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Some more recent ideas about the Aharonov-Bohm effect
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Abstract

[ shall critically review some interesting ideas about how to understand the Aharonov-
Bohm effect physicists and philosophers have put forward since the acknowledgment that
Tonomura’s experiments provide convincing if not conclusive evidence of a magnetic A-B
effect in regions in which the electromagnetic-field is zero. Some of these are very recent.
The review will focus on three issues.
*What is the appropriate theoretical framework in which to understand the effect?
*What concepts of locality are threatened, and how should that threat be addressed?
*What physical objects and properties are responsible for the A-B effect?
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In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum
domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of poten-
tials on charged particles, even in the region where all the fields (and therefore the forces on the particles)
vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest
further possible developments in the interpretation of the potentials.

1. INTRODUCTION

N classical electrodynamics, the vector and scalar
potentials were first introduced as a convenient
mathematical aid for calculating the fields. It is true
that in order to obtain a classical canonical formalism,
the potentials are needed. Nevertheless, the funda-
mental equations of motion can always be expressed
directly in terms of the fields alone.

In the quantum mechanics, however, the canonical
formalism is necessary, and as a result, the potentials
cannot be eliminated from the basic equations. Never-
theless, these equations, as well as the physical quan-
tities, are all gauge invariant; so that it may seem that
even in quantum mechanics, the potentials themselves
have no independent significance.

In this paper, we shall show that the above conclu-
sions are not correct and that a further interpretation
of the potentials is needed in the quantum mechanics.

2. POSSIBLE EXPERIMENTS DEMONSTRATING
THE ROLE OF POTENTIALS IN THE
QUANTUM THEORY

In this section, we shall discuss several possible ex-
periments which demonstrate the significance of poten-
tials in the quantum theory. We shall begin with a
simple example.

Suppose we have a charged particle inside a “Faraday
cage” connected to an external generator which causes
the potential on the cage to alternate in time. This will
add to the Hamiltonian of the particle a term V(x,f)
which is, for the region inside the cage, a function of
time only. In the nonrelativistic limit (and we shall

assume this almost everywhere in the following dis-
cussions) we have, for the region inside the cage,
H=H+V(f) where H,y is the Hamiltonian when the
generator is not functioning, and V{)=ep(t). If
Yo(x,0) is a solution of the Hamiltonian H,, then the
solution for H will be

¥ =oe 80k, S=fV(t)dt,

which follows from
o N aS )
th—= (ih———i—\bo—— e Sli={Hy+V () W=Hy.
ot ot ot

The new solution differs from the old one just by a
phase factor and this corresponds, of course, to no
change in any physical result.

Now consider a more complex experiment in which a
single coherent electron beam is split into two parts and
each part is then allowed to enter a long cylindrical
metal tube, as shown in Fig. 1.

After the beams pass through the tubes, they are
combined to interfere coherently at F. By means of
time-determining electrical ‘“shutters” the beam is
chopped into wave packets that are long compared
with the wavelength A, but short compared with the
length of the tubes. The potential in each tube is deter-
mined by a time delay mechanism in such a way that
the potential is zero in region I (until each packet is
well inside its tube). The potential then grows as a
function of time, but differently in each tube. Finally,
it falls back to zero, before the electron comes near the
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Electron Beam

Fi16. 1. Schematic experiment to demonstrate interference with
time-dependent scalar potential. 4, B, C, D, E: suitable devices
to separate and divert beams. W), W2: wave packets. M1, Mo:
cylindrical metal tubes. F: interference region. )

other edge of the tube. Thus the potential is nonzero
only while the electrons are well inside the tube (region
II). When the electron is in region III, there is again no
potential. The purpose of this arrangement is to ensure
that the electron is in a time-varying potential without
ever being in a field (because the field does not penetrate
far from the edges of the tubes, and is nonzero only at
times when the electron is far from these edges).

Now let ¢ (x,5) =10 (x,0) +¥<*(x,f) be the wave func-
tion when the potential is absent (¥,° and " repre-
senting the parts that pass through tubes 1 and 2,
respectively). But since V is a function only of ¢
wherever ¢ is appreciable, the problem for each tube
is essentially the same as that of the Faraday cage. The
solution is then

‘P=¢106—i51/ﬁ+¢206—i82/h,

Sl=6f§01dt, Szzef<p2dl.

It is evident that the interference of the two parts at
F will depend on the phase difference (S1—Ss)/%. Thus,
there is a physical effect of the potentials even though
no force is ever actually exerted on the electron. The
effect is evidently essentially quantum-mechanical in
nature because it comes in the phenomenon of inter-
ference. We are therefore not surprised that it does not
appear in classical mechanics.

From relativistic considerations, it is easily seen that
the covariance of the above conclusion demands that
there should be similar results involving the vector
potential, A.

The phase difference, (S;—S2)/%, can also be ex-
pressed as the integral (e/%) £ ¢dt around a closed
circuit in space-time, where ¢ is evaluated at the place
of the center of the wave packet. The relativistic gener-
alization of the above integral is

ef(dAd)
—_ t—.—.x’
B ¢ ¢

where the path of integration now goes over any closed
circuit in space-time. '

As another special case, let us now consider a path
in space only (¢t=constant). The above argument

where

AND D. BOHM

F interference
region

Fic. 2. Schematic experiment to demonstrate interference
with time-independent vector potential.

suggests that the associated phase shift of the electron
wave function ought to be

e
AS/h=—— fA'zix,
ch

where #A-dx= fH-ds=¢ (the total magnetic flux
inside the circuit).

This corresponds to another experimental situation.
By means of a current flowing through a very closely
wound cylindrical solenoid of radius R, center at the
origin and axis in the z direction, we create a magnetic
field, H, which is essentially confined within the sole-
noid. However, the vector potential, A, evidently,
cannot be zero everywhere outside the solenoid, because
the total flux through every circuit containing the
origin is equal to a constant

¢o=fH-ds= fA-dx.

To demonstrate the effects of the total flux, we begin,
as before, with a coherent beam of electrons. (But now
there is no need to make wave packets.) The beam is
split into two parts, each going on opposite sides of the
solenoid, but avoiding it. (The solenoid can be shielded
from the electron beam by a thin plate which casts a
shadow.) As in the former example, the beams are
brought together at F (Fig. 2).

The Hamiltonian for this case is

4 [P=(/0AT

2m

In singly connected regions, where H=VXA=0, we
can always obtain a solution for the above Hamiltonian
by taking ¥ =yee— " where ¥, is the solution when
A=0 and where VS/%= (e/c)A. But, in the experiment
discussed above, in which we have a multiply connected
region (the region outside the solenoid), Yo~ 5% is a
non-single-valued function! and therefore, in general,
not a permissible solution of Schrédinger’s equation.
Nevertheless, in our problem it is still possible to use
such solutions because the wave function splits into
two parts y=y1-y», where ¥, represents the beam on

1 Unless ¢po=mnkc/e, where # is an integer.
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one side of the solenoid and v, the beam on the opposite
side. Each of these beams stays in a simply connected
region. We therefore can write

¢1=‘ploe~i51/h’ ¢2=¢205—i821h’

where S; and S, are equal to (e/¢) S"A-dx along the
paths of the first and second beams, respectively. (In
Sec. 4, an exact solution for this Hamiltonian will be
given, and it will confirm the above results.)

The interference between the two beams will evi-
dently depend on the phase difference,

(S1—Sy)/h= (e/hc)fA-dx= (e/ he)epo.

This effect will exist, even though there are no magnetic
forces acting in the places where the electron beam
passes.

In order to avoid fully any possible question of
contact of the electron with the magnetic field we note
that our result would not be changed if we surrounded
the solenoid by a potential barrier that reflects the
electrons perfectly. (This, too, is confirmed in Sec. 4.)

It is easy to devise hypothetical experiments in which
the vector potential may influence not only the inter-
ference pattern but also the momentum. To see this,
consider a periodic array of solenoids, each of which is
shielded from direct contact with the beam by a small
plate. This will be essentially a grating. Consider first
the diffraction pattern without the magnetic field, which
will have a discrete set of directions of strong con-
structive interference. The effect of the vector potential
will be to produce a shift of the relative phase of the
wave function in different elements of the gratings. A
corresponding shift will take place in the directions,
and therefore the momentum of the diffracted beam.

3. A PRACTICABLE EXPERIMENT TO TEST FOR
THE EFFECTS OF A POTENTIAL WHERE
THERE ARE NO FIELDS

As yet no direct experiments have been carried out
which confirm the effect of potentials where there is no
field. It would be interesting therefore to test whether
such effects actually exist. Such a test is, in fact, within
the range of present possibilities.? Recent experiments?®
have succeeded in obtaining interference from electron
beams that have been separated in one case by as much
as 0.8 mm.3 It is quite possible to wind solenoids which
are smaller than this, and therefore to place them
between the separate beams. Alternatively, we may
obtain localized lines of flux of the right magnitude (the

2Dr. Chambers is now making a preliminary experimental
study of this question at Bristol.

#L. Marton, Phys. Rev. 85, 1057 (1952); 90, 490 (1953).
Marton, Simpson, and Suddeth, Rev. Sci. Instr. 25, 1099 (1954).

* G. - Mollenstedt, Naturwissenschaften 42, 41 (1935); G.
Mollenstedt and H. Diiker, Z, Physik 145, 377: (1956).
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magnitude has to be of the order of ¢o= 2mwc#i/e~4X 1077
gauss cm?) by means of fine permanently magnetized

“whiskers”.5 The solenoid can be used in Marton’s

device,? while the whisker is suitable for another experi-

mental setup* where the separation is of the order of
microns and the whiskers are even smaller than this.

In principle, we could do the experiment by observing
the interference pattern with and without the magnetic
flux. But since the main effect of the flux is only to
displace the line pattern without changing the interval
structure, this would not be a convenient experiment
to do. Instead, it would be easier to vary the magnetic
flux within the same exposure for the detection of the
interference patterns. Such a variation would, according
to our previous discussion, alter the sharpness and the
general form of the interference bands. This alteration
would then constitute a verification of the predicted
phenomena. :

When the magnetic flux is altered, there will, of
course, be an induced electric field outside the solenoid,
but the effects of this field can be made negligible. For
example, suppose the magnetic flux were suddenly
altered in the middle of an exposure. The electric field
would then exist only for a very short time, so that only
a small part of the beam would be affected by it.

4. EXACT SOLUTION FOR SCATTERING PROBLEMS

We shall now obtain an exact solution for the problem
of the scattering of an electron beam by a magnetic
field in the limit where the magnetic field region tends
to a zero radius, while the total flux remains fixed. This
corresponds to the setup described in Sec. 2 and shown
in Fig. 2. Only this time we do not split the plane wave
into two parts. The wave equation outside the magnetic
field region is, in cylindrical coordinates,

62
B

ar?
where k is the wave vector of the incident particle and
a=—ep/ch. We have again chosen the gauge in which

A,=0and 4dy=¢/27nr.
The general solution of the above equation is

19 1,79 \?
+—{ —+ic

r dr 72\ 96

+k2]¢=0, M

Y= i 3ime[am]m+a(k")+bm]—(m+a)(k’)], (2)

m+—o

where a, and b, are arbitrary constants and J,,y.(k7)
is a Bessel function, in general of fractional order
(dependent on ¢). The above solution holds only for
r>R. For <R (inside the magnetic field) the solution
has been worked out.® By matching the solutions at
r=R it is easily shown that only Bessel functions of
positive order will remain, when R approaches zero.

% See, for example, Sidney S. Brenner, Acta Met. 4, 62 (1956).'
8 L. Page, Phys. Rev. 36, 444 (1930).
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This means that the probability of finding the particle
inside the magnetic field region approaches zero with R.
It follows that the wave function would not be changed
if the electron were kept away from the field by a barrier
whose radius also went to zero with R.
The general solution in the limit of R tending to zero
is therefore
v=X 3)

n -00

am]1m+a|e""“’.

We must then choose ¢, so that y represents a beam

- of electrons that is incident from the right (#=0). It is

important, however, to satisfy the initial condition that
the current density,

RPI—IWY) e
jm—— A,

mce

(4)

2im

shall be constant and in the x direction. In the gauge
that we are using, we easily see that the correct incident
wave IS Yine=e"*%? Of course, this wave function
holds only to the right of the origin, so that no problem
of multiple-valuedness arises.

We shall show in the course of this calculation that
the above conditions will be satisfied by choosing
@m=(—1)!"™**l in which case, we shall have

0
¥= 2 (=)™l ™.
m=—00
It is convenient to split ¢ into the following three parts:

Y=y 1+¢ots, where

=2 (=) ppae™,

m=1

—1
¢2= Z (__,i)m+a]m+aeim6,

=2 (=) T meat™™,  (5)
m=l1
Y= (—9)!*J a.
Now ¢, satisfies the simple differential equation
1 =
—_=3 (..,L‘)m+a]m+a/eim0
a7’ m=1
hd Im a—l_Jm a1
=Y (—iyma T T i ke (6)
m=1

where we have used the well-known formula for Bessel
functions:
a5 (r)/dr=>5(Jy-1~J y11).

AND D. BOHM

As a result, we obtain

6!//1 1 » X
__zi Z (_i)m’+a+1]m,+aez(m'+l)9
o' m'=0
1 =
._5 Z (_i)mr+a—1fm,+aei(m'_1)9
m! =2
. 0
=_é_ Z (_i)m’+a]m,+aeim'0(_iew_}_i—-le—iﬁ)
m’ =1
S +%(_i)a[]a+1_1:ew]a]‘
o]

/07" = —1 costf1+5 (—0) 2 (J apr1— 1T w€™).

This differential equation can be easily integrated to
give

Yy= Af et [ J 1 —1J (®)dr’, (8)
0

where
A — _é_ ( _i)ae——ir’ cosB.

The lower limit of the integration is determined by the
requirement that when »’ goes to zero, ¢, also goes to
to zero because, as we have seen, ¥; includes Bessel
functions of positive order only.

In order to discuss the asymptotic behavior of ¢,
let us write it as ¢y;=A[1,—1], where

Il= f eir’ cosﬁ[]a_*_l_ieiﬂja:]dr/,
0
) ©)

Iz=f e’ cosa[.]a+1—iei9]a]d1’/.

The first of these integrals is known’:

) ei[aarcysin(ﬁlh)]
e ] ((kr) =——
fo (=t

In our cases, B=cosf, k=1, so that

0<B<k, —2<a.

(10)

[eia(é‘w—lﬁl) ei(a+l)(%1r-—|0l)]
— — g,

|sind| | sing|

Because the integrand is even in 6, we have written the
final expression for the above integral as a function of
[6] and of |sing|. Hence

ie= 101 — et
I =eiatGmloD] —

| sind|
=0 for <0,
(11)

=¢"02¢  for 6>0,
where we have taken 6 as going from -~ to .

7 See, for example, W. Grobner and N. Hofreiter, Integraltafel
(Springer-Verlag, Berlin, 1949).
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We shall see presently that I; represents the largest
term in the asymptotic expansion of ¥1. The fact that
it is zero for #<0 shows that this part of ¥, passes
(asymptotically) only on the upper side of the singu-
larity. To explain this, we note that ¥, contains only
positive values of m, and therefore of the angular
momentum. It is quite natural then that this part of ¥,
goes on the upper side of the singularity. Similarly,
since according to (5)

¢2(7',0,¢1):lﬁ1(7', —8, —a))

it follows that ¥, will behave oppositely to ¥, in this
regard, so that together they will make up the correct
incident wave.

Now, in the limit of #' — « we are allowed to take
in the integrand of I, the first asymptotic term of J,,®
namely J, — (2/77)? cos(r'—3a— ix). We obtain

0

L= f gir wst( T —ie® ] )dy — C+D, (12)

r

where
® dr' f2\}
sz e’ ¥ cos(r' — L (a+1)mr—1n) ] (—) ,
. (P \r
(13
® dr' f2\}
D=f et o cos(r —sa—3r) ] (—) (—1)e?.
. (rYi\rx
Then
C=f eir’ cosH[ei[r’—-—%(a—H)w—%w]
' ‘ dr’
g ilr'—k(at1) 7—im)
(2mr")?
2\ (—i)ett oo
—_—(_) —_f exp(+izt)dz
™ (1+C050)% {r (H—cosﬂ)]'}
I\ gotd ®
+(—) ——————f exp(—iz¥)dz, (14)
7/ (1—cost)? Vi (—costn

where we have put
g=[7'(14cosh) J* and z=[7'(1~cosh) ]}

respectively.
Using now the well-known asymptotic behavior of
the error function,®

® 1 exp(ia?)
f exp(iz¥)dz — — ,
2

a a

(15)
® —1exp(—1ia?)
f exp(—is?)dz — — ————,
o 2 a
8 E. Jahnke and F. Emde, Tables of Functions (Dover Pub-
lications, Inc., New York, 1943), fourth edition, p. 138,
? Reference 8, p. 24.
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we finally obtain
— ot} i’
B (S
(2m)* Tr' (14-cos6)?]t

ot it

-+ _._.____._—..]eir’ cos0’ (16)
(27)} [7' (1 — cosb)? ]

eir’

[<—i>a~%
(27)* [ (1+4cosf)?]?
ge—d

! (2m)} [#' (1 —cosB)? ]t

e ir!

]eir' cosﬂ(_i)ew_ (17)

Now adding (16) and (17) together and using (13) and
(9), we find that the term of 1/(+)} in the asymptotic

expansion of ¥ is
i’ 1—e?
}-1 ] (18)

(——i)%[ [ Lk
2(27)} ()t 14-cos® ()} 1—cosf

Using again the relation between ¢, and ¥, we obtain
for the corresponding term in s

(=ip
2(27)%[(‘1)

Adding (18) and (19) and using (11), we finally get

e’ 1+e® e 1—e¥
o +,.’ ] 9)
(P 14cos® ()3 1—cosf

Vit —

(—i)*[ie—“'i et cos(-m——%e)]
Qe L)t () cos(26)

it costtad)  (20)

There remains the contribution of ¥3, whose asymptotic
behavior is [see Eq. (12)]

27}
(=) = (== ) costr'—n—3al).
Tr

Collecting all terms, we find

eir’ e—i0/2

=y 1+t —> g—i(ab+r’ cos) | ,
Vb N Gcos(G/Z)

(21)

where the == sign is chosen according to the sign of a.

The first term in equation (21) represents the incident
wave, and the second the scattered wave.® The scat-
tering cross section is therefore

sinr
(2mwir')}

sin’ra 1
o= S (22)
2r  cos?(6/2)

0 Tn this way, we verify, of course, that our choice of the a, for
Eq. (3)_satisfies the correct boundary conditions.
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When a=#, where # is an integer, then ¢ vanishes.
This is analogous to the Ramsauer effect. ¢ has a
maximum when a=#n-3.

The asymptotic formula (21) holds only when we are
not on the line §= . The exact solution, which is needed
on this line, would show that the second term will
combine with the first to make a single-valued wave
function, despite the non-single-valued character of the
two parts, in the neighborhood of 6==. We shall see
this in more detail presently for the special case a=n-3.

In the interference experiment discussed in Sec. 2,
diffraction effects, represented in Eq. (21) by the scat-
tered wave, have been neglected. Therefore, in this
problem, it is adequate to use the first term of Eq. (21).
Here, we see that the phase of the wave function has a
different value depending on whether we approach the
line #= =7 from positive or negative angles, i.e., from
the upper or lower side. This confirms the conclusions
obtained in the approximate treatment of Sec. 2.

We shall discuss now the two special cases that can
be solved exactly. The first is the case where a=#. Here,
the wave function is ¢ ==¢~%%¢~? which is evidently
single-valued when « is an integer. (It can be seen by
direct differentiation that this is a solution.)

The second case is that of a=n-+%.BecauseJ w1y (7)
is a closed trigonometric function, the integrals for ¢
can be carried out exactly.

The result is

e s
H

[ (14 cosf) 1%
P=——g 130+ cosh) f exp(izdz.  (23)
V2 0

This function vanishes on the line §=1. It can be seen
that its asymptotic behavior is the same as that of Eq.
(2) with « set equal to n-+%. In this case, the single-
valuedness of ¢ is evident. In general, however, the
behavior of ¢ is not so simple, since ¢ does not become
zero on the line 8=17.

5. DISCUSSION OF SIGNIFICANCE OF RESULTS

The essential result of the previous discussion is that
in quantum theory, an electron (for example) can be
influenced by the potentials even if all the field regions
are excluded from it. In other words, in a field-free
multiply-connected region of space, the physical proper-
ties of the system still depend on the potentials.

It is true that all these effects of the potentials depend
only on the gauge-invariant quantity $'A-dx= S"H-ds,
so that in reality they can be expressed in terms of the
fields inside the circuit, However, according to current
relativistic notions, all fields must interact only locally.
And since the electrons cannot reach the regions where

the fields are, we cannot interpret such effects as due -

to the fields themselves.
1 See, for example, D. Bohm, Quantum Theory (Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1951).
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In classical mechanics, we recall that potentials
cannot have such significance because the equation of
motion involves only the field quantities themselves.
For this reason, the potentials have been regarded as
purely mathematical auxiliaries, while only the field
quantities were thought to have a direct physical
meaning.

In quantum mechanics, the essential difference is that
the equations of motion of a particle are replaced by the
Schrodinger equation for a wave. This Schrédinger
equation is obtained from a canonical formalism, which
cannot be expressed in terms of the fields alone, but
which also requires the potentials. Indeed, the poten-
tials play a role, in Schrédinger’s equation, which is
analogous to that of the index of refration in optics,
The Lorentz force [eE+ (e/c)vXH] does not appear
anywhere in the fundamental theory, but appears only
as an approximation holding in the classical limit. It
would therefore seem natural at this point to propose
that, in quantum mechanics, the fundamental physical
entities are the potentials, while the fields are derived
from them by differentiations.

The main objection that could be raised against the
above suggestion is grounded in the gauge invariance
of the theory. In other words, if the potentials are
subject to the transformation A, — 4,'=A4,+¢/9dx,,
where ¢ is a continuous scalar function, then all the
known physical quantities are left unchanged. As a
result, the same physical behavior is obtained from any
two potentials, 4,(x) and A4,’(x), related by the above
transformation. This means that insofar as the poten-
tials are richer in properties than the fields, there is no
way to reveal this additional richness. It was therefore
concluded that the potentials cannot have any meaning,
except insofar as they are used mathematically, to
calculate the fields.

We have seen from the examples described in this
paper that the above point of view cannot be main-
tained for the general case. Of course, our discussion
does not bring into question the gauge invariance of
the theory. But it does show that in a theory involving
only local interactions (e.g., Schrodinger’s or Dirac’s
equation, and current quantum-mechanical field the-
ories), the potentials must, in certain cases, be con-
sidered as physically effective, even when there are no
fields acting on the charged particles.

The above discussion suggests that some further
development of the theory is needed. Two possible
directions are clear. IFirst, we may try to formulate a
nonlocal theory in which, for example, the electron
could interact with a field that was a finite distance
away. Then there would be no trouble in interpreting
these results, but, as is well known, there are severe
difficulties in the way of doing this. Secondly, we may
retain the present local theory and, instead, we may
try to give a further new interpretation to the poten-
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tials. In other words, we are led to regard 4.(x) as a
physical variable. This means that we must be able to
define the physical difference between two quantum
states which differ only by gauge transformation. It will
be shown in a future paper that in a system containing
an undefined number of charged particles (i.e., a super-
position of states of different total charge), a new
Hermitian operator, essentially an angle variable, can
be introduced, which is conjugate to the charge density
and which may give a meaning to the gauge. Such
states have actually been used in connection with

POTENTIALS

IN QUANTUM THEORY 491
recent theories of superconductivity and superfluidity*?
and we shall show their relation to this problem in more
detail.
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The formula given by Molitre for the scattering cross section of a charged particle by an atom, on which
has been based the formula for the “screening angle” x, in his theory of multiple scattering, has been
examined and found to contain an inconsistent approximation in all orders of the parameter a1 =2Z/1378
except the lowest (the first Born approximation). In the present work, the correct expression of Dalitz is
used for the single-scattering cross section of a relativistic Dirac particle by a screened atomic field up to
the second Born approximation. It is found that the effect of the deviation from the first Born approximation
on the screening angle is much smaller than Moliere’s expression for this quantity would lead one to believe.
This is so because the deviation from the first Born approximation is very small at the small angles that go
into the definition of the screening angle. In Moliere’s work, all the effect of the deviation from the first
Born approximation on the distribution function f(6) for multiple scattering is contained in the quantity B
which depends only on x,. In the present work, it is shown that in a consistent treatment of terms of various
orders in a4, there exist additional terms of order 2Z/137 in the distribution function. These terms, which
represent the second Born approximation, become important at large angles. Calculations have been
carried out for the scattering of 15.6-Mev electrons by Au and Be. The 1/e widths of the distribution function
obtained are in good agreement with the experimental result of Hanson ef al., whereas Moliere’s theory

gives too great a width compared with the experimental value in the case of Be.

I. INTRODUCTION

HE theory of scattering of fast charged particles

by atoms is of importance for the analysis of
such experimental results as the scattering of high-
energy mesons and electrons in going through sheets
of matter. An “exact” theory of multiple scattering has
been given by Goudsmit and Saunderson.! Its applica~
tion to a specific scattering problem invokes the knowl-
edge of the law of single scattering by an isolated atom.
In a paper in 1947, Moliére? gives a (nonrelativistic)
formula for the scattering of a fast charged particle by
a screened Coulomb field, in which an approximation
higher than the usual first Born approximation is
attempted. In a second paper Moliére?® gives a theory
of multiple scattering which has later been shown by

* National Research Council Postdoctorate Fellows.

LS. A. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940),
and 58, 36 (1940).

2 G. Molitre, Z. Naturforsch. 2a, 133 (1947).

3 G. Molitre, Z. Naturforsch. 3a, 78 (1948).

Bethet to be obtainable from the theory of Goudsmit
and Saunderson by making certain approximations.
For the single-scattering law to be used in the theory of
multiple scattering, Moliére uses the result he obtained
in his earlier paper.?

Hanson et al.® have measured the scattering of 15.6-
Mev electrons by gold and beryllium foils and compared
their experimental results with those calculated accord-
ing to Moliere’s theory. The calculated “1/e width” of
the distribution has been found to be in excellent agree-
ment with the observed value in the case of gold, but is
somewhat too large in the case of beryllium.

In the case of the scattering of ¢ mesons (in cosmic
rays) by matter, the rather scanty data® (for large
scattering angles) seem to be in agreement with
Moliére’s theory. Here, for high enough energies of the

“H. A. Bethe, Phys. Rev. 89, 1256 (1953).

® Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).

§ George, Redding, and Trent, Proc. Phys. Soc. (London) A66,
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Phase Change during a Cyclic Quantum Evolution
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A new geometric phase factor is defined for any cyclic evolution of a quantum system. This is in-
dependent of the phase factor relating the initial- and final-state vectors and the Hamiltonian, for a
given projection of the evolution on the projective space of rays of the Hilbert space. Some applications,
including the Aharonov-Bohm effect, are considered. For the special case of adiabatic evolution, this
phase factor is a gauge-invariant generalization of the one found by Berry.

PACS numbers: 03.65.—w

A type of evolution of a physical system which is often
of interest in physics is one in which the state of the sys-
tem returns to its original state after an evolution. We
shall call this a cyclic evolution. An example is periodic
motion, such as the precession of a particle with intrinsic
spin and magnetic moment in a constant magnetic field.
Another example is the adiabatic evolution of a quantum
system whose Hamiltonian H returns to its original value
and the state evolves as an eigenstate of the Hamiltonian
and returns to its original state. A third example is the
splitting and recombination of a beam so that the system
may be regarded as going backwards in time along one
beam and returning along the other beam to its original
state at the same time.

Now, in quantum mechanics, the initial- and final-
state vectors of a cyclic evolution are related by a phase
factor e, which can have observable consequences. An
example, which belongs to the second category men-
tioned above, is the rotation of a fermion wave function
by 27 rad by adiabatic rotation of a magnetic field'
through 27 rad so that ¢ = * z. Recently, Berry? has
shown that when H, which is a function of a set of pa-
rameters R’, undergoes adiabatic evolution along a
closed curve I' in the parameter space, then a state that
remains an eigenstate of H(R) corresponding to a simple
eigenvalue E,(R) develops a geometrical phase y, which
depends only on I'. Simon?® has given an interpretation
of this phase as due to holonomy in a line bundle over
the parameter space. Anandan and Stodolsky* have
shown how the Berry phases for the various eigenspaces
can be obtained from the holonomy in a vector bundle.
For the adiabatic motion of spin, this is determined by a
rotation angle a, due to the parallel transport of a Carte-
sian frame with one axis along the spin direction, which
contains the above-mentioned rotation by 2 radians as a
special case. The result of a recent experiment® to ob-
serve Berry’s phase for light can also be understood as a
rotation of the plane of polarization by this angle a.

In this Letter, we consider the phase change for all cy-
clic evolutions which contain the three examples above as
special cases. We show the existence of a phase associat-
ed with cyclic evolution, which is universal in the sense

that it is the same for the infinite number of possible
motions along the curves in the Hilbert space # which
project to a given closed curve C in the projective Hilbert
space P of rays of # and the possible Hamiltonians
H(z) which propagate the state along these curves. This
phase tends to the Berry phase in the adiabatic limit if
H()=HI[R(t)] is chosen accordingly. For an electrical-
ly charged system, we formulate this phase gauge invari-
antly and show that the Aharonov-Bohm (AB) phase®
due to the electromagnetic field may be regarded as a
special case. This generalizes the gauge-noninvariant re-
sult of Berry that the AB phase due to a static magnetic
field is a special case of his phase. This also removes the
mystery of why the AB phase, even in this special case,
should emerge from Berry’s expression even though the
former is independent of this adiabatic approximation.

Suppose that the normalized state | y(z)) € # evolves
according to the Schrodinger equation

H@) | y@)=in(d/dt) | y()), ¢))

such that |y(7))=e"|y(0)), ¢ real. Let IL#H — P be
the projection map defined by II(|y))={|y"):|y"
=c|y), cis a complex number }. Then |y (¢)) defines a
curve C: [0,7]1— # with C=TII(C) being a closed curve
in . Conversely given any such curve C, we can define
a Hamiltonian function H(z) so that (1) is satisfied for
the corresponding normalized |y(z)). Now define
| 5(1)) =e /@ | y(r)) such that f(r) —f(0)=¢. Then
| w(z))=1]%(0)) and from (1),

—daf_1 Y= i %1
i h(v/(t)|H|v/(t)/ (u/(t)|tdt|y/(t)>. (2)

Hence, if we remove the dynamical part from the phase
¢ by defining

p=o+h ' [ W) | H | y(o)ar, 3)
it follows from (2) that
p=J wlita|pdva. @)

Now, clearly, the same | (1)) can be chosen for every
curve C for which II(C) =C, by appropriate choice of

© 1987 The American Physical Society 1593
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f(1). Hence B, defined by (3), is independent of ¢ and H
for a given closed curve C. Indeed, for a given C, H(t)
can be chosen so that the second term in (3) is zero,
which may be regarded as an alternative definition of §.
Also, from (4), B is independent of the parameter ¢ of C,
and is uniquely defined up to 2zn (n =integer). Hence

e i is a geometric property of the unparametrized image
of Cin P only.

J

Consider now a slowly varying H(¢), with H() | n(z))
=E, (1) | n(2)), for a complete set {|n(z))}. If we write

[ w()) =§a,,(t)exp [ - #fE,, dr| | n@)),

and use (1) and the time derivative of the eigenvector
equation,’ we have

. Sy {m |H | n)
Qpm amim | i) ngma,, E—E, [ f(E E,,)a’t}, (5)
where the dot denotes time derivative. Suppose that [
him | E | n) so that
m n
ngm (E,—E,)?2 <1 (6) | w(2))=expliuBto,/h) | w(0))

Then if a,(0) =8, the last term in (5) is negligible and
the system would therefore continue as an eigenstate of
H(1), to a good approximation.

In this adiabatic approximation, (5) yields

am (1) =exp [ — f(m | rh)dt]a,,, (0).

For a cyclic adiabatic evolution, the phase i f§{m | ) dt
is independent of the chosen |m(¢)) and Berry? regard-
ed this as a geometrical property of the parameter space
of which H is a function. But this phase is the same as
(4) on our choosing | y(1))=|m(¢)) in the present ap-
proximation. But B, defined by (3), does not depend on
any approximation; so (4) is exactly valid. Moreover,
| w(z)) need not be an eigenstate of H(z), unlike in the
limiting case studied by Berry. Also, the two examples
below will show respectively that it is neither necessary
nor sufficient to go around a (nontrivial) closed curve in
parameter space in order to have a cyclic evolution, with
our associated geometric phase 8. For these reasons, we
regard B as a geometric phase associated with a closed
curve in the projective Hilbert space and not the parame-
ter space, even in the special case considered by Berry.
But given a cyclic evolution, an H(z) which generated
this evolution can be found so that the adiabatic approxi-
mation is valid. Then B can be computed with the use of
the expression given by Berry in terms of the eigenstates
of this Hamiltonian.

We now consider two examples in which the phase 8
emerges naturally and is observable, in principle, even
though the adxabatic approximation is not valid. Sup-
pose that a spin-+ particle with a magnetic moment is in

a homogeneous magnetic field B along the z axis. Then
the Hamiltonian in the rest frame is H, = — uBo,, where
1 0
o:= g —1|
Also,
— cos(0/2)]
w0 [sin(9/2)

1594

_ [ exp(iuBt/h)cos(6/2)
exp(—iuBt/h)sin(6/2) )’

which corresponds to the spin direction being always at
an angle 6 to the z axis. This evolution is periodic with
period t=nmh/uB. Then from (3), for each cycle,
B=n(1—cosB), up to the ambiguity of adding 27zn.
Hence, B is + of the solid angle subtended by a curve
traced on a sphere, by the direction of the spin state, at
the center. This is like the Berry phase except that in
the latter case (1) the solid angle is subtended by a curve
traced by the magnetic field B'(¢) which is large li.e.,
uB'/h > w, the frequency of the orbit of B'(¢)] so that
the adiabatic approximation is valid, and (2) |y(2)) is
assumed to be an eigenstate of this Hamiltonian.
Indeed, we may substitute such a Hamiltonian for the
above H, or add it to H, with w=2uB/h, without
changing B, in this approximation. The spin state will
also move through the same closed curve in the projec-
tive Hilbert space as above if the magnetic field
B=(Bgcoswt, Bgsinwt, Bi3) with cot8=(B;— haw/
2u)/By, where Bo=0.8 And B is the same for all such
Hamiltonians. This illustrates the statement earlier that
B is the same for all curves C in H with the same
C=I1(C). Also, B may be interpreted as arising from
the holonomy transformation, around the closed curve on
the above sphere traced by the direction of the spin state,
due to the curvature on this sphere,4 which is a rotation.
By varying appropriately a magnetic field applied to the
two arms of a neutron interferometer with polarized neu-
trons, it is possible to make the dynamical part of 8 [the
last term in (3)] the same for the two beams.>* Then
the phase difference between the two beams is just the
geometrical phase, which is observable in principle, from
the interference pattern, even when the magnetic field is
varied nonadiabatically. In particular, a phase difference
of & z rad would correspond to a 2z-rad rotation of the
fermion wave function, which is thus observable.

As our second example, suppose that the magnetic
field is B(z) =By+ B, (z), where By is constant and B, (z)
rotates slowly in a plane containing By with |B;(¢) |
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=|Bg]. Suppose that at time ¢ the angle between B,
and By is #— 6(z) and the spin state | y(z)) is in an ap-
proximate eigenstate of H(t) =uB- o, where ¢’ are the
Pauli spin matrices. For 0 < <1, the adiabatic condi-
tion (6) gives 0< —h6/uBpf<1, assuming 6=<0.
Hence 6> 6pexp(—uBot/h) > 0. So 6 can never be-
come zero. That is, if B(T) =0 for some T then the adi-
abatic approximation, as defined above, cannot be
satisfied, regardless of how slowly B;(¢) rotates. Howev-
er, because of conservation of angular momentum,
| w(z)) remains an eigenstate of H(r) even at t =7. But
if 8 changes monotonically then a level crossing occurs at
the point of degeneracy (B =0) so that the energy eigen-
value corresponding to | w(z)) changes sign at t =T. For
each rotation of By by 2z rad, | y) rotates by z rad, so
that the system returns to its original state after two ro-
tations of B(z). For this cyclic evolution, our f=x
which can be seen from the fact that a spin- 5 particle
acquires a phase x during a rotation, or that the curve C
on the projective Hilbert space, which is a sphere, is a
great circle, subtending a solid angle 2z at the center.

=14 -9 ; ~(;)y — L
dt(t) <y/(t)|dt hAo(t)lw(t)> h(w(t)lHk(t)Iy/(t)>.

We consider now a cyclic evolution so that

| w(z)) =e“’exp[— thj; Aodt | | y(0)).

Choose f(¢) so that ¢ =f(z) — f(0). Then

| w(0)).

| (7)) =exp [ —-i—Z—J; Aodt

So we now define the gauge-invariant generalization of
(3) as

ﬁs¢+%j;r<w(t)lHk(t)|y/(t))dt, (8)
which on use of (7) gives
=(an1:4 _ 4 ; .
B fo G i~ L 3o(0) [t ©)

Here, | #(1)) is obtained by parallel transport of | #(0)),
with respect to the electromagnetic connection, along the
congruence of lines parallel to the time axis. We could
have chosen, instead, any other congruence of paths from
t =0 to t =t in our definition of ¢ and therefore | y(z)).
This would correspondingly change B, which therefore
depends on the chosen congruence. But, again, B is in-
dependent of ¢ and H(¢) for all the motions in % that
project to the same closed curve C in P, for a given

This example is similar to Berry’s phase in that | y(z)) is
always an eigenstate of H(r), even though Berry’s
prescription cannot be applied here because of the cross-
ing of the point of degeneracy at which the adiabatic ap-
proximation breaks down.

Consider now a system_ with electric charge ¢ for
which H=H,(p—(q/)AW),R)+qAo(t) in (1).
Here, (x| 4,(t) | y(t")) =A,(x,0)y(x,t’), where A,(x,1)
is the usual electromagnetic four-potential, and R; are
some parameters. Under a gauge transformation,

| w(1))— explilg/)A@] | y()),

Ao(t) — Ag(t) —c T'9A(r)/a1,
and

Hi () — expli(g/)AWIH, (Dexpl —i(q/c)A@)].
As before, define | y(¢))=e Y| y(z)). If we require

that |y undergo the same gauge transformation as
| w(¢)), f(2) is gauge invariant. Then, from (1),

@)

chosen congruence. Both 8 and ¢, which satisfies

e—iv=<y/(r)|exp{—icq~_£)f,aodt | y(O)),

are gauge invariant. In the adiabatic limit, |y(z)) can
be chosen to be an eigenstate of Hy(z) and (9) is then a
gauge-invariant generalization of the Berry phase.

We illustrate this by means of the AB effect.® Berry
has obtained the AB phase from the gauge-noninvariant
expression (4) with |y(z)) an eigenstate of H(z), for a
stationary magnetic field, in a special gauge.® But a
gauge can be chosen so that the AB phase is included in
the dynamical phase instead of the geometrical phase
(4). Also, in general, there is no cyclic evolution in an
AB experiment. But our g defined by Eq. (8) or (9) is
gauge invariant and includes the AB phase in the special
case to be described now.

Suppose that a charged-particle beam is split into two
beams at t =0 which, after traveling in field-free regions,
are recombined so that they have the same state at t =1.
It is assumed here that the splitting and the subsequent
evolution of the two beams occur under the action of two
separate Hamiltonians. This is possible if we restrict
ourselves to the Hilbert space of a subset of the degrees
of freedom of a given system, as in the example con-
sidered by Aharonov and Vardi.'® This belongs to the
third example of a cyclic evolution mentioned at the be-
ginning of this Letter. The wave function of each beam
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at ¢t =7, assuming that it has a fairly well defined momentum, is

- _i(F
vi(x,1) -—exp[ s j; E;dt

where y; is a space-time curve through the beam and p
represents the approximate kinetic momentum of the
beam. Hence on using (8), we have

p= —%SﬁyA,,dxw%ﬁp-dx, (10)

where ¥ is the closed curve formed from y, and y,. But
this is only an approximate treatment and a more careful
investigation of this problem is needed.

In conclusion, we note that #* =% — {0} is a princi-
pal fiber bundle over ? with structure group C* (the
group of nonzero complex numbers), and the disjoint
union of the rays in # is the natural line bundle over 7
whose fiber above any p € P is p itself. Then, clearly, 8,
given by (4), arises from the holonomy due to a connec-
tion in either bundle such that |y(z)) is parallel trans-
ported if

(w(0) | (d/dt) | w(t)) =0, (11)

i.e., the horizontal spaces are perpendicular to the fibers
with respect to the Hilbert space inner product. Condi-
tion (11) was used by Simon? to define a connection on a
line bundle over parameter space, which is different from
the above bundles. The real part of (11) says that
(w(2) | w(2)) is constant during parallel transport. Since
this is true also during any time evolution determined by
(1), we may restrict consideration to the subbundle
F={ly) e #:(yly)=1} of #*. This F is the Hopf
bundle!! over P. Then the imaginary part of (11)
defines the horizontal spaces in F which determine a
connection. This is the usual connection in & and e is
the holonomy transformation associated with it. If #
has finite dimension /V then 7 has dimension N —1. For
N =2, P is the complex projective space P;(C) which is
a sphere with the Fubini-study metric!! on ? being the
usual metric on the sphere. Opposite points on this
sphere represent rays containing orthogonal states. Our
geometric phase can then be obtained from the holono-
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I i
exp [ - —;lan#dx“]exp [;‘fr‘p dx

v(x,0), i=lor2,

my angle a associated with parallel transport around a
closed curve on this sphere like in Ref. 4.

It is a pleasure to thank Don Page for suggesting the
relevance of the Hopf bundle and the Fubini-Study
metric to this work.
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Abstract

I argue that the metaphysical import of the Aharonov-Bohm effect has
been overstated: correctly understood, it does not require either rejection
of gauge invariance or any novel form of nonlocality. The conclusion that
it does require one or the other follows from a failure to keep track, in the
analysis, of the complex scalar field to which the magnetic vector potential
is coupled. Once this is recognised, the way is clear to a local account
of the ontology of electrodynamics (or at least, to an account no more
nonlocal than quantum theory in general requires); I sketch a possible
such account.

1 Introduction

In classical electromagnetism, the magnetic field can be represented either by
the field strength B, or by a vector field A such that V x A = B, where in
the latter case A is determined only up to a family of transformations known
as gauge transformations. Prior to the discovery — and empirical confirmation
— of the Aharonov-Bohm (A-B) effect, it was possible to believe (and, I think,
widely was believed) that A had only mathematical significance and that a true
description of the magnetic field required only B. The A-B effect demonstrated
— as uncontroversially as anything in the foundations of physics — that there
are features of electromagnetism that transcend the local action of the magnetic
field strength on charged matter: electrons can move through a region of space
in which B = 0 but which surrounds a region of nonzero B, and their behaviour
is dependent upon the value of B in that latter region. Mathematically speaking
these results are possible because the quantum mechanics of electromagnetism
involves the interaction of a complex field v with the A-field, and the equa-
tions that govern that interaction — though gauge-independent — cannot be
rewritten in a local way via B alone.

But just what the conceptual import is remains controversial. In founda-
tional discussions of late it has been argued — and widely accepted — that the

*Balliol College, Oxford; email: david.wallace@balliol.ox.ac.uk



effect requires either that we accept some new form of non-locality beyond that
already encountered in quantum mechanics, or that we abandon the principle
that gauge transformations simply redescribe the same physical goings on. In
particular, the A-B effect rests on the fact that the values of B within a spatial
region need not determine the field A in that region even up to gauge transfor-
mations — but that the residual gauge-invariant features of A not captured by
B have an inherently local character to them.

In this paper I argue that much of this debate! rests upon a mistake: that of
considering the A-field in isolation rather than in conjunction with the v-field.
After reviewing the A-B effect and the contemporary foundational literature
in section 2, I demonstrate this in section 3 by considering the gauge-invariant
features of ¢ and A jointly, which are not exhausted by the gauge-invariant
features of ¥ and A separately. I demonstrate that those joint features can in
general be given an entirely local characterisation, blocking the concern that
some gauge-invariant features are inherently non-local. In section 4 I show in a
different way how this apparent nonlocality arises in the study of A alone and
how it is blocked when we allow for A and % jointly.

In section 5 I attempt an interpretation of these results: my proposal is
that we should not think of ¥ and A as representing separate entities but
as representing, jointly and redundantly, features of a single entity, with the
redundancy being localisable either to ¢ or to A as a matter of pure convention;
I illustrate this proposal via brief consideration of the Higgs mechanism.

In sections 6-7 I address two possible concerns with the account I give, and in
doing so explore further the extent to which we can give a properly local account
of the physical goings on around the solenoid in the A-B effect. Section 8 is the
conclusion.

2 The A-B Effect Reviewed

The classical theory of a point electric charge moving under the influence of
a background magnetic field is straightforward. The particle is represented
mathematically by a vector function q(¢) of time, and the field by a vector field
B(x,t). The field satisfies two of Maxwell’s equations,

V- -B(x,t) =0 and V x B(x,t) = 4nJ(x,1), (1)

where J is the electric current density, and the force on it is given by the Lorentz
force law,

F(t) = eq(t) x B(q, 1), (2)

where e is the particle’s charge. (I use Gaussian units with ¢ = 1.) In general
we will be working in the background-field regime, where the back-reaction of
the particle on the field is ignored.

Mathematically, it is always possible to express B as the curl of another
vector field A, the wvector potential: B = V x A. In many cases in classical

Hncluding some parts to which I contributed: cf Wallace and Timpson (2007).



magnetostatics, doing so can be mathematically convenient. For instance, since
the divergence of a curl is always zero, the first equation in (1) is automatically
satisfied if B is defined in terms of A. More relevantly for our purposes, the
standard way to put the Lorentz force law into Hamiltonian form uses the
Hamiltonian

H(a,p) = 5= (b +cA@)?. )

That is: it is expressed in terms of the vector potential, rather than the field
strength.

At least in classical electromagnetism, the standard assumption is that A
is merely a mathematical convenience, and that B fully represents the physical
features of the magnetic field. There are two interrelated reasons for this:

1. The definition of A in terms of B specifies A only up to the gradient of
an arbitrary smooth function A: if we replace A with A’ = A + VA, then
VxA =V xA.

2. Only B appears to be physically detectable.

In the Maxwell equations and the Lorentz force law, the dependence of the
physics on B alone rather than A is manifest. It is only tacit in the Hamil-
tonian formulation of the theory (there is no straightforward way to write a
Hamiltonian form of the Lorentz law in terms of B alone), but it is strongly
suggested by the fact that the classical gauge transformation

A—A+VA, q—q; p—p—-eVA (4)

is a symmetry of the Hamiltonian, and furthermore, a symmetry that leaves the
trajectory of the particle unchanged.

In applications of the vector potential in electromagnetism, it is common to
impose some additional condition — a choice of gauge — such that exactly one
A-field is compatible with any given set of empirical data. A common choice, for
instance, is the Coulomb gauge, defined by the condition that V-A = 0. If A and
A’ are two gauge-equivalent vector potentials related by a gauge transformation
A and both satisfying the Coulomb gauge condition, then V2A = 0, which
together with appropriate boundary conditions on the theory entails that A is
constant and hence that A = A’.

The quantum mechanics of a particle interacting with a background magnetic
field is obtained in the standard way by replacing q and p in the classical
Hamiltonian with the quantum-mechanical position and momentum operators.
The resultant Schrodinger equation (in units where & = 1) in the position
representation is

“T(x,t) = Tn (V —ieA(x, 1) (x,1). (5)

The Schrédinger equation is invariant under a quantum-mechanical version of
the classical gauge transformation. Since momentum in configuration-space



wave mechanics is given by the gradient of the phase of the wave-function, we
would expect that the classical momentum transformation becomes a phase
change, and so it does: the form of the transformation is

A — A+ VA, o — ey, (6)

again for an arbitrary smooth function A. And just as the classical transforma-
tion left particle trajectories unchanged, the quantum version leaves unchanged
the probability of finding the particle in any given location.

The gauge-invariance of the Schrédinger equation might suggest that, in
quantum just as in classical mechanics, it is the B-field rather than the A-
field that is of physical significnance. The Aharonov-Bohm effect calls this into
question: in its simplest form, it works as follows.

1. A beam of charged particles is separated into two; the two beams flow
round opposite sides of a solenoid and are then allowed to re-interfere.

2. In the absence of any current through the solenoid (and hence of any
induced magnetic field), there will be a set of interference fringes produced
by the reinterference of the two beams.

3. When the solenoid is turned on, there will be a shift in the interference
pattern. The magnitude of the shift will be proportional to the difference
of the integrals of the A-field along the paths traversed by the left and
right beams respectively. That is, the shift A will be proportional to the
integral of A around the loop I' formed by the two halves of the beam:

AaﬁAdx (7)

4. By Stokes’ theorem, the line integral of a vector field V around a closed
loop in a simply-connected region (that is: a region in which any closed
loop can be continuously deformed to a point without moving any part of
it out of the region) is equal to the surface integral of the curl of V over
any surface bounded by the loop. Since V x A = B, this means that A is
proportional to the integral of the magnetic field over the interior of the
region enclosed by the beam, or in other words that it is proportional to
the magnetic flux through that region.?

The conceptual problem is that a sufficiently well-constructed and well-shielded
solenoid will result both in negligible magnetic field outside the solenoid, and
negligible wavefunction inside the solenoid. So the electron is moving (almost)
entirely through a region in which the magnetic field is zero — and yet, its
evolution is still detectably different from what would occur if the solenoid were
turned off.

20f course, the electron will be quite delocalised, and indeed this delocalisation is central
to the observation of interference fringes, so “the” path taken by the electron is not really
well-defined. But since B vanishes outside the solenoid, by Stokes’ theorem any two paths
which pass the solenoid on the same side will have the same line integral of A.



If we hold on to the idea that the magnetic field is completely represented by
the field strength B (what Healey (2007, p.54) calls a ‘no new EM properties’
view), this means action at a distance: the passage of the electron around the
solenoid is affected by the magnetic flux within the solenoid directly, without any
mediating field to transmit its influence. This is doubly embarrassing because
the equations governing the electron’s motion certainly look as if they involve
local action — but between v and A, not ¥ and B.?

This suggests a natural alternative(called the “new localized EM properties”
view by Healey (2007, p.55)): take the A-field as a physical field. The problem,
of course, is gauge invariance: since two gauge-equivalent A-fields (that is, two
A-fields related by a gauge transformation) are empirically indistinguishable,
how is it to be determined which is the true A field? This can be thought
of as giving rise both to a problem of empirical inaccessibility of the present
electromagnetic state (no amount of evidence can tell us which of the vari-
ous gauge-equivalent A-fields is correct) and a problem of indeterminism (the
equations of electromagnetism determine a system’s evolution only up to gauge
transformations, so if A(x,t) = 0 for ¢t < 0, they fail to tell us whether a given
set of ¢t < 0 initial conditions will evolve into A or A 4+ VA).

It is possible to remove the underdetermination by imposing a particular
gauge condition (what Maudlin (1998) calls a “one true gauge” strategy?). But
given the gauge symmetry, there seem to be few grounds beyond aesthetic pref-
erence for selecting one gauge rather than another, and the problems of empirical
inaccessibility and indeterminism are replaced by a problem of underdetermi-
nation of theory by data. One need not be a crude verificationist to find this
level of underdetermination unattractive.

These concerns suggest looking for a gauge-invariant representation of the
theory. Our slogan might be: “the physical facts about the fields are represented
by the gauge-invariant features of A. One of those gauge-invariant features is
B =V x A | but the A-B effect shows us that there are others.” As stated, this
is a mathematical problem: find a complete characterisation of A, up to gauge
transformations, in any given region R. And there is a well-known answer: A is
characterised completely and gauge-invariantly by its line integral around every
loop in R (called the holonomies of the loops).

For future purposes, it will be useful to explain this a little further. Given
some functional f from A-fields to some other space, f can be said to charac-
terise the gauge-invariant features of the A-fields provided that f(A) = f(A)
iff A and A’ are related by a gauge transformation. To see that this is the case

3There is a subtler problem: the problems of interpretation of the vector potential in elec-
tromagnetism generalise to so-called ‘non-Abelian gauge-theories’, but the no new properties
view does not generalise readily to these more exotic cases. See Healey (2007, p.84) and
references therein for details.

4In discussion I have found that Maudlin is often understood as advocating this strategy;
my own more minimal reading is that he is simply pointing out that it is possible as part of
a case to undermine analogies between the A-B effect and Bell’s inequality.



for holonomies, suppose that A and A’ satisfy

jéA.dXZfFA'.dx (8)

for any loop I'. Then the integral of (A — A’) around any closed loop is zero,
or put another way, the integral of (A — A’) between xg and x depends only on
xo and x and not on the path connecting them. If we then choose arbitrary xg
and define N
A(x) = / (A —A)-dx, 9)
X0
then VA = (A — A’) and so A, A’ are gauge-equivalent. Conversely, if they
are gauge-equivalent then (since the integral of VA around a closed loop always
vanishes) they have the same holonomies.

This suggests Healey’s own preferred interpretation of the magnetic field’s
ontology, the “new non-localized EM properties” view: the magnetic field is
represented by a map from loops to real numbers. By the definition of the curl,
the integral of A around an infinitesimal loop at point x is equal to B - nd.S,
where n is normal to the surface enclosed by the loop and ¢S is the area of
that surface. So among the components of Healey’s ontology (in effect) is the
magnetic field. But that ontology is much larger than just the field.

Healey’s loop ontology faces three main objections. Firstly, just as with the
B-field ontology there is no natural way to write the equations of motion of the
theory in terms of the loop properties directly; the A-field remains indispens-
able mathematically. Secondly, the ontology is very redundant: loops can be
decomposed into smaller loops, and the real number assigned to the larger loop
must be the sum of those assigned to its components. (If a region R is simply
connected, any loop can be decomposed into infinitesimal loops, and the B field
of R actually completely determines the values of all the loops in R.) Not only
is this awkward, it is difficult to explain naturally except by defining the values
of each loop as the integral of some vector field around the loop.

Most strikingly, Healey’s ontology is non-separable: if X and Y are simply
connected spatial regions whose union is not simply connected, then fully spec-
ifying the values assigned to each loop in X and Y separately leaves some loops
in X UY unspecified. The A-B effect itself offers an illustration: consider X
and Y to be as given in diagram 1. Since X and Y are each simply connected,
and since in each B = 0, each is magnetically trivial: each loop integral is equal
to zero. Insofar as the magnetic field in a region is supposed to be represented
by the gauge-invariant facts about X in that region, in both X and Y the mag-
netic field is the same as in empty space (there is a gauge transformation that
transforms it to zero). But the field in X UY is not the same as in empty space:
the value of loops that enclose the solenoid is non-zero.

So the A-B effect appears to present us with a trilemma. We would like an
understanding of electromagnetism that is separable, gauge-invariant, and has
no action at a distance. It appears that one of these has to be rejected.

Before going on I should note that while this discussion has been carried
out at a relatively elementary level, many proposed ways of understanding the



Figure 1: Regions of space around the solenoid

ontology of electromagnetism in the light of the A-B effect are much more so-
phisticated, and in particular, involve extensive appeal to the mathematics of
fibre bundles®. It is perhaps worth making clear that whatever the virtues of
these approaches, they cannot avoid the basic trilemma. For the A-field in re-
gion X is gauge-equivalent to what it would be if the solenoid where absent, and
so is the A-field in region Y, but the A-field in region X UY is not. So any rep-
resentation of the field that is gauge-invariant must violate either separability
(by assigning a nontrivial electromagnetic state to region X UY") or local action
(by assigning a trivial electromagnetic state to the region in which the electron
moves).
Here ends my summary of the A-B effect.

3 The A-B effect and the complex field

The A-B effect arises because of certain features of the mathematical theory
of a complex scalar field i coupled to a real vector field A. It is therefore in

5See, for instance, Nounou (2003) or Leeds (1999).



hindsight a little odd that the literature on the A-B effect has been almost wholly
concerned with the A field and hardly at all with the 1 field. In particular, the
line of reasoning that leads to the loop ontology — and to the argument that
any gauge-invariant representation of the magnetic field is non-separable — is
concerned purely with the gauge-invariant features of A and not with v at all.
Let us attempt to rectify this.

Prima facie, there are two obvious ideas as to how to think about the gauge-
invariant features of v:

1. Representing the gauge-invariant features of A by loop holonomies already
takes care of the gauge freedom. Any two complex fields 1,1’ can thus
be thought of as representing different physical possibilities. The physical
states of the theory are thus represented by a complex field and a set of
loop holonomies.

2. Since there is a gauge transformation relating any two fields 1), 1)’ satisfying
[¥(x)| = |/ (x)|, the only gauge-invariant feature of 1 is its magnitude.
The physical states of the theory are thus represented by a real field ||
and a set of loop holonomies.

Neither is satisfactory, for neither provides a complete characterisation of the
gauge-invariant features of the theory. To see why, suppose that (¢, A) and
(¢', A’) are two possible pairs of fields. A given function f of the fields charac-
terises them completely up to gauge transformations provided that f(¢, A) =
f(@', A7) just if for some A, ¢’ = e ) and A’ = A + VA.

For the first suggested characterisation, f takes 1 to itself and A to the loop
holonomies. But here the only gauge transformations that leave ¢ invariant are
those for which A(x) # 0 only when ¢ (x) = 0. So in general this representation
is not itself gauge invariant. For the second suggestion, f takes 1 to its magni-
tude and A to its holonomies, and this clearly is gauge invariant. But consider
the pairs (¢, A) and (e‘“1), A), for some arbitrary function o. These have the
same holonomies and the same [¢)|. But they are gauge-equivalent only if, for

some A, 4 4
eqp ="My and A = A + VA. (10)

This pretty clearly requires (i) A to be constant (at least on the connected
parts of the region of space we are considering) and (ii) A(x) = o(x) + 2nw/e
on any connected region where 1» # 0. In general (that is, for any choice of
o which is not constant on any connected region where ¢ # 0) this cannot
be satisfied. So the second suggested characterisation erroneously represents
gauge-inequivalent pairs of fields as physically equivalent. (And, in case it’s not
obvious, these gauge-inequivalent fields are definitely physically inequivalent:
two pairs of fields which at time t are gauge-inequivalent but agree on the
magnitude of the wavefunction and on the holonomies will not in general so
agree at later times, and || is empirically accessible.)

Our two suggestions share a common flaw. They attempt to characterise
the gauge-invariant features of the fields by separately representing the gauge-
invariant features of ¢ and A. But the gauge transformations act jointly on



the two fields, and there are joint features of the pair of fields that are gauge-
invariant but do not derive directly from gauge-invariant features of the field
considered separately.

In particular, consider the quantity |V — eiAt|. This is gauge-invariant —
indeed, the fact that it is gauge invariant is the central heuristic of the gauge
principle in particle physics® — but its gauge invariance does not derive from
gauge-invariant features of v and A separately but rather from the cancellation
of terms in the gauge transformations of both.

This suggests that a gauge-invariant characterisation of (1, A) will need to
consider joint features. A helpful way to get at such a characterisation starts
by decomposing ¥ into its magnitude and phase:

¥(x,t) = p(x,t) exp(ied(x,1)). (11)

(This decomposition is unique, up to an overall constant 2nw /e in 6, provided
that 1 (x,t) is everywhere nonzero; I return to the ¢ = 0 case later.)

Clearly, p is a gauge-invariant feature of 1 alone, and hence of (¢, A) jointly.
More interestingly, consider the gauge-invariant quantity ¥*(V — eiA)y. Ex-
pressed in terms of p and 6, it is

V¥ (V —iA) = pVp +iep? (VO — A). (12)

Since p? and pVp are gauge-invariant, so is D8 = VO — A, the gauge-covariant
derivative of 6 (something that can also be verified directly).

So: we now have two gauge-invariant features of the theory: the scalar field
p = |¥|?, and the vector field Df. In fact, no others are needed. For suppose
that ¢/ = p/c’®® and A’ satisfy

p=p and V& — A’ =V - A. (13)
Then it is easy to verify that
¢ == and A=A+ V(0 —0). (14)

In other words, (8" — 6) defines a gauge transformation from (¢, A) to (o', A').
In particular, the holonomies can be recovered from the covariant derivatives of

the phase:
%DQ'dX:]{VG-dx+fA~dx:]{A-dx, (15)

since the integral of a gradient around a closed loop is zero.

The alert reader will have noticed something rather striking about this rep-
resentation. Both p and D@ are local features of the theory: their values at a
point x depend only on 1) and A. The A-field alone may admit of no descrip-
tion which is both separable and gauge-invariant, but the ¢ and A fields jointly
admit of both.

6Slightly more accurately, the central heuristic is that (V) — eiAv) transforms under the
gauge group in the same way as does 1) itself.



Indeed, we can rewrite the Schédinger equation in a local and gauge-invariant
way in terms of these quantites; since the method of doing so is instructive for
later, I spell it out here. Firstly, let us make a choice of gauge: the wunitary
gauge, in which v is always real. (This may seem unfamiliar: gauge conditions
are usually specified via a constraint on A rather than ¢. But mathematically
a gauge condition is just a condition which picks a unique element out of each
equivalence class of gauge-equivalent fields, and — again on the assumption
that ¢ # 0 — the unitary gauge does that just fine. I return to its conceptual
significance later.)

In the unitary gauge we can write ¥ = p; the Schrédinger equation becomes

1
%(V2p—A~Ap—2iA-Vp—i(V~A)p) = ip. (16)

Separating real and imaginary parts, we get
(V2—A-A)p=0; (17)

2A -Vp+ (V- A)p=2mp. (18)
Combined with the condition that the magnetic field strength B vanishes,

VxA=0, (19)

this is a complete and deterministic set of equations for p and A in the unitary
gauge.

(If you are wondering how the Schrodinger equation, which is supposed to
determine the evolution of the particle, has given rise to a joint equation for the
particle probability density and the vector potential, recall that in the unitary
gauge, phase information about the particle is carried by A. If this makes you
start to worry that we don’t have a clean separation any more between matter
and magnetic degrees of freedom, hold that thought!)

To get a gauge-invariant set of equations, we just note that in the unitary
gauge, VO = 0 and so DI = A. So in this gauge, we can replace A with D6 to
get

(V2 = (D0)*)p =0; 2D -Vp+ (VDO)p =2mp; VxDO=0.  (20)

But this equation, being expressed entirely in terms of gauge-invariant quanti-
ties, does not depend on the unitary gauge. We have obtained a set of local,
deterministic, gauge-invariant differential equations for the A-B effect.

All this ought to suggest that the apparent nonlocal-action/ gauge-dependence/
non-separability trilemma of the A-B effect is just an artefact of our failure to
consider ¢ as well as A. Indeed, I think this suggestion is correct. Before ex-
ploring the suggestion further, though, it will be helpful to get clear just how
that trilemma arises and how the introduction of matter blocks it.
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4 Origins of non-separability

Recall the definition of non-separability: the state of a region of space X UY
is nonseparable if specification of all properties of regions X and Y separately
does not completely specify the properties of X UY. In the case of electro-
magnetic gauge theory under the assumption that all physical properties are
gauge-invariant, the properties of a region are supposed to be in some way rep-
resented by gauge-invariant features of the fields, with two regions having the
same physical properties iff the fields on those regions are gauge-equivalent.

We can now express the presence or absence of non-separability mathemat-
ically: fields ¢, A defined on X UY give rise to non-separability iff there exist
other fields ', A’ defined on X UY such that

(i) ¥'|x,A’|x (the restrictions of ¢/ and A’ to X) are gauge-equivalent to
Ylx, Alx;

(ii) likewise 9’|y, A’ly and 9|y, Aly are gauge-equivalent; but
(iii) ¢', A’ and 9, A are not gauge-equivalent.

For any possible state of X UY must be represented by some pair of fields on
X UY, and non-separability is the possibility of two such non-gauge-equivalent
pairs ¥, A and 1)', A’ whose restrictions to X and to Y are gauge-equivalent.

Suppose (i) and (ii) are the case. Then there exist functions Ax, Ay on X
and Y respectively such that

1. On X, ¢/ =e*Mxqp and A’ = A + VAy.

2. 0nY, ¢ =e*Mepand A’ = A + VAy.
It follows that on the intersection region X NY,

1. elehx=Av)yy — 4

2. V(Ax —Ay)=0.

So Ax — Ay is a real function on X NY which (1) is equal to zero except where
¢ = 0 and (2) has vanishing gradient everywhere. These are strict conditions.
The first can be satisfied by Ax — Ay # 2n7/e only in regions where ¢ = 0.
The second entails that if  and y are points in X N'Y connected by a path
lying within X N'Y, then (Ax — Ay)(z) = (Ax — Ay)(y). Jointly, then, the
conditions can be satisfied by a function with non-vanishing gradient only if
X NY is path-disconnected (if there are regions of X NY that cannot be joined
by any path lying within X NY") and if ¢ is zero on at least one of the connected
components.

If these conditions are not satisfied, then Ax and Ay agree (up to a remov-
able 2n7 /e term) on the intersection of X and Y. We can then defined a single
function A consistently by declaring it equal to Ax on X and to Ay on Y; this
function generates a gauge transformation between ¢, A and ¢, A’, so that (iii)
is not satisfied.
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Conversely, if they are satisfied then we can choose arbitrary functions
Ax, Ay which are constant on each connected component of X N'Y but which
are not equal to each other on at least one such component. The fields obtained
by applying a gauge transformation generated by Ax to the restriction of ¢, A
to X, and likewise for Y, agree on X NY and so can be consistently combined
into a pair of fields on X UY, but they are not gauge-equivalent.

So we have found a necessary and sufficient condition for non-separability in
gauge theory: it can occur with respect to regions X, Y when their intersection
is disconnected and when the matter field vanishes on at least one connected
component. (In fact, the result generalises straightforwardly to more general
gauge theories: what is required there is not per se that ¢ vanishes on a con-
nected component but that there is some element of the gauge group g such that
g¥ = 1 on that region. This generally requires ¥ to remain strictly confined to
some small subspace of the internal vector space.)

The first of these conditions is purely topological. A necessary (though not
sufficient) condition for it to occur is that X UY is not simply connected;” note
that this is satisfied by the region outside the solenoid in the A-B effect, and
recall that we have seen that non-separability occurs in the loop ontology only
where non-simply-connected regions are considered.

The second condition, however — the vanishing of ¥ on an open set — is
implausibly, indeed unphysically, stringent. Notice that there is no ‘give’ in the
condition at all: even if 1| = 1071090 there is no prospect of non-separability.
(The local facts about X and Y separately that determine the joint properties
of X UY might be extremely difficult to ascertain, but that is a limit of practice,
not principle.) In one-particle quantum mechanics, it is a theorem® that 1) is
never exactly zero on an open set in spacetime, so that the condition can hold,
if at all, only for an instant. And in quantum field theory the most perspicuous
way (in this context) to think of the system is as a superposition of different
field configurations, in which the weight given to the configuration where 1 is
exactly zero will itself be exactly zero. (I consider the quantum-field-theoretic
case more carefully in section 7). I conclude that we can set aside this case.
Once set aside, there is no obstacle to a fully local, but fully gauge-invariant,
understanding of the theory.

"Proof sketch: suppose X UY is simply connected and let f be any smooth function
which is constant on each connected component of X N'Y. Then for arbitrary a, b, there is
a well-defined vector field v on X UY such that v|x = aVf and v|y = bV f. For arbitrary
p,qg € XNY,let vx and vy be paths in X and Y respectively from p to q. Then the integral
of v along the loop from z to y along yx and back along vy is (a —b)(f(¢) — f(p)). But since
V X v = 0, by Stokes’ theorem this integral must vanish. So f(p) = f(q), i.e.any function
constant on the connected components is constant.

8The result is proved under rather general conditions by Hegerfeldt (1998a, 1998b); see
also the discussion in Halvorson and Clifton (2002). To see intuitively why it is correct,
just notice that to confine a particle exactly to a finite region requires it to have arbitrarily
high-momentum Fourier components, corresponding to arbitrarily high momenta, and so to
components of the wavefunction that will spread out at arbitrarily high speeds.
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5 The interlinking of A and v

I have shown formally that the gauge-invariant features of ¥y and A can generi-
cally be jointly represented in a fully local (i.e., non-separable) way. But it is
still reasonable to ask what those gauge-invariant features are actually supposed
to represent: that is, what kind of ontology is compatible with the theory?

It is tempting to think that the question can be innocently rephrased as:
what kind of ontologies for the electromagnetic field, and for the matter field,
are compatible with the theory? Tempting, but mistaken — and this is one of
the main points of the paper. For since the gauge transformation thoroughly
mixes the two together, there is simply no justification — as long as we wish
our ontology to depend only on gauge-independent features of the theory —
in regarding the two mathematically-defined fields as representing two separate
but interacting entities, rather than as (somewhat redundantly) representing
aspects of a single entity.

To press the point, let us consider again the question of a choice of gauge.
Most gauge choices encountered in electromagnetism impose a constraint on the
A-field, and leave the 1)-field unconstrained: thus the Coulomb gauge, V-A = 0,
for instance, or the London gauge A, = 0, each place one constraint on A per
point of space. Hence the temptation to see the A-field, with its apparent three
degrees of freedom per space point, as really having two once gauge redundancy
is allowed for, and likewise to see the ¢ field as genuinely having two degrees of
freedom per space point.

But this is pure convention. Consider again the unitary gauge, in which we
require that the phase of ¢ vanishes (i.e., that ¢ is real). In this gauge, ¢ has
only one degree of freedom, but there is no residual gauge invariance of A —
each of its three apparent degrees of freedom are physical. So do we have one
degree of freedom for matter and three for electromagnetism, or two for each?
The question is only meaningful if we persist in supposing that two distinct
entities are present.

To be sure, from the perspective of quantum field theory there is no con-
ventionality about the particles that are associated with the fields: whatever
gauge we choose, we will discover a particle spectrum consisting of a massless
vector boson (two degrees of freedom) and a charged scalar boson (one degrees
of freedom, but with both matter and antimatter versions”). But the particle
spectrum of a theory represents the expansion of the theory’s Hamiltonian in
normal modes around a (possibly local) minimum of energy, and is by its nature
holistic: the particle spectrum of the theory is a dynamical and not a metaphysi-
cal matter, and should not be thought to require the existence of metaphysically
distinct matter and electromagnetic fields.

Indeed, it need not always be the case that a complex-scalar-field-plus-vector-
potential field theory even has that particular particle spectrum. If the gauge
symmetry is spontaneously broken (that is, if the minimum-energy configura-
tion has a non-zero expected value of [1|) then the particle spectrum consists

9For more on the curious way in which complex classical degrees of freedom give rise to
antimatter, see Wallace (2009) and Baker and Halvorson (2009).
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instead of a massive vector field and a real scalar field (indeed, this is one of the
main applications of the unitary gauge). In popularisations of the Higgs mech-
anism, this phenomenon is sometimes described as the electromagnetic field
“eating” one of the degrees of freedom of the scalar field and thus gaining mass,
a metaphor that has been sharply criticised by Earman (2003) (see also Struyve
(2011)). But once we realise that the electromagnetic and scalar fields cannot
be thought of as separate entities, there need be no residual surprise that the
normal-mode expansion of the physical system that they jointly describe is best
analysed in different ways in different regimes.

But how are we to think about this “jointly described” entity? We know
that it can be characterised entirely by the magnitude of ¥ (a scalar field) and
by its covariant derivative (a vector field, or more precisely a one-form field).
It is important to remember that these are conceptually and mathematically
very different entities. A scalar field, mathematically, is just an assignment of
a real number to every point of space, and can easily enough be thought of
as ascribing properties to points of space. A one-form field is not so simple
and cannot be so represented: to speak loosely, it is more like an assignation
of properties to infinitesimally small diffences between points of space. Or put
another way, if a vector is thought of loosely as an infinitesimal arrow from
one space point to a neighboring one, a one-form field assigns a real number to
each such infinitesimal arrow. A one-form is then something more like a set of
relations between (infinitesimally close) points of space.

That suggests that there are indeed two components of the ontology of the
system: a collection of properties of points of space, and a collection of relations
between infinitesimally close points of space. In certain circumstances (math-
ematically, when the holonomy vanishes) integrating the infinitesimal relations
from = to y along a given path gives a result which is in fact independent of
the path; in these situations we can consistently define a relation between those
finitely-separated points and call it the phase difference, and then the system
can be represented by a complex field with no remaining redundancy save for
a single choice of phase. Conversely, the holonomy — the integral of the in-
finitesimal relations around a closed loop — provides a measure of the extent to
which this representation of the systems is blocked, and the holonomy in turn
is mostly determined by the integral of the relations around infinitesimal closed
loops — the curvature.

The extent to which this somewhat loose talk of ‘infinitesimal relations’ can
be made more precise lies beyond the scope of this paper; it is perhaps worth
remembering, though, that in any case the empirical success of (classical or
quantum) electrodynamics provides no licence whatever to regard the theory as
a reliable description of the physical world on arbitrarily short lengthscales, so
that thinking about the relations between extremely but finitely close points of
space may actually be a more reliable way of approaching the theory’s ontology
than appeal to vector bundles or to actual infinitesimals.!?

10For more consideration of the metaphysics of vector fields, see Butterfield (2006b, 2006a)
and references therein.
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Nonlocality and the
Aharonov-Bohm Effect

Richard Healeytt

Department of Philosophy, University of Arizona

At first sight the Aharonov-Bohm effect appears nonlocal, though not in the way EPR/
Bell correlations are generally acknowledged to be nonlocal. This paper applies an
analysis of nonlocality to the Aharonov-Bohm effect to show that its peculiarities may
be blamed either on a failure of a principle of local action or on a failure of a principle
of separability. Different interpretations of quantum mechanics disagree on how blame
should be allocated. The parallel between the Aharonov-Bohm effect and violations of
Bell inequalities turns out to be so close that a balanced assessment of the nature and
significance of quantum nonlocality requires a detailed study of both effects.

1. Introduction. Aharonov and Bohm (1959) drew attention to the
quantum mechanical prediction that an interference pattern due to a
beam of charged particles could be produced or altered by the presence
of a constant magnetic field in a region from which the particles were
excluded. This effect was first experimentally detected by Chambers
(1960), and since then has been repeatedly and more convincingly dem-
onstrated in a series of experiments including the elegant experiments
of Tonomura et al. (1986).

At first sight, the Aharonov-Bohm effect seems to manifest nonlo-
cality. It seems clear that the (electro)magnetic field acts on the particles
since it affects the interference pattern they produce, and this must be
action at a distance since the particles pass through a region from which
that field is absent. There have been numerous attempts to avoid this
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conclusion. But despite the fact that no interpretation has succeeded
in portraying the Aharonov-Bohm effect as completely local, we have
much to learn from these attempts. For different interpretations of the
Aharonov-Bohm effect portray it as nonlocal in different senses. By
examining these interpretations we can gain a fresh perspective on the
nature of quantum nonlocality.

Such a perspective is sorely needed. The intense scrutiny of EPR-
type correlated systems and the associated violations of Bell inequali-
ties has produced a kind of tunnel vision that has made it hard to
achieve a balanced assessment of the nature and significance of quan-
tum nonlocality. There is, for example, a widespread belief that quan-
tum nonlocality is manifested only by compound systems in “entan-
gled” states. The nonlocality of the Aharonov-Bohm effect refutes that
belief. More importantly, while it is necessary to distinguish a number
of different senses in which the Aharonov-Bohm effect may be judged
not to be local, the central senses of locality (conformity to principles
of local action and separability) are just those that also help to define
what is most at stake when it comes to violations of Bell inequalities.

2. The Aharonov-Bohm Effect. As noted by Aharonov and Bohm
(1959), quantum mechanics predicts that the interference pattern pro-
duced by a beam of charged particles may be altered by the presence
of a constant magnetic field, even though that field is confined to a
region from which the particles are excluded.! This has since been con-
firmed experimentally.> A simple example of the effect is depicted in
Figure 1.

If no current flows through the solenoid behind the two slits, then
the familiar two-slit interference pattern will be detected on the screen.
But if a current passes through the solenoid, generating a constant
magnetic field B confined to its interior in the z-direction parallel to the
two slits, the whole two-slit interference pattern is shifted by an amount

A e
Ax—%%(p (1)

1. The effect had been noted previously by Ehrenberg and Siday (1949), but it was
Aharonov and Bohm’s work that brought it into prominence in the literature. Lorentz
covariance implies the existence of a corresponding effect invalving electric rather than
magnetic fields, which is harder to investigate experimentally and raises no new issues
for nonlocality.

2. The first experimental confirmation by Chambers (1960) has more recently been
duplicated much more convincingly. For a recent review, see Peshkin and Tonomura
1989.
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where d is the slit separation, / is the distance to the screen, A is the de
Broglie wavelength of the electrons in the beam, and ® is the magnetic
flux through the solenoid.

How is this phenomenon to be explained? At first sight, it appears
that the magnetic field inside the solenoid must have some kind of
nonlocal effect on the electrons, since B is zero everywhere outside the
solenoid, in the region through which they must pass on their way from
the slits to the screen. But Aharonov and Bohm (1959) denied that the
effect was nonlocal, claiming instead that it arose from a purely local
interaction with the magnetic vector potential 4 (or more generally the
electromagnetic potential 4«). They concluded that while in classical
mechanics this potential could be regarded as just a mathematical de-
vice for conveniently representing the physically real (electro)magnetic
field, quantum mechanics shows that it is itself a physically real field.
This view was endorsed and widely promulgated by Feynman in his
famous Lectures (Volume 2).

Aharonov and Bohm (1959) first presented the effect as a theoretical
consequence of quantum mechanics prior to any experimental dem-
onstration. They derived this consequence by solving the Schrédinger
equation for scattering of an electron beam by an infinitely long and
infinitely thin solenoid. A simplified QM derivation for the setup pic-
tured in Fig. 1 is as follows. Consider two paths by which an electron
might arrive at the same point on the screen, one passing through the
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upper slit, one through the lower slit. If the difference in path lengths
is a, then there will be a corresponding phase difference d given by

0 = 2nall 2)
where 4 is the electrons’ de Broglie wavelength. For x much less than /,
a =~ xdll, and s0 ¢ ~ 2axd/Al 3)

If no current passes through the solenoid, then we have the ordinary
two-slit interference experiment. The condition for constructive inter-
ference between these paths is d = 2nx, and so an interference maxi-
mum will appear on the screen at a distance x =~ nAl/d from the axis
of symmetry, for each value of n = 0,1,2, etc.

Passing a constant current through the solenoid produces a magnetic
field inside it (directed towards you) and a magnetic vector potential
A both inside and outside. This produces an additional phase difference
of —e/fiA.dr in the electrons’ wave function between point r and point
r + dr (assuming the electron’s charge is —e¢). The total additional
phase change over a path is then

—% f A.dr (&)

This will introduce an additional phase difference between two paths
from source to screen of

AB) =5, — ( fAdr)—< jAdr) (5)

Now if the solenoid is close to the slits and very small, then the direct
path from source to screen through the top slit will go around the top
of the solenoid, and the direct path from source to screen through the
bottom slit will go around the bottom of the solenoid. Hence the ad-
ditional phase difference between such paths will be given by

A(S) = —% 95 A.dr (6)

where the integral is now taken around the closed curve formed by
tracing a path from source to screen via the upper slit, and then re-
turning from screen to source via the lower slit—a path that encloses
the solenoid. It follows that

A®) = 7 95 Adr = —2 f curlA.dS = = @ 7
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This additional phase difference is independent of x, and so the entire
interference pattern is shifted upward by the same amount, namely
17} e
Ax = 0mah® =507 ® ®
On this account, the shift in the interference pattern is produced by
a direct local interaction between electrons and the magnetic vector
potential 4 outside the solenoid. A4 is no longer zero either inside or
outside the solenoid because of the current flowing through it, even
though B = curld = 0 everywhere outside the solenoid. However, this
QM derivation shows that the A-B effect is local only if A4 is a physically
real field, capable of acting on the electrons directly. But there is reason
to doubt that the magnetic vector potential is a physically real field,
since 4 is not gauge-invariant, unlike the magnetic field B and the
phase-shift 4(J). That is to say, both 4 and

A =4+ Vy 9)

are to be regarded as specifying the same physical state, for an arbitrary
(but suitably differentiable) function . If one nevertheless maintains
that in some way A represents a physically real field, the following
argument appears to establish that its gauge-dependence excludes a
local account of the A-B eifect.

With no current flowing, A4 is zero everywhere outside the solenoid;
or more precisely, there exists a function y such that 4 can be set to
zero everywhere outside the solenoid by the transformation 4 — A’
defined by Eq. 9. But even with a current flowing, this transformation
permits one to set 4 equal to zero over a very wide region outside the
solenoid! By a suitable choice of ¥ one can, for example, set 4 equal
to zero outside the solenoid everywhere except within a segment, of
arbitrarily small angle «a, of a solid cylinder of infinite thickness whose
inner radius coincides with the outside of the solenoid. One could thus
set A equal to zero everywhere along path 1, or everywhere along path
2 (but not both at once).®> Now for the shift in the interference pattern
to be produced by a direct local interaction between each individual
electron and the magnetic vector potential A outside the solenoid, that
interaction would have to be different when a current is passing
through the solenoid. However, the potential is defined only up to a
gauge-transformation, and for any continuous path from source to

3. Indeed, if one generalizes the concept of a choice of gauge along the lines of Wu and
Yang 1975, it is even possible to choose a global gauge according to which 4 is zero
everywhere outside the solenoid (though this will not be a global gauge in which there
is a single value of 4 in each region within the solenoid).
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screen that does not enclose the solenoid thereis a gauge-transformation
that equates the value of 4 at every point on that path when a current
is flowing to its value when no current is flowing. The shift in the
interference pattern cannot therefore be produced by a direct local in-
teraction between individual electrons following such continuous paths
and the magnetic vector potential 4 outside the solenoid. Thus ac-
cepting the physical reality of the vector potential fails to render the
AB effect local: while denying its physical reality leaves one without
any local explanation of the effect.

3. Locality. To see more clearly what is at stake in the A-B effect, we
need a better grasp on the notion of locality. Although various expli-
cations of locality have been offered by those investigating violations
of Bell inequalities, many of these seem inapplicable in the present
context. I think the right way to view an explication like Bell’s (1964)
original “locality” condition is as a purported consequence of a general
conception of locality of wider applicability. Einstein formulated just
such a conception as follows.

... it appears to be essential for [the] arrangement of the things
introduced in physics that, at a specific time, these things claim an
existence independent of one another, insofar as these things ‘lie in
different parts of space’. . . .

Field theory has carried this principle to the extreme, in that it
localizes within infinitely small (four-dimensional) space elements
the elementary things existing independently of one another that it
takes as basic, as well as the elementary laws it postulates for them.
For the relative independence of spatially distant things (4 and B),
this idea is characteristic: an external influence on 4 has no im-
mediate effect on B; this is known as the ‘principle of local action’,
which is applied consistently only in field theory.

(1948, 322-323)

As has now been widely recognized,* one can find two distinct ideas in
this and similar passages from Einstein’s writings. I shall call these the
principle of Local Action and the principle of Separability, and state
them as follows.

Local Action
If A and B are spatially distant things, then an external influence
on A has no immediate effect on B.

4. See, for example, Howard 1985, Redhead 1987, Healey 1991, 1994.
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Separability

Any physical process occurring in spacetime region R is superven-
ient upon an assignment of qualitative intrinsic physical properties
at spacetime points in R.

I explain and defend my formulation of the principle of Separability in
the next section. The remainder of this section focuses on the principle
of Local Action.

The idea behind Local Action is that if an external influence on A4 is
to have any effect on B, that effect must propagate from A4 to B via
some continuous physical process. Any such mediation between 4 and
B must occur via some (invariantly) temporally ordered and continu-
ous sequence of stages of this process. Non-relativistically, such me-
diation could not be instantaneous, and so an effect on B could not
occur at the same time as the external influence on A. Thus although
in the non-relativistic case the term ‘immediate’ in Local Action may
be read as ambiguous between ‘unmediated’ and ‘instantaneous’, that
ambiguity seems relatively harmless, in so far as any instantaneous
effect would have to be unmediated.

Applied to the Bell case, Local Action entails that a measurement
on a particle 4 in one wing of an Aspect-type device has no immediate
effect either on a particle B on which a measurement is performed in
a different wing of the device, or on the apparatus which performs that
measurement. Given Local Action, a measurement on particle 4 in one
wing of an Aspect-type device can affect either particle B or the ap-
paratus which performs a measurement on it only if some continuous
process mediates that effect. But the experimental conditions are de-
signed precisely so as to rule out the possibility that any process could
mediate between the two measurement events.’ This supports the con-
clusion that the results of the two measurements are causally indepen-
dent. It is this consequent condition of causal independence that is
taken (explicitly or implicitly) to justify more specific “locality” con-
ditions appealed to in derivations of Bell-type inequalities.

Applied now to the Aharonov-Bohm case, Local Action entails that
a change in the current passing through the solenoid has no immediate
effect on the behavior of any electron outside the solenoid. Here the
force of the term ‘immediate’ is to require that any effect of the field
inside the solenoid on the behavior of electrons outside the solenoid be

5. In fact, these conditions at most exclude the possibility of mediation via a separable
process (cf. Section 4). The measurement events may still be connected by a nonsepa-
rable process (as in Healey 1994) in which case the question of causal dependence is
reopened. Healey (1992) argues that our concept of causation may then not be suffi-
ciently univocal to permit this question to be decisively answered.
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mediated by some influence which acts directly where these electrons
are-—somewhere outside the solenoid.

Now in some of Aspect’s experiments revealing violations of Bell
inequalities, the measurement events occurred at spacelike separation.
And in these circumstances it is common to justify specific “locality”
conditions that figure essentially in derivations of Bell inequalities by
appeal to a principle of relativistic locality, to the effect that that there
can be no direct causal connection between spacelike separated events.
This principle is both logically independent of Local Action and not in
question in the Aharonov-Bohm effect. Taking Relativistic Locality to
offer at least as legitimate an explication of the root notion of locality
as Local Action, one might conclude that experimental violations of
Bell inequalities have different, and indeed more significant, implica-
tions for locality than experimental demonstrations of the Aharonov-
Bohm effect.

There are two reasons for rejecting this conclusion. First, since the
condition of relativistic locality cannot be applied in Aspect-type ex-
periments when the measurement events are timelike (or null) sepa-
rated, an independent justification for excluding the possibility of direct
causal connections would have to be given in those cases. Such a jus-
tification would naturally appeal to the properties of all known inter-
actions, importantly including the fact that these conform to the prin-
ciple of Local Action, and it would apply equally to the case in which
the measurement events are spacelike separated. Hence the principle
of Local Action at least figures in an important independent line of
argument against the possibility of direct causal connections between
measurement events in the Bell case. Secondly, it is not at all clear that
relativistic locality is in fact a direct consequence of relativity theory.
Relativity theory is naturally taken to be a theory governing the struc-
ture of spacetime and the sorts of physical processes that can occur
within it. As such, it contains no explicit reference to causal notions
(despite the common, but potentially misleading, practice of employing
causal terminology, as in “the causal structure of spacetime’). Now
there are arguments seeking to derive a contradiction from supposed
violations of relativistic locality—so called causal paradoxes. But these
all import explicitly causal assumptions from outside relativity theory
itself, frequently concerning our ability to set up or control various
devices and/or physical processes. And these causal assumptions are
themselves open to question in situations such as those involved in
Aspect-type experiments. Indeed, as I have argued elsewhere (1994),
on some models of these experiments there is a coherent conception of
causation in accordance with which there is indeed a direct causal con-
nection between spacelike separated events in the relevant Aspect-type
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experiments, while the principle of Local Action holds, insofar as this
connection is mediated by a continuous (albeit nonseparable) causal
process!

4. Separability. The previous section offered a formulation of a prin-
ciple of Separability which requires some explanation, especially be-
cause it differs from formulations offered by other authors.

On one common understanding, any “entangled” quantum systems
are nonseparable in so far as they must be described quantum me-
chanically by a tensor-product state-vector which does not factorize
into a vector in the Hilbert space of each individual system

lI,12..,71 # lI,1€<)l112€<> e lI,n (10)

This is related to a more general understanding of nonseparability,
according to which any two spatially separated systems possess their
own separate real states. For if the state vector of a quantum system
gives its real state, then any spatially separated quantum systems de-
scribed by the “entangled” state vector of Eq. 10 will count as nonsep-
arable, on this more general understanding.® But even if spatially sepa-
rated systems do possess their own separate real states, the system they
compose may still fail to be separable if its real state does not supervene
on theirs. This suggests the following formulation of separability:

Spatial Separability

The qualitative intrinsic physical properties of a compound system
are supervenient on those of its spatially separated component sys-
tems together with the spatial relations among these component
systems.

Here I take the real state of a system to be given by its qualitative
intrinsic physical properties.

Now while the condition of Spatial Separability is naturally applied
to an n-particle system that figures in an Aspect-type experiment, it is
less clear how it is relevant to an Aharonov-Bohm experiment. But, as
shown in Healey (1991), Spatial Separability is itself a consequence of
a yet more general principle (there called Spatiotemporal Separability)
which is immediately applicable to the Aharonov-Bohm case. Here is
a condensed statement of that principle:

6. Note that this conclusion would not follow if, like Finstein, one were to deny that a
quantum system’s real state is given by its state vector. Indeed, as Howard (1985) and
others have pointed out, a number of Einstein’s reasons for this denial assumed that
the real state (unlike the quantum state) must be separable in the sense just noted.
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Separability

Any physical process occurring in spacetime region R is superven-
ient upon an assignment of qualitative intrinsic physical properties
at spacetime points in R,

According to this principle, whether a process is nonseparable de-
pends on what qualitative, intrinsic properties there are. Deciding this
involves both conceptual and scientific difficulties. The conceptual dif-
ficulty is to say just what it means for a property to be qualitative and
intrinsic.

Intuitively, a property of an object is intrinsic just in case the object
has that property in and of itself, and without regard to any other thing.
This contrasts with extrinsic properties, which an object has in virtue
of its relations, or lack of relations, to other things. Jupiter is intrinsi-
cally a body of mass 1.899 X 107 kilograms, but only extrinsically the
heaviest planet in the solar system.” Unfortunately, philosophers have
been unable to agree on any precise definition of the distinction be-
tween intrinsic and extrinsic properties, or even on whether such a
definition can or should be given.® This is true also of the distinction
between qualitative and individual properties, where a property is gual-
itative (as opposed to individual) if it does not depend on the existence
of any particular individual. Having a mass of 1.899 x 10% kilograms
is a qualitative property of Jupiter, while both the property of being
Jupiter and the property of orbiting our sun are individual properties
of Jupiter.?

After such an inconclusive resolution of the conceptual difficulty, it
may seem premature to consider the scientific difficulty of discovering

7. Note that I follow philosophers’ usage rather than physicists’ here. I take Jupiter’s
mass to be intrinsic to it even though Jupiter’s mass may vary, or indeed might have
always been different, from 1.899 X 10% kilograms. Physicists tend to use the term
‘intrinsic’ differently, to refer only to unchanging, or even essential, properties (where
an essential property is one which an object could not have lacked while remaining that
very object).

8. David Lewis (1986a, 61-69), for example, tentatively offers two possible definitions
but argues that the distinction is both possible and necessary even if it cannot be defined
in terms of anything more basic.

9. Note that while the latter individual property is also an extrinsic property of Jupiter,
the former appears to be an intrinsic property. But both would count as extrinsic on a
slight broadening of the notion of an extrinsic property. For one might argue that the
property of being Jupiter should after all be counted as an extrinsic property of that
planet, in so far as Jupiter has that property purely by virtue of being related zo itself
in a particular way (namely, through the identity relation). If such a broadening is
accepted, then it may turn out that all individual properties are extrinsic, in which case
to speak of an intrinsic property as qualitative would be redundant.
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what qualitative, intrinsic properties there in fact are. But this is not
so. Whatever a qualitative, intrinsic property is in general, it seems clear
that science, and in particular physics, is very much in the business of
finding just such properties.

Physics proceeds by first analyzing the phenomena with which it
deals into various kinds of systems, and then ascribing states to such
systems. To classify an object as a certain kind of physical system is to
ascribe to it certain, relatively stable, qualitative intrinsic properties:
and to further specify the state of a physical system is to ascribe to it
additional, more transitory, qualitative intrinsic properties. Funda-
mental physics is concerned with the basic kinds of physical systems,
and it seeks to characterize the states of these systems so completely as
to determine all the physical properties of all the systems these consti-
tute. A physical property of an object will then be both qualitative and
intrinsic just in case its possession by that object is wholly determined
by the underlying physical states and physical relations of all the basic
systems that compose that object. Of course, physics has yet to achieve,
and indeed may never achieve, true descriptive completeness in this
sense. But to the extent that it is successful, it simultaneously defines
and discovers an important class of qualitative intrinsic properties.

What is meant by a process being supervenient upon an assignment
of qualitative intrinsic physical properties at spacetime points in a
spacetime region R? The idea is familiar. It is that there is no difference
in that process without some difference in the assignment of qualitative
intrinsic physical properties at spacetime points in R I take the geo-
metric structure of R itself to be already fully specified by means of the
spatiotemporal properties of and relations between its constituent
points.!! The supervenience claim is that if one adds to this geometric
structure an assignment of qualitative intrinsic physical properties at
spacetime points in R, then there is physically only one way in which
that process can occur.

What is a physical process? While neither ordinary nor scientific
usage can be expected to determine a unique, precise answer to this
question, I offer the following rough, preliminary analysis. A particular
physical process consists of a suitably continuous set of stages, typically
involving one or more enduring systems. The stages occur in some
definite sequence, and may be seen as conforming to some character-

10. Compare Quine’s (1969) view of natural kinds as those which science seeks to define.
And note also that Lewis 1986a gives a preliminary analysis of intrinsic properties in
terms of natural properties.

11. If R is closed, it may be necessary to add information on how points in R are related
to points just outside R.
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istic pattern, and/or tending toward some characteristic end. We use
such features to group processes into types. A process may be spatially
localized or, like continental drift or star formation, it may occur over
an extended spatial region.!?

Spatial Separability (and hence also Separability itself) is in question
in Aspect-type experiments to the extent that the intrinsic properties
of an “entangled” compound quantum system fail to supervene on
those of its components. A violation of Separability of this kind would
be associated with a kind of physical holism (see Healey 1991). Note
that since Local Action does not presuppose Separability, a local but
nonseparable account of these experiments is possible (see Healey
1994).12

The Aharonov-Bohm effect challenges Separability in a different
way. In this case what is at issue is whether either the process by which
each electron passes through the region outside the solenoid, or the
(electro)magnetic potential there throughout the time of its passage,
supervenes on qualitative intrinsic physical properties of (objects at)
points in that region at moments during that time.'

12. Healey 1994 contains a more detailed analysis of various general features of pro-
cesses.

13. I wish to make it clear that by saying this I am endorsing neither Howard’s (1989)
identification of locality with Parameter Independence and of separability with Outcome
Independence; nor the suggestion, traceable to Jarrett 1984, that the analysis of failure
of Bell inequalities singles out these two independence conditions as being of special
physical significance. Indeed, one main goal of the present paper is to divert attention
away from probabilistic independence conditions of limited applicability and toward
conceptions of locality and separability that are at once more general and of greater
physical and philosophical significance. The principles of Local Action and Separability
stated here express just such general conceptions. Moreover, I believe that, assuming
both principles, one can give a compelling derivation of Bell inequalities, though space
limitations prevent me from offering it here; perhaps the reader will find room in the
margin to add it!

14, In the light of my distinction between locality and separability, it is ironic that
Aharonov (1984) himself argues that the Aharonov-Bohm effect is a non-local phe-
nomenon—ironic, but not paradoxical. For consider what he means by ‘non-local’:

Let us, first of all, say quite generally what we mean by a “non-local” property of a
physical system. Suppose, we have a system which occupies two separate regions of
space (the system might consist, for example, of two objects, one in each region; or,
if it is a quantum system, it may consist of a single object whose wave-function is
non-zero in these regions, but zero elsewhere). The essential difference between local
and non-local properties of the system is that in the former case all possible infor-
mation can be obtained by independent measurements made in the two regions, while
in the latter case this is not true. (p. 12)

Apart from what I regard as the regrettably operationalist flavor inserted by the con-

cluding reference to measurements, what Aharonov here describes as a ‘non-local’ prop-
erty of a system in the region of space surrounding the solenoid at a time is just what
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5. The Two-Slit Experiment. Since the Aharonov-Bohm experiment as
depicted in Fig. 1 is a variation on the familiar two-slit experiment, it
will be useful to begin by considering how the principles of Local Action
and Separability may be applied there.

The two-slit experiment is conveniently modelled in nonrelativistic
quantum mechanics by assigning a wave-function to the ensemble of
electrons passing through the apparatus. Orthodox interpretations of
quantum mechanics take this quantum-mechanical description of the
electrons to be complete. But what does this mean? It may be under-
stood as the radical claim that the wave-function has no descriptive
significance—that it has the purely instrumental role of permitting sta-
tistical predictions of the results of measurements on the electrons, and
it wholly fulfills that role (in the sense that no supplementary charac-
terization of the electrons would permit more definite predictions of
such results). This understanding goes along with a strong version of
the Copenhagen interpretation, according to which quantum mechan-
ics simply has nothing to say about a system when it is not being ob-
served. Those who adhere to this version of the Copenhagen interpre-
tation will not ascribe even a nonlocalized position to an electron in
the two slit experiment until its position is observed at the detection
screen.

But there is another way of understanding the completeness claim,
which goes along with a weaker version of the Copenhagen interpre-
tation. On this version, an individual system may be described by a
wave-function somewhat as follows: if the wave function at some mo-
ment is non-negligible only for some set A of possible values of
dynamical variable O, then the electron has the dynamical property Q
is restricted to A. For example, even though a hydrogen atom in a
superposition of its ground and first excited states has no precise en-
ergy, it does have the property energy is not greater than ~3.4ev. Ap-
plied to position, this interpretation implies that an electron may have
an imprecise location, being localized only within a region in which its
wave-function is non-negligible.!* This does not, of course, imply that

I have described as the nonseparability of that system in that region at that time. His
argument that the AB effect manifests “nonlocality” in fact supports the conclusion
that the effect manifests nonseparability.

15. One may try to make this view more precise by imposing the so-called eigenvalue-
eigenstate rule, according to which a system has a quantum mechanical dynamical
property at a time if and only if its wave-function then assigns probability 1 to that
property. But since no wave-function assigns probability 1 to any dynamical property
of the form is located at position r, an electron never has an absolutely precise position,
on this interpretation. At most, an electron may have some dynamical property of the
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an electron has any component parts or internal spatial structure; it
may still be a so-called “point-particle.”

On this understanding, quantum mechanics describes the process
involved in the passage of a single electron through the apparatus as
follows. Some time after the electron is emitted from the source, its
wave function approximates to a plane wave parallel to the barrier with
the two slits in it. The electron then has no precise position. Indeed, its
position is then highly nonlocalized: it is restricted to no region in
the plane of the barrier of dimension comparable to the separation of
the slits. At a later time the electron is located on the other side of the
barrier. Its position is then more localized, but not in the neighborhood
of just one of the two slits: rather, its position is then restricted to the
union of two such neighborhoods, one close to each slit. One might
take this to mean that the electron passes through both slits at once,
as long as this is not understood to imply that the electron is a com-
posite object, with different components going through different slits.'¢
Subsequently, the position of the electron becomes less localized, until
it is detected at a screen some distance behind the slits. Whether one
belicves that its position then becomes more narrowly localized de-
pends on what account one accepts of the measurement process at the
screen.

There are of course also unorthodox interpretations which reject the
completeness claim, including views which assign a precise position to
an electron at all times. Such a view appears committed to an account
of the two-slit experiment that conflicts with Local Action. For if each
electron passed through just one slit, then it would seem that to explain
the interference pattern one would have to assume that opening or
shutting the other slit produces an immediate effect on the distant elec-
tron, in violation of Local Action. But Bohm’s (1952) view, which does
assign a precise position to an electron at all times, in fact avoids this

form is localized in region R, for some compact R: but since a typical wave-function
does not have compact support, this rule would imply that electrons are rarely if ever
localized in any compact region! Despite its inherent lack of precision, the view is
important in the context of the Aharonov-Bohm experiment. For if one follows ortho-
doxy in denying that an electron has a well-defined trajectory through the apparatus,
an interpretation along these lines seems required to make sense of the claim that elec-
trons are excluded from the region in which there is a nonzero magnetic field.

16. There is no such implication since there is no reason to suppose that the electron is
composed at each moment of at least two enduring objects, one of which goes through
one slit while the other goes through the other slit. It is interesting that Tonomura
himself says after describing the single-electron buildup of an interference pattern in an
analogous set-up: “Therefore, we must conclude that a single electron passes through
both sides of the electron biprism and forms the probability amplitude of the biprism
interference pattern.” (Peshkin and Tonomura 1989, 139, caption to his Fig. 5.29)
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implication by treating the wave-function itself as a physically real field
which mediates the effect on the electron caused by opening or closing
the slit through which it does not pass.!”

Now on the more orthodox account of what happens in the two-slit
experiment, all processes and interactions involved conform to Local
Action. For that account denies that an electron is ever confined to the
region of one slit. It implies that no electron has a trajectory which
keeps it spatially distant from any external influence applied to either
slit. Opening or shutting either slit produces a direct and immediate
effect on an electron within the region to which its position is localized.

Instead, on this account, the two-slit experiment manifests a viola-
tion of Separability. The passage of an electron through the apparatus
constitutes a nonseparable process. At each moment the electron will
have physical properties (including its location) which do not supervene
on an ascription of intrinsic physical properties at spacetime points
within the region to which it is then confined.

6. Locality and Separability in the Aharonov-Bohm Effect. When a cur-
rent is passed through the solenoid, the two-slit experiment depicted in
Fig. 1 manifests the Aharonov-Bohm effect. In what sense, if any, is
this effect nonlocal? While no interpretation gives a completely local
account of the effect, on some interpretations the effect involves a vi-
olation of Local Action, on others a violation just of Separability, and
on others violations of both principles. This demonstrates a close anal-
ogy between the Aharonov-Bohm effect and violations of Bell inequal-
ities. For the violation of Bell inequalities may also be interpreted in
one of these different ways, depending on how one understands the
application of quantum mechanics to this phenomenon.

Consider first a strong version of the Copenhagen interpretation

17. One may still question whether there is nonlocality in a Bohmian treatment of the
two-slit experiment, either on the grounds that “momentum is nonlocal on Bohm’s
view”” (to quote an anonymous reviewer of an ancestor of this paper), or on the grounds
that the electrons’ positions are affected nonlocally if, for example, a detector is placed
near one slit. Now it is true that on Bohm’s view the momentum we “measure” is not
an intrinsic property of an electron but depends on the experimental context, and what
are called momentum measurements in fact reduce to measurements of position. But
this fact alone constitutes a violation of neither Local Action nor Separability. And
certainly, on Bohm’s view, placing a detector near one slit will affect the trajectories of
all electrons, even those not passing near that slit. But that is because the addition of
the detecting system expands the effective configuration space into one appropriate to
a compound system, and thereby introduces violations of Local Action of the kind that
are familiar from the application of Bohm’s view to Aspect-type experiments; no such
violations are inherent in the application of Bohm’s view to the unmodified two-slit
experiment.
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which declines to attribute any location to the electrons between emis-
sion and detection. On this view, it is senseless to ask whether the
electrons are acted on nonlocally as they pass through the apparatus.
But since the causal connection between alterations in the current
through the solenoid and changes in the interference pattern cannot
therefore be said to be mediated by the passage of electrons around
the solenoid, this causal connection does not conform to Local Action.

Other interpretations of quantum mechanics do not decline to de-
scribe the passage of electrons through the apparatus. Some ascribe a
well-defined trajectory to each electron, others describe their passage
in some less classical way. Any interpretation that ascribes a nonlo-
calized position to an electron on its way through the apparatus is
committed to a violation of Separability already in the two-slit exper-
iment, and a fortiori in the Aharonov-Bohm experiment. But is such
an interpretation also committed to some violation of Local Action in
the Aharonov-Bohm effect? On Bohm’s view, the simple two-slit ex-
periment involves no violation of Local Action or of Separability. Can
a Bohmian also give a local, separable account of the Aharonov-Bohm
experiment? In order to answer such questions, it is necessary to look
more closely at the representation of electromagnetismin the Aharonov-
Bohm effect and elsewhere.

7. Is Electromagnetism Local? Clearly the Aharonov-Bohm effect in-
volves some kind of interaction between (electro)magnetic fields or po-
tentials and the interfering electrons. If either that interaction, or the
fields or potentials themselves, are not local, then nor is the effect itself.
Now if the (electro)magnetic field acts directly on the electrons, and if
the field is non-zero only inside the solenoid, while the electrons are
never located inside the solenoid, then we have a violation of Local
Action. But the gauge-dependence of the potential makes it hard to see
how it could provide the mediation needed to restore conformity to
Local Action, irrespective of the gauge-invariant nature of the effect
itself.

Now following Wu and Yang’s (1975) analysis, it has become com-
mon to consider electromagnetism to be completely and nonredun-
dantly described in all instances neither by the electromagnetic field,
nor by its generating potential, but rather by the so-called

Dirac phase factor  exp[— (ie/h) ?C Ar(x) - dx)

where 4* is the electromagnetic potential at spacetime point x*, and
the integral is taken over each closed loop C in spacetime. Applied to
the present instance of the Aharonov-Bohm effect, this means that the
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constant magnetic field in the solenoid is accompanied by an associa-
tion of a phase factor S(C) with all closed curves C in space, where
S(Q) is defined by

exp| — (ielh) Sﬁc A(r).dr]

This approach has the advantage that since S(C) is gauge-invariant,
it may readily be considered a physically real quantity. Moreover, the
effects of electromagnetism outside the solenoid may be attributed to
the fact that S(C) is nonvanishing for those closed curves C that enclose
the solenoid whenever a current is passing through it. But it is signifi-
cant that, unlike the magnetic field and its potential, S(C)is not defined
at each point of space at each moment of time.

Can S(C) at some time be taken to represent an intrinsic property
of a region of space corresponding to the curve C? There are two dif-
ficulties with this suggestion. The first is that the presence of the quan-
tity e in the definition of S(C) appears to indicate that S(C) rather codes
the effect of electromagnetism on objects with that specific charge. If
in fact all charges are multiples of some minimal value e, then this
would no longer be a problem; the fact that S(C) at some time repre-
sents an intrinsic property of a region of space corresponding to the
curve C would be a natural reflection of this fact. If not, one could

rather take I(C) = 86 ¢ A-dr to be an intrinsic property of C. The second

difficulty is that closed curves do not correspond uniquely to regions
of space; e.g., circling the solenoid twice on the same circle will produce
a different curve from circling it once. But this does not prevent one
from taking S(C) at some time to represent an intrinsic property of the
region of space occupied by a nonself-intersecting closed curve C.

Once these difficulties have been handled, it is indeed possible to
consider electromagnetism in the Aharonov-Bohm effect as faithfully
represented at a time by a set of intrinsic properties of regions of space
occupied by nonself-intersecting closed curves. But if one does so, then
electromagnetism itself manifests nonseparability! For these intrinsic
properties do not supervene on any assignment of qualitative intrinsic
physical properties at spacetime points in the region concerned.
Whether the current through the solencid remains constant or changes,
the associated electromagnetism constitutes a nonseparable process,
and so the Aharonov-Bohm effect violates Separability.'s

18. There is an alternative perspective according to which the electromagnetic potential
is represented as a connection one-form on a principle fiber bundle, with Minkowski
spacetime (or some region of it) as base space and the group U(1) as fibre. Though
mathematically elegant, this does not render electromagnetism separable in the AB
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with the earlier result, that if the motion of the electrons through the
apparatus is a nonseparable process, then it is possible to account for
the AB effect in terms of a purely local interaction between (nonsep-
arable) electromagnetism and this process.

9. Conclusion. The kind of nonlocality manifested by the Aharonov-
Bohm effect is much more closely analogous to the kind of nonlocality
manifested by violations of Bell inequalities than has been previously
acknowledged. Neither effect can be given a completely local expla-
nation. But in both cases one may analyze the residual nonlocality as
involving the violation either of a principle of local action, or of a
principle of separability, or of both; and in both cases, exactly how one
analyzes the nonlocality depends on how one interprets quantum me-
chanics. The fact that the same general principles of local action and
separability come into question in both cases is one reason to take these
principles as basic, so that more specialized ““locality” principles may
be seen to derive from their application to the different circumstances
of the two effects.

Another reason to take local action and separability as basic is just
that these do, after all, capture the most interesting (and interestingly
different) notions from the point of view of natural philosophy. That
violations of Bell inequalities manifest action at a distance would be a
striking conclusion, even if such action could not be used to transmit
superluminal messages. The alternative conclusion, that it is because
some systems have nonlocalized properties that Bell inequalities are
violated, would be striking in a different way. The conclusion that the
Aharonov-Bohm effect manifests action at a distance would be ironic,
for (as Einstein noted in the passage quoted in Section 3) postulating
a physically real electromagnetic field is generally taken to be a way of
avoiding any appeal to action at a distance. By accepting the alternative
conclusion, that the Aharonov-Bohm effect arises because electromag-
netism acts nonseparably, one might eliminate action at a distance. But
this acceptance comes at a price: it involves the denial of the view that
... all there is to the world is a vast mosaic of local matters of par-
ticular fact, just one little thing and then another. . . . We have geom-
etry: a system of external relations of spatiotemporal distance between
points. . . . And at those points we have local qualities: perfectly natural
intrinsic properties which need nothing bigger than a point at which to
be instantiated. . .. And that is all. . .. All else supervenes on that.”
(Lewis 1986, x).?

22. 1 take it to be significant that on a Bohmian interpretation violations both of Local
Action and of Separability occur in the experiments of Aspect as well as Tonomura.
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Evidence for the Aharonov-Bohm effect was obtained with magnetic fields shielded from the
electron wave. A toroidal ferromagnet was covered with a superconductor layer to confine the
field, and further with a copper layer for complete shielding from the electron wave. The expected
relative phase shift was detected with electron holography between two electron beams, one passing
through the hole of the toroid, and the other passing outside. The experiment gave direct evidence

for flux quantization also.
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The Aharonov-Bohm (AB) effect! has recently re-
ceived much attention as an unusual but important
quantum effect.? The predicted effect is the produc-
tion of a relative phase shift between two electron
beams enclosing a magnetic flux even if they do not
touch the magnetic flux. Such an effect is inconceiv-
able in classical physics and directly demonstrates the
gauge principle of electromagnetism.?

Although the affirmative experimental test was of-
fered* soon after its prediction, Bocchieri er al® and
Roy® questioned the validity of the test, attributing the
phase shift to leakage fields. The authors’ recent ex-
periment’ using a toroidal magnet established the ex-
istence of the AB effect, under the condition of com-
plete confinement of the magnetic field in the magnet;
electron holography confirmed quantitatively the ex-
pected relative phase shift between the two beams.
Bocchieri, Loinger, and Siragusa® still argued that the
phase shift could be due to the Lorentz-force effect on
the portion of the electron beam going through the
magnet.’

The present experiment'® is designed to provide a
crucial test of the AB effect. A tiny toroidal magnet
covered entirely with a superconductor layer and fur-
ther with a copper layer is fabricated. The two layers
prevent the incident electron wave from penetrating
the magnet. In addition, the magnetic field is confined
to the toroidal magnet by the Meissner effect of the
covering superconductor. Then the relative phase
shift between two electron beams, one passing through
a region enclosed by the toroid and the other passing
outside the toroid, is measured by means of electron
holography. The experimental results detected the
predicted relative phase shift, giving conclusive evi-
dence for the AB effect. This experiment also demon-
strated the flux quantization.'!

792

Tiny toroidal samples were fabricated by use of pho-
tolithography. A Permalloy (80% Ni and 20% Fe) thin
film, 200 A thick, was prepared by vacuum evapora-
tion on a silicon wafer covered with Al (3000 A thick),
Nb (2500 A thick), and SiO (500 A thick); the SiO
layer serves to reduce the coercive force of the Per-
malloy. After evaporation of a 2000-A-thick layer of
SiO on the Permalloy, the toroidal shape was cut out to
the depth of the Nb surface. The NbO produced by
the lithography processes at the Nb surface had to be
removed to ensure a perfect contact with the Nb layer
(2500 A thick) that was subsequently sputtered on the
whole structure (see Fig. 1). The superconducting
contact was confirmed by another experiment. We
note that the thickness of the upper SiO layer de-
creased to 500 A after the ion sputtering.

A toroidal sample with a tiny support bridge (see the
scanning electron micrograph in Fig. 2) was then cut
so that the Permalloy toroid was completely covered

Photo mask

}/ ______ B ‘\‘-l

) / iy — - i i Permalioy

Si0 — e i |

N T ’/ =Nb
—it-——Si wafer

FIG. 1. Schematic diagram for fabrication of the toroidal
magnet.

© 1986 The American Physical Society
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FIG. 2. Toroidal magnet. (a) Scanning electron micro-
graph; (b) diagram. The toroid is connected to a Nb plate by
a tiny bridge for high thermal conductivity.

by the superconducting bulk Nb. The toroidal sample
was peeled off the wafer by dissolving the Al in NaOH
solution, and was placed on a Cu mesh. Finally, a
copper film 500-2000 A thick was evaporated on all of
its surfaces; the film serves to prevent penetration of
the electron wave, and to keep the sample from ex-
periencing charge-up and contact-potential effects.

Electron holograms were formed in a 150-kV field-
emission electron microscope (wavelength, 0.030 A)
that had a liquid-He-cooled specimen stage attached.
The object wave, phase shifted by the sample, and the
reference wave were brought together by the electron
biprism to form an interference pattern, as shown in
Fig. 3. The pattern was enlarged 1000 times by elec-
tron lenses and recorded on film as a hologram.

The phase shift due to the sample was reconstructed
by means of He-Ne laser light (wavelength, 6328 A)
in the optical system shown in Fig. 4. Two waves, A
and B, illuminated the hologram. Each wave produces
two diffracted waves, one which reconstructs the phase
shift due to the sample, and the other, its conjugate.

v

f . Sample
f !

Reference ~i. | -1 Object
wave \ wave
40»

b Electron
5 \5 biprism
1
Illlll

/
FIG. 3. Electron-optical system for hologram formation.

Light Hologram Lens

Aperture  Interference

micrograph

FIG. 4. Optical reconstruction system for interference mi-
croscopy.

An interference micrograph is obtained when the
reconstructed image of beam A is superposed with
beam B after passage through an aperture. Moreover,
a twice-phase-amplified interference micrograph!? is
formed when the reconstructed image of beam A and
the conjugate image of beam B are superposed by the
tilting of beam B.

The leakage fluxes of fabricated samples at room
temperature were quantitatively measured'® by in-
terference electron microscopy, and only samples with
flux less than h/20e '* were selected for this experi-
ment. Figure 5 shows an example of a twice—phase-
amplified interference micrograph, which indicates a
very large leakage flux of ~ 2h/e.

Now, the AB effect is the production of a relative
phase shift of #®/(/h/2e) between two electron beams
enclosing magnetic flux ®. The interference micro-
graph in Fig. 6(a) is clear evidence for the AB effect.
Each interference fringe inside the ring, i.e., the image
of the toroidal sample, lies just in the middle of two
fringes outside the ring. This shows that there is a rel-
ative phase shift n7 (n odd), as expected from the
quantized magnetic flux nk/2e enclosed within the su-
perconducting Nb. That the relative phase shift here is
an integral multiple of = can be seen precisely from
the twice—phase-amplified micrograph obtained from
the same hologram [Fig. 6(b)], in which there are no
relative displacements between the fringes inside and
outside the ring. We emphasize that the magnetic flux
is confined within the superconductor and that the

FIG. 5. Leakage fields from a toroidal magnet (phase am-
plification, 2x ). Leakage flux can be quantitatively mea-
sured since a constant flux of h/2e flows between two adja
cent interference fringes.
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(c)

FIG. 6. Interference micrographs of a toroidal magnet at low temperatures. (a) T =4.5 K (phase amplification, 1x ); (b)
T =4.5 K (phase amplification, 2x ); (¢} 7 =15 K (phase amplification, 2x ). The enclosed flux is quantized in units of #/2e

when T < T, (=9.2 K). The number of fluxons is odd.

field is shielded from the electron wave by the Cu and
Nb covering. It is estimated that the leakage flux is far
less than A/20e, since the leakage flux at room tem-
perature is less than /#/20e and the minimum thickness
and penetration depth of Nb are 2500 and 1100 A,
respectively. Only a slight portion, approximately
10~°, of the incoming electron wave is estimated to
reach the magnetic field coherently, since a 150-kV
electron beam has to penetrate through the Cu
(~ 1000 A) and Nb (2500 A) layers for it. The suffi-
cient shielding of electron penetration is also support-
ed by the experimental result that the change in the
Cu-layer thickness from 500 to 2000 A had no effect
on the interference fringes around the quantized mag-
netic flux.

If the temperature 7 of the sample is raised, the in-
terference pattern changes abruptly when T crosses the
superconducting critical temperature 7,; the relative
phase shift is no longer an integral multiple of 7. In
the case of Figs. 6(a) and 6(b), it in fact becomes
(0.32+ n)m as can be seen from Fig. 6(c). The transi-
tion was confirmed to be reversible. This behavior is
evidence for the effect of the superconductor that con-
fines the magnet flux quanta below 7.

Of course, there are cases of even n, in which no
relative displacements are observed, as shown in Figs.
7(a) and 7(b). With this sample, the relative displace-
ment can be seen only when its temperature is raised
above T,; the displacement in Fig. 7(c) represents a
relative phase shift of (0.25+n)# (neven).

{a)

FIG. 7. Interference micrographs of a toroidal magnet at low temperatures. (a) T =4.5 K (phase amplification, 1x }; (b)
T =4.5 K (phase amplification, 2% ); (c) T =15 K (phase amplification, 2x ). The number of fluxons is even.
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When the temperature T of the sample was further
raised to room temperature, the relative displacement
changed by half the fringe spacing in a twice—phase-
amplified interference micrograph; this corresponds to
the estimated decrease (~ 5%) in the magnetization
of the Permalloy. This temperature dependence sup-
ports our view that the relative phase shift is con-
trolled by the magnetic flux of the Permalioy.

The experimental results described above provide
crucial evidence for the existence of the AB effect.
Furthermore, the quantization of the flux trapped by a
superconductor was directly observed with use of the
AB effect of an electron beam.

The most controversial point in the dispute over ex-
perimental evidence for the AB effect has been wheth-
er or not the phase shift would be observed when both
electron intensity and magnetic field were extremely
small in the region of overlap. Since experimental
realization of absolutely zero field is impossible, the
continuity of physical phenomena in the transition
from negligibly small field to zero field should be ac-
cepted instead of perpetual demands for the ideal; if a
discontinuity there is asserted, only a futile agnosti-
cism results.

The authors are grateful for the idea for this experi-
ment, which was proposed by Professor Chen Ning
Yang of the State University of New York.!* Also
deserving of thanks are Dr. Ushio Kawabe of Hitachi,
Ltd., for his advice and stimulation, Mr. Mikio Hirano
of Hitachi, Ltd., for his help in preparing samples, and

(c)



VOLUME 56, NUMBER 8

PHYSICAL REVIEW LETTERS

24 FEBRUARY 1986

Mr. Shuji Hasegawa of Hitachi, Ltd., for his assistance
in the experiment. We also gratefully acknowledge the
valuable discussions and advice in preparing this
manuscript given by Professor Hiroshi Ezawa of
Gakushuin University, and also by Dr. Akira
Fukuhara of Hitachi, Ltd. Thanks are due to Professor
Ryozo Aoki of Kyushu University for his cooperation
in developing a liquid-He-cooled specimen stage.

Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

2For example, S. Olariu and 1. 1. Popescu, Rev. Mod.
Phys. 57, 339 (1985).

3T. T. Wu and C. N. Yang, Phys. Rev. D 12, 3845 (1975).

4R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); H. A.
Fowler, L. Marton, J. A. Simpson, and J. A. Suddeth, J.
Appl. Phys. 32, 1153 (1961); H. Boersch, H. Hamisch,
K. Grohmann, and D. Wohlleben, Z. Phys. 165, 79 (1961);
G. Méllenstedt and W. Bayh, Phys. Bl. 18, 299 (1962).

5P. Bocchieri and A. Loinger, Nuovo Cimento Soc. ltal.
Fis. 47A, 475 (1978), P. Bocchieri, A. Loinger, and
G. Siragusa, Nuovo Cimento Soc. Ital. Fis. S1A, 1 (1979);
P. Bocchieri and A. Loinger, Lett. Nuovo Cimento Soc. Ital.
Fis. 30, 449 (1981).

6S. M. Roy, Phys. Rev. Lett. 44, 111 (1980).

7A. Tonomura et al. Phys. Rev. Lett. 48, 1443 (1982).

8P, Bocchieri, A. Loinger, and G. Siragusa, Lett. Nuovo
Cimento Soc. Ital. Fis. 35, 370 (1982).

9The phase shift was also detected when the top surface of
a toroidal magnet was covered with gold film thick enough
to prevent electron penetration. See A. Tonomura ef al., in
Proceedings of the International Symposium on Foundations of
Quantum Mechanics, Tokyo, 1983, edited by S. Kamefuchi er
al. (Physical Society of Japan, Tokyo, 1984), p. 20.

10A similar experiment using a hollow toroidal supercon-
ductor was proposed by C. G. Kuper, Phys. Lett. 79A, 413
(1980).

The quantization of the trapped flux in a hollow super-
conducting cylinder has been detected by electron inter-
ferometry. See H. Wahl, Optik 28, 417 (1968/1969):
B. Lischke, Phys. Rev. Lett. 22, 1366 (1969).

12]. Endo, T. Matsuda, and A. Tonomura, Jpn. J. Appl.
Phys. 18, 2291 (1979).

13A. Tonomura er al., Phys. Rev. Lett. 44, 1430 (1980);
T. Matsuda er al., J. Appl. Phys. 53, 5444 (1982); N. Osak-
abe er al., Appl. Phys. Lett. 42, 746 (1983).

14Holographic interference microscopy is estimated to be as
precise as -5%- of a wavelength in an ideal case, which corre-

sponds to a magnetic flux of #/50e. See A. Tonomura et al.,
Phys. Rev. Lett. 54, 60 (1985).

I5C. N. Yang, in Proceedings of the International Symposium
on Foundations of Quantum Mechanics, Tokyo, 1983, edited
by S. Kamefuchi et al. (Physical Society of Japan, Tokyo,
1984), p. 27.

795



Photo mask

Sio

| : ]
Al — /

—Si wafer

FIG. 1. Schematic diagram for fabrication of the toroidal
magnet.
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FIG. 2. Toroidal magnet. (a) Scanning electron micro-
graph; (b) diagram. The toroid is connected to a Nb plate by
a tiny bridge for high thermal conductivity.



®
(B) o
_ ___:f:‘.‘:-:::
Light Hologram Lens Aperture  Interference

micrograph

FIG. 4. Optical reconstruction system for interference mi-
croscopy.



FIG. 5. Leakage fields from a toroidal magnet (phase am-
plification, 2x ). Leakage flux can be quantitatively mea-
sured since a constant flux of /#/2e flows between two adja
cent interference fringes.
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FIG. 6. Interference micrographs of a toroidal magnet at low temperatures. (a) 7 =4.5 K (phase amplification, 1x); (b)
T =4.5 K (phase amplification, 2% ); (c) T=15 K (phase amplification, 2% ). The enclosed flux is quantized in units of 4/2e
when T < T. (=9.2 K). The number of fluxons is odd.
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FIG. 7. Interference micrographs of a toroidal magnet at low temperatures. (a) 7=4.5 K (phase amplification, 1x); (b)
T =4.5K (phase amplification, 2% ); (¢) T =15 K (phase amplification, 2% ). The number of fluxons is even.
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There is a consensus today that the the main lesson of the Aharonov-Bohm effect is that a picture of
electromagnetism based on the local action of the field strengths is not possible in quantum mechanics. Contrary
to this statement, it is argued here that when the source of the electromagnetic potential is treated in the framework
of quantum theory, the Aharonov-Bohm effect can be explained without the notion of potentials. It is explained
by local action of the field of the electron on the source of the potential. The core of the Aharonov-Bohm effect
is the same as the core of quantum entanglement: the quantum wave function describes all systems together.
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Before the Aharonov-Bohm (AB) effect [ 1] was discovered,
the general consensus was that particles can change their
motion only due to fields at their locations, fields which were
created by other particles. The main revolutionary aspect of the
AB effect was that this is not generally true, and that in certain
setups two particles, prepared in identical states, move in the
same fields but end up in different final states. In particular,
the electromagnetic field can vanish at every place where
the electron has been, yet the electron motion is affected by
the electromagnetic interaction. The AB effect states that the
motion of an electron is completely defined by the potentials
in the region of its motion and not just by the fields. The
potentials depend on the choice of gauge, which cannot affect
the motion of particles, but there are gauge-invariant properties
of the potentials (apart from the fields) that specify the motion
of particles. The validity and the meaning of the AB effect
has been extensively discussed [2—15]. I argue that there is an
alternative to the commonly accepted mechanism which leads
to the effect, and that we might change our understanding of the
nature of physical interactions back to that of the time before
the AB effect was discovered. The quantum wave function
changes due to local actions of fields.

The discussion will be on the level of gedanken experi-
ments, without questioning the feasibility of such experiments
intoday’s laboratory. Consider a Mach-Zehnder interferometer
for electrons tuned in such a way that the electron always
ends up in detector B; see Fig. 1. We can change the electric
potential in one arm of the interferometer such that there
will be no electromagnetic field at the location of the wave
packets of the electron but, nevertheless, the electron will
change its behavior and sometimes (or it can be arranged
that always) will end up in detector A. This is the electric
AB effect. Alternatively, in the magnetic AB effect, the
interference picture can be changed due to a solenoid inside
the interferometer which produces no electromagnetic field at
the arms of the interferometer.

Let us start our analysis with the electric AB effect. In the
original proposal, the potential was created using conductors,
capacitors, etc. While those are closer to a practical realization
of the experiment, a precise theoretical description of such
devices is difficult. I consider, instead, two charged particles,
the fields of which cancel at the location of the electron.

For simplicity of presentation, instead of the Mach-
Zehnder interferometer, I shall consider a one-dimensional
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FIG. 1. Mach-Zehnder interferometer with electron as a test
bed of the AB effect. Introduction of a relative electric potential
between the arms of the interferometer or of a solenoid inside the
interferometer spoils the destructive interference in detector A.

interferometer; see Fig. 2. (In fact, for an observer moving
with a constant velocity in a perpendicular direction, this
interferometer looks very much like the one described in
Fig. 1.) The electron wave packet starts moving to the right
toward a barrier which transmits and reflects equal-weight
wave packets toward mirrors A and B. After reflection from
the mirrors, the wave packets split again on the barrier. The
interferometer is tuned in such a way that there is a complete
destructive interference toward mirror A, and the electron
reaches mirror B with certainty.

Another modification (the sole purpose of which is simplic-
ity of the quantitative analysis of the experiment) is design of
a special mirror for the electron which makes it spend a long
time t near it. For this purpose we introduce an interaction
between the electron and the mirror with potential energy as
a function of the electron distance from the mirror shown in
Fig. 3. It goes to infinity at the surface of the mirror, smoothly
becomes a constant value V at x € (0,d), and smoothly goes
to zero for x > d. The energy of the electron is only slightly
higher than V. The dimensions of the interferometer are much
larger than d and we state that the electron is near the mirror
when x € (0,d).

The source of the AB potential will be two particles of mass
M and charge Q placed symmetrically on the perpendicular
axis at equal large distances from mirror A. They have equal
initial velocities toward the location of mirror A. At equal

©2012 American Physical Society
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FIG. 2. A realization of the electric AB effect. Identical charges
brought symmetrically to the electron wave packet in the left arm of
the interferometer create a potential for the electron without creating
an electric field at its location.

distance r from the mirror, the charged particles bounce back
due to other similarly designed mirrors, which make the
charges spend a time T near these mirrors. We choose 7' < T,
so that the charges Q are near their respective mirrors during
the time the electron’s wave packets are near their mirrors.
We then can approximate the potential that the electron in the
left arm experiences as 72reQ for the time 7. Indeed, when
the charges are far away, their potential can be neglected, and
the time the charges travel toward and from the mirror is much
smaller than 7. Thus, the phase difference between the two
wave packets of the electron is

—2eQT
rh

The electron does not experience an electric field at any place
where its wave packet passed, but it exhibits an interference
pattern which is different from the pattern obtained in such an
experiment by a neutral particle.

How can this result be understood if we consider all
particles? The quantum state of the composite system is a
superposition of two product states which I name branches. In
the first one, the wave packet of the electron is on the left and in
the other, it is on the right. The energy in the left branch is equal
to the energy in the right branch, so energetic considerations
cannot explain the phase difference. The electron does not
experience any electric force, so the electron’s wave packets
are not shifted and thus cannot provide an explanation of
the effect. The charges Q, however, do experience different
forces in different branches. Thus, their wave packets in the
left branch are slightly shifted relative to their wave packets in
the right branch.

bap = (1)

U

|

0 d T

FIG. 3. The potential of the mirror forces. The potential energy of
the particle as a function of its distance from the mirror. The particle
with an energy slightly higher than V spends long time near the
mirror.
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Let us calculate the shift of position of the wave packet of
one of the two Q charges due to its electromagnetic interaction
with the electron. The shift is developed during the time T
when this charge is near its mirror. The interaction with the
electron leads to a small perturbation in the motion of the
charge and, since d < r, the velocity of the charge during
this time, v, can be considered to be constant. The change in
the kinetic energy of the charge due to its interaction with the
electron allows us to find the change in its velocity and thus
the shift x we are looking for:

—eQ Mv? —eQT
=34 ~ Mvé ox = . 2
r < 2 ) vov = ox Mor @

To observe the interference in the AB experiment, this shift
should be much smaller than the position uncertainty of the
charges. The de Broglie wavelength of the charge A = %
Both charges Q are shifted in the same way, creating the AB
phase: 2‘%271 = ¢ap.

The entanglement between the electron and the charges,
which could be created if the uncertainty in the velocity of the
charges when they are near their mirrors is smaller than §v,
disappears when the charges Q travel back. Note, however, that
if, contrary to our assumption, the position uncertainty of the
charges is smaller than §x, then the entanglement will remain
and will lead to decoherence, washing out the AB effect.

Let us turn now to the magnetic AB effect. I will show that
the AB effect arises from different shifts of the wave packets
of the source which experiences different local electric fields
created by the left and the right wave packets of the electron.

Consider the following setup. The solenoid consists of two
cylinders of radius », mass M, large length L, and charges
Q and —Q homogenously spread on their surfaces. The
cylinders rotate in opposite directions with surface velocity
v. The electron encircles the solenoid with velocity « in a
superposition of being in the left and in the right sides of the
circular trajectory of radius R; see Fig. 4.

The flux in the solenoid due to the two cylinders is

24_71 Qv =471er
c 2mrlL cL

Thus, the AB phase, i.e., the change in the relative phase
between the left and the right wave packets due to the
electromagnetic interaction, is
ed 4meQur
ch  cLn
To simplify the alternative calculation based on direct action
of the electromagnetic field, we assume r < R < L. Before
entering the circular trajectory, the electron moves toward the
axis of the solenoid and thus it provides zero total flux through
any cross section of the solenoid. During its motion on the
circle, the magnetic flux through a cross section of the solenoid
at distance z from the perpendicular drawn from the electron
is

b =27r

3)

$ap = “4)

rieuR
C(R2 + Z2)3/2 :
When the electron enters one arm of the circle, it changes

the magnetic flux and causes an electromotive force on the
charged solenoids which changes their angular velocity. In

P(z) = (&)
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FIG. 4. The magnetic AB effect. The electron wave packet
coming directly toward the solenoid splits into a superposition of
two wave packets which encircle the solenoid from two sides and
come out almost in the same direction, interfering toward detectors
A and B.

order to calculate the change in the velocity of the surface of
the cylinder we have to integrate the impulse exerted on all
thin slices of the cylinder. For simplicity, I consider here the
surface motion as a linear motion. The contribution of a slice

with an infinitesimal charge d Q to the impulse is Q(i)dQ and
integration over the slices yields
L2 mrleuR 1 Q uQer
2(R2 + 22)3/2 — 2 - (0
M 12 ¢H(R*+27%) 27r L c*MRL

Then, the shift of the wave packet of a cylinder during the
motion of the electron is
TR 7w Qer
Sx =6v— = - 7
u c“ML
The relevant wavelength of the de Broglie wave of each
cylinder is A = Miv For calculating the AB phase we should
take into account that both cylinders are shifted and that they
are shifted (in opposite directions) in the two branches. This
leads to a factor 4 and provides the correct expression for the
AB phase: 4‘%271 = (ap.

If the uncertainty in the velocity of the cylinders is smaller
than §v, then, during the electron circular motion, the electron
and the cylinders become entangled. But when the electron
leaves the circular trajectory, it exerts an opposite impulse on
the cylinders and this entanglement disappears.

I have explained both electric and magnetic AB effects
through actions of local fields on the quantum wave function.
The electron in states |L). and |R), causes, via action of
its electromagnetic field, different evolutions for the quantum
state of the source: |¥; )s and |Wg)s. The total wave function
of the electron and the source is

1
—= (L)elWL)s + [R)e[WR)s) - ®)

V2

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 86, 040101(R) (2012)

During the evolution, the source states |W )s and |Wg)s might
become orthogonal, or mostly differ only in their phase, but
at the end of the process, the states of the source are identical
except for the AB phase. Thus, the total wave function becomes

%lqj)S(lL)e +¢'%5|R),), €))
and the AB phase can be observed in the electron interference
experiment.

The celebrated manifestation of a quantum wave function
for a combined system is the nonlocal correlations which are
generated by entangled states. The AB effect is conceptually
different, since it can appear even if in the state (8) there is
almost no entanglement at all times.

One might wonder why, instead of performing exact cal-
culations in the framework of quantum mechanics, I consider
particles and cylinders pushed by fields in the framework of
classical mechanics and then use the correspondence principle
to calculate the shifts of the quantum wave packets of particles
and cylinders. I have to follow this path because the standard
formulation of quantum mechanics, and the Schrodinger
equation in particular, are based on potentials. I hope that a
general formalism of quantum mechanics based on local fields
will be developed. It will provide a solution to the problem
of motion of a quantum particle in a force field even if there
is no potential from which it can be derived. Meanwhile my
assertion provides one useful corollary: If the fields vanish at
locations of all particles then these fields yield no observable
effect.

Let us test this corollary. Consider a modification of the
electric AB effect described above in which the charges Q do
not automatically perform their motion toward mirror A and
back, but only when the electron on the path A triggers this
motion, i.e., only in the left branch. I choose a particular value
of the charge of the external particles, Q = 4e for which the
total electric field at the location of each particle created by
other particles is zero. Neither the electron nor the charges O
experience an electromagnetic field in any of the branches. My
assertion is that there will be no AB effect in this setup, in spite
of the fact that the electron of the left branch has an electric
potential, while the electron of the right branch has not. The
original treatment of the AB effect is invalid since we do not
have here a motion of an electron in a classical electromagnetic
field, but a treatment of the problem using a “private potential”
created by induced charges [16] shows that indeed there is no
AB effect in this case.

I believe that we can find an explanation of the kind pre-
sented above for any model of the AB experiment. However,
the pictorial explanation of the creation of a relative phase due
to spatial shifts of wave packets disappears when we go beyond
the physics of moving charges. We can replace the charged
cylinders by a line of polarized neutrons producing magnetic
flux due to quantum spins. In this case there is no spatial shift
of wave packets. I am not aware of any pictorial explanation
of the change of the phase of the spin state of the neutron,
but in contrast to the phase of the electron in the standard
approach to the AB effect, the phases of neutrons are changed
locally due to the magnetic field of the electron. This is also
an explanation of the Aharonov-Casher (AC) effect [17]: the
local electric field acting on the moving neutron is responsible
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for the appearance of the AC phase. Note, however, that it
does not lead to a classical lag of the center of mass of the
neutron [18,19].

I have not presented a general proof that in order to have
an observable effect, the particles must pass through regions
of nonzero fields. Rather, what I have shown is that the setups
of the electric and magnetic AB effects do not contradict this
assertion. Note, however, that the last example, in which there
is an electric field almost everywhere except at the locations of
the particles and this field causes no effect, strongly supports
my claim.

Since the electromagnetic potential at any point along the
trajectory of the electron can be gauged away, the standard
approach to the AB effect leads to a paradoxical, in my
view, nonlocal feature of quantum mechanics: the AB phase
which has observable manifestation is acquired inside the
interferometer in spite of the fact that there is no particular
place or time where this happens. I have shown that this

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 86, 040101(R) (2012)

peculiarity disappears when all relevant parts of the system
are considered: the phase is gradually acquired by the source
of the electromagnetic potential.

This result does not question the validity of the AB effect
and does not diminish the importance of its numerous ap-
plications. It removes, however, conceptual claims associated
with the AB effect regarding nonlocality and the meaning of
potentials. The AB effect does not prove that the evolution of
a composite system of charged particles cannot be described
completely by fields at locations of all particles. The potentials
might be just a useful auxiliary mathematical tool after all.

I thank Noam Erez, Yaron Kedem, Shmuel Nussinov, and
Philip Pearle for useful discussions. This work has been
supported in part by the Binational Science Foundation Grant
No. 32/08 and the Israel Science Foundation Grant No.
1125/10.
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Through an examination of the Bohm-Aharonov experiment an intrinsic and complete description of
electromagnetism in a space-time region is formulated in terms of a nonintegrable phase factor. This concept,
in its global ramifications, is studied through an examination of Dirac’s magnetic monopole field.
Generalizations to non-Abelian groups are carried out, and result in identification with the mathematical

concept of connections on principal fiber bundles.

I. MOTIVATION AND INTRODUCTION

The concept of the electromagnetic field was
conceived by Faraday and Maxwell to describe
electromagnetic effects in a space-time region.
According to this concept, the field strenght £,
describes electromagnetism. It was later real-
ized,! however, that f,, by itself does not, in
quantum theory, completely describe all electro-
magnetic effects on the wave function of the elec-
tron. The famous Bohm-Aharonov experiment,
first beautifully performed by Chambers,? showed
that in a multiply connected region where f,,=0
everywhere there are physical experiments for
which the outcome depends on the loop integral

= fAudx“ 1)

around an unshrinkable loop. This raises the
question of what constitutes an intvinsic and com-
plete description of electromagnetism. In the
present paper we wish to discuss this question and

also its generalization to non-Abelian gauge fields.

An examination of the Bohm-Aharonov experi-
ment indicates that in fact only the phase factor

exp<;—;'—2 f A udx“) , (2)

and not the phase (1), is physically meaningful. In
other words, the phase (1) contains more infor-
mation than the phase factor (2). But the addition-
al information is not measurable. This simple
point, probably implicitly recognized by many
authors, is discussed in Sec. II. It leads to the
concept of nonintegrable (i.e., path-dependent)
phase factor as the basis of a description of elec-
tromagnetism.

This concept has been taken® as the basis of the
definition of a gauge field. The discussions in
Ref. 3, however, centered only on the local prop-
erties of gauge fields. To extend the concept to

12

global problems we analyze in Sec. III the field
produced by a magnetic monopole. We demon-
strate how the quantization of the pole strength,

a striking result due to Dirac,* is understood in
this concept of electromagnetism. The demon-
stration is closely related to that in the original
Dirac paper. Dirac discussed the phase factor of
the wave function of an electron (which, among
other things, depends on the electron energy). Our
emphasis is on the nonintegrable electromagnetic
phase factor (which does not depend on such quan-
tities as the energy of the electron).

The monopole discussion leads to the recognition
that in general the phase factor (and indeed the
vector potential Au) can only be properly defined
in each of many overlapping regions of space-
time. In the overlap of any two regions there ex-
ists a gauge transformation relating the phase
factors defined for the two regions. This discus-
sion is made more precise in Sec. IV. It leads to
the definition of global gauges and global gauge
transformations.

In Sec. V generalizations to non-Abelian gauge
groups are made. The special cases of SU, and
SO, gauge fields are discussed in Secs. VI and VII.
A surprising result is that the monopole types are
quite different for SU, and SO, gauge fields and for
electromagnetism.

The mathematics of these results is in fact well
known to the mathematicians in fiber bundle theo-
7y. An identification table of terminologies is
given in Sec. V. We should emphasize that our in-
terest in this paper does not lie in the beautiful,
deep, and general mathematical development in
fiber bundle theory. Rather we are concerned with
the necessary concepts to descvibe the physics of
gauge theories. It is remarkable that these con-
cepts have already been intensively studied as
mathematical constructs.

Section VII discusses a “gedanken” generalized
Bohm-Aharonov experiment for SU, gauge fields.
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Unfortunately, the experiment is not feasible un-
less the mass of the gauge particle vanishes. In
the last section we make several remarks.

II. DESCRIPTION OF ELECTROMAGNETISM

The Bohm-Aharonov experiment explores the
electromagnetic effect on an electron beam (Fig.
1) in a doubly connected region where the electro-
magnetic field is zero. As predicted' by Aharonov
and Bohm, the fringe shift is dependent on the
phase factor (2), which is equal to

—ie
exp( e Q) ,
where Q is the magnetic flux in the cylinder. Thus
two cases a and b for which

Q, - Q,=integer X (hc/e) (3)

give the same interference fringes in the experi-
ment. This we shall state and prove as follows.

Theovem 1: If (3) is satisfied, no experiment
outside of the cylinder can differentiate between
cases g and b.

Consider first an electron outside of the cylin-
der. We look for a gauge transformation on the
electron wave function ¢, and the vector potential
(A,), for case a, which changes them into the
corresponding quantities for case b, i.e. we try
to find S=¢” ** such that
S= Sab = (Sba)- ! ’

4, =S, , or Y,=e'%y,, @
ific 88! B lic da

A),=4), =S5, or A0, = (A + 55

6
For this gauge transformation to be definable, S
must be single-valued, but « itself need not be.
Now (4 ,), - (A,), is curlless; hence (5) can always
be solved for «. But it is multiple-valued with an
increment of

aa=z §1(4,),-@A,),] dx*

'_"%e-c“ (ﬂb - ‘Qa) (6)

every time one goes around the cylinder. If (3)

is satisfied, Aa=27 X integer and S is single-
valued. Case a and case b outside of the cylinder
are then gauge-transformable into each other, and
no physically observable effects would differentiate
them. The same argument obviously holds if one
studies the wave function of an interacting system
of particles provided the charges of the particles
are all integral multiples of e. Thus we have
shown the validity of Theorem 1.

interference
electron plane

beam

FIG. 1. Bohm-Aharonov experiment (Refs. 1, 2). A
magnetic flux is in the eylinder. Outside of the cylinder
the field strength Suv =0.

We conclude: (a) The field strength f,, under-
describes electromagnetism, i.e., different
physical situations in a region may have the same
fu- (b) The phase (1) overdescribes electromag-
netism, i.e., different phases in a region may
describe the same physical situation. What pro-
vides a complete description that is neither too
much nor too little is the phase factor (2).

Expression (2) is less easy to use (especially
when one makes generalizations to non-Abelian
groups) as a fundamental concept than the concept
of a phase factor for any path from P to @

ie 9
4>QP=exp<%—c-L Audx“) (")

provided that an arbitrary gauge transformation

de (0 4 s
exp(hCLAudx>

- exp<—;z—eza(Q)) exp(é—ec LQ Audx“) exp<—%if-a(P))
(8)

does not change the prediction of the outcome of
any physical measurements. Following Ref. 3,
we shall call the phase factor (7) a nonintegrable
(i.e., path-dependent) phase factor.
Electromagnetism is thus the gauge-invaviant
manifestation of a nonintegrable phase factor. We
shall develop this theme further in the next sec-
tion.

III. FIELD DUE TO A MAGNETIC MONOPOLE

The definition of a nonintegrable phase factor
(7) in a general case may present problems. To
illustrate the problem, let us study the magnetic
monopole field of Dirac.* Consider a static mag-
netic monopole of strength g#0 at the origin
T=0 and take the region R of space-time under
consideration to be all space-time minus the ori-
gin ¥=0. We shall now show the following:
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dered by the loop. Notice that because of Dirac’s
quantization condition, the phase factor is the
same whichever way one chooses the cap provided
it does not pass through the point ¥=0 (any #).

We have satisfactorily resolved the difficulty
mentioned at the beginning of this section, pro-
vided Dirac’s quantization condition (13) is satis-
fied. We shall now prove the following.

Theovem 3: If (13) is not satisfied (the above
method of resolving the difficulty would not work
since) there exists no division of R into overlap-
ping regions R,,R,,R,, ... so that condition (i) and
(ii) stated above, properly generalized to the case
of more than two regions, would hold.

To prove this statement, observe that if such a
division is possible, one could generalize (15) and
arrive at a satisfactory definition of the phase
factor. The phase factor around a loop is then a
continuous function of the loop. Take the loop to
be a parallel on the sphere 7 fixed, =0, 6 fixed,
¢=0-27. The phase factor defined by the gener-
alization of (15) is equal to

exp [—;—e; Q(r, 9)] =exp [—%e; 27g(1 - cose)} .

This is not equal to unity when 8=7, since (13) is
assumed to be invalid. Thus we have a contradic-~
tion.

Theorem 3 shows that if Dirac’s quantization
condition (13) is not satisfied, then the field of a
magnetic monopole of strength g cannot be taken
as arealizable physical situation in R. (Of course,
if one excludes the half-line x =y =0, z2<0, or any
half-line starting from ¥=0 leading to infinity,
then it is possible to have any value for g.) This
conclusion is the same as Dirac’s, but viewed
from a somewhat different point of emphasis.

IV. GENERAL DEFINITION OF GAUGE
AND GLOBAL GAUGE TRANSFORMATION

Assuming that (13) holds, to round out our con-
cept of a nonintegrable phase factor the question
of the flexibility in the choice of the overlapping
regions and the flexibility in the choice of A, in the
regions must be faced. Both of these questions are
related to gauge transformations.

Consider a gauge transformation £ in R, (£ will
be assumed to be many times differentiable, but
not necessarily analytic), resulting in a new po-

tential (A ));. We shall illustrate schematically
the transformation by “elevating” the region b in
Figure 3(a).

One could extend the region . One could also
contract it, provided the whole R remain covered.
One could create a new region by considering a

subregion of b as an additional region R, [Figure
3(b)], and define the gauge transformation connect-
ing them as the identity transformation so that
(A4,)).=(A)),. One can then “elevate” R_and con-
tract R,, which results in Fig. 3(c).

Through operations of the kind mentioned in the
last three paragraphs, which we shall call distor-
tions, we arrive at a large number of possibilities,
each with a particular choice of overlapping re-
gions and with a particular choice of gauge trans-
formation from the original (4 ), or (4 ), to the
new A, in each region. Each of such possibilities
will be called a gauge (or global gauge). This
definition is a natural generalization of the usual
concept, extended to deal with the intricacies of
the field of a magnetic monopole.

For each choice of gauge there is a definition of
a nonintegrable phase factor for every path. The
group condition @c.pa,” %c.8,%8,4, is always
satisfied.

Notice that the original gauge we started with
was characterized by (a) specifying {in (10)] the
regions [R, and R,] and (b) specifying the gauge
transformation factor (12) in the overlap (between
R, and R,). It does not vefev to any specific A .

[ A distortion may of course lead to no changes in
characterizations (a) and (b). Thus two different
gauges may share the same characterizations (a)
and (b).] In the case of the monopole field, we
had chosen the vector potential to be given by (11).
But, in fact, we can attach to this gauge any (4 ),
and (A ), provided they are gauge-transformed
into each other by (12’) in the region of overlap.
(The resultant £, is, of course, not a monopole
field in general.) Thus a gauge is a concept not
tied to any specific vector potential. We shall call
the process of distortion leading from one gauge to
another a global gauge transformation. It is also
a concept not tied to any specific vector potential.
It is a natural generalization of the usual gauge
transformation.

The collection of gauges that can be globally
gauge-transformed into each other will be said to

FIG. 3. Distortions allowed in gauge transformation.
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TABLE 1. Translation of terminology.

Gauge field terminology

Bundle terminology

gauge (or global gauge)
gauge type
gauge potential bﬁ

Spq(see Sec. V)

phase factor ®gp

field strength fﬁ,,

source * JX

electromagnetism

isotopic spin gauge field
Dirac’ s monopole quantization

electromagnetism without monopole
electromagnetism with monopole

principal coordinate bundle
principal fiber bundle
connection on a principal

fiber bundle
transition function
parallel displacement
curvature

?

connection on a Uy (1) bundle
connection on a SU, bundle
classification of U, (1) bundle

according to first Chern class
connection on 2 trivial U; (1) bundle
connection on a nontrivial U; (1) bundle

2 le., electric source. This is the generalization (see Ref. 3) of the concept of electric

charges and currents.

minimum absolute value is +3. Therefore the
minimum “charge” of all physical states can be
read off from (24) by taking the 2 X 2 irreducible
representation of X ,:

i,
Xy==5 > (26)

where o, are the Pauli matrices. Thus
minimum “charge”=§. 27

The particle of the gauge field belongs to the ad-
joint representation. Its “charges” are e, 0, and
—e. Thus

“charge” of gauge particle
minimum “charge”

=2 for SU,. (28)

We shall now try to define a Dirac monopole field
as a special SU, field along only one isospin direc-
tion £=3, i.e., we define

bL=b2=0, b%=A

uw un?

(29)

where A, is given in the two regions (10) by (11).
In the overlapping region, transformation factor
S of (12) and (14) now becomes

S,, =exp (—%ﬁgf ¢ X3> (30)

by replacement (25). This is single-valued if and
only if the quantization condition

£=' =
o ~integer =D (31)

is satisfied because for SU,

exp(4nX,)=1, exp(2nX,)#1,

which follows from the existence of half-integral
representations such as (26).

The phase factor (30) describes a great circle,
wound D times, on the manifold of SU, when ¢ var-
ies from 0—-27. Such a circle can be continuously
shrunk to the identity element, in contrast with the
situation for electromagnetism. Thus, by a global
gauge transformation S may be changed to S’ =1,
and the two regions a and b after the global gauge
transformation can be fused into one single ve-
gion. The gauge potential b% is then defined every-
wheve in R as a single region. Thus we have the
following theorem.

Theovem 9: For the SU, gauge group, the gauges
g, for different D can be transformed into each
other by global gauge transformations. The dif-
ferent monopole fields are therefore of the same
type.

We shall only exhibit the global transformation
for the case §., for which

Spa=eXp(-20 X;) , (32)
e -1
Teo z (33)

The gauge transformations we shall seek are illus-
trated in Fig. 5. We shall choose

£ =exp[6(X, sing ~ X, cos¢)], (34)
n=exp|(r - 6)(X, sin¢ - X, cos¢)] exp(nX,) . (35)

It is easy to see that ¢ is analytic in the coordi-
nates x* at all points in R,. (One only has to verify
this statement at §=0, which is easily done.)
Similarly 7 is analytic in R,. £ and 7 are therefore
allowed gauge transformations in, respectively,
R,and R,.
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it does not satisfy the Bianchi identity® at the ori-
gin. Thus, although solution (12a) of Ref. 9 is
(electrically) sourceless at all points, including
the origin, it is not a proper gauge field at the
origin, a fact we did not realize before. All three
solutions, (12a), (12d), and (12e), are, of course,
of the same gauge type.

(c) In Sec. I it was emphasized that f, under-
describes electromagnetism because of the
Bohm-Aharonov experiment which involves a
doubly connected space region. For non-Abelian
cases, the field strengthf’fw underdescribes the
gauge field even in a singly connected region.

An example of this underdescription was given in
Ref. 13.

(d) For the region of space-time outside of the
cylinder of Fig. 1 there is only one gauge type.

All electromagnetic fields in the region can be
continuously distorted into each other by the move-
ment of electric charges and currents inside and
outside the cylinder.

(e) The phase factor for the group U, is the phase
factor of the algebra of complex numbers. It is
perhaps not accidental that such a phase factor
provides the basis for the description of a physi-
cally realized gauge field—electromagnetism. Now
the only possible more complicated division alge-
bra is the algebra of quaternions. The phase fac-
tors of the quaternions form the group SO,. It is
tempting to speculate that such a phase factor pro-
vides the basis for the description of a physically
realized gauge field—the SU, gauge field. Specula-

tion about the possible relationship between qua-
ternions and isospin has been made before.'* Such
speculations were, however, not made with ref-
erence to gauge fields. If one believes that gauge
fields give the underlying basis for strong and/or
weak interactions, then the fact that gauge fields
are fundamentally prase factors adds weight to the
speculation that quaternion algebra is the real
basis of isospin invariance.

(f) It is a widely held view among mathematicians
that the fiber bundle is a natural geometrical con-
cept.’® Since gauge fields, including in particular
the electromagnetic field, are fiber bundles, all
gauge fields ave thus based on geometry.!®* To us
it is remarkable that a geometrical concept for-
mulated without reference to physics should turn out
to be exactly the basis of one, and indeed maybe
all, of the fundamental interactions of the physical
world.
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