. We shall illustrate schematically
the transformation by "elevating" the region b in
Figure 3(a).

One could extend the region b. One could also
contract it, provided the whole R remain covered.

One could create a new region by considering a
subregion of b as an additional region R, [Figure
3(b)], and define the gauge transformation connect-
ing them as the identity transformation so that
(A ),= (A )„. One can then "elevate" R, and con-
tract R„which results in Fig. 3(c).

Through operations of the kind mentioned in the
last three paragraphs, which we shall call distor-
tions, we arrive at a large number of possibilities,
each with a par ticula, r choice of overlapping re-
gions and with a particular choice of gauge trans-
formation from the original (A,), or (A „),to the
new A, in each region. Each of such possibilities
will be called a gauge (or global gauge). This
definition is a natural generaliza, tion of the usual
concept, extended to deal with the intricacies of
the field of a magnetic monopole.

For each choice of gauge there is a definition of
a nonintegrable phase factor for every path. The
group condition 4 ~ » = 4~ ~ 4» is always

6 c 5 Q g
satisfied.

Notice that the original gauge we started with
was characterized by (a) specifying [in (10)] the
regions [R, and R,] and (b) specifying the gauge
transformation factor (12') in the overlap (between
R and R,) It does n.ot xefex to any sPecific A, .
[ A distortion may of course lead to no changes in
characterizations (a) and (b). Thus two different
gauges may share the same characterizations (a)
and (b).] In the case of the monopole field, we
had chosen the vector potential to be given by (11).
But, in fact, we can attach to this gauge any (A ),
and (A )~ provided they are gauge-transformed
into each other by (12') in the region of overlap.
(The resultant f „ is, of c'ourse, not a monopole
field in general. ) Thus a gauge is a concePt not
tied to any specific vector potential. We shall call
the process of distortion leading from one gauge to
another a global gauge transformation. It is also
a concept not tied to any specific vector potential.
It is a natural generalization of the usual gauge
transf ormation.

The collection of gauges that can be globally
gauge-transformed into each other will be said to

I

b—

FIG. 3. Distortions allowed in gauge transformation.
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TABLE I. Translation of terminology.

Gauge field terminology Bundle ter minology

gauge (or global gauge)
gauge type
gauge potential &&

Sq~(see Sec. V)
phase factor 4 ~p
field strength f~»
source ' J+

p
electromagnetis m
isotopic spin gauge field
Dirac' s monopole quantization

electromagnetis m without monopole
electromagnetis m with monopole

principal coordinate bundle
principal fiber bundle
connection on a principal
fiber bundle

trans ition function
parallel displacement
curvature

?
connection on a U~ P,) bund1e
connection on a SU2 bundle
classification of U& p.) bundle

according to first Chem class
connection on a trivial U&(1) bundle
connection on a nontrivial U~(1) bundle

' I.e. , electric source. This is the generalization (see Ref. 3) of the concept of electric
charges and currents.

minimum absolute value is +&. Therefore the
minimum "charge" of all physical states can be
read off from (24) by taking the 2 x 2 irreducible
representation of X,:

&O'nX =-
2 (26)

where o~ are the Pauli matrices. Thus

e
minimum "charge" =-.

2

The particle of the gauge field belongs to the ad-
joint representation. Its "charges" are e, 0, and

Thus

"charge" of gauge particle =2 for SU, .
minimum "charge" (28)

We shall now try to define a Dirac monopole field
as a special SU, field along only one isospin direc-
tion 4=3, i.e. , we define

which follows from the existence of half-integral
representations such as (26).

The phase factor (30) describes a great circle,
wound D times, on the manifold of SU, when Q var-
ies from 0-2m. Such a circle can be continuously
shrunk to the identity element, in contrast with the
situation for electromagnetism. Thus, by a global
gauge transformation S may be changed to S' =1,
and the two regions a and b after the global gauge
transformation can be fused into one si ngle re-
gion. The gauge potential b", is then defined eve~y-
soheye in R as a single region. Thus we have the
following theorem.

Theorem 9: For the SU, gauge group, the gauges

9~ for different D can be transformed into each
other by global gauge transformations. The dif-
ferent monopole fields are therefore of the same
type.

We shall only exhibit the global transformation
for the case 9, for which

y~ =b2=0 u~ (29) S„=exp(-2/X, ), (32)

where A„ is given in the two regions (10) by (11).
In the overlapping region, transformation factor
S of (12) and (14) now becomes

e
Sc g

The gauge transformations we shall seek are iDus-
trated in Fig. 5. We shall choose

S„=exp — X, (30)
$ = exp[8(X, sing -X, cos@)], (34)

8g
Sc
~ =integer =D

is satisfied because for SU,

exp(4', ) =1, exp(2wX, ) x1,

(31)

by replacement (25). This is single-valued if and
only if the quantization condition

q = exp[(v —8)(X, sing —X, cosP)] exp(vX, ) . (35)

It is easy to see that $ is analytic in the coordi-
nates x" at all points in R,. (One only has to verify
this statement at 8=0, which is easily done. )
Similarly q is analytic in R, . $ and q are therefore
allowed gauge transformations in, respectively,
R, and R~.
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it does not satisfy the Bianchi identity at the ori-
gin. Thus, although solution (12a) of Ref. 9 is
(electrically) sourceless at all points, including
the origin, it is not a proper gauge field at the
origin, a fact we did not realize before. All three
solutions, (12a), (12d), and (12e), are, of course,
of the same gauge type.

(c) In Sec. II it was emphasized that f,„under-
describes electromagnetism because of the
Bohm-Aharonov experiment which involves a
doubly connected space region. For non-Abelian
cases, the field strength f~„underdescribes the
gauge field even in a singly connected region.
An example of this underdescription was given in
Ref. 13.

(d) For the region of space-time outside of the
cylinder of Fig. 1 there is only one gauge type.
All electromagnetic fields in the region can be
continuously distorted into each other by the move-
ment of electric charges and currents inside and
outside the cylinder.

(e) The phase factor for the group U, is the phase
factor of the algebra of complex numbers. It is
perhaps not accidental that such a phase factor
provides the basis for the description of a physi-
cally realized gauge field —electromagnetism. Now
the only possible more complicated division alge-
bra is the algebra of quaternions. The phase fac-
tors of the quaternions form the group SO, . It is
tempting to speculate that such a phase factor pro-
vides the basis for the description of a physically
realized gauge field —the SU, gauge field. Specula-

tion about the possible relationship between qua-
ternions and isospin has been made before. ' Such
speculations were, however, not made with ref-
erence to gauge fields. If one believes that gauge
fields give the underlying basis for strong and/or
weak interactions, then the fact that gauge fields
are fundamentally phase factors adds weight to the
speculation that quaternion algebra is the real
basis of isospin invariance.

(f) It is a widely held view among mathematicians
that the fiber bundle is a natural geometrical con-
cept." Since gauge fields, including in particular
the electromagnetic field, are fiber bundles, all
gauge fields are thus based on geometry. " To us
it is remarkable that a geometrical concept for-
mulated without reference to physics should turn out
to be exactly the basis of one, and indeed maybe
all, of the fundamental interactions of the physical
world.
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