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The unsatisfactory status of the interpretation of the wave function of the Universe in canonical
quantum gravity is reviewed. The “naive interpretation” obtained by straightforwardly applying
the standard interpretive rules to the canonical quantization of general relativity is manifestly unac-
ceptable; the “WKB interpretation” has only a limited domain of applicability; and the “conditional
probability interpretation” requires one to pick out a “preferred time variable” (or preferred class of
such variables) from among the dynamical variables. Evidence against the possibility of using a
dynamical variable to play the role of “time” in the conditional probability interpretation is provid-
ed by the fact (proven here) that in ordinary Schrédinger quantum mechanics for a system with a
Hamiltonian bounded from below, no dynamical variable can correlate monotonically with the
Schrodinger time parameter ¢, and thus the role of ¢ in the interpretation of Schrédinger quantum
mechanics cannot be replaced by that of a dynamical variable. We also argue that the interpretive
problems of quantum gravity are not alleviated by the incorporation of observers into the theory.
Faced with these difficulties, we seek a formulation of canonical quantum gravity in which an ap-
propriate nondynamical time parameter is present. By analogy with a parametrized form of ordi-
nary Schrdédinger quantum mechanics, we make a proposal for such a formulation. A specific pro-
posal considered in detail yields a theory which corresponds at the classical level to general relativi-
ty with an arbitrary, unspecified cosmological constant. In minisuperspace models, this proposal
yields a quantum theory with satisfactory interpretive properties, although it is unlikely that this
theory will admit sufficiently many observables for general spacetimes. Nevertheless, we feel that
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the approach suggested here is worthy of further investigation.

I. INTRODUCTION

Theories typically are formulated in terms of quantities
taking values in abstract mathematical spaces. In order
to relate these quantities to physical phenomena, one
needs an interpretation of the theory. In this paper, by
an “interpretation” we mean a description, in ordinary
language, of what an observer would see or experience
when the mathematical quantities used by the theory to
describe the state of the system take on any of their al-
lowed values. Thus, it should be noted that by our usage
of the term, the Copenhagen and Everett “interpreta-
tions” of ordinary Schrédinger quantum mechanics are
equivalent, at least for formulations of the Everett “inter-
pretation” which are interpretations in our sense, since
they give the same rules for what an observer ‘“‘sees.” An
interpretation is an essential part of any theory and,
indeed, interpretations of some classical theories, such as
general relativity, are not entirely trivial to state. How-
ever, it is in the case of quantum theories that the issue of
interpretations has attracted the most attention.

In fact, ordinary (nongravitationall quantum-
mechanical theories such as standard Schrodinger quan-
tum mechanics possess an interpretation which is entirely
satisfactory in that their interpretive rules are well
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defined and yield physical predictions which agree with
experiment. (The fact that these predictions are proba-
bilistic in nature and, apparently, do not admit a con-
sistent picture of “objective reality” are not valid objec-
tions to an “interpretation” according to our usage of the
term.) However, as we shall elucidate further below, the
notion of “time” plays a vital role in these interpretive
rules;! in particular, measurements are made at ‘““instants
of time” and probabilities are assigned only to such mea-
surements (not, in particular, to ‘“histories”). Therefore,
it should not be surprising that severe difficulties arise in
the formulation of an interpretation of quantum theory
corresponding to general relativity, since the nature of
“time” and dynamical evolution in a generally covariant
theory has important differences from the corresponding
notion in theories which are not formulated in a
difffomorphism- (or reparametrization-) invariant
manner. This appears to be the main reason why quan-
tum gravity, even, say, in minisuperspace models where
many technical difficulties such as renormalization can be
avoided, does not, at present, possess a satisfactory inter-
pretation.

In this paper we shall make a proposal for a version of
quantum gravity in which a notion of ‘“time” is present
that allows a well-defined formulation of interpretive
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rules. However, our proposal fails to yield a quantum
theory which corresponds classically to ordinary general
relativity; rather, the specific proposal we shall investi-
gate in Sec. III corresponds to Einstein’s equation with
an arbitrary, unspecified cosmological constant. Further-
more, although our proposal yields satisfactory interpre-
tive rules and is fully satisfactory in minisuperspace mod-
els, it is far from clear that there are a sufficient number
of allowed observables in general spacetimes. Neverthe-
less, we hope that this proposal, or, at the very least, the
nature of the proposal, will be of some interest and that
the related discussion will help elucidate the role which
time plays in the interpretation of a quantum theory as
well as some of the difficulties that arise from the notion
of time in general relativity.

Classical general relativity admits a Hamiltonian for-
mulation but it is a constrained Hamiltonian formulation.
The configuration variable is taken to be a Riemannian
metric h,, on a three-dimensional manifold = and a
spacetime is viewed as being comprised of the develop-
ment of h,, with time. However, h,, and its canonically

conjugate momentum 7,

mb=p172(K%—Kh) (1.1)

(where K, denotes the extrinsic curvature of 3 with the
sign convention of Ref. 2), cannot be freely specified as
initial data; rather, they are required to satisfy the so-
called Hamiltonian and momentum constraints,

0=H(h,y,m)
(1.2)
(1.3)

=h'2[=CR+h " Nmym®—37)],
0=H,(h,,,7%)=—2hn"2D%h " ?x,) .

An appropriate Hamiltonian for classical general relativi-
ty then is

#= [ (NH,+N°H,), (1.4)
where N and N¢ are, respectively, an arbitrary function
and vector field on 3 which have the interpretation of
lapse function and shift vector in the spacetime con-
structed from the time evolution. Variation of # with
respect to N and N yields the constraints (1.2) and (1.3),
whereas Hamilton’s equations of motion for h,, and 7%
yield the Einstein evolution equations; see, e.g., Ref. 2 for
further discussion.

Note that the infinitesimal canonical transformations
generated by the functions f s§°H, on phase space (for
arbitrary vector fields £°) correspond simply to the
changes of h, and 7 resulting from infinitesimal
diffeomorphisms of 2. The situation is more subtle for
the infinitesimal canonical transformations generated by
functions on phase space of the form f ,_§°H o (for arbi-
trary functions £%: the changes induced on h,, and 7%
correspond to infinitesimal spacetime diffeomorphisms (of
the spacetime metric constructed from h,,, 7, N, and
N° only when the field equations are satisfied. (More-
over, these spacetime diffeomorphisms are ‘“field depen-
dent.”) Nevertheless, on the ‘“‘constraint hypersurface”
of phase space [i.e., the h,, and 7 satisfying Eqgs. (1.2)
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and (1.3)], the canonical transformations generated by
[s&°H, and [ £°H, correspond to the spacetime
diffeomorphisms of general relativity.

The standard canonical quantization rules for formu-
lating a quantum theory in the ‘“‘coordinate representa-
tion” based upon a classical Hamiltonian system suggest
the following structure of the quantum theory in this
case.’ States of ths system are taken to be wave functions
of the configuration variable, so Y=W¥(r;h,,) where 7
denotes the time variable occurring in the Hamiltonian
formulation. On the Hilbert space of such states, h,, is
represented by the multiplication operator and 7 is to
be represented by the functional differentiation
—i8/8h,,. The time evolution of ¥ is then given by the
Schrodinger equation

i~y
or
where in #(h,,, 7 we replace h,, and 7 by their
operator expressions. If, as in our case, constraints are
present, then following the Dirac prescription we impose
these as conditions on the state vector. Thus, ¥ also is
required to satisfy

[fzgoHo ]\I/=0 ’
[fzgaH“ ]W:O ’

(1.5)

ab)

(1.6)
(1.7)

where £° and £° are, respectively, an arbitrary vector field
and function qn =, and in H and H’, we again replace h,,
and 7% by their operator representatives. Note that if we
take £°=N and £°=N?, Egs. (1.6) and (1.7) have the im-
portant consequence that

FHY=0 (1.8)

and hence by the Schridinger equation (1.5), that W is in-
dependent of 7, i.e., ¥=W(h ).

Roughly speaking, the quantum constraints (1.6) and
(1.7) can be interpreted as requiring the invariance
of ¥ under the infinitesimal canonical transformations
generated by f 2§°H0 and f s6°H,, which, as discussed
above, correspond to infinitesimal spacetime diffeo-
morphisms on the manifold of solutions. For the
momentum constraint (1.7), this holds literally, since Eq.
(1.7) implies that W(h,) is unchanged when an
infinitesimal diffeomorphism on X is applied to h,,. This
makes W a functional on “superspace,” the set of
diffeomorphism equivalence classes of metrics on . It
does not appear possible to give as literal an interpreta-
tion of the quantum Hamiltonian constraint (1.6), known
as the Wheeler-DeWitt equation, as corresponding to the
invariance of ¥ under a variation of 4, corresponding to
an infinitesimal diffeomorphism in spacetime which
moves points on X in the direction orthogonal to =. Nev-
ertheless, this interpretation of the quantum constraints
can be viewed as accounting for why d¥/97=0 in the
formalism.

In the following we shall consider canonical quantum
gravity formulated by the above rules. To avoid some of
the severe technical problems which arise, such as renor-
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malization, and also for simplicity and definiteness, we
will, for the most part, focus attention below on a simple
minisuperspace model involving a Robertson-Walker
cosmology and a (spatially homogeneous) Klein-Gordon
scalar field ¢, self-interacting via a potential V(¢). (How-
ever, our discussion will not depend upon the details of
this model.) Thus, the configuration variables for this
system are simply ¢ and the Robertson-Walker scale fac-
tor a. The “wave function of the Universe” is a function
of these two variables: W=W(a,¢). For the case of a
cosmologically flat (k =0) model,

ds?=—N’d7+aX(7)(dx>+dy*+dz?) (1.9)

a suitable classical Hamiltonian (in units where 877G =1)
is

H=N|-m+mtavip | .

DTt 5 (1.10)

In quantum theory, the momentum constraints are au-
tomatically satisfied, so the only equation imposed upon
V¥ is the Wheeler-DeWitt equation arising from the classi-
cal constraint

FH=0. (1.11)

With the “Laplacian” factor ordering chosen for the “ki-
netic terms” in Eq. (1.10), this equation takes the explicit
form

__1 9
12a? 9a

1 3w
+—22 —a3v(gp)¥=0.
20’ a2 2V

v
da

(1.12)

(This form holds even if the lapse function N is allowed to
depend upon a and ¢; i.e., the ordinary wave operator is
conformally invariant in two dimensions; for an n-
dimensional minisuperspace, the appropriate factor-
ordering choice would appear to be the conformally in-
variant wave operator.) Although this is a highly
simplified model of quantum gravity, the features leading
to interpretative difficulties remain fully present. It
should be noted that some technical issues also remain in
the model; in particular, there are some “factor ordering”
ambiguities in the definition of the Wheeler-DeWitt equa-
tion. (As already mentioned, the factor ordering we have
chosen has the advantage of being conformally invariant
as well as invariant under redefinition of the ‘“coordi-
nates” a,¢ on superspace.) In addition, for quantum
cosmology based upon the model, the issue arises as to
what boundary conditions should be imposed on solu-
tions of the Wheeler-DeWitt equation in order to obtain
the solution corresponding to our Universe; several such
proposals have recently been given*® and widely dis-
cussed. However, we shall not address any of these issues
here, since our entire concern in this paper is the inter-
pretation of W. If the wave function of the Universe is
‘given by the mathematical expression W(a,d), what does
an observer of the Universe “‘see” or experience?

A possible approach toward formulating an interpreta-
tion of W is to treat W in essentially the same way as we
treat wave functions in ordinary quantum mechanics.
We will refer to this as the “naive interpretation” of
canonical quantum gravity. Thus, we could give a
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Hilbert-space structure to the wave functions ¥ by
demanding that they be square integrable with respect to
a and ¢. Indeed, such a Hilbert-space structure is impli-
cit in the above canonical quantization rules. We then
could interpret W, as in ordinary quantum mechanics, as
giving the amplitude that an observer, making a measure-
ment at parameter time 7, will find the values a and ¢.
However, the fact that W is forced to be independent of 7
by the Wheeler-DeWitt equation makes this interpreta-
tion not viable. Indeed, the Wheeler-DeWitt equation
must hold exactly at all times, including after measure-
ments are made. Thus, the situation is analogous to
demanding in ordinary quantum mechanics, not only that
the wave function be in an eigenstate of zero energy (so
that the wave function is time independent), but also that
no measurements can be made which disturb this condi-
tion. This restricts the allowed observables in the theory
to be those which commute with the Hamiltonian, i.e., to
those which are time independent. Hence, in this inter-
pretation of ¥, dynamical variables such as a and ¢
would not be measurable (since they fail to commute with
Ff), and the Universe would appear to be strictly time in-
dependent with respect to those very few observables
which are measurable.

In this connection, it should be noted that for some
dynamical systems, the requirement that an observable
commute with the Hamiltonian H can be extremely re-
strictive. In particular, for a classical system which is er-
godic in the sense that the dynamical trajectories are
“mixing” on each surface of constant energy, any classi-
cal observable (i.e, measurable function on phase space)
which has vanishing Poisson brackets with the Hamil-
tonian must be constant on each dynamical trajectory
and hence constant on each surface of constant energy.
Thus, for such systems, the only classical observables
which have vanishing Poisson brackets with H are func-
tions of H. Hence, in the quantum theory, apart from
functions of H, there presumably are no quantum observ-
ables corresponding to classical observables which com-
mute with H. Thus, the suggestion by Page and Wooters®
that dynamical evolution can be described in terms of sta-
tionary observables as a dependence upon internal clock
readings is manifestly not viable for sufficiently compli-
cated (i.e., ergodic) systems: There are no nontrivial sta-
tionary observables and ‘“‘internal clocks” would correlate
with other observables in a random manner.

The difficulty with the naive interpretation can be
traced directly to the conflict between the role of time in
quantum theory and the nature of time in general rela-
tivity. In quantum mechanics, all measurements are
made at “instants of time”’; only quantities referring to the
instantaneous state of a system have physical meaning. In
particular, ‘histories” are unmeasurable in quantum
theory. On the other hand, in general relativity “time” is
merely an arbitrary label assigned to a spacelike hyper-
surface. The physically meaningful quantities must be in-
dependent of such labels; they must be diffefomorphism
invariant. In other words, only the spacetime geometry
is measurable; i.e., only histories have physical meaning.
Thus, it should not be surprising that when one naively
combines quantum theory and general relativity, the only
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meaningful quantities which survive are those which are
both instantaneously measurable (i.e., refer to quantities
defined on a spacelike hypersurface) and yet depend only
on the spacetime geometry f(i.e., are independent of
choice of spacelike hypersurface). These are precisely the
conserved quantities, i.e., the observables which commute
with the Hamiltonian. Note that the ‘“naive quantiza-
tion” of any classical theory which has a time
reparametrization invariance will share this feature of
quantum general relativity. Thus, further insight into
what has gone wrong can be obtained from comparison
with the parametrized form of ordinary Schrddinger
quantum mechanics, which will be discussed below.

A possible modification of the above rules would be to
postulate that quantities, such as a and ¢, which fail to
commute with the Hamiltonian constraint (i.e., Wheeler-
DeWitt) operator are, nevertheless, measurable. Howev-
er, one then would be faced with the problem of how to
incorporate the information obtained from the results of
measurements of such quantities into future predictions.
If one “‘reduces” the wave function in the standard way,
the Hamiltonian constraint will be violated. If one pro-
jects the resulting reduced wave function onto the con-
straint subspace (or does not reduce it at all), an immedi-
ate repetition of the same measurement could yield a to-
tally different result. Thus, there does not appear to be
any way of making the naive interpretation viable.

A possible reaction to the failure of the naive interpre-
tation would be to object that our simplified model of the
universe does not include the presence of observers
within the model, and that it is not fair (and, perhaps,
even not necessary) to require an interpretation of the
theory until observers are explicitly incorporated into the
model. However, this same comment could be made with
equal force in ordinary (nongravitational) quantum
theory, where human observers also have not been prop-
erly incorporated into any model system. It is true that
because of the universal nature of gravitation, in quan-
tum gravity the influence of the observer on the observed
system (i.e., gravitational field) cannot be strictly zero.
However, it seems clear that the influence of a human ob-
server on the global state of the Universe should, in fact,
be far more negligible than the influence of such an ob-
server on a typical laboratory experiment in ordinary
quantum theory. Thus, in the following discussion, we
shall proceed on the assumption that, as in ordinary
quantum theory, it should not be necessary to explicitly
incorporate observers into the model in order to obtain
an interpretation. We will return to this issue at the end
of this section and argue that, in any case, such an incor-
poration is not likely to alleviate any of the interpretive
problems which occur without their explicit presence
and, indeed, it creates additional difficulties.

In the literature on quantum cosmology, statements
about physical phenomena usually are extracted from the
wave function of the Universe, ¥(a,¢), by one of two
means, which we shall refer to, respectively, as the
“WKB interpretation” and the ‘“‘conditional probability
interpretation.” We now discuss these two interpreta-
tions in turn.

The WKB interpretation is applicable only if W takes
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the WKB form

V=A exp(is) , (1.13)

where & is a real function which is rapidly varying com-
pared with A. In that case, the Wheeler-DeWitt equa-
tion implies, to a good approximation, that & satisfies the
classical Hamilton-Jacobi equation. As in ordinary parti-
cle mechanics, associated with any solution of the
Hamilton-Jacobi equation is a family of classical trajec-
tories on configuration space. These trajectories are
tangent to the “current vector” j4=|A|>V4$ on super-
space, which is conserved (in the WKB approximation) as
a consequence of the Wheeler-DeWitt equation. (In this
formula, the superspace index A is raised using the natu-
ral metric on superspace arising from the “kinetic terms”
in the Hamiltonian.) The WKB interpretation consists of
saying that, if the wave function of the Universe takes the
form (1.13), then an observer in the Universe who makes
measurements of a and ¢, which are not so precise as to
significantly disturb the Universe, would obtain results
consistent with one of these classical trajectories. It
would be natural to supplement this statement by using
the conserved current j“ to assign a probability density
for observing a given classical trajectory. This can be
done if superspace can be foliated by hypersurfaces such
that each classical trajectory crosses each hypersurface
once and only once.” If the metric on superspace were
positive definite, or if the “potential term” 'R in the
Wheeler-DeWitt equation had a definite sign, the surfaces
of constant & would automatically satisfy this property
(in the “classically allowed” region) and the conserved
probability density (which is proportional to VAV ,&)
would be non-negative. However, since the metric on su-
perspace is not positive definite and 3R also is, in gen-
eral, of indefinite sign, there is no reason why VA&VS&
need be non-negative. Thus, there appear to be serious
difficulties in obtaining an everywhere non-negative prob-
ability density for the classical trajectories valid in all cir-
cumstances.

In its range of applicability, the WKB interpretation is
a genuine interpretation in our sense, and essentially all
“predictions” given in the recent literature in quantum
cosmology have been made by means of it. However, it
suffers from the obvious shortcoming of having only a
very limited range of applicability; i.e., it applies only to
cases where the wave function of the Universe is “very
nearly classical.” Furthermore, even in cases where the
WKB approximation holds, it typically will be valid only
in a limited region of a-¢ space. What is the probability
that an observer will measure values of @ and ¢ in this
non-WKB region? [Here, by ‘“non-WKB region” we in-
clude any region where the “Euclidean WKB form”
¥ =4 e® holds, since no satisfactory interpretation exists
in that case either, as there are no classical trajectories,
and the conserved current j 1= 1(W*V4Y — WV 4W*) van-
ishes there.] What would the Universe look like to an ob-
server who finds himself in a non-WKB regime?

The WKB interpretation plausibly can be extended to
the case where the wave function of the Universe takes
the WKB form only with respect to some dynamical vari-
ables and all the non-WKB variables can be treated as
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“small perturbations.”&9 However, there is no reason, a
priori, why ¥ should take this form on all of superspace,
nor is there any evidence from the solutions of the
Wheeler-DeWitt equation in minisuperspace models that
it does. The WKB interpretation also has been applied to
cases where W takes the form of a sum of WKB solutions.
For example, in the solutions of Ref. 4, ¥ is real and
hence cannot take the form (1.13); at best, it can be a sum
of two WKB solutions. The interpretation which has
been proposed in that case is that the Universe corre-
sponds to a classical trajectory of either of the two WKB
solutions. This is analogous to interpreting the wave
function resulting from a two-slit experiment in ordinary
quantum mechanics as corresponding to classical trajec-
tories in which the particle goes through one (and only
one) of the two slits. In fact, in ordinary quantum
mechanics the predictions made from this interpretation
of the wave function for the two-slit experiment will be
correct for the case in which accurate enough position
measurements are made near the slits so that it can be
determined through which slit the particle has passed —
through not so accurate that the particle motion is
significantly disturbed. (Interactions of the particle with
the environment near the slits would have the same effect
as a measurement.) Furthermore, even if no measure-
ments or interactions occur, highly precise position or
momentum measurements may be needed to observe the
interference effects. However, in principle, highly non-
classical behavior can be observed. The inability of the
WKB interpretation to account for this and thus to prop-
erly extend even to the case of a sum of two WKB solu-
tions highlights its very limited range of applicability.

One might attempt to rescue the WKB interpretation
from its shortcoming of limited applicability by postulat-
ing that observers can exist only when the Universe is
very nearly classical, so an interpretation is required only
in that case. However, even if one were to accept this
rather radical postulate, one would still be in the highly
unsatisfactory situation of having only an approximate
interpretation. How close to a WKB solution must the
Universe be before observers can exist? How large can
the departures be from the predictions of the WKB inter-
pretation due to the fact that the WKB form does not
hold exactly? These equations must be answered if the
theory is to have any predictive power, but it does not ap-
pear that such answers are possible unless there exists an
“exact” interpretation of the theory which does not rely
upon the WKB approximation for its validity.

We turn, now to a discussion of the conditional proba-
bility interpretation. The conditional probability inter-
pretation asserts that if an observer measures a particular
value of one of the dynamical variables, then the wave
function of the Universe (evaluated at that value of that
variable) yields the amplitude for measuring the various
possible values of the remaining dynamical variables.
Thus, for example, in our minisuperspace model, if an ob-
server measures the radius of the Universe to be a, then
the probability density for measuring the value of the sca-
lar field to be ¢ would be given by

P($)=|W(ay,$)12/ [ |¥(ag,¢)%dp, , (1.14)
where du; is a measure on ¢ space (and the “probability
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density” is specified with respect to this measure). Alter-
natively, if the observer measures the value ¢, of the sca-
lar field, then the probability for measuring the value of a
would be given by

P(a)=|¥(a, )%/ [ 1¥(a, ) %dp, , (1.15)

where du, is a measure on a space.

It is far from clear how dpu, and du, are to be chosen.
(They, of course, contain as much information about the
probability distribution as does W.) However, an even
more serious difficulty with the interpretation is that it is
clear that not all quantities are suitable for playing the
role of the variable which “sets the conditions” for the
other variables. For example, even in the context of ordi-
nary Schrodinger quantum mechanics of a particle, al-
though at fixed t=t,, the wave function ¥(ty,X,Y,Z)
gives the amplitude for finding the particle at position
(X, Y,2Z), at fixed X =X, ¥(¢,X,,Y,Z) is not in any sense
proportional to the amplitude that the other coordinates
of the particle are (Y, Z) and the time is z. (Note that for
the purposes of making this point here, we have blurred
the distinction between the time parameter t and the
dynamical variables X,Y,Z. We will return to this point
below in the context of a parametrized theory, where ¢ is
replaced by a dynamical variable 7.) In minisuperspace
models, this difficulty often manifests itself by the fact
that in typical solutions W(a,¢$) chosen for study,
W(a,,¢) fails to be square integrable in ¢, and/or ¥(a,d,)
fails to be square integrable in @, thus making formulas
(1.14) and (1.15) meaningless.

Since not all variables are suitable for “‘setting the con-
ditions” for the other variables, the conditional probabili-
ty interpretation must specify which variables are suit-
able to “fix,” so that V¥ yields the conditional probabilities
for the remaining variables. This problem has not, as yet,
been solved, so the conditional probability interpretation
remains seriously deficient.

An interesting variant of the above conditional proba-
bility interpretation which makes effective use of the
available geometrical structure of superspace is implicit
in the work of Misner.'® Consider the case of a spatially
homogeneous class of models, with an n-dimensional
minisuperspace. The “kinetic terms” in the Hamiltonian
(1.4) define a metric on minisuperspace (or, really , a con-
formal metric, since the lapse function N could be chosen
to depend arbitrarily on the spatial geometry). This
metric has Lorentz signature because the square of the
momentum 7 conjugate to the “conformal degree of free-
dom” enters the Hamiltonian with sign opposite that of
all the other squared momentum terms [see Eq. (1.2)].
Consequently, the Wheeler-DeWitt equation (1.6) for the
wave function of the Universe W on minisuperspace is
formally identical to the equation for a linear scalar field
® on an n-dimensional curved spacetime [with an addi-
tional “‘external potential” corresponding to the term in-
volving the scalar curvature of space in Eq. (1.2)]. Of
course, there is a crucial physical difference between the
two cases: the scalar field ® on spacetime is physically
measurable and should be represented as an operator on
the Hilbert space of states, whereas ¥ is not, in any sense,
measurable on minisuperspace; rather the measurable
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quantities now would be mathematical analogs of the
spacetime coordinates. Thus, it would not appear to
make any sense to define a quantum theory for ¥ analo-
gous to a ‘“second quantized” theory for ®. (Such a
theory for W often is referred to as a ‘“‘third quantized”
theory.) However, it would make sense to define for W
the analog of a ‘““first quantized” theory for @, i.e., to
make quantum cosmology the mathematical analog of
the theory of a relativistic particle (as opposed to a rela-
tivistic field) on curved spacetime. The basic idea would
be to take the Hilbert space of states in quantum cosmol-
ogy to be the analog of the Hilbert space of single-particle
states for a scalar field on spacetime. The conditional
probability interpretation would then be used in the fol-
lowing sense: A configuration variable g, on minisuper-
space would be taken as appropriate for “setting the con-
ditions” if its “level surfaces” (i.e., surfaces of constant
value) are Cauchy surfaces in minisuperspace. One then
would hope to define operators (analogous to the
Newton-Wigner position and momentum operators for a
scalar field in flat spacetime) to represent the remaining
configuration variables and their conjugate momenta on
minisuperspace at “time” g.

From the theory of quantum fields on curved space-
time, it is known that if minisuperspace is globally hyper-
bolic, then mathematically consistent prescriptions can
be given for constructing a Hilbert space of states from
solutions to the Wheeler-DeWitt equation. However, in
order to single out a prescription, additional mathemati-
cal structure must be specified. This additional structure
is most conveniently expressed in terms of a bilinear map
u on the space of solutions (see proposition 3.1 of Ref.
11). Unfortunately for this program, there does not ap-
pear to be any natural choice for such a u for minisuper-
space. Indeed, if minisuperspace possessed a timelike
conformal Killing field which scaled the “potential term”
in the Wheeler-DeWitt equation at the same rate as the
metric, and if this potential term were of the correct sign
on all of minisuperspace, then this structure would pro-
vide such a natural choice of u by the procedures used for
quantum fields in stationary spacetimes.12 However, al-
though full superspace does possess a timelike conformal
Killing field, it does not properly scale the potential
term,'® and, in any case, in general models the potential
term is not everywhere of the correct sign. Thus, there is
a serious problem in this approach with the construction
of the Hilbert space of states. Furthermore, even if this
obstacle could be overcome, it is not clear that sensible
analogs of the Newton-Wigner operators will exist. Fi-
nally, it is far from clear that these ideas can be general-
ized to spatially inhomogeneous models, since the metric
on superspace will no longer have Lorentz signature
when there is more than one conformal degree of free-
dom; i.e., the resulting superspace metric signature has
both multiple plus and minus signs. Thus, at present, this
approach does not appear to be viable, although it cer-
tainly would appear to be worthy of further investigation.

The basic difficulty with the conditional probability in-
terpretation can be restated in a language which indicates
its direct connection to the issue of time is quantum grav-
ity. The basic property that a variable C should satisfy in
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order to be appropriate for ‘“‘setting the conditions” is
that, for each fixed value of C, a measurement of any of
the other dynamical variables must yield one and only
one value; it is only under this circumstance that one
could expect to meaningfully talk about probability dis-
tributions for these other variables. Thus, for example, in
ordinary Schrodinger quantum mechanics, one should ex-
pect the particle position variable X to be inappropriate
for setting the conditions, because when X=X, the
dynamical variable Y could take on many values (since
the particle could be at X =X, at many different times) or
no value (since the particle might never be at X =X,). As
discussed further by one of us elsewhere,'* this property
for a variable needed to properly set the conditions for
the other variables is a key feature of our intuitive notion
of “time,” as is well expressed in the aphorism “time is
that which allows contradictory things to occur.” Fol-
lowing Ref. 14 we will refer to this as the “Heraclitian
property” of time, on account of Heraclitus’ view of the
flow of time as a ‘“‘war of opposites.” Thus a variable
which is suitable for setting the conditions for the
remaining variables could reasonably be referred to as a
“time variable.” The central difficulty with the condi-
tional probability interpretation is that in quantum gravi-
ty the time variable (or various allowed possible choices
of time variable) has not been specified. (Such a
specification is given in the approach described in the
previous two paragraphs, but as concluded above, this
approach does not appear to be viable.)

In most theories the notion of “time” that is present at
the classical level can be taken over directly in the formu-
lation of the quantum theory. In classical general rela-
tivity a spacelike hypersurface in spacetime provides an
appropriate realization of the notion of an “instant of
time.” Thus, at the classical level, the specification of a
foliation of spacetime by spacelike hypersurfaces defines a
satisfactory notion of time. The problem with this notion
of time is that it is closely analogous to the notion of time
in a so-called ““parametrized version” of particle mechan-
ics, and this notion of time is unsuitable for use in quan-
tum theory in the same manner as the time of a
“deparametrized” theory. We now shall briefly review
parametrized particle mechanics and the quantum theory
based upon it. In doing so we shall also elucidate some of
the points raised above regarding the above ‘“naive” and
conditional probability interpretations of canonical quan-
tum gravity.

Consider the theory of a nonrelativistic particle mov-
ing in one dimension, with dynamical variable X and with
t denoting the ordinary (Galilean) time parameter. Let
the action S be given by

S=[Ladr (1.16)
with Lagrangian L of the form
L=L(X,dX /dt), (1.17)

where it is assumed that L is nondegenerate in the sense
that the relation between momentum and velocity [see
Eq. (1.22) below] is one to one. We rewrite this theory in
the following manner. We introduce a new “parameter
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time” 7 given in terms of ¢ by an arbitrary monotonic
function 7=17(¢). We now view ¢ as a dynamical variable,
which may be thought of as the readings of a perfect
clock. To emphasize this new viewpoint we shall use the
new symbol T to denote this quantity. We rewrite the ac-
tion S as

s=[Lx,T,X,T)dr, (1.18)

where the overdot denotes derivatives with respect to 7
and where

LX,T,X,T)=TL(X,X/T) . (1.19)

For the Lagrangian L, the momenta canonically conju-
gate to X and T are

Py=0L /3X =Py ,

(1.20)
(X/T)Py , (1.21)
where Py denotes the momentum conjugate to X for the
original Lagrangian L:

Py=03L /3(dX /dt) . (1.22)
The Euler-Lagrange equations for L are
oL _ .. 0L
PX—-aX——TaX , (1.23)
: oL
== 1.24
Py 3T 0 (1.24)

It is not difficult to verify that Eq. (1.24) is redundant;
i.e., it follows from Egs. (1.21) and (1.23). It also is easily
seen, using Py =P, [see Eq. (1.20)], that Eq. (1.23) is
equivalent to the original Euler-Lagrange equations for
L’

Py _oL

dt  3x’
in the sense that the relation X=X(T) between the
dynamical variables X and T implied by Eq. (1.23) is the
same as the relation X =X(¢) between the dynamical
variable X and the time parameter ¢ implied by Eq. (1.25).
[That this must be the case can be seen from the fact that,
with the identification (=T= f T dr, both Euler-
Lagrange equations (1.23) and (1.25) arise from the same
variational problem for S.] In this sense, at the classical
level, the theory described by the original Lagrangian L
(with dynamical variable X and time parameter ?) is
equivalent to the theory described by L (w1th dynamical
variables X, T, and time parameter 7).

The above parametrized theory can be given a Hamil-
tonian formulation which is closely analogous to the
Hamiltonian formulation of general relativity. The
canonical momenta Py and P, were already obtained
above [see Egs. (1.20) and (1.21)]. Normally, one would
proceed by inverting these formulas to eliminate X and T
in favor of Py and P;. However, this cannot be done
here (for any choice of the original Lagrangian L), since
the Jacobian matrix of second partlal derivatives of L
with respect to “velocities” X and T is degenerate, as a
consequence of the fact that, apart from an overall factor

(1.25)
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of T, L depends on X and T only in the combination
X /T. Indeed, if the original Lagrangian L is nondegen-
erate as we have assumed, then we can use Eq. (1.20) to
eliminate X /7 in favor of Py =Py. By Eq. (1.21) we then
have
=L(X,X/T)—(X/T)Py , (1.26)

thus showing that P can be expressed as a function of X
and Py and thus cannot be an independent variable.

Nevertheless, we can give a Hamiltonian formulation
wherein Eq. (1.26) is treated as a constraint. To do so we
define the quantity # by the usual formula for a Hamil-
tonian

H=TPy+XPy—L=T[Py+H(X,Py)], (1.27)

where H(X ,Py) is t1~1e Hamiltonian associated with the
original Lagrangian L:

ﬁ(X,PX)=%~PX-E=(X/T)PX—E . (1.28)
Note that the constraint (1.26) then is equivalent to
H=0. (1.29)

The inability to eliminate (7,X) in favor of (Py,Py)
comes into play in Eq. (1.27) in that 7" cannot be related
to Py and Py. However, we can proceed by viewing T as
a “Lagrangian multiplier” which enforces the constraint
(1.29). To emphasize this viewpoint we write N(7)=T
and view N as an arbitrary, unspecified function. Thus,
we write

H(N;T,X,Pr,Py)=N[P;+H(X,Py)] . (1.30)
Hamilton’s equation of motion then yield

T=%{T—‘N , (1.31)

PT=—%—7;= : (1.32)

X=—%— %, (1.33)

Py= %——N%I)% (1.34)

which, when supplemented by the constraint (1.29) ob-
tained by variation of # with respect to N, are easily
verified to be equivalent to the previously derived equa-
tions of motion. Thus, we have succeeded in obtaining a
Hamiltonian formulation of the parametrized particle
theory. The very close similarity of this formulation to
the Hamiltonian formulation of general relativity is not
accidental, since the presence of the constraint =0 in
both theories is directly related to the fact that in both
theories “time evolution” is equivalent to a “‘gauge trans-
formation” (i.e., a spacetime diffeomorphism or a
reparametrization of 7).

We turn now to the quantum theory of the
parametrized particle. By the standard canonical quanti-
zation rules for the ‘“‘coordinate representation” already
mentioned above, states of the system are described by
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wave functions W(7;T,X). The operators T and X are
represented by multiplication whereas P; and Py are
represented as —id/07T and —id/dX. Time evolution is
governed by the Schrodinger equation

v

j— =FHVY .

! or
However, the constraint (1.29) is imposed by the condi-
tion

(1.35)

FHY=0 (1.36)

thus showing that ¥ is independent of 7. Thus, this sys-
tem possesses many of the features of canonical quantum
gravity, but, of course, it has the advantage that the
correct quantum theory is known, namely, that obtained
from the original Lagrangian L and Hamiltonian H.

Note that the constraint (1.36), which is the analog of
the Wheeler-DeWitt equation (1.6), is just the ordinary
Schrédinger equation for (T, X):

i)
5T +H(X,Py)¥=0 .
Thus, the above rules for the canonical quantization ap-
plied to our parametrized theory yield the correct equa-
tion for ¥. The above “naive interpretation” applied to
this case would demand that W(T', X) be square integrable
with respect to T and X, and would then attempt to inter-
pret V¥ as giving the (time-independent) amplitude for
measuring T and X. This clearly does not make sense;
indeed, there presumably do not even exist any solutions
of (1.37) which are square integrable with respect to T
and X. The “WKB interpretation” yields results con-
sistent with the standard quantum theory, but, of course,
has a severely limited range of applicability. Finally, the
‘“conditional probability interpretation” with 7 chosen as
the variable which ‘“sets the conditions” would assert
that, given that the time is T, W(T,X) yields the ampli-
tude for finding the particle at X. If the measure is taken
to be duy=dX, this corresponds precisely to the stan-
dard quantum theory of a particle. However, the ‘“‘condi-
tional probability interpretation” with X chosen as the
variable which “sets the conditions” would assert that at
given particle position X, W(T,X) should give the ampli-
tude that the time is 7. This does not make sense, and
thus illustrates the point already mentioned above that
only certain variables are suitable for “setting the condi-
tions.”

The analogy with the quantum theory of parametrized
particle mechanics may be viewed as supporting the
“conditional probability approach” to the interpretation
of the wave function of the Universe in quantum gravity,
provided that a suitable “time variable” is identified from
among the collection of dynamical variables. In
parametrized particle mechanics, the dynamical variable
T can be distinguished from the other dynamical vari-
ables by the fact that its canonical momentum P, ap-
pears only linearly in the Hamiltonian #. However, in
canonical quantum gravity, although there has been con-
siderable research effort on this issue, no suitable ‘“‘time
variable” has yet been identified. In particular, the
Wheeler-DeWitt constraint (1.6) is quadratic in all the

(1.37)
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momenta. We refer the reader to the reviews of
Kuchai'® and references cited therein for extensive fur-
ther discussion of this issue.

Thus, the conditional probability interpretation
presently remains in the unsatisfactory state described
above. Clearly, one approach to the interpretation of the
wave function of the Universe would be to attempt to
solve the problem of identifying a suitable time variable.
However, we are skeptical that such an approach will
succeed. One reason for our skepticism is that no solu-
tion has yet emerged after over 20 years of effort. A
more fundamental reason is that the selection of a pre-
ferred time variable (or class of time variables) would ap-
pear to be in conflict with the generally covariant nature
of general relativity. The ability to ‘“deparametrize” the
above particle theory by choosing T as a preferred time
variable appears to be directly related to the fact that the
underlying classical theory possesses a preferred time pa-
rametrization; however, there does not appear to be any
analogous preferred time slicing of generic spacetimes in
general relativity. Finally, perhaps the strongest reason
for our skepticism is that we do not believe that any real-
istic dynamical variable can satisfy the ‘“‘Heraclitian
property” required for a time variable. The main support
for this view arises from the fact that in the context of or-
dinary Schriédinger quantum mechanics, no dynamical
variable in a system with Hamiltonian bounded from
below can act as a perfect clock in the sense that there is
always a nonvanishing amplitude for any realistic dynam-
ical variable to “run backwards.” (Note that, by con-
struction, the dynamical variable T in our parametrized
particle model does act as a perfect clock; however, its
Hamiltonian H =Py is unbounded from below.) In par-
ticular, any realistic dynamical variable may take on the
same value at two distinct Schrodinger parameter times.
Hence, it would appear that in Schrodinger quantum
mechanics, all other dynamical variables can be mul-
tivalued at a given value of any realistic dynamical vari-
able which is selected to be a time variable. We proceed,
now, to state and prove this ‘“no perfect clock”
theorem.!®

Consider any arbitrary system in ordinary Schrodinger
quantum mechanics, restricted only by the requirement
that its Hamiltonian H be bounded from below. We seek
an observable (i.e., operator) T which can serve as a
“monotonically perfect clock” in the sense that, for some
choice of initial state, its observed values increase mono-
tonically with Schrodinger time ¢. Since T may have con-
tinuous spectrum we formulate a minimal condition on
such an operator T as follows. Break up the spectrum of
T into nonoverlapping intervals of finite size. We require
of T that there exist an infinite sequence of states | T ),
|T,), |T,), ... having the following properties. (i) Each
|T,) is an eigenstate of the projection operator onto the
spectral interval centered around the value 7,, with
To<T,<T,<..., (ii) for each n there exists an m >n
and a ¢ >0 such that the amplitude to go from [T, ) to
|T,, ) in time ¢ is nonvanishing (i.e., the “clock” has a
nonzero probability of running forward in time); (iii) for
each m and for all >0, the amplitude to go in time ¢
from |T,,) to any |T,) with n <m vanishes (i.e., the
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“clock” cannot run backward in time). We then have the
following theorem.

Theorem If the Hamiltonian H is bounded from below,
then there does not exist an operator T satisfying proper-
ties (i)—(iii) above.

Proof. Let n,m be as in condition (ii). Consider the
quantity

f()=(T,lexp(—iH?)|T,,) (1.38)

for t€C. Since H is bounded from below, f is holo-
morphic in the lower half z-plane and hence f cannot
vanish on any open interval of real ¢ unless it vanishes
identically for all # with imaginary part <0 (see, e.g., Ref.
17). Since by (iii) we have f(t)=0 for 7 >0, it follows
that f (¢)=0 for all real t. However, for all £ >0 we have

(T, lexp(—iHt)|T,)=(T,lexp(+iHt)|T, »*
=f*(—1)
=0 (1.39)

which contradicts property (ii). O

The above theorem can be interpreted as saying that
any realistic “‘clock” in Schrédinger quantum mechanics
which can run forward in time must have a nonvanishing
probability to run backward in time. Of course, the
theorem allows this probability to be very small. Never-
theless, it shows that if we attempt to replace the
Schrodinger time parameter ¢ by a dynamical variable 7,
we cannot expect to obtain more than a crude, approxi-
mate interpretation of the theory. Indeed, since clocks
typically degrade (so that they are ‘“‘good” only for a
finite period of Schrodinger time) one should expect
severe problems to arise if one attempts to replace the
condition “at Schrodinger time ?” with the condition
“when the clock is measured to read T7’; the latter condi-
tion may include occurrences in the distant future (in
Schrédinger time ¢), when the clock is working very poor-
ly and has taken a large jump backward, or has fallen
apart completely, leaving the hand pointed at some ran-
dom digit.

The Hamiltonian, Eq. (1.4), of general relativity is un-
bounded from below (or above), so the above theorem is
not directly applicable to it. Nevertheless, we see no
reason to expect the presence of a dynamical variable
which satisfies the “Heraclitian property.”

Our belief that a “Heraclitian time variable” is needed
in quantum theory but that dynamical variables are un-
suitable for this role leads us to seek a formulation of
canonical quantum gravity where a suitable parameter
time is explicitly present in the theory. We shall proceed
to do so in the following manner. In the next section we
reformulate Schrodinger quantum mechanics in a manner
entirely equivalent to the usual formulation, but using an
arbitrary time parameter 7 rather than the usual
Schrodinger time ¢, in order to help distinguish between
the roles of ¢t as a “Heraclitian time variable” and as a
variable containing dynamical information. (This pro-
cedure of introducing an arbitrary parameter time after
quantization should be distinguished clearly from the
above procedure of parametrization prior to quantization

WILLIAM G. UNRUH AND ROBERT M. WALD 40

where the original time ¢ is treated as a dynamical vari-
able T.) In the reformulation, 7 itself is unmeasurable,
but the usual predictions can be expressed in terms of
correlations between dynamical variables at (ordered) se-
quences of 7 times. Furthermore, if one of the dynamical
variables T is a “good clock” (i.e, at each 7 its possible
values are sharply peaked about a value which varies
monotonically with 7), then one can pass (approximately)
from the Schrodinger wave function, ¥ to an “effective
wave function” ¥ which depends only on the dynamical
variables and (approximately) satisfies Eq. (1.37). This
effective wave function conveniently encodes the correla-
tions between clock readings T and the values of the oth-
er dynamical variables; however, one must return to the
original wave function ¢ in order to obtain a sensible,
precise interpretation of the theory.

The above results motivate our proposal for canonical
quantum gravity given in Sec. III. The “effective wave
function” ¥ of Sec. II, is closely analogous to the wave
function of the Universe, and it satisfies Eq. (1.37), which
is closely analogous to the Wheeler-DeWitt equation
(1.6). Thus, we seek a theory possessing a nondynamical
“Heraclitian time variable” 7, which, in the presence of a
“good clock” dynamical variable T, gives rise to an
“effective wave function” W satisfying the Wheeler-
DeWitt equation. In Sec. III we present a proposal for
such a theory in our minisuperspace model based directly
upon analogy with the analysis of Sec. II. This theory
has the desired qualitative properties, but it turns out
that the “effective wave function” W satisfies an equation
which differs from the Wheeler-DeWitt equation (unless
T is a “perfect clock,” with Hamiltonian H,=P;). We
study a slightly modified version of this proposal which is
seen to correspond classically to Einstein’s equation with
an arbitrary, unspecified cosmological constant. This
modified proposal yields a mathematically consistent, in-
terpretable quantum theory in minisuperspace models,
but for general spacetimes it may suffer from a shortage
of measurable observables similar to (though possibly not
as severe as) the situation for the “naive interpretation”
of canonical quantum general relativity discussed above.

We conclude this section with a discussion of the issue
of obtaining an interpretation of the wave function of the
Universe by explicitly incorporating observers into the
theory. It often is suggested that the interpretive
difficulties of canonical quantum gravity arise from the
failure to include dynamical variables representing an ob-
server in the wave function of the Universe.!® What these
discussions appear to have in mind is the following. Let
Y denote the relevant dynamical variables associated with
an observer (which we may view, perhaps, as representing
his “state of consciousness”). Let X denote all of the
remaining dynamical variables (e.g., in our minisuper-
space model a and ¢). Then the wave function of the
Universe is a function of Y and X, ¥=W¥(Y,X). We view
WV as describing the correlations between Y and X.
Specifically, given that the observer is in state Y,
Y(Y,y,X) gives the amplitude for the various possible
values of the remaining dynamical variables.

It is easily seen that this interpretation is just the above
“conditional probability interpretation,” with the “pre-
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ferred time variable” chosen to be Y. However, if one
takes seriously the treatment of an observer as an ordi-
nary dyanmical quantum system (as is done in this
viewpoint), we see no reason why Y should have this spe-
cial property. Indeed, presumably at best, Y could be ex-
pected to be a “Heraclitian time variable” only while the
observer is alive. How is this limitation to be implement-
ed in this viewpoint? It may well be that the proper in-
corporation of observers into the theory will have many
important (and, perhaps, radical) implications for quan-
tum theory in general and for quantum gravity in partic-
ular. However, it seems to us highly unlikely that such
an incorporation can be attained simply by means of
treating observers as ordinary dynamical systems. In any
case, unless some argument, presumably based on a de-
tailed dynamical model of observers, can be given show-
ing that the ‘“‘observer variables” Y have the desired
property of a ‘“preferred time variable,” the above pro-
posed interpretation based upon observers amounts to
nothing more than asserting that some (unspecified)
“time variable” can be selected so that the conditional
probability interpretation is valid. Further indication
that explicit incorporation of observers should not be
relevant to the resolution of the interpretive issues under
consideration here comes from the fact that the same in-
terpretive difficulties occur for the above quantum theory
of a parametrized particle, but the accepted version of
the theory which resolves these difficulties (namely, ordi-
nary Schrodinger quantum mechanics) does not rely upon
the incorporation of observers into the theory.

Note that when observers are incorporated into the
theory, although the Wheeler-DeWitt equation (1.6) is
imposed upon the wave function of the Universe W(Y, X),
the quantity W(Y,,X) [or, more precisely, the projection
of W(Y,X) onto the perceived ‘“eigenstate of observer
variables”] will, in general, fail to satisfy the Wheeler-
DeWitt equation.!® Thus, it is far from clear that an ob-
server would perceive that the Wheeler-DeWitt equation
is satisfied and that Einstein’s equation holds in the clas-
sical limit. Actually, as we shall now discuss, the situa-
tion is considerably worse, since an observer presumably
has access only to Y and cannot directly determine any-
thing at all about the ‘““universe variables” X.

The difficulty just alluded to is, of course, nothing
more than the age-old problem of skepticism, but it arises
in a particularly virulent form when one examines the
logical consequences of taking seriously the incorporation
of observers into any (classical or quantum) theory so
that they are treated as ordinary dynamical systems. The
key point is that, even if the dynamics of observers is
completely specified (which, of course, realistically is far
from the case), the theory loses all predictive power con-
cerning the Universe unless some new principle of phys-
ics governing the correlations of observers with the
Universe (presumably formulated in terms of initial con-
ditions) can be invoked. To illustrate this point explicit-
ly, consider the simple example of the theory of classical
mechanics of point particles. We describe the state of
our dynamical system by dynamical variables (X,-,PXi)

and we model our observer as similarly described by
dynamical variables (Y;, Py ). The various possible per-
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ceptions (including memories) of the observer would then
be assumed to correspond to particular regions of ob-
server phase space. The difficulty is that unless severe re-
strictions are imposed upon initial conditions, then all
kinematically possible observer states are dynamically
possible. In particular, the observer may “perceive” or
“remember” things about the (X, ,»,PX'_) system which did

not occur or even were dynamically impossible. Thus,
what may have started out as a theory of the dynamics of
the (X nPX,.) system would become transformed, by the in-

corporation of observers, into a theory dealing primarily
with the kinematical restrictions on observer phase space
and with the allowed initial states for observers. Indeed,
the requirement that these initial states be such that the
observers’ perceptions and memory correlate properly
with what actually occurred in the (X, i’PX,.) system is not

experimentally testable, nor is even the existence of an
(X;,Py ) system, and would have to be viewed as an en-

tirely ad hoc hypothesis. Exactly the same difficulties
occur, of course, in quantum theory. The refusal to in-
corporate observers into the theory as ordinary dynami-
cal systems does not solve the problem of skepticism, but
it does, at least, remove it from one’s doorstep.

Thus, in view of all the above discussion, it does not
appear to us to be fruitful to attempt to resolve interpre-
tive issues of quantum gravity by invoking the explicit in-
corporation into the theory of observers, treated as ordi-
nary dynamical systems. (We also do not have any seri-
ous proposals for treating observers as extraordinary sys-
tems.) Thus, for the remainder of this paper we will con-
tinue to treat observers in the same “phenomenological”
way that they have been treated in all prior physical
theories.

II. SCHRODINGER QUANTUM MECHANICS IN
AN ARBITRARY TIME PARAMETRIZATION

The parameter ¢ which appears in Schrodinger quan-
tum mechanics has a rather unusual status. It is not an
“observable” in any normal sense; in particular, there is
no operator on the Hilbert space of states which corre-
sponds to measuring ‘“time.” Rather, ¢ primarily plays
the role of a nondynamical, ‘“Heraclitian time variable”
(see Sec. I) which “‘sets the conditions” for measurements
of the dynamical variables. It is not true that one ‘“mea-
sures” t by examining a clock, since by examining a clock
one is simply measuring some ordinary dynamical vari-
able (e.g., the position of the hands of the clock). Indeed,
we showed in the previous section that no realistic
dynamical variable can even monotonically correlate
with 7 with certainty. Nevertheless, one can make infer-
ences about ¢ by performing measurements of dynamical
variables. In this section we shall attempt to clarify the
role of ¢ in ordinary Schrodinger quantum mechanics by
reformulating the theory in terms of an arbitrary time pa-
rameter 7. In this way, the roles of ¢t as a ‘“Heraclitian
time variable” and a quantity which is, in some sense,
“observable,” can be clearly distinguished.

Our main purpose in giving this reformulation is that it
will aid us in explaining how information concerning
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correlations between measurements of a “good clock”
dynamical variable T and another dynamical variable X
can be expressed in terms of an “effective wave function”
Y(T,X) which depends only upon observable dynamical
variables and which (approximately) satisfies the
Schrodinger equation. However, unless the clock is “per-
fect,” the effective wave function W(7,X ) will possess an
interpretation only in a crude, approximate sense; one
must return to the exact Schrodinger wave function
Y(7;T,X) in order to formulate a precise interpretation of
the theory. Our proposal for formulating an interpret-
able quantum theory of gravity, to be given in the next
section, consists, in essence, of simply paralleling for the
wave function of the Universe, W(a,¢), the steps which
lead backward from W(7T,X) to ¥(7; T,X ).

Our reformulation of Schriodinger quantum theory
consists simply of replacing the parameter ¢ in the
Schrodinger equation by a parameter 7 related to ¢ by an
arbitrary monotonic function 7=7(¢). (Note that, as al-
ready pointed out in the previous section, this is not
equivalent to formally quantizing a classical parametrized
system with ‘“time” treated as a dynamical variable.)
Thus, we take the Hilbert space to be as in standard
quantum theory; i.e., if the collection of all the dynamical
(configuration) variables are denoted as Z, states are
again represented by wave functions ¢¥(Z), which vary
with time 7. However, the Schrodinger equation now is
replaced by the following condition. There exists a func-
tion N(7) not known or specified in advance, such that

i-aé%(T;Z)zN(T)Hiﬁ(T;Z) ,
where H is the Hamiltonian operator of the usual formu-
lation. (We assume that A has no explicit time depen-
dence, so that the operator H is independent of 7.) The
interpretation of ¥ is the usual one. At a fixed value of
parameter time 7, ¥(7;Z) gives the amplitude for the
values of the dynamical variables to be Z.

The above formulation easily can be seen to be
equivalent to the usual formulation via the simple substi-
tution ¢ = f N(7)d7. However, the above formulation

suggest a viewpoint which we feel corresponds much
more closely to the observable structure actually present
in ordinary quantum theory. In this viewpoint, an ob-
server has access to time orderings of his observations
given by the label 7 whose numerical values are of no
significance except for the ordering they provide. (In
keeping with the ‘“phenomenological” approach to ob-
servers taken at the end of the previous section, we do
not attempt to explain the mechanism by which the ob-
server obtains access to this ordering defined by 7.) How-
ever, an observer does not have any “innate” knowledge
of the “metrical” properties of time, as given by ¢; as al-
ready mentioned above ¢ can be determined only by infer-
ence from measurements of dynamical variables. [As will
be discussed further below, this is easily done if a “good
clock” dynamical variable is present; otherwise much
more sophisticated methods would have to be employed.
The probability distribution for Z can be expressed in
terms of the unknown parameter ¢, and techniques of sta-
tistical inference (such as the maximum-likelihood
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method) could be used to infer £.] Thus, the arbitrary (ex-
cept for monotonicity) label time 7 provides the essential
“background structure” of quantum mechanics. To
avoid confusion, we emphasize here that we have in mind
the measurements of a single observer (who, of course,
may send out probes, or other observers, to spatially dis-
tant regions and later measure the readings of these
probes). The interpretation is formulated for this single
observer. If a family of observers is present, we do not as-
sume that different members of this family have access to
the same 7; i.e., we do not assume that a family of ob-
servers has any innate knowledge of simultaneity.

Since N(7) is unknown, the Schrédinger equation (2.1)
does not yield unambiguous predictions for the wave
function ¢¥(7;Z) at time 7. (This, of course, corresponds
to the fact that 7 is an arbitrary ‘“label time.”) Predic-
tions primarily consist of statements concerning the pos-
sible values and correlations of the dynamical variables
Z. Thus, the situation is much like that occurring in gen-
eral relativity, formulated in terms of arbitrary coordi-
nates x*. Einstein’s equation does not unambiguously
determine the value of the metric components g, evalu-
ated at the point labeled by x#, and typical statements
about the theory expressed in this manner usually are
meaningless because they refer to the arbitrary, un-
measurable labels x “.

The meaningful statements in general relativity are

. typically formulated in the following manner: ‘“There ex-

ists a point (i.e., event) in spacetime such that the mea-
surements of . . . made at that point by the specific pro-
cedure . .. would have the outcome ... .” Similarly, in
the above reformulation of quantum mechanics, the
meaningful statements typically would take the form,
“There exists a time 7 such that the probability of
measuring the dynamical variables to be Z is ... .”
Statements concerning whether this time 7 came ‘‘before”
or ‘“after” a time at which certain other measurements
were made also would be meaningful.

In general, these meaningful statements may be rather
cumbersome to formulate. However, as we shall now ex-
plain, if one of the dynamical variables is a “good clock
variable,” then meaningful statements can be formulated
in a very simple manner (although these statements will
have only approximate validity). We say that a dynami-
cal variable, denoted T, is a good clock variable over the
interval I=[a,b] of 7 time if the state vector ¢ and
Hamiltonian H satisfy the following two conditions: (i)
For all 7€1, T (nearly) decouples from all the other
dynamical variables, which we denote as X, in the sense
that v (nearly) takes the product form

W T,X)=x(1; T)$(1;X) (2.2)
and we have
Hy~(Hp+Hx), (2.3)

where H is independent of X, and Hy is independent of
T; (ii) at each 7€ 1, ¥(7; T, X) is sharply peaked in T about
the value f(7), where f is a monotonic function of 7. Al-
though we proved in the previous section that if H is
bounded from below, then no dynamical variable T can
serve as a ‘“‘perfect monotonic clock,” there is no obstacle
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to the existence of a “good clock variable” in the above
sense.

In condition (i) it should be noted that it is not required
that the Hamiltonian operator be generally expressible as
H=Hr+Hy; i.e., there may be states (other than ) for
which Eq. (2.3) fails. In condition (ii), since H is indepen-
dent of 7, it follows from the Schrédinger equation (2.1)
that f can depend on 7 only in the combination
f N(7)dr. By redefining T, if necessary, we will assume,
without loss of generality, that, in fact, f(7)= f N(7)dr.
Thus, Eq. (2.2) and assumption (ii) imply that ¢ takes the
form

Un T, X)~A [T;T'—fN(T)dT]qS(T;X), (2.4)
where for each 7, the function A(r;-) is sharply peaked
around zero. Furthermore, Eq. (2.3) further implies that
A and ¢ satisfy

A N((Hp+OM, (2.5)
oT
i%{% ~N(r)(Hy—C)$ , 2.6)

where C is constant. By redefining A and ¢ by multiply-
ing and dividing, respectively, by the phase factor
exp[inN('r)d'r], we may assume that C=0. We also
may normalize A and ¢ so that they each have unit norm
in the T and X Hilbert spaces, respectively.

Now, since A(7;-) is peaked sharply about zero, we will
make little error in evaluating y¥(7;T,X) if, in Eq. (2.2),
we replace ¢(7;X) by the “effective wave function”
Y(T;X) defined by

VT, X)=¢(r(T);X) , 2.7
where 7(T) is determined by the peak in A, i.e., by

T= [N(rdr . 2.8)
Thus, if T is a “good clock variable” we have

Un T, X)~A [T;T— fN(T)dT]\I/(T,X). (2.9)

The factor A contains the information concerning the
probability for obtaining “false readings” from measuring
the “clock variable” T. To the extent that the probability
for the measured value of T to deviate significantly from
J N(r)dr is negligibly small (i.e., to the extent that T'is a
“good clock” variable), all the remaining information
concerning the system is usefully encoded in W(7,X).
Indeed, to the extent that T is a “good clock variable,”
we have the following simple “interpretation” of W. “If
the clock variable is measured to have the value T, then
the amplitude for measuring the remaining dynamical
variables to have the value X is W(T,X).” This interpre-
tation, of course, is only an approximate one, and if T is a
“poor clock” variable, then one must return to the full
wave function ¢¥(7; T,X) in order to formulate the predic-
tions of the theory, which would have to be stated in the
manner discussed above.

It follows immediately from Egs. (2.6), (2.7), and (2.8),
that if T'is a good clock variable, then W(T', X) satisfies
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.o¥

ST +Hy¥=0.
This equation is, of course, formally the same as the usual
Schrodinger equation, except that the Schrodinger pa-
rameter time ¢ has been replaced by the dynamical vari-
able T. More importantly for our purposes, Eq. (2.10) is
formally identical to the constraint equation (1.37) which
arose in the quantization of a parametrized classical
theory in Sec. I. Thus, we may summarize the results of
this section as follows. We began with Schrodinger quan-
tum mechanics—a well-defined and interpretable quan-
tum theory, possessing no constraints. We gave an en-
tirely equivalent reformulation of this theory in terms of
an arbitrary label time 7. We then showed that if one of
the dynamical variables in the theory is a “good clock,”
one can pass to an “effective wave function” W(T,X)
which depends only upon the dynamical variables and
satisfies Eq. (2.10), which is formally equivalent to the
constraint equation (1.37). Furthermore, one has an in-
terpretation of W only in the approximate sense described
above; the “exact” interpretation of the theory can only
be formulated in terms of the original wave function
Y(r; T,X).

The relevance of the above discussion for the interpre-
tation of the wave function of the Universe should now
be clear. The wave function of the Universe ¥(a,¢) is
closely analogous to the “effective wave function”
W(T,X), with the Wheeler-DeWitt equation playing the
role of Eq. (2.10). Thus, we propose to view ¥(a,¢) as an
“effective wave function” —an approximate concept, val-
id only when a “good clock” dynamical variable is
present. We propose that it arises from an exact theory
which possesses a ‘““label time” 7 and is well defined and
interpretable in all circumstances. We shall attempt to
implement this proposal in the next section by reversing
the steps above which led from ¢¥(1;T,X) to W(T,X).

III. APROPOSAL FOR CANONICAL
QUANTUM GRAVITY

In this section we shall explore the possibility that the
“exact” quantum theory of gravity is such that a “Hera-
clitian time parameter” 7 is explicitly present. In such a
theory with time parameter 7, if a “‘good clock variable”
is present, we can pass to an “‘effective wave function” ¥,
which depends only on dynamical variables, in the
manner described in the previous section. Our goal is to
obtain a theory whereby this effective wave function
satisfies the Wheeler-DeWitt equation, since presumably
this would be necessary (and, presumably, also sufficient)
for the theory to reduce to general relativity in the classi-
cal limit.

We shall proceed by making a straightforward propo-
sal for the desired theory in the simple context of a
minisuperspace model (see Sec. I). We shall then explain
why this proposal fails to yield the Wheeler-DeWitt equa-
tion for the effective wave function unless the ‘“good
clock” actually is a “perfect clock™ in the sense that its
Hamiltonian is H;=—id/0T. Nevertheless, we then
will proceed to describe a general (i.e., not restricted to
minisuperspace models) formulation of a class of propo-
sals having the character of our minisuperspace proposal.

(2.10)



2610

We will focus attention on one of them and show that it
corresponds classically to general relativity with an arbi-
trary, unspecified cosmological constant. Thus, although
this proposal fails to do what was originally intended
(since it does not correspond classically to ordinary gen-
eral relativity) and although (as discussed further below)
it may suffer from serious difficulties in the context of
general spacetimes, we hope that both the nature of the
attempt and the resulting theory will be of some interest.

Our proposal in the minisuperspace case is based
directly upon analogy with the discussion of the previous
section. It consists, in essence, of simply omitting the
constraint (1.12) from the theory. Thus, the wave func-
tion of the Universe is taken to be a function of a “Hera-
clitian time parameter” 7 and the dynamical variables,
which, for simplicity and definiteness, we take to be a and
¢ as in the model of Sec. I. Thus, Y=1v(7;a,) is directly
analogous to an ordinary Schrodinger wave function. It
satisfies the Schrodinger equation

i — gy 3.1)
or

which, for our model takes the explicit form

0% _ 19 | 9y |_ 1 3% s
ior =N | 127 30 |“oa | 247 22 T VW

(3.2)

[see Eq. (1.10) above] but now the constraint equation
F£P=0 is not imposed. As a consequence, ¥ has a non-
trivial time development. Indeed, if we normalize ¥ in a
and ¢ and use the natural (metric) volume element
a’da d ¢ on minisuperspace, we may consistently give the
straightforward interpretation of ¥(7;a,¢) as yielding the
amplitude for an observer to measure the values a and ¢
at time 7.

Thus, our proposal for the minisuperspace case can be
made to yield a mathematically sensible quantum theory
which can be interpreted in a straightforward way. How-
ever, it remains to be seen whether it corresponds to gen-
eral relativity (or, some other physically viable theory) in
the classical limit. To investigate this issue we assume
that one of our dynamical variables, denoted T, is a
“good clock variable” in the sense of the previous sec-
tion. Then, as discussed in the previous section, the wave
function ¥ will approximately factor as

WnT,X)=x(r; T)VT,X), (3.3)

where X denotes the remaining dynamical variable(s). (In
our simple model there would be only one such additional
dynamical variable, but our discussion does not depend
upon the details of this model and would apply if many
more dynamical degrees of freedom were present.) As in
the previous section, the Schrodinger equation (3.2) to-
gether with our “‘good clock” assumptions will imply an
equation for our effective wave function W(7,X). Indeed,
by precisely the same derivation as led to Eq. (2.10) we
obtain

. o¥

1% (3.4)

+Hyw=0 .
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However, except in the case H;y=—id/9dT (correspond-
ing to the Hamiltonian of a perfect clock), this is not the
same as the Wheeler-DeWitt equation which, in the
present circumstances, takes the form

H¥W+HyW=0 . (3.5)

Thus, the correlations among the dynamical variables im-
plied by Eq. (3.4) will not, in general, be the same as those
implied by Eq. (3.5). Unless the dynamical variable T is a
“perfect clock,” we will not obtain Einstein’s equation in
the classical limit.

The reason why Egs. (3.4) and (3.5) are different can be
understood as follows. The only property of the “good
clock variable” that enters the derivation of Eq. (3.4) is
the behavior of the clock, i.e., the correlation between T
and 7. On the other hand, the relevant feature of the
clock with regard to the Wheeler-DeWitt equation (3.5) is
its energy, i.e., its contribution as a source of gravitation
in the Hamiltonian constraint equation. But it is easy to
build two clocks which have the same behavior (.e.,
essentially the same correlation between T and 7) but
vastly different energies. For example, one could use the
position of a free particle as a clock.! By using particles
of different masses, one can obtain a simple example of
two ‘“‘clock variables” which would make the same con-
tribution to Eq. (3.4) but very different contributions to
Eq. (3.5). Only in the case of a clock whose energy is re-
lated to its behavior in the same way as for a “perfect
clock” (i.e., a dynamical system whose true Hamiltonian
is H;=—id/9T) are the contributions of the clock to
Egs. (3.4) and (3.5) the same. Note that one can have an
“extremely good clock” such that Egs. (3.4) and (3.5)
differ drastically; the difference between Egs. (3.4) and
(3.5) has to do with the “active gravitational mass” of the
clock, not how well it runs. -

Given that our proposal does not correspond to ordi-
nary classical general relativity, one nevertheless may in-
quire further as to its physical viability by determining
what classical theory (if any) it does correspond to. In
the minisuperspace context in which it was formulated, it
is clear that it corresponds classically to a theory in
which the Hamiltonian constraint is not imposed, but the
usual Einstein evolution equations are retained. Howev-
er, to investigate its viability, it is worthwhile to general-
ize our proposal and obtain the corresponding classical
theory for arbitrary spacetimes. [Note that there are
many possible ways to generalize the proposal since, in
particular, there are many inequivalent (on general space-
times) theories which reduce to the same theory in
minisuperspace models.] Since our proposals for a quan-
tum theory in the minisuperspace case involved dropping
the applicable constraint equation, one way of generaliz-
ing our proposal to arbitrary spacetimes would be simply
to drop all of the constraint equations of general relativi-
ty (at both the classical and quantum levels). More pre-
cisely we could take for the classical theory the same
Hamiltonian, Eq. (1.4), as occurs in ordinary general rela-
tivity, but now view N and N' as fixed (though
unspecified) functions, which are not to be varied in ob-
taining Hamilton’s equations of motion. In quantum
theory, the Schrodinger equation (1.5) would remain, but
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the constraints (1.6) and (1.7) would be absent. Such a
theory would possess the desired “Heraclitian time pa-
rameter”” but would correspond classically to a theory
which differs sufficiently from ordinary general relativity
(in that it allows many more solutions to the field equa-
tions) that it would not be physically viable.

However, it is not necessary to take such a drastic step
in generalizing the proposal to arbitrary spacetimes. In
particular, there is no need to drop the momentum con-
straints (1.7). Thus, we could again take the Hamiltonian
to be given by Eq. (1.4), now treat N' as a Lagrange mul-
tiplier (to be varied in obtaining the equations of motion)
as in ordinary general relativity, but treat N as a fixed
(though unspecified) function. Again, however, the clas-
sical theory obtained in this manner will admit many
more solutions than ordinary general relativity. Indeed,
it is not difficult to show that solutions of the vacuum
field equations in this theory can be put in correspon-
dence with solutions of the ordinary Einstein equation
with arbitrary irrotational dust matter.

However, it should be noted that the Hamiltonian con-
straint equation (1.2) of ordinary general relativity actual-
ly represents infinitely many constraints (namely, one
holding at each point of space), but only one constraint
need be dropped in order to obtain a nontrivial Heracli-
tian time variable. Thus, we could obtain a classical
theory which corresponds much more closely to ordinary
general relativity by allowing all but “one degree of free-
dom” of N also to be varied in the Hamiltonian. For ex-
ample, we could fix only the spatial average of N and
thereby obtain a classical theory which corresponds to
ordinary general relativity with irrotational dust of uni-
form density on the orthogonal hypersurfaces. This
would represent only a “one-parameter generalization” of
general relativity, and thus would not differ as greatly
from ordinary general relativity as the previous propo-
sals. However, the classical theory has the undesirable
feature of possessing locally preferred Lorentz frames.

Rather than investigate the nature of this theory at the
classical and quantum level, we will consider a slight
modification of it, whereby N is required to be a fixed
function of the dynamical variables (so that it still cannot
be varied independently) rather than a fixed (or partially
fixed) function on spacetime. As we shall see, by a partic-
ular such choice of N, we can obtain a “‘one-parameter
generalization” or ordinary classical general relativity
which preserves “local Lorentz invariance,” and, indeed,
corresponds classically to general relativity with an arbi-
trary cosmological constant. The canonical quantization
of this theory will possess a Heraclitian time parameter of
the type we have been seeking. We shall proceed by giv-
ing Lorentzian and Hamiltonian formulations of this
theory at the classical level and then investigating the na-
ture of the quantum theory in our minisuperspace model.
This theory has been proposed by a number of authors,?
primarily with regard to the cosmological-constant prob-
lem. It has been described elsewhere by one of us?! with
regard to the problem of time in quantum gravity; for
completeness we shall repeat some of the discussion of
Ref. 21 here. An equivalent proposal has been made re-
cently by Sorkin,?? who was motivated by considerations
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which were different from (though not entirely unrelated
to) ours.

Our theory involves, as usual, a spacetime metric g,
on a four-dimensional background manifold M. Howev-
er, we now additionally require that M be orientable and
we fix a volume element 7,3 = [ 4pc4) ON M as part of the
background structure. We require the metric to satisfy

g =det(g,,)= —1, where the determinant is calculated
using  Tgpes, i€ € =CupBealer€eun V" where
nbed=nplabedl i5 determined by 1“**“n,,.,=4\. In other

words we require the natural volume element associated
with g,, to agree with 7,,.. Locally, this requirement
places no restriction on the spacetime geometry in the
sense that, locally (i.e., in any sufficiently small open set),
any metric is related to one satisfying g=—1 by a
diffeomorphism. Globally this need not always be true
since, in particular, the total volume of M computed us-
ing g, and 7, would have to be the same in order for
8ap to be diffeomorphic to a metric with g= —1. Such
global restrictions actually could be avoided in the for-
malism by requiring g to be any fixed (i.e., not to be
varied as g, is varied) but unspecified function on space-
time (rather than —1). In any case, such global restric-
tions will not affect the derivation of the equations of
motion in the classical and quantum cases, which we ulti-
mately shall take as defining theory, so we shall ignore
these possible global restrictions.

s=[Rr,

where the volume element 7),,.; (which is required to
agree with the natural volume element of g,,) is under-
stood in the integral. It is clear that any solution of the
usual Einstein’s equation (in the “gauge” g= —1) will be
an extremum of S, and, thus, will satisfy the new classical
field equations. However, more solutions of the new field
equations are possible because S need only be an ex-
tremum with respect to variations 8g,, which preserve
g = —1, i.e., which satisfy g“”Sgab =0. Since by the usual
calculation we have

88 = [ Gsg,,

(3.6)

(3.7

it is clear that the extrema of S are precisely the solutions
of the trace-free Einstein’s equation

b b—
G®—1Gg®=0. (3.8)
More generally, if matter fields are present, the field equa-
tions become

Gab'_%Ggab:Tab_%Tgab , (39)
where T,, is the usual stress-energy tensor of the matter
fields (obtained by functional differentiation of the matter
action with respect to the metric). As in the ordinary
Einstein case, by the equations of motion of the matter
fields, T,, will satisfy V’T,, =0. Hence, taking the diver-
gence of Eq. (3.9) and using the Bianchi identity we ob-
tain

V,(G—T)=0, (3.10)

ie.,
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G — T =const=4A . (3.11)

Thus, the equations of motion (3.9) are equivalent to

G®—Agt=T°, (3.12)

where A is a constant. This is precisely the form of
Einstein’s equation with a cosmological constant. How-
ever, here A is not prescribed in advance but rather
comprises part of the initial data; solutions with all possi-
ble values of A are allowed. Thus, as claimed above, the
classical theory obtained from the action (3.6) with the
restriction g = —1 is the same as general relativity with
an arbitrary, unspecified cosmological constant.

In order to proceed with the canonical quantization of
this theory we must cast the classical theory in Hamil-
tonian form. This can be done by the same procedure as
in ordinary general relativity. As in that case we identify
the induced metric h,;, on a three-dimensional hypersur-
face = as the configuration variable. The canonically
conjugate momentum variable

_ab_ 8

: (3.13)
Shllb
again is given by
7=h'"*K*®—h"K), (3.14)

where K, is the extrinsic curvature of X and
h=det(h,,). [Here the volume element >, =154t
on 2 is used to calculate h, where ¢ is the “time flow vec-
tor field” (see, e.g., Ref. 2).] The Hamiltonian again takes
the form

H= fz(NHO-FN"H,, ), (3.15)
where N and N again have the intepretation, respective-
ly, of lapse function and shift vector, and H, and H, are
given by the same expressions as in ordinary general rela-
tivity [see Egs. (1.2) and (1.3) above]. (Here and in all in-
tegrals over 3 below, the volume element *’5,,. is under-
stood.) The major difference which occurs here is that,
on account of the condition g = — 1, the lapse function N
no longer is an independent variable. Rather, it is given
in terms of the dynamical variables #,, by

N=p"12, (3.16)

As already indicated in our discussion above, the most
important consequence of this change of status of N is
that the Hamiltonian constraint equation, H,=0, of ordi-
nary general relativity, which is obtained by independent
variation of N, no longer occurs as a constraint equation
here and hence the Hamiltonian # does not vanish iden-
tically for solutions. The momentum constraints

H,=0 (3.17)

do remain present, since they are obtained by variation of
the shift vector N which remains an independent vari-
able.

Although the Hamiltonian constraint is not present, it
is almost recovered by the condition that dynamical evo-
lution preserve the momentum constraints (3.17). Taking
the Poisson brackets of the Hamiltonian % with the in-
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tegrated momentum constraint f &°H, (where £° is an ar-

bitrary vector field on =) we obtain the additional con-
straint

0= {#, | &H, |= [ &€D,(h~'2H,) . 3.18
[ﬁ N ] J D o) (3.18)
This implies that

H,=h'2A, (3.19)

where A is a spatial constant. The equations of motion
then imply that A does not vary with time either. Thus,
in essence, in the present theory the Hamiltonian con-
straint H;=0, of ordinary general relativity, is replaced
by Eq. (3.19). Note that the derivation of Eq. (3.19) cor-
responds in the Hamiltonian formulation to the deriva-
tion of Eq. (3.12) above.

The canonical quantization of the theory proceeds as in
the case of ordinary general relativity as described in Sec.
I. The state vector is taken to be a functional of the
dynamical variable h,, on = (as well as the function of
time), Y=1l(¢;h,,). The momentum constraint corre-
sponding to (3.17) is imposed as before by requiring ¥ to
satisfy

Sy _
J (D) 5h, O (3.20)

which, again, has the interpretation that ¥ depends only
on the three-geometry. However, in place of the Hamil-
tonian constraint (1.6), we now have the weaker condi-
tion arising from the constraint (3.18):

[ E°D, (™ Hy)p=0 . (3.21)
Again, ¥ will evolve via the Schrodinger equation
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i == fzh Hyo . (3.22)

However, since the right-hand side of Eq. (3.22) does not
vanish, ¥ will have a nontrivial time dependence, and ¢
will play the role of a Heraclitian time parameter. Note
that the theory does not have a “reparametrization in-
variance” t —7(¢,x ) on account of Eq. (3.16), which fixes
the lapse function in terms of the dynamical variables.
Thus ¢ is analogous to the preferred time of Schrodinger
theory. However, one could parametrize Eq. (3.22)
directly (in the same manner as done in Sec. II) to write it
in the form

i%'f- = [ Mrx)h ™\ Hoy (3.23)
where N is an arbitrary positive function, so that it ap-
pears more directly analogous to Eq. (2.1). As in ordi-
nary Schrodinger quantum mechanics, neither ¢ nor 7 are
directly measurable. The predictions of the theory must
be formulated in terms of the correlations of the measur-
able dynamical variables. As discussed in Sec. II, such
predictions are easiest to state when a ‘““good clock”
dynamical variable is present, although of course, the
presence of such a variable is not necessary either for the
formulation or interpretation of the theory.
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Note that the solutions to Eq. (3.22) formally are su-
perpositions of ‘“eigenstates of the cosmological con-
stant”:

Hpp= fzh*I/ZHO\vA:A% ; (3.24)
i.e., formally, the general solution of the Schrdédinger
equation (3.22) is of the form

SIS

where 9/, satisfies Eq. (3.24) and the integral in the phase
factor is over the spacetime region between the initial
slice and the time slice of interest, using the volume ele-
ment 1,,.,. (Thus, the phase factor has the interpretation
of being simply the cosmological constant times the
four-volume of this region of spacetime.) From Eq. (3.25)
it can been seen that the nontrivial time dependence of
arises from the superposition of states corresponding to
different values of the cosmological constant.

The new features of the wave function of the Universe
in this theory are best elucidated by examining in con-
crete detail the nature of our minisuperspace model with
dynamical variables a and ¢. We again consider the
cosmologically flat (“k=0") case but now write the
metric in the form

Y()= [dAa(A)exp (3.25)

ds?’=—a " %dt*+aXdx*+dy*+dz?) (3.26)
so that g = —1. The Hamiltonian for this minisuperspace
model in our new theory is

1 1 :

H=———mi+——u5+ V() . 3.27)

12¢** 2a5 ¢ ¢

Since the model is homogeneous, all of the constraints are
automatically satisfied. Thus, any solution ¥(¢;a,¢$) of
the Schrodinger equation

w_, 1 o fau]| 1oy
"ot + 1243 9a %3a 2a° 34? +V(d) (3.28)

is a possible wave function of the Universe. Here we
have again chosen the “Laplacian” factor ordering for
the momentum terms. Note that, even when written in
the parametrized form (3.23), this equation is not the
same as Eq. (3.2) above, as a consequence of the fact that
here the lapse function is a function of dynamical vari-
ables and hence is an “operator” rather than a ‘“‘c num-
ber.” Nevertheless, Egs. (3.2) and (3.28) are qualitatively
similar, and the remarks made at the beginning of this
section concerning the inequivalence of Eq. (3.2) to the
Wheeler-DeWitt equation apply with equal validity to
Eq. (3.28).

The Hamiltonian operator appearing on the right-hand
side of Eq. (3.28) is formally self-adjoint; i.e., more pre-
cisely, it is symmetric on the domain of smooth functions
of compact support in L*(a,¢), where we now use the
natural measure a’dad¢$ on minisuperspace [which
arises from the metric on minisuperspace obtained from
the kinetic terms in Eq. (3.27)]. Since this operator is
“real,” it always admits a self-adjoint extension (see
Theorem X.3 of Ref. 23). Thus, the quantum dynamics
can be made rigorously well defined, and both the
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mathematical structure and the interpretation of this
model is exactly as in ordinary Schrodinger quantum
mechanics.

In the case V=0, corresponding to a free, massless
Klein-Gordon scalar field, Eq. (3.28) becomes simply

B _ 3 9 | 3|, 1 ¥
o= " ap o Pop | T2 ag (3.29)

where pEaS, and the measure in the new variables (p, )
is pdpd¢$. Remarkably, the Hamiltonian is identical (up
to trivial factors) to that of the Laplacian operator in po-
lar coordinates in a two-dimensional flat space, except for
the minus sign occurring in the first term and the fact
that here ¢ has the range — o to o rather than O to 2.
Thus, it can be seen immediately that the “‘eigenstates of
cosmological constant” have the form

Ya,,(p,¢)=exp(—ip$)J;,((4A/3)%p) , (3.30)
where J, denotes the Bessel function of order v and
n=(%)""p. These eigenstates correspond to solutions of
the Wheeler-DeWitt equation for ordinary general rela-
tivity with a fixed value A of the cosmological constant;
they fail to be square integrable on minisuperspace.
However, there is, of course, no difficulty in obtaining su-
perpositions of the form (3.25) which are square integr-
able. Thus, we see how a persistent problem for obtain-
ing a probabilistic interpretation in the usual approach,
namely, the failure of the wave function to be normaliz-
able, is avoided here.

Typical dynamical variables, such as a, will fail to-com-
mute with the Hamiltonian. In contrast with the usual
approach, this does not pose any difficulty with regard to
the measurability of these quantities. However, it should
be noted that such a measurement will influence the
probability distribution for the value of the “energy,” i.e.,
cosmological constant. Thus, in this theory, observers
can, in effect, change the value of the cosmological con-
stant by making measurements. However, one would ex-
pect that the uncertainty in the cosmological constant in-
duced by a measurement would be of order AA=AE /V,
where AE is the uncertainty induced in the energy and V
is the spatial volume of the Universe (which would be
finite for a three-torus model), in which case AA would be
negligible for any physically realistic measurement.

In the context of minisuperspace models, the only
difficulty with the above theory is its physical viability. It
might appear that there is a serious problem in this re-
gard, since it corresponds classically to general relativity
with an arbitrary value of A. We know that the observed
value of A in our Universe is extremely small ( < 107120,
but there apparently is nothing in the theory to protect us
from solutions with much larger values of A. However, it
should be noted that a similar ‘““‘cosmological-constant
problem” occurs in the usual approach to quantum gravi-
ty. There A is a fixed parameter and one could argue that
it is natural to set the ‘bare” value of A equal to zero.
However, there is then apparently nothing to protect us
from having the effective (renormalized) value of A take
on much larger values. Thus, what we have is a modified
version of the usual cosmological-constant problem. The
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“problem” now is shifted from the issue of why an
effective coupling constant is so small to the issue of why
the initial conditions of the Universe were such that a
freely specificable quantity in the theory is so small.
Although in the context of minisuperspace models the
above proposal provides a mathematically (and, perhaps,
physically) viable quantum theory of gravitation, it is far
from clear that it will continue to do so in the context of
general spacetimes. Although an observable in the gen-
eral theory no longer need commute with the Hamiltoni-
an, it still must commute with the constraints (3.21)
(which are trivial in the minisuperspace case on account
of homogeneity). Thus, the theory may well possess the
same type of difficulties that plague the ‘““naive interpreta-
tion” of canonical quantum gravity discussed in Sec. I. It
is clear that much more work will be required before one
can determine whether any proposal of the type con-
sidered here (i.e., introducing an external parameter time)
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can provide a viable solution to the problem of time in
quantum gravity. However, we hope that it may provide
a step along the road to finding such a solution.

ACKNOWLEDGMENTS

We have benefited from numerous discussions with
many colleagues, including Robert Geroch, James Har-
tle, Karel Kuchaf, and Rafael Sorkin. This research was
supported in part by the Canadian Institute for Ad-
vanced Research, by the Natural Sciences and Engineer-
ing Research Council of Canada, and by NSF Grant No.
PHY 84-16691 to the University of Chicago. One of us
(W.G.U.) wishes to thank the Institute for Theoretical
Physics (supported by NSF Grant No. PHY 82-17853,
supplemented by funds from NASA) for hospitality and
support.

1For a discussion of the role of time in canonical quantum grav-
ity which differs in some important respects from ours, see J.
B. Hartle Phys. Rev. D 37, 2818 (1988); and (to be pub-
lished).

2R. M. Wald, General Relativity (University of Chicago Press,
Chicago, 1984).

3In fact, the Ashtekar representation may have significant tech-
nical advantages over the coordinate representation in gen-
eral relativity. [See A. Ashtekar, New Perspectives in Canoni-
cal Gravity (Bibliopolis, Naples, in press).] In addition, in the
coordinate representation for general relativity, the usual
form of the canonical commutation relations imposed on 4,
and 7°® are not really appropriate on account of the “cone-
space” structure of the configuration space [see C. J. Isham in
Relativity, Groups, and Topology II, proceedings of the Les
Houches Summer School, Les Houches, France, 1983, edited
by R. Stora and B. S. DeWitt (Les Houches Summer School
Proceedings Vol. 40) (Elsevier, Amsterdam, 1984).] Howev-
er, neither of these points should affect the interpretive issues
under consideration here.

4]. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).

5A. Vilenkin, Phys. Rev. D 37, 888 (1988).

SD. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983).

7A. Vilenkin, Phys. Rev. D 39, 1116 (1989).

8T. Banks, W. Fischler, and L. Susskind, Nucl. Phys. B262, 159
(1985).

9. J. Halliwell and S. W. Hawking, Phys. Rev. D 31, 1777
(1985). '

10C, W. Misner, in Magic Without Magic, edited by J. Klauder
(Freeman, San Francisco, 1972).

1B, S. Kay and R. M. Wald (unpublished).

12A. Ashtekar and A. Magnon, Proc. R. Soc. London A346,
375 (1975); B. S. Kay, Commun. Math. Phys. 62, 55 (1978).

13K. Kuchat, J. Math. Phys. 22, 2640 (1981).

14W. G. Unruh, in Proceedings of the Fourth Seminar on Quan-
tum Gravity, edited by M. A. Markov, V. A. Berezin, and V.
P. Frolov (World Scientific, Singapore, 1988).

I5K. Kucha¥, in Quantum Gravity 2, edited by C. J. Isham, R.
Penrose, and D. W. Sciama (Clarendon, Oxford, 1981); K.
Kuchaf, in the Proceedings of the Osgood Hill Conference,

May, 1988 (unpublished).

16This theorem may be viewed as a strengthening of a result
which appears in W. Pauli, Die Allgemeinen Prinzipien der
Wellenmechanik, edited by S. Flugge (Handbuch d. Physik,
V) (Springer, Berlin, 1958), p. 60. Note that our theorem
conflicts with a statement in A. Peres, Am. J. Phys. 48, 552
(1980).

17R. F. Streater and A. S. Wightman PCT, Spin and Statistics,
and All That (Benjamin, New York, 1964).

18Note that in such discussions the importance of the Everett
interpretation usually is stressed. However, we are concerned
here solely with the specification of rules for what an observer
“sees,” not with extraneous language (such as “reduction of
the wave packet”). Some discussions of the Everett interpre-
tation appear to evade this issue of what an observer “sees,”
in which case they do not provide an “interpretation” in our
sense. Those which do not evade this issue provide rules
which are equivalent to those of other interpretations.

19This point also has been made by D. N. Page, in Quantum
Gravity, proceedings of the Fourth Seminar, Moscow, USSR,
1987, edited by M. A. Markov, V. A. Berezin, and V. P. Fro-
lov (World Scientific, Singapore, 1988).

20A. Einstein, Siz. Preuss. Acad. Scis. (1919) translated as “Do
Gravitational Fields Play an Essential Role in the Structure
of Elementary Particles of Matter” in The Principle of Rela-
tivity, by A. Einstein et al. (Dover, New York, 1952); J. J. van
de Bij, H. van Dam, and Y. J. Ng. Phys. Acta A 116, 307
(1982); F. Wilczek, Phys. Rep. 104, 111 (1984); A. Zee, in
Gauge Interactions, proceedings of the 20th Orbis Scientiae:
Dedicated to P. A. M. Dirac’s 80th year, Miami, Florida,
1983, edited by B. Kursunoglu and A. Perlmutter (Plenum,
New York, 1984); S. Weinberg, Rev. Mod. Phys. 61, 1 (1989);
M. Henneaux and C. Teitelboim, University of Texas report,
1988 (unpublished).

21W. G. Unruh, Phys. Rev. D 40, 1048 (1989).

22R. Sorkin, in History of Modern Gauge Theories, edited by M.
Dresaen and A. Rosenblum (Plenum, New York, in press).

23M. Reed and B. Simon, Fourier Analysis, Self-Adjointness
(Academic, New York, 1975).



