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Aided by optical cavities 
and superconducting  circuits,
researchers are coaxing 
ever-larger objects to wiggle, 
shake, and flex in ways that 
are distinctly quantum 
mechanical.

Markus Aspelmeyer, Pierre Meystre, and Keith Schwab 

optomechanics

20 μm

Quantum

Give me a place to stand and with a lever I will move the
whole world. —Archimedes 

O
ver two millennia ago, scholars from
antiquity had already come to under-
stand the power of simple mechanical
elements. And from that understand-
ing they formulated an enduring,

common-sense notion of the nature of reality, de-
scribed thusly in Plato’s The Republic:

The same thing cannot ever act or be
acted upon in two opposite ways, or be
two opposite things, at the same time,
in respect of the same part of itself, and
in relation to the same object.

Today researchers at the cutting edge of physics are
still exploiting simple mechanical elements as tools
with which to carefully probe our world. But unlike
their predecessors, they are preparing those ele-
ments deeply in the quantum regime and, in the
process, challenging ancient notions of reality. Iron-
ically, today’s devices, though similar in many ways
to those of antiquity, steer us to a completely differ-
ent worldview—one in which an object, possibly
even a macroscopic one, can indeed act in two ways
at the same time.

Two key developments, born of two converg-
ing perspectives on the physical world, have en-
abled the advance. From the top-down perspective,
nanoscience and the semiconductor industries have
developed advanced materials and processing tech-

niques, which in turn have given rise to ultrasensi-
tive micromechanical and nanomechanical devices.
Such devices can probe extremely tiny forces, often
with spatial resolution at atomic scales, as exempli-
fied by the recent measurements of the Casimir
force (see the article by Steve Lamoreaux, PHYSICS
TODAY, February 2007, page 40) and the mechanical
detection and imaging of a single electron spin (see
PHYSICS TODAY, October 2004, page 22). From the
 bottom-up perspective, quantum optics and atomic
physics have yielded an exquisite understanding of
the mechanical aspects of light–matter interaction,
including how quantum mechanics limits the
 ultimate sensitivity of measurements and how
back- action—the influence a quantum measure-
ment necessarily exerts on the object being meas-
ured—can be harnessed to control quantum states
of mechanical systems. 

Quantum optomechanics combines the two
perspectives: By pairing optical or microwave cavi-
ties with mechanical resonators to form a cavity
opto mechanical system, one acquires a means to
achieve quantum control over mechanical motion
or, conversely, mechanical control over optical or
microwave fields. The laws of quantum physics can
then be made to reveal themselves in the motion 
of objects ranging in size from nanometers to 
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centi meters, from femtograms to kilograms. Cavity
opto mechanical systems hold promise as a means to
both observe and control the quantum states of
macroscopic objects and to measure feeble forces
and fields with a sensitivity, precision, and accuracy
approaching the quantum limit1 (see the article by
Keith Schwab and Michael Roukes, PHYSICS TODAY,
July 2005, page 36).

Early optomechanics
Put simply, a cavity optomechanical system is an
optical or microwave cavity that contains a mechan-
ical element, a moving part that can support collec-
tive oscillation modes whose quanta of excitation

are known as phonons. The system could be as sim-
ple as an optical cavity in which one of the end mir-
rors oscillates as if attached to a spring.

Among the first well-understood cavity opto-
mechanical systems were the early gravitational -
wave detectors developed in the late 1970s and early
1980s, with major contributions by Vladimir Bragin-
sky, Kip Thorne, Carlton Caves, William Unruh, and
others.2 Such detectors are essentially giant inter -
ferometers, with each arm being a kilometers-long
optical cavity bounded by mirrors several kilo-
grams in mass (see figure 1). In theory, a ripple in
the local curvature of spacetime due to a passing
gravitational wave should alter each cavity’s optical
path length, modulate its resonance frequency, and,
in turn, alter the optical transmission to a photo -
detector. The Laser Interferometer Gravitational -
Wave Observatory, currently the gold standard of
gravitational-wave detectors, can achieve dis -
placement sensitivities as high as 10−19 m Hz−1/2. In
other words, it can detect a displacement of about
1/1000 of a proton radius based on a one-second
measurement. 

A related approach to detecting gravitational
waves calls for using a massive, multiton cylinder
as a gravitational -wave antenna. In theory, the cylin-
der should undergo bending oscillations in the pres-
ence of a passing gravitational wave. Provided the
cylinder is integrated into a high-quality supercon-
ducting microwave cavity, that bending should de-
tectably modulate the cavity’s resonance frequency.
Although the interferometer and bar- antenna ap-
proaches to gravitational -wave detection deploy
very different technologies, both rely on the under-
lying concept that mechanical motion can be har-
nessed to modulate an electromagnetic resonance.

Thirty years after the first deep studies of the
limits of gravitational wave detectors, it’s evident 
to us that Braginsky, Caves, and their contempo-
raries had two very exciting things to say: First,
 gravitational-wave astronomy might be possible,
and second, so might the measurement and manip-
ulation of macroscopic objects at their quantum lim-
its.3 The second message has motivated an increas-
ing number of mostly young researchers trained in
areas as diverse as solid-state physics, quantum in-
formation, and computation to look for and exploit
the quantum behavior of large mechanical objects in
tabletop experiments.

Getting to zero
Quantum effects in any system are most pro-
nounced when the influence of thermal fluctuations
can be ignored. So, ideally, a mechanical quantum
experiment would start with the mechanical ele-
ment in its quantum ground state of motion, in
which all thermal quanta have been removed. In
practice, however, one settles for cooling the ele-
ment such that for a given mechanical mode the
time-averaged number of thermal phonons, the so-
called occupation number N, is less than one. Put
another way, the mean thermal energy kBT should
be less than the quantum of mechanical energy ħωm,
so that N ≈ kBT/ħωm < 1. Here kB is Boltzmann’s con-
stant, ħ is the reduced Planck’s constant, T is the
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Figure 1. Chasing waves. (a) The
Laser Interferometer Gravitational -
Wave Observatory in Livingston,
Louisiana, and similar gravitational -
wave detectors were among the
first cavity optomechanical systems.
(b) They typically consist of massive
mirrors suspended to form a pair of
optical cavities, each some kilo -
meters long. The cavities make up
the arms of a Michelson inter -
ferometer and together can detect
changes in distance as small as
10−21 relative to the cavity length.
(c) Mirrors used in the gravitational-
wave detector GEO600, located
near Sarstedt, Germany. 
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temperature, and ωm is the frequency of the vibra-
tional mode of the mechanical element. 

Removing thermal phonons from the mechan-
ical element is a key experimental challenge. Inter-
estingly, the ideas and methods for doing so were
theoretically developed as early as the 1960s. The
main idea is to exploit the intracavity radiation pres-
sure, the force due to momentum transfer associ-
ated with photon scattering. In particular, Bragin-
sky realized that the finite time delay between a
change in position of the mechanical element and
the response of the intracavity field allows the radi-
ation field to extract work from or perform work on
the mechanical system. 

The process is best illustrated for the case of a
basic Fabry–Perot resonator (see figure 2). When
both of the resonator’s mirrors are held fixed, the
optical transmission is sharply peaked near the cav-
ity resonance frequencies ωp = pπc/L, where L is the
mirror separation, p is a positive integer, and c is the
speed of light. The resonances result from the con-
structive interferences between the partial waves
propagating back and forth inside the cavity. The
higher the quality of the mirror, the more roundtrips
light takes before exiting the cavity, and the sharper
are the resonance peaks.

If one end mirror is mounted on a spring to
form a simple harmonic oscillator, a pump laser of
frequency ωL will be modulated by the mechanical
frequency and form sidebands with frequencies
ωL ± ωm. From a quantum mechanical perspective,
the process is analogous to the generation of Stokes
and anti-Stokes sidebands in Raman scattering: The
upper sideband is a result of pump-laser photons
acquiring energy by annihilating thermal phonons
in the mechanical element; the lower sideband re-
sults from photons depositing phonons and shed-
ding energy. The first process occurs at a rate pro-
portional to the occupation factor N of the
mechanical mode of interest; the second, at a rate
proportional to N + 1. 

By carefully detuning the frequency of the
pump field relative to a specific cavity resonance ωc ,
one can resonantly enhance one of the processes. In
particular, red-detuning from the cavity resonance
enhances the upper sideband and promotes extrac-
tion of energy from the mechanical element. As long
as the up-converted photons leave the cavity suffi-
ciently fast, carrying with them their newly ac-
quired energy, the process can cool the motion of the
mechanical element to well below the temperature
of its surroundings. Although the quantum noise of
the optical source imposes a fundamental cooling
limit, it is nonetheless theoretically possible to cool
the mechanical mode arbitrarily close to the quan-
tum ground state, N = 0. Furthermore, the coherent
interaction between photons and phonons allows
manipulations in the quantum regime, as pointed
out early on by one of us (Meystre), Peter Knight,
Paolo Tombesi, and Claude Fabre.

The technique, a form of sideband cooling, was
first demonstrated in experiments by Braginsky and
by David Blair in the microwave regime as a way to
reduce noise in gravitational -wave antennas.4 Since
2004, several laboratories around the world have

used the method to cool nano- and micromechanical
levers, in both the optical and microwave domains.
Today, high-quality optomechanical devices pro-
duce couplings strong enough to cool low-mass
levers—ranging from a few picograms to hundreds
of nanograms—to their ground state of motion. 

The methods used in cavity opto mechanics are
in many ways analogous to the conventional laser-
cooling techniques developed for quantum informa-
tion processing with trapped ions (see the article by
Ignacio Cirac and Peter Zoller, PHYSICS TODAY, March
2004, page 38). There, the collective normal-mode os-
cillations of a string of ions modify the response of
the pump laser that drives their internal state. The re-
sulting optomechanical coupling between the ions’
motional and internal degrees of freedom allows one
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Figure 2. Quantum optomechanics: the basics. (a) If both end mirrors
of a Fabry–Perot cavity are fixed in place, pump-laser photons having
frequency ωL tuned to a cavity resonance arrive at a detector with no
frequency modulation. (The total transmission to the detector is indi-
cated in the plot at right by the solid line; the cavity transmission spec-
trum is indicated by the dashed line.) (b) However, if one mirror is al-
lowed to oscillate harmonically, pump photons are modulated by the
oscillation frequency ωm: A pump beam tuned to a cavity resonance will
yield sidebands of equal amplitude at frequencies ωL ± ωm. Each photon
in the upper sideband acquires energy by extracting a phonon from the
oscillator, and each photon in the lower sideband sheds energy by de-
positing a phonon. (c) By red-detuning the pump laser, one can en-
hance the upper sideband and thereby cool the oscillating mirror. (d) By
blue-detuning the pump laser, one enhances the lower sideband and
amplifies the mirror oscillations. (Figure prepared by Jonas Schmöle.)
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to cool the ions or prepare other quantum states of
interest.5 However, cavity optomechanics differs in
an important and attractive aspect: Whereas conven-
tional laser cooling relies on the fixed internal reso-
nances of materials to enhance light– matter interac-
tions, cavity opto mechanical cooling allows one to
engineer the resonance-enhancing structure. That
structure could be an optical cavity with a series of
narrow resonances or a microwave cavity such as a
superconducting LC circuit. 

A tale of few phonons
Until recently, the pioneering developments in opto -
mechanical coupling went largely unnoticed outside
of the experimental gravitation and quantum optics
communities. Michael Roukes, who realized nearly
two decades ago that high-frequency nanoscale me-
chanical devices could be chilled to the quantum
regime, is a  notable exception. Advances in materials
science and nanofabrication—particularly the rise of
nano- and microelectromechanical systems and opti-

cal microcavities—have since
opened the possibility of cou-
pling quantum optical modes
with mechanical devices in table-
top experiments.6 The original
ideas of optomechanical coupling
were extended in many new di-
rections and realized in widely
varied optomechanical systems
(see figure 3). In the past year,
those efforts have culminated in
the cooling of at least three differ-
ent micro mechanical systems to
within a fraction of a phonon of
their ground state of vibrational
motion. (Here and below, unless
otherwise specified, mechanical
cooling refers to cooling of the
center-of-mass motion.)

In a NIST experiment led by
John Teufel and Ray Simmonds,7

the mechanical resonator was a
circular aluminum membrane,
15 μm across and 100 nm thick,
that underwent drum-like vibra-
tions with a resonance frequency
of 10 MHz (see figure 3e). The
membrane was tightly coupled
to a superconducting microwave
cavity and chilled in a cryostat to
20 mK, at which the phonon
 occupation N was about 40.
 Sideband cooling was then used
to cool the membrane to N ≈ 0.3. 

At Caltech, Oskar Painter
and colleagues were similarly
successful using a 15-μm-long,
600-nm-wide, and 100-nm-thick
silicon beam as the opto -
mechanical system (see fig-
ure 3b).8 Clamped at both ends
to a silicon wafer, the suspended
beam acts  simultaneously as a
mechanical resonator and an

optical cavity. The mechanical mode of interest was
a breathing mode, a periodic widening and nar-
rowing that is most pronounced near the beam’s
midpoint and has a remarkably high quality factor
of 105. (On average, a phonon survives 105 oscilla-
tions before being lost to the environment.) And
periodic perforations patterned into the beam cre-
ate a photonic crystal cavity that confines light to
the same region around the beam’s midpoint. 

The co- localization of light and vibrational mo-
tion in such a small volume facilitates large opto-
mechanical coupling. Thus, after cryogenically
chilling the structure to 20 K, at which N ≈ 100, the
researchers could use sideband cooling to remove
the remaining phonons and cool the beam to
N ≈ 0.8. At that point, the group was able to observe
another genuine quantum feature: Near the ground
state, a mechanical resonator is significantly more
likely to absorb phonons than to emit them, and
that asymmetry reveals itself experimentally as a
preferential sideband scattering of blue-detuned
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Figure 3. Cavity optomechanical devices range from nanometer-sized structures of as
 little as 107 atoms and 10−20 kg to micromechanical structures of 1014 atoms and 10−11 kg to
macroscopic, centimeter-sized mirrors comprising more than 1020 atoms and weighing sev-
eral kilograms. They include (a) gases of ultracold atoms, (d) micro spheres, and (g) micro -
scale membranes, all of which have mechanical resonances that can couple with the light
inside an optical cavity; (b, c) flexible, nanoscale waveguides that have both optical and
 mechanical resonances; (e) superconducting membranes that exhibit drum-like vibrations
and can be integrated into microwave cavities; (f) microtoroidal waveguides having both
optical and mechanical resonances; and mechanically compliant mirrors, which can range
from the microscopic (h) to the macroscopic (i, j) and which introduce mechanical degrees
of freedom to an optical cavity when incorporated as an end mirror. (Figure prepared by
Jonas Schmöle. Images courtesy of (a) Ferdinand Brennecke, ETH Zürich; (d) the Vienna
Center for Quantum Science and Technology; (i) Christopher Wipf; and (j) LIGO Laboratory.
Other images adapted from (b) ref. 8, J. Chan et al.; (c) M. Li et al., Nature 456, 80, 2008; 
(e) ref. 7; (f ) ref. 10, E. Verhagen et al.; (g) J. D. Thompson et al., Nature 452, 72, 2008; and 
(h) G. D. Cole et al., Nat. Commun. 2, 231, 2011.)
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light over red- detuned light. (See figure 4.) 
The next challenge is to control the quantum

state of the mechanical resonator. A group led by An-
drew Cleland at the University of California, Santa
Barbara, took an important first step in that direction
by coupling an acoustic resonator to a qubit, a two-
state quantum system.9 The resonator was a 300-nm-
thick sheet of aluminum nitride, 40 μm long and
20 μm wide, whose thickness oscillates at a fre-
quency of 6 GHz. At such high oscillation frequen-
cies, the phonon energy ħωm is large, and therefore
a conventional dilution refrigerator—which can
reach temperatures near 25 mK—sufficed to cool the
resonator to an occupation factor N < 0.07. 

Exploiting the piezoelectric nature of AlN, the
Santa Barbara team then coupled the resonator to the
qubit, a superconducting Josephson junction, which
could in turn detect the presence of a single phonon.
A null result meant the mechanical resonator was in
the ground state. The technique is analogous to those
that have been developed over the years in cavity
and circuit quantum electrodynamics, except that
the photons are replaced by phonons. 

Not only did the resonator–qubit coupling
allow observation of the energy quantization and
other quantum features of the resonator, it also en-
abled controlled manipulation of the mechanical res-
onator at the few-phonon level. The Santa Barbara
group was able to observe a few coherent oscillations
of a single quantum exchanged between the qubit
and the resonator—a first demonstration of coherent
control over single quantum excitations in a micro-
mechanical resonator. Recent experiments at Caltech
and Harvard University and in Grenoble, France,
have made important further steps by coupling me-
chanical devices to a variety of other qubits. 

Single-quantum or few-quanta control can
occur only in a strong-coupling regime, where en-
ergy is exchanged between the mechanical res-
onator and the qubit or optical mode with very little
dissipation; loss of photons and phonons to the en-
vironment must be minimal. That regime has now
been reached with several micromechanical devices
in addition to the one used in the Santa Barbara ex-
periment.10 Eventually, such strong optomechanical
coupling will allow high-fidelity transfer of quan-
tum states between light and mechanical systems. It
should even be possible to generate entanglement
between photons and phonons. Conversely, phonon
fields can be mapped onto an optical mode to take
advantage of the reliable, high- efficiency detection
schemes available in optics. 

Promise in the field
The lure of quantum optomechanics goes far 
beyond simply adding another class of objects—
mechanical resonators—to the list of “tamed” quan-
tum systems. Rather, the promise is that just as
we’ve learned to couple mechanical elements with
the photons in an optical cavity, we can functional-
ize those same elements to couple with, say, the
spins in a magnetic material or the charges at a con-
ducting surface. That way, a mechanical element
would serve as a universal transducer, an interme-
diary between otherwise incompatible systems. Fly-

ing photons could be linked with stationary, non -
optical qubits, for instance. Only recently, a group
led by Philipp Treutlein at the University of Basel,
Switzerland, has demonstrated a hybrid opto -
mechanical system coupling ultracold atoms to a
micromechanical membrane. Such hybrid quantum
systems may be important in classical and quantum
information processing, for which the ability to con-
vert information from one form to another is crucial.
In fact, several laboratories are now working to cou-
ple single mechanical elements to both optical and
microwave frequency resonators, with the goal of
connecting superconducting microwave circuits
and qubits to optical fields. 

The connection between optomechanics and
atomic physics is particularly interesting. Not only
did laser cooling of atoms inspire and enable the
rapid progress in quantum optomechanics, it also
led to the discovery of other phenomena such as
 optomechanically induced transparency, the ana-
logue to electromagnetically induced transparency.
The effect, which exploits optical interference be-
tween a mechanical resonator’s excitation paths to
control the cavity transmission, may allow storage
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Figure 4. Quantum signatures near the ground state. (a) The
nanoscale beam shown here undergoes breathing-mode oscilla-
tions—successive expansions and contractions—that are strongest
near the center, as indicated in the simulated image at top. The perfo-
rations along the beam’s length form a photonic cavity that confines
light to the same region, as indicated in the bottom image. (b) A laser
field at an appropriately detuned frequency ωL can be coupled to the
waveguide via a tapered optical fiber and used to cool the breathing-
mode oscillations to near the ground state. (c) At that point, red-
 detuned photons are less likely to extract phonons and shift upward 
in frequency (blue arrow) than are blue-detuned photons to create
phonons and shift downward (red arrow). (Here, ωc is the cavity reso-
nance frequency and ωm is the breathing-mode frequency.) (d) The
asymmetry is detectable in experiments: With roughly three phonons
residing in the beam, the upper sideband (blue) generated from a red-
detuned laser is significantly smaller than the lower sideband (red)
generated from an equivalently blue-detuned laser. (Panels a–c 
courtesy of Oskar Painter and colleagues. Panel d adapted from 
ref. 8, H. Safavi-Naeini et al.)
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of light in arrays of cavity
optomechanical devices.11

Atomic systems can
also serve as mechanical
 elements in cavity opto -
mechanical systems.12 After
trapping 105 ultracold ru-
bidium atoms inside an op-
tical cavity, Dan Stamper-
Kurn and colleagues at the
University of California,
Berkeley, coupled the cloud
of atoms with a pump laser
that was detuned by the res-
onance frequency of the
atoms’ collective motion,
about 40 kHz. By blue-
detuning the pump laser so
that it deposited phonons
into the cloud, the group
was able to observe the
back-action exerted on the
atoms by the quantum fluc-
tuations of the optical field. 

The generation and ma-
nipulation of mechanical
quantum states is also a
challenging and important
goal for quantum metrology and sensing applica-
tions. To date, the force sensi tivity of atomic force
microscopes and other classical mechanical devices
already exceeds 10−18 N Hz−1/2. In other words, in less
than a second, one can measure a force as small as
the gravitational attraction between a person in Los
Angeles and another in New York. Still, we haven’t
reached the ultimate limit. Current implementa-
tions suffer from thermal noise and, eventually,
from noise  associated with quantum uncertainty. 

Fortunately, quantum physics provides a way
around thermal and quantum noise by way of what
are known as quantum nondemolition measure-
ments. Such measurements, first posited in the 1970s
by Braginsky and coworkers, typically call for gen-
erating a squeezed state—that is, confining the un-
wanted but unavoidable quantum noise to a variable
that is complementary to the variable of interest. 

Heisenberg’s uncertainty principle states that
certain pairs of physical properties—say, the ampli-
tude and phase of an electromagnetic wave—cannot
simultaneously be known with arbitrary precision.
But a measurement of the wave’s amplitude can be
performed in such a way that most of the uncertainty
is carried by the phase, or vice versa. Such squeezed
states of light have recently been shown to enhance
the sensitivity of gravitational -wave detectors13 (see
PHYSICS TODAY, November 2011, page 11). 

In principle, it is also possible to prepare mechan-
ical squeezed states in which nearly all of the quantum
uncertainty is confined to either the position or the mo-
mentum. In fact, the classical squeezing of micro -
mechanical oscillators below the thermal noise limit
was first demonstrated several years ago by Daniel
Rugar and colleagues at IBM.14  However, squeezing
below the standard quantum limit—the precision limit
for the case when quantum uncertainty is distributed

evenly among complemen-
tary properties—has yet to be
achieved. A number of strate-
gies based on Braginsky’s orig-
inal schemes, which can be
readily implemented in opto -
mechanical systems, are being
actively pursued. 

Macroscale quantum
mechanics
Although still speculative,
micromechanical oscillators
could offer a route to new
tests of quantum theory at
unprecedented size and
mass scales. Since funda-
mental particles behave
quantum mechanically, one
would by induction expect
that large collections of par-
ticles should also behave
quantum mechanically. But
that conclusion certainly
seems contrary to our every-
day classical experience
with ordinary matter. Even
large quantum conden-

sates—a cupful of superfluid helium, for in-
stance—which do display quantum properties
such as frictionless, quantized flow, do not display
macroscopic superposition states. 

To explain the so-called quantum measure-
ment problem, also notoriously known as
Schrödinger’s cat, some theorists propose that
standard quantum mechanics breaks down for
macroscopic objects in such a way that their super-
position is forbidden. In one such theory, gravita-
tion, which is always unshieldable, ultimately
causes massive objects to decohere, or transition
from quantum to classical behavior. In another the-
ory,  objects couple to a stochastic background field
that localizes the object at a rate that scales with the
 number of particles. 

Quantum optomechanics offers a promising
way to produce spatial superpositions in massive
objects such as mechanical levers or quartz nano -
spheres and to directly test theories of how they de-
cohere.15 Ongoing work in that direction builds on
optical-trapping and optical-cooling techniques
originally proposed by Arthur Ashkin16 and should
eventually allow a single trapped particle to be pre-
pared in a quantum superposition of two distinct
 center-of-mass states.

Approaching the problem from the opposite
 direction—from the bottom up—researchers in
 Vienna used conventional molecular-beam tech-
niques to produce  matter-wave interferences with
large, 430-atom molecules.17 Ultimately, it may be
possible to conduct similar quantum experiments
with even more massive mechanical systems. A
group led by Nergis Mavalvala of MIT recently
took a first step in that direction by cooling a
 kilogram-size oscillator to within about 200
phonons of the quantum ground state.18
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Macroscale mechanical quantum experi-
ments will have to overcome a number of daunt-
ing technical issues. Some of those issues—
identifying gravity’s role in decoherence, for 
example—might be resolved by conducting ex-
periments in free fall, perhaps aboard a satellite.
(Last year’s Caltech experiment, in which a
phonon occupancy of less than one was achieved
at a bath temperature of 20 K, shows that ground-
state cooling is now within the range of commer-
cial cryocoolers that can be flown on satellites.)
We are confident that coming experiments will
lead to a more profound understanding of quan-
tum mechanics, establish limits to its validity, or
confirm what we, and likely many others, be-
lieve—that technical issues such as environmen-
tal decoherence, and not the appearance of new
physical principles, establish the transition from
the quantum world to the classical. We have never
been so close to being able to truly address those
profound questions and to challenge Plato’s com-
monsense notion of reality in the laboratory. 
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Adopting the viewpoint that the standard perturbative quantization of general relativity provides an

effective description of quantum gravity that is valid at ordinary energies, we show that gravity as an

environment induces the rapid decoherence of stationary matter superposition states when the energy

differences in the superposition exceed the Planck energy scale.
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Introduction.—The emergence of the macroscopic
classical world from the microscopic quantum world is
commonly understood to be a consequence of the fact
that any given quantum system is open, unavoidably inter-
acting with unobserved environmental degrees of freedom
that will cause initial quantum superposition states of the
system to decohere, resulting in classical mixtures of
either-or alternatives [1–3]. Consider, for example, a sys-
tem consisting of a vibrating micrometer scale silicon
wire in ultrahigh vacuum at dilution fridge temperatures
(�10 mK). Assuming a realizable quality factor
Q� 105 that is limited by clamping radiation loss [4]
and elastic strain-coupled two level system defects
within the wire [5], an initial center of mass coherent
state superposition with separation �x� 1 nm will deco-
here in about a picosecond, rapidly enforcing classicality
in the dynamics of the vibrating wire. Suppose, however,
that the common sources of decoherence are removed
through levitating the silicon mass by optical [6,7] or
other means [8,9]. Can the coherence times of center of
mass superposition states be increased without bound
by removing the effects of clamping and defect loss in
this way and minimizing the interaction with the elec-
tromagnetic environment? More generally, can systems
of arbitrarily increasing mass energy be placed in non-
classical states, such as center of mass quantum super-
position states?

Gravity has been invoked in various ways as playing
a possible fundamental role in enforcing classicality of
matter systems beyond a certain scale [10–34]. Certainly,
one environment that cannot be avoided is the stochastic
gravitational radiation background arising from the big
bang and other sources [27,35]. A clue as to the possible
effect this environment might have on a low energy quan-
tum matter system comes from the fact that the space-time
metric in Einstein’s equations couples to the system via
its energy-momentum tensor. For a stationary system,
only its rest energy should be relevant for the decoherence
dynamics of an initial quantum superposition state.
Consider for the moment a model oscillator system
coupled via its energy to an oscillator environment,
described by the Hamiltonian

H ¼ @!0a
ya

�
1þX

i

�i

qi
�i

�
þX

i

�
p2
i

2mi

þ 1

2
mi!

2
i q

2
i

�
;

(1)

where !0 is the system oscillator’s frequency and �i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2mi!iÞ

p
is the ith bath oscillator’s zero-point uncer-

tainty. Assuming an Ohmic bath spectral density
Jð!Þ=ð@!0Þ2 ¼ �

P
i�

2
i �ð!�!iÞ ¼ C!=!2

0, for weak

system-bath dimensionless couplingC in the high tempera-
ture limit, we obtain the following time evolution of the
system density matrix in the Born-Markov approximation:

�n~nðtÞ ¼ e�i!0ðn�~nÞt�CðkBT=@Þðn�~nÞ2t�n~nð0Þ; (2)

where T is the oscillator bath temperature. Notice that
the thermal oscillator environment induces decoherence
of initial superpositions of different Fock states jni, j~ni
into mixtures of these states. By analogy, and with the aid
of dimensional analysis, we might therefore expect that a
stochastic gravitational environment will similarly deco-
here a matter system initially in a superposition of say
two different rest energy states E and ~Ewith a rate given by

�decohere � kBT

@

�
E� ~E

EP

�
2
; (3)

where EP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c5=G

p
is the Planck energy and we

assume for simplicity a thermal graviton environment at
temperature T.
In the following, we shall derive Eq. (3)—including the

missing dimensionless numerical factor—by applying
standard perturbative quantum field theory techniques to
gravity [36–38]. The justification for such an approach
follows from the fact that we are considering laboratory
scale systems, where the matter is localized to regions of
small curvature. As with other low energy effects, such as
the quantum gravity correction to the Newtonian potential
between two ordinary masses [36], it should be possible to
quantitatively evaluate gravitationally induced decoher-
ence rates by employing standard perturbative quantum
gravity as an effective field theory [36,39]; whatever the
final form the eventual correct quantum theory of gravity
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takes, it must converge in its predictions with the effective
field theory description at low energies.

Effective field theory derivation.—In order to be able to
construct matter system states starting from a generally
covariant field theory, we will adopt as a simple model
system a massive scalar field �ðxÞ with mass parameter
m corresponding to that of a nucleon. Expanding the
Einstein-Hilbert action to second order in metric deviations
from Minkowski space-time, g�� ¼ ��� þ 	h��, we

have:

S½h��;�� � SS½�� þ SE½h��� þ SI½h��;��; (4)

where 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
32�G

p
(from now on we for the most part use

natural units with @ ¼ c ¼ 1), and the system, environ-
ment, and interaction actions are respectively:

SS ¼ � 1

2

Z
d4xð���@��@��þm2�2Þ; (5)

SE ¼
Z

d4x

�
� 1

2
@�h��@�h�� þ @�h

��@�h��

� @�h@�h
�� þ 1

2
@�h@�h

�
; (6)

SI ¼
Z

d4x

�
	

2
T��ð�Þh�� þ 	2

4
U���
ð�Þh��h�


�
; (7)

where T��ð�Þ ¼ @��@��� ð1=2Þ���@��@���
ð1=2Þ���m

2�2 is the scalar field energy-momentum tensor

and the explicit form of the quadratic in � tensor
U���
ð�Þ can be found in Ref. [38].

The closed time path integral approach [40] gives the
following formal expression for the scalar matter system
density matrix:

�S½�;�0;t�¼
Z
d�0d�

0
0

Z �

�0

½d�þ�
Z �0

�0
0

½d����S½�0;�
0
0;0�

�efiðSS½�þ��SS½���þSIF½�þ;���Þg; (8)

where SIF is the Feynman-Vernon influence action that
gives the effect of the thermal graviton environment on
the scalar matter system. Evaluating SIF to lowest, qua-
dratic order in 	 with harmonic gauge fixing term inserted
in SE, we obtain from Eq. (8) the following Born-
approximated master equation for the scalar system:

@t�SðtÞ ¼ �i½HS; �SðtÞ� �
Z t

0
d�

Z
drdr0fNðr� r0; �Þ

� ð2½T��ðrÞ; ½T��ðr0;��Þ; �SðtÞ��
� ½T�

�ðrÞ; ½T�
�ðr0;��Þ; �SðtÞ��Þ

� iDðr� r0; �Þð2½T��ðrÞ; fT��ðr0;��Þ; �SðtÞg�
� ½T�

�ðrÞ; fT�
�ðr0;��Þ; �SðtÞg�Þg; (9)

where HS is the free scalar field Hamiltonian and the noise
and dissipation kernels are respectively:

Nðr; tÞ ¼
�
	

4

�
2 Z dk

ð2�Þ3
eik�r

k
cosðktÞ½1þ 2nðkÞ�;

Dðr; tÞ ¼
�
	

4

�
2 Z dk

ð2�Þ3
eik�r

k
sinðktÞ;

(10)

with nðkÞ the thermal Bose-Einstein occupation number at
temperature T.
While the master equation (9) can in principle be used

to investigate the decoherence dynamics of quite general,
relativistic scalar field matter states, we shall restrict
ourselves to scalar matter states that model ordinary,
nonrelativistic stationary macroscopic material objects.
The following class of coherent states provides the basis
for such a model:

j�i ¼ exp

�
� 1

2

Z
dkj�ðkÞj2 þ

Z
dk�ayðkÞ

�
j0i; (11)

where

�ðkÞ ¼ ’0R
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
!mðkÞ

2

s
e�ik�r0�ðkRÞ2=2; (12)

with !mðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. These states satisfy

h�j�ðrÞj�i¼’0e
�ðr�r0Þ2=ð2R2Þ; h�j _�ðrÞj�i¼ 0; (13)

and thus describe Gaussian matter ‘‘balls’’ of radius R with
the stationary center at r0, and total energy content depend-
ing on the amplitude parameter ’0. If we furthermore
consider ball radii R much larger than the nucleon’s
reduced Compton wavelength �C ¼ @=ðmcÞ � 10�16 m,
then their rest mass energy E ¼ ð�3m2’2

0R
3Þ=2 is the

dominant energy content and they approximately maintain
their Gaussian profile (13) with little spatial spreading
over the time scale of the initial transient (see below); for
simplicity we will neglect this spreading. The noise term
part of the master equation (9), which is responsible for
decoherence, then simplifies to

@t�S½�;�0; t� ¼ � � � �
Z t

0
d�

Z
drdr0Nðr� r0; �Þ

�
�
1

2
m2ð�ðrÞÞ2 � 1

2
m2ð�0ðrÞÞ2

�

�
�
1

2
m2ð�ðr0ÞÞ2 � 1

2
m2ð�0ðr0ÞÞ2

�
� �S½�;�0; t�; (14)

where we have used the fact that the energy density
component T00ð�Þ�ð1=2Þm2�2 of the energy-momentum
tensor terms in Eq. (9) dominates in the nonrelativistic,
stationary limit, and we have also expressed the master
equation in the field coordinate basis.
Let us now assume that, by some means, a superposition

of two Gaussian ball states, each with distinct parameters
(’0, r0, R) and ( ~’0, ~r0, ~R), has been prepared at time t ¼ 0:
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�S½�;�0; 0� ¼ h�j�ih�j�0i; (15)

where

h�j�i ¼ 1ffiffiffi
2

p ðh�j�i þ h�j~�iÞ; (16)

with the ball states in the field coordinate basis taking the
form

h�j�i ¼ exp

�
� 1

2

Z
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þr2

p
ð�ðrÞ

� ’0e
�ðr�r0Þ2=ð2R2ÞÞ2

�

� exp

�
�m

2

Z
drð�ðrÞ � ’0e

�ðr�r0Þ2=ð2R2ÞÞ2
�

(17)

and a similar expression for h�j~�i with parameters
(~’0, ~r0, ~R). The simpler approximate form in Eq. (17)
follows from the condition R � �C. Evaluating the noise
term in (14) for the off-diagonal, interference part of the

density matrix with �ðrÞ ¼ ’0e
�ðr�r0Þ2=ð2R2Þ and �0ðrÞ ¼

~’0e
�ðr�~r0Þ2=ð2 ~R2Þ, we have

@t�S½�;�0; t� ¼ � � � � T

2�

�
	

4

�
2
�Z

dr

�
1

2
m2ð�ðrÞÞ2

� 1

2
m2ð�0ðrÞÞ2

��
2
�S½�;�0; t�; (18)

where we neglect initial transients, corresponding to
having t large compared to the time required for a graviton
to traverse the matter state spatial extent, i.e., ct �
maxðk r0 � ~r0 k; R; ~RÞ—the Markovian approximation—
and we also assume that kBT � @=t—the high temperature
limit. From Eq. (18), we immediately see that the off-
diagonal interference part of the density matrix decays
only provided the two ball states in the superposition have
distinct energies E � ~E; spatial superpositions with
r0 � r00 do not decohere if the respective energies are

identical. Equation (3) immediately follows from (18).
More precisely, we have for the decoherence rate in the
Born-Markov approximation:

�decohere ¼ kBT

@

�
E� ~E

EP

�
2
: (19)

Discussion.—The decoherence rate formula (19) is suf-
ficiently basic that one might expect it to be of more
general validity beyond the specific scalar field model
used above to derive it. Let us in particular assume that
(19) applies to ordinary, stationary matter systems, such as
a small chunk of crystalline solid or a trapped cold atom
cloud in the laboratory, and that for simplicity the matter
system comprises model two state (excited and ground)
atoms with energy level separation �1 eV. For a cosmic
gravitational wave background with temperature T � 1 K
[41], we have for the gravitationally induced decoherence
rate of an initial superposition of ground and excited states

of a single atom: �decohere � 10�45 secs�1. For a matter
system comprising an Avogadro’s number of atoms
�1 gram in a quantum superposition where all of the
atoms are either in their ground state or all in their excited
state, then we have �decohere � 102 sec�1. For a system
with mass�1 kg in such a superposition state, the gravita-
tionally induced decoherence rate is �decohere � 108 sec�1.
Thus, even leaving aside the technical challenges due to the
presence of everyday environments in preparing such mac-
roscopic matter superposition states, the cosmic gravita-
tional background itself will unavoidably induce their
rapid decoherence, leaving the matter system in a classical
mixture of either its ground or its excited state.
How does our effective field theory approach to gravita-

tionally induced decoherence and the resulting decoher-
ence rate prediction (19) relate to other work [10–34]
considering the role of gravity in the emergence of
classicality? Two approaches can be identified: (a) the
‘‘intrinsic’’ or ‘‘fundamental decoherence’’ approach
[31], where the standard Schrödinger evolution of a quan-
tum matter system is modified by a wave function collapse
process that is linked to an inherent ‘‘fuzziness’’ of space-
time structure [11–13,15,16,18,20,24,28,29,31,33,34];
(b) the ‘‘quantum decoherence’’ approach [31], where
standard quantum mechanics is applied to a model matter
system plus gravity environment [19,21–23,25,27,32].
References [21,27] are closest to our approach, quantizing
gravity in the weak, linearized metric perturbations about
Minkowski space-time approximation. However, in con-
trast to our approach, Refs. [21,27] model the matter sector
as comprising one or more point particles (as opposed to a
scalar field) in the nonrelativistic limit and the resulting
decoherence predictions depend on the free particle kinetic
energy and not on their relativistic rest mass energy.
A possible way to understand how gravity gives rise

to decoherence as predicted by (19), is to first consider
the simpler situation of the matter ball superposition
state in a static, weak gravitational potential VðrÞ: g00�
�ð1þ2V=c2Þ, gij¼�ij. Following the analysis in Ref. [42]

(Sec. IX) of the classic COW neutron interferometry
experiment [43], the interference term is approximately:

h~�ðtÞj�ðtÞi � exp½iðS� ~SÞ=@�; (20)

where S is the classical action of the ball, expressed in
terms of its rest energy E and proper time � along its
worldline:

S ¼ �
Z t

0
Ed� ¼ �

Z t

0
E

�
�g��

dx�

dt0
dx�

dt0

�
1=2

dt0: (21)

Supposing that the ball is stationary in the laboratory frame
gives S � �Et� EVðr0Þt=c2 and the interference term
(20) simplifies to

h~�ðtÞj�ðtÞi � exp½�iðE� ~EÞt=@þ i
�; (22)
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where 
 ¼ �½EVðr0Þ � ~EVð~r0Þ�t=ðc2@Þ is the gravitation-
ally induced phase shift difference between the two ball
states in the superposition. From Eqs. (20)–(22), we can
interpret the phase shift 
 as due in part to the difference in
rest energies and in part to the difference in proper times
elapsed (gravitational redshift). Now, it should be possible
to analogously account for the thermal gravitational wave
environment by an appropriately chosen random phase
shift normal distribution [44], i.e., by making the replace-

ment ei
 ! hei
i ¼ eih
i�ð1=2Þh�
2i in (22). We therefore can
interpret the gravitationally induced decoherence process
as ‘‘dephasing,’’ i.e., a growing phase difference uncer-
tainty h�
2i between the two ball states that suppresses the
interference term, due in part to fluctuations in the elapsed
proper time difference for the two ball states.

As effective field calculations go, the above Oð	2Þ,
Born-Markov derivation of the gravitationally induced
decoherence rate is pretty straightforward; the present
analysis should be viewed as a point of departure, showing
the promise of the effective field theory approach [36,39]
for analyzing gravitationally induced decoherence. The
calculations might be extended in several directions be-
yond the master equation (9), including (a) going toOð	4Þ,
so as to account for damping and decoherence due to
graviton emission or absorption by the matter system,
(b) investigating gravitationally induced decoherence for
relativistic matter systems in curved space-time back-
grounds, with application for example to the formation of
cosmic matter structure in the early Universe [45,46], and
(c) investigating the low temperature limit to determine
whether gravity vacuum fluctuations can induce decoher-
ence [21–23,25,32] and comparison with the predictions
from the various vacuum fluctuation induced spontaneous
collapse models [11,12,14–16,18,20,24,28]. It will also be
interesting to try to establish whether a resulting deco-
hered, mixed matter state can in principle be distinguished
from a collapse model yielding the same matter state out-
comes. Reference [33] postulates that such indistinguish-
ability or ‘‘undecidability’’ allows for the interpretation of
an actual matter state outcome or event, although now with
the advantage that the effective field theory method can
provide quantitative predictions for such outcomes.
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Abstract. We investigate the implication of the non-linear and non-local multi-particle

Schrödinger-Newton equation for the motion of the mass centre of an extended multi-particle

object, giving self-contained and comprehensible derivations. In particular, we discuss two

opposite limiting cases. In the first case, the width of the centre-of-mass wave packet is assumed

much larger than the actual extent of the object, in the second case it is assumed much smaller.

Both cases result in non-linear deviations from ordinary free Schrödinger evolution for the centre

of mass. On a general conceptual level we include some discussion in order to clarify the physical

basis and intention for studying the Schrödinger-Newton equation.

PACS numbers: 03.65.-w, 04.60.-m

AMS classification scheme numbers: 35Q40

1. Introduction

How does a quantum system in a non-classical state gravitate? There is no unanimously

accepted answer to this seemingly obvious question. If we assume that gravity is

fundamentally quantum, as most physicists assume, the fairest answer is simply that

we don’t know. If gravity stays fundamentally classical, a perhaps less likely but not

altogether outrageous possibility [1, 2], we also don’t know; but we can guess. One

such guess is that semi-classical gravity stays valid, beyond the realm it would be meant

for if gravity were quantum [1, 2]. Semi-classical gravity in that extended sense is

the theory which we wish to pursue in this paper. Since eventually we are aiming

for the characterisation of experimentally testable consequences of such gravitational

self-interaction through matter-wave interferometry, we focus attention on the centre-

of-mass motion.

Note that by “quantum system” we refer to the possibility for the system to assume

states which have no classical counterpart, like superpositions of spatially localised

http://arxiv.org/abs/1404.0624v1
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states. We are not primarily interested in matter under extreme conditions (energy,

pressure, etc.). Rather we are interested in ordinary laboratory matter described by

non-relativistic Quantum Mechanics, whose states will source a classical gravitational

field according to semi-classical equations. Eventually we are interested in the question

concerning the range of validity of such equations. Since we do not exclude the possibility

that gravity might stay classical at the most fundamental level, we explicitly leave open

the possibility that these equations stay valid even for strongly fluctuating states of

matter.

Now, if we assume that a one-particle state ψ gravitates like a classical mass density

ρ̃(x) = m|ψ(x)|2, we immediately get the coupled equations (neglecting other external

potentials for simplicity)

i~∂tψ(t;x) =

(
− ~2

2m
∆+ Vg(t;x)

)
ψ(t;x) , (1a)

∆Vg(t;x) = 4πGm2 |ψ(t;x)|2 . (1b)

These equations are known as the (one-particle) Schrödinger-Newton system. This

system can be transformed into a single, non-liner and non-local equation for ψ by

first solving (1b) with boundary condition that φ be zero at spatial infinity, which leads

to

Vg(t;x) = −Gm2

∫ |ψ(t;x′)|2
‖x− x′‖ d3x′ . (2)

Inserting (2) into (1a) results in the one-particle Schrödinger-Newton equation:

i~∂tψ(t;x) =

(
− ~2

2m
∆−Gm2

∫ |ψ(t;x′)|2
‖x− x′‖ d3x′

)
ψ(t;x) . (3)

Concerning the theoretical foundation of (3), the non-linear self interaction should

essentially be seen as a falsifiable hypothesis on the gravitational interaction of matter

fields, where the reach of this hypothesis delicately depends on the kind of “fields” it

is supposed to cover. For example, (3) has been shown to follow in a suitable non-

relativistic limit from the Einstein–Klein-Gordon or Einstein-Dirac systems [3], i. e.,

systems where the energy-momentum tensor Tµν on the right-hand side of Einstein’s

equations,

Rµν − 1
2
gµνR =

8πG

c4
Tµν , (4)

is built from classical Klein-Gordon or classical Dirac fields. Such an expression for

Tµν results from the expectation value 〈ψ|T̂µν |ψ〉 in Quantum-Field Theory, where ψ

labels the amplitude (wave function) of a one-particle state, T̂µν is the operator-valued

energy-momentum tensor which has been suitably regularised.‡ The non-relativistic

‡ Defining a suitably regularised energy-momentum operator of a quantum field in curved space-time

is a non-trivial issue; see, e. g., [4].
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limit is then simply the (regularised) mass density operator whose expectation value in

a one-particle state is m|ψ|2; see e. g. [5].

Now, if we believe that there exists an underlying quantum theory of gravity of

which the semi-classical Einstein equation (4) with Tµν replaced by 〈ψ|T̂µν |ψ〉 is only an

approximation, then this will clearly only make sense in situations where the source-field

for gravity, which is an operator, may be replaced by its mean-field approximation. This

is the case in many-particle situations, i. e., where ψ is a many-particle amplitude, and

then only in the limit as the particle number tends to infinity. From that perspective

it would make little sense to use one-particle expectation values on the right hand side

of Einstein’s equation, for their associated classical gravitational field according to (4)

will not be any reasonable approximation of the (strongly fluctuating) fundamentally

quantum gravitational field. This has been rightfully stressed recently [5, 6].

On the other hand, if we consider the possibility that gravity stays fundamentally

classical, as we wish to do so here, then we are led to contemplate the strict (and

not just approximate) sourcing of gravitational fields by expectation values rather than

operators. In this case we do get non-linear self-interactions due to gravity in the

equations, even for the one-particle amplitudes. Note that it would clearly not be

proper to regard these amplitudes as classical fields and once more (second) quantise

them. This is an important conceptual point that seems to have caused some confusion

recently. We will therefore briefly return to this issue at the end of section 2. Also

recall that the often alleged existing evidences, experimental [7] or conceptual [8], are

generally found inconclusive, e. g., [9, 10, 11].

Taken as a new hypothesis for the gravitational interaction of matter, the

Schrödinger-Newton equation has attracted much attention in recent years. First of

all, it raises the challenge to experimentally probe the consequences of the non-linear

gravitational self-interaction term [12]. More fundamentally, the verification of the

existence of this semi-classical self-interaction could shed new light on the holy grail

of theoretical physics: Quantum Gravity and its alleged necessity; compare [2]. And even

though the original numerical estimates made in [12] were too optimistic by many orders

of magnitude, there is now consensus as to the prediction of (3) concerning gravity-

induced inhibition of quantum-mechanical dispersion [13].

However, concerning the current and planned interference experiments, it must be

stressed that they are made with extended objects, like large molecules or tiny “nano-

spheres” [14], and that the so-called “large superpositions” concern only the centre-

of-mass part of the overall multi-particle wave-function. But even if we assume the

elementary constituents in isolation to obey (3), there is still no obvious reason why the

centre of mass of a compound object would obey a similar equation. These equations

are non-linear and “separating off” degrees of freedom is not as obvious a procedure as

in the linear case. The study of this issue is the central concern of this paper. For this

we start afresh from a multi-particle version of the Schrödinger-Newton equation.
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2. The many-particle Schrödinger-Newton equation

In this paper we consider the (N + 1)-particle Schrödinger-Newton equation for a

function Ψ : R1+3(N+1) → C, where 3(N +1) arguments correspond to the 3 coordinates

each of (N + 1) particles of masses m0, m1, · · · , mN , and one argument is given by

the (Newtonian absolute) time t. In presence of non-gravitational 2-body interactions

represented by potentials Vab
(
‖xa −xb‖

)
, where Vab = Vba, for the pair labelled by (ab),

the (N + 1)-particle Schrödinger-Newton equation reads in full glory

i~∂tΨ(t;x0, · · · ,xN) =

(
−

N∑

a=0

~2

2ma
∆a +

N∑

a=0

N∑

b>a

Vab
(
‖xa − xb‖

)

−G
N∑

a=0

N∑

b=0

mamb

{∫ N∏

c=0

d3x′
c

}
|Ψ(t;x′

0, · · · ,x′
N)|2

‖xa − x′
b‖

)
Ψ(t;x0, · · ·xN ) .

(5)

Here and in the sequel, we write

d3xc := dx1c ∧ dx2c ∧ dx3c and

N∏

c=0

d3xc := d3x0 ∧ · · · ∧ d3xN . (6)

The second, non-linear and non-local potential term is meant to represent the

gravitational interaction according to a suggestion first made in [15]. The structure

of this term seems rather complicated, but the intuition behind it is fairly simple:

Assumption 1 Each particle represents a mass distribution in physical space that is

proportional to its marginal distribution derived from Ψ(t;x0, · · · ,xN). More precisely,

the mass distribution represented by the b-th particle is

ρ̃b(t;x) = mb





∫ N∏

c=0

c 6=b

d3xc





|Ψ(t;x0, · · · ,xb−1,x,xb+1, · · · ,xN)|2

= mb

{∫ N∏

c=0

d3xc

}
δ(3)(x− xb) |Ψ(t;x0, · · · ,xN)|2

(7)

Assumption 2 The total gravitational potential Φ at x in physical space is that

generated by the sum of the mass distributions (7) according to Newtonian gravity.

More precisely, the Newtonian gravitational potential is given by

Φ(t;x) = −G
∫

d3x′

∑N
b=0 ρ̃b(t;x

′)

‖x− x′‖ (8)

Assumption 3 The gravitational contribution Vg(x0, · · · ,xN) that enters the Hamilto-

nian in the multi-particle Schrödinger equation

i~∂tψ(t;x0, · · · ,xN) =

(
−

N∑

a=0

~2

2ma
∆a + Vother(t;x0, · · · ,xN)

+ Vg(t;x0, · · · ,xN)

)
Ψ(t;x0, · · · ,xN) .

(9)
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is the sum of the gravitational potential energies of (N + 1) point-particles (sic!) of

masses ma situated at positions xa. More precisely, the total gravitational contribution

to the Hamiltonian is

Vg(t;x0, · · · ,xN) =

N∑

a=0

maΦ(t;xa) (10)

where Φ is given by (8).

Taken together, all three assumptions result in a gravitational contribution to the

Hamiltonian of

Vg(t;x0, · · · ,xN) = −G
N∑

a=0

N∑

b=0

mamb

{∫ N∏

c=0

d3x′
c

}
|Ψ(t;x′

0, · · · ,x′
N)|2

‖xa − x′
b‖

(11)

just as in (5). We note that (5) can be derived from a Lagrangian

L = T − U (12)

where the kinetic part§, T , is

T =
i~

2

{∫ N∏

a=0

d3xa

}(
Ψ̄∂tΨ−Ψ∂tΨ̄

)

+ ~
2

{∫ N∏

a=0

d3xa

}
N∑

b=0

1

mb
∇bΨ̄ · ∇bΨ .

(13)

Here all functions are taken at the same argument (t;x0, · · · ,xN), which we suppressed.

The potential part, U , consists of a sum of two terms. The first term represents possibly

existent 2-body interactions, like, e. g., electrostatic energy:

U local 2-body =

{∫ N∏

c=0

d3xc

}
N∑

a=0

N∑

b>a

Vab(t;x0, · · · ,xN ) |Ψ(t;x0, · · · ,xN)|2 (14)

The second contribution is that of gravity:

Ugrav = −G
2

{∫ N∏

c=0

d3xc

}{∫ N∏

d=0

d3x′
d

}
N∑

a=0

N∑

b=0

mamb

× |Ψ(t;x0, · · · ,xN)|2|Ψ(t;x′
0, · · · ,x′

N)|2
‖xa − x′

b‖

= −G
2

N∑

a=0

N∑

b=0

∫
d3x

∫
d3x′ ρ̃a(x) ρ̃b(x

′)

‖x− x′‖

(15)

§ In classical field theory it would be physically more natural to regard the second part of the kinetic

term ∝ |∇Ψ|2 as part of the potential energy. In Quantum Mechanics, however, it represents the kinetic

energy of the particles.
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The last line shows that the gravitational energy is just the usual binding energy of

(N + 1) lumps of matter distributed in physical space according to (7). Note that the

sum not only contains the energies for the mutual interactions between the lumps, but

also the self-energy of each lump. The latter are represented by the diagonal terms in

the double sum, i. e. the terms where a = b. These self-energy contributions would

diverge for pointlike mass distributions, i. e. if ρ̃a(x) = maδ
(3)(x− xa), as in the case of

electrostatic interaction (see below). Here, however, the hypotheses underlying the three

assumptions above imply that gravitationally the particles interact differently, resulting

in finite self-energies. Because of these self-energies we already obtain a modification of

the ordinary Schrödinger equation in the one-particle case, which is just given by (3).

Explicit expressions for the double integrals over ρ̃a(x)ρ̃b(x
′)/‖x−x′‖ can, e. g., be found

in [16] for some special cases where ρ̃a and ρ̃b are spherically symmetric.

Finally we wish to come back to the fundamental issue already touched upon in

the introduction, namely of how to relate the interaction term (15) to known physics

as currently understood. As already emphasised in the context of (3), i. e. for just one

particle, the gravitational interaction contains self-energy contributions. In the multi-

particle scheme they just correspond to the diagonal terms a = b in (15). These terms

are certainly finite for locally bounded ρ̃a.

This would clearly not be the case in a standard quantum field-theoretic treatment,

like QED, outside the mean-field limit. In non-relativistic Quantum Field Theory the

interaction Hamiltonian would be a double integral over Ψ†(x)Ψ(x)Ψ†(x′)Ψ(x′)/‖x−x′‖,
where Ψ is the (non-relativistic) field operator. (See, e. g., chpater 11 of [17] for a text-

book account of non-relativistic QFT.) This term will lead to divergent self energies,

which one renormalises through normal ordering, and pointwise Coulomb interactions

of pairs. This is just the known and accepted strategy followed in deriving the multi-

particle Schrödinger equation for charged point-particles from QED. This procedure has

a long history. In fact, it can already be found in the Appendix of Heisenberg’s 1929

Chicago lectures [18] on Quantum Mechanics.

It has therefore been frequently complained that the Schrödinger-Newton equation

does not follow from “known physics” [19, 20, 5, 6]. This is true, of course. But note

that this does not imply the sharper argument according to which the Schrödinger-

Newton equation even contradicts known physics. Such sharper arguments usually beg

the question by assuming some form of quantum gravity to exist. But this hypothetical

theory is not yet part of ”known physics” either, and may never be! Similarly, by rough

analogy of the classical fields in gravity and electromagnetism, the Schrödinger-Newton

equation is sometimes argued to contradict known physics because the analogous non-

linear “Schrödinger-Coulomb” equation yields obvious nonsense, like a grossly distorted

energy spectrum for hydrogen. In fact, this has already been observed in 1927 by

Schrödinger who wondered about this factual contradiction with what he described

as a natural demand (self coupling) from a classical field-theoretic point of view [21].

Heisenberg in his 1929 lectures also makes this observation which he takes as irrefutable

evidence for the need to (second) quantise the Schrödinger field, thereby turning a non-
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linear “classical” field theory into a linear quantum version of it.

To say it once more: all this is only an argument against the Schrödinger-Newton

equation provided we assume an underlying theory of quantum gravity to exist and

whose effective low energy approximation can be dealt with in full analogy to, say, QED.

But our attitude here is different! What we have is a hypothesis that is essentially based

on the assumption that gravity behaves differently as regards its coupling to matter and,

in particular, its need for quantisation. The interesting aspect of this is that it gives

rise to potentially observable consequences that render this hypothesis falsifiable.

3. Centre-of-mass coordinates

Instead of the (N + 1) positions xa, a = 0, · · · , N , in absolute space, we introduce the

centre of mass and N positions relative to it. We write

M :=

N∑

a=0

ma (16)

for the total mass and adopt the convention that greek indices α, β, · · · take values in

{1, · · · , N}, in contrast to latin indices a, b, · · · , which we already agreed to take values

in {0, 1, · · · , N}. The centre-of-mass and the relative coordinates of the N particles

labelled by 1, · · · , N are given by (thereby distinguishing the particle labelled by 0)

c :=
1

M

N∑

a=0

ma xa =
m0

M
x0 +

N∑

β=1

mβ

M
xβ , (17a)

rα := xα − c = −m0

M
x0 +

N∑

β=1

(
δαβ −

mβ

M

)
xβ (17b)

The inverse transformation is obtained by simply solving (17) for c and rα:

x0 = c−
N∑

β=1

mβ

m0
rβ , (18a)

xα = c+ rα . (18b)

All this may be written in a self-explanatory (1 +N) split matrix form

(
c

rα

)
=

(
m0

M

mβ

M

−m0

M
δαβ − mβ

M

)(
x0

xβ

)
, (19)

(
x0

xα

)
=

(
1 −mβ

m0

1 δαβ

)(
c

rβ

)
. (20)

For the wedge product of the (N +1) 1-forms dx1a for a = 0, 1, · · · , N we easily get
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from (18)

dx10 ∧ · · · ∧ dx1N =

(
dc1 −

N∑

β=1

mβ

m0

dr1β

)
∧
(
dc1 + dr11

)
∧ · · · ∧

(
dc1 + dr1N

)

=
M

m0

(
dc1 ∧ dr11 ∧ · · · ∧ dr1N

)
.

(21)

Hence, writing d3xα := dx1α ∧ dx2α ∧ dx3α and
∏N

α=1 for the N -fold wedge product, we

have
N∏

a=0

d3xa =

(
M

m0

)3
(
d3c ∧

N∏

α=1

d3rα

)
. (22)

Note that the sign changes that may appear in rearranging the wedge products on both

sides coincide and hence cancel. From (22) we can just read off the determinant of the

Jacobian matrix for the transformation (18):
∣∣∣∣
∂(x0,xα)

∂(c, rβ)

∣∣∣∣ := det

{
∂(x0,xα)

∂(c, rβ)

}
=

(
M

m0

)3

. (23)

Equation (18) also allows to simply rewrite the kinetic-energy metric

G =

N∑

a=0

N∑

b=0

Gab dxa ⊗ dxb :=

N∑

a=0

ma dxa ⊗ dxa (24)

in terms of the new coordinates: It is given by

G = m0

(
dc−

N∑

α=1

mα

m0
drα

)
⊗
(
dc−

N∑

β=1

mβ

m0
drβ

)

+
N∑

α=1

mα

(
dc+ drα

)
⊗
(
dc+ drα

)

=M dc⊗ dc+

N∑

α=1

N∑

β=1

Hαβ drα ⊗ drβ .

(25)

The first thing to note is that there are no off-diagonal terms, i. e. terms involving

tensor products between dc and drα. This means that the degrees of freedom labelled

by our ra coordinates are perpendicular (with respect to the kinetic-energy metric) to

the centre-of-mass motion. The restriction of the kinetic-energy metric to the relative

coordinates has the components

Hαβ =

(
mαmβ

m0

+mαδαβ

)
. (26)

The determinant of {Hαβ} follows from taking the determinant of the

transformation formula for the kinetic-energy metric (taking due account of the 3-fold

multiplicities hidden in the inner products in R3)

(
det{Gab}

)3 ×
∣∣∣∣
∂(x0,xα)

∂(c, rβ)

∣∣∣∣
2

=M3 ×
(
det{Hαβ}

)3
(27)
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which, using (23) and det{Gab} =
∏N

a=0(ma/2), results in

det{Hαβ} =
M

m2
0

N∏

a=0

ma . (28)

Finally we consider the inverse of the kinetic-energy metric:

G−1 =
N∑

a=0

N∑

b=0

Gab ∂

∂xa
⊗ ∂

∂xb
=

N∑

a=0

1

ma

∂

∂xa
⊗ ∂

∂xa
(29)

Using (17) we have

∂

∂x0
=

m0

M

(
∂

∂c
−

N∑

α=1

∂

∂rα

)
, (30a)

∂

∂xα

=
∂

∂rα
+
mα

M

(
∂

∂c
−

N∑

β=1

∂

∂rβ

)
. (30b)

Inserting this into (29) we obtain the form

G−1 =
1

M

∂

∂c
⊗ ∂

∂c
+

N∑

α=1

N∑

β=1

Hαβ ∂

∂rα
⊗ ∂

∂rβ
, (31)

where {Hαβ} is the inverse matrix to {Hαβ}, which turns out to be surprisingly simple:

Hαβ =
(
m−1

α δαβ −M−1
)
. (32)

In fact, the relation
∑N

β=1HαβH
βγ = δγα is easily checked from the given expressions.

Note that the kinetic part in (5) is just (−~2/2) times the Laplacian on R3(N+1)

with respect to the kinetic-energy metric. Since det(G) and det(H) are constant, this

Laplacian is just:

∆G =
N∑

a=0

N∑

b=0

Gab ∂

∂xa

· ∂

∂xb

=
N∑

a=0

1

ma

∂

∂xa

· ∂

∂xa

=
1

M

∂

∂c
· ∂
∂c

+

N∑

α=1

N∑

β=1

Hαβ ∂

∂rα
· ∂

∂rβ

=: ∆c +∆r .

(33)

Here ∆c is the part just involving the three centre-of-mass coordinates c and ∆r the

part involving the derivatives with respect to the 3N relative coordinates rα. Note that

there are no terms that mix the derivatives with repect to c and rα, but that ∆r mixes

any two derivatives with respect to rα due to the second term on the right-hand side

of (32). Clearly, a further linear redefinition of the relative coordinates rα could be

employed to diagonalise Hαβ and Hαβ, but that we will not need here.
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4. Schrödinger-Newton effect on the centre of mass

Having introduced the centre-of-mass coordinates, one can consider the possibility that

the wave-function separates into a centre-of-mass and a relative part,‖

Ψ(t;x0, · · · ,xN) =
(m0

M

)3/2
ψ(t; c)χ(t; r1, · · · , rN) . (34)

In order to obtain an independent equation for just the centre-of-mass dynamics one is,

however, left with the necessity to show that equation (5) also separates for this ansatz.

This is true for the kinetic term, as shown in (33), and it is also obvious for the non-

gravitational contribution Vab which depends on the relative distances, and therefore

the relative coordinates, only.

As long as non-gravitational interactions are present these are presumably much

stronger than any gravitational effects. Hence, the latter can be ignored for the relative

motion, which leads to a usually complicated but well-known equation: the ordinary,

linear Schrödinger equation whose solution becomes manifest in the inner structure of

the present lump of matter.

However, while separating the linear multi-particle Schrödinger equation in the

absence of external forces (i. e. equation (5) with the gravitational constant G set to

zero) yields a free Schrödinger equation for the evolution of the centre of mass, the

(N + 1)-particle Schrödinger-Newton equation (5) will comprise contributions of the

gravitational potential to the centre-of-mass motion. The reason for these to appear is

the non-locality of the integral term in the equation (and not the mere existence of the

diagonal term a = b as one could naively assume).

Let us take a closer look at the gravitational potential (11). Using the results from

the previous section, in centre-of-mass coordinates it reads:

Vg(t; c, r1, · · · , rN) = −G
∫

d3c′|ψ(t; c′)|2
{∫ N∏

γ=1

d3r′γ

}

×
[
m2

0

|χ(t; r′1, · · · , r′N)|2
‖c− c′ −∑N

δ=1
mδ

m0

(rδ − r′δ) ‖

+m0

N∑

α=1

mα
|χ(t; r′1, · · · , r′N)|2

‖c− c′ −
∑N

δ=1
mδ

m0

rδ − r′α‖

+m0

N∑

α=1

mα
|χ(t; r′1, · · · , r′N)|2

‖c− c′ + rα +
∑N

δ=1
mδ

m0

r′δ‖

+

N∑

α=1

N∑

β=1

mαmβ
|χ(t; r′1, · · · , r′N)|2
‖c− c′ + rα − r′β‖

]
.

(35)

The m0 dependent terms in the second, third, and fourth line are more intricate than

those in the last line; but they are only (2N + 1) out of (N + 1)2 terms and therefore

‖ Here we include the square-root of the inverse of the Jacobian determinant (23) to allow for

simultaneous normalisation to ‖Ψ‖ = ‖ψ‖ = ‖χ‖ = 1, which we imply in the following.



Centre-of-mass motion in multi-particle Schrödinger-Newton dynamics 11

can be neglected for large N .¶ In this “large N”-approximation only the last double-

sum in (35) survives. All r′γ integrations except that where γ = β can be carried

out (obtaining the β-th marginal distributions for |χ(t; r′1, · · · , r′N)|2). Because of the

remaining integration over r′β we may rename the integration variable r′β → r′, thereby

removing its fictitious dependence on β. All this leads to the expression

Vg(t; c, r1, · · · , rN) = −G
N∑

α=1

mα

∫
d3c′

∫
d3r′

|ψ(t; c′)|2ρc(r′)
‖c− c′ + rα − r′‖ , (36)

where we defined

ρc(t; r) :=
N∑

β=1

mβ





∫ N∏

γ=1

γ 6=β

d3rγ





|χ(t; r1, · · · , rβ−1, r, rβ+1, · · · , rN)|2 . (37)

This “relative” mass distribution is built analogously to (7) from the marginal

distributions, here involving only the relative coordinates of all but the zeroth particle.

In the large N approximation this omission of m0 should be neglected and ρc(t; r)

should be identified as the mass distribution relative to the centre of mass. Given a

(stationary) solution χ of the Schrödinger equation for the relative motion, ρc is then

simply the mass density of the present lump of matter (e. g. a molecule) relative to the

centre of mass. Although for the following discussion the time-dependence of ρc makes

no difference, we will omit it. This may be justified by an adiabatic approximation,

since the typical frequencies involved in the relative motions are much higher than the

frequencies involved in the centre-of-mass motion.

Note that the only approximation that entered the derivation of (36) so far is that

of large N . For the typical situations we want to consider, where N is large indeed, this

will be harmless. However, the analytic form taken by the gravitational potential in (36)

is not yet sufficiently simple to allow for a separation into centre-of-mass and relative

motion. In order to perform such a separation we have to get rid of the rα-dependence.

This can be achieved if further approximations are made, as we shall explain now.

5. Approximation schemes

5.1. Wide wave-functions

As long as the centre-of-mass wave-function is much wider than the extent of the

considered object one can assume that it does not change much over the distance rα,

i. e. |ψ(t; c′+rα)| ≈ |ψ(t; c′)|. Substituting c′ by c′+rα in (36) then yields the following

potential, depending only on the centre-of-mass coordinate:

V (A)
g (t; c) ≈ −GM

∫
d3c′

∫
d3r′

|ψ(t; c′)|2ρc(r′)
‖c− c′ − r′‖ . (38)

¶ To be more distinct, assign the label “0” to that particle for which the absolute value of the sum

of all (2N + 1) terms involving m0 is the smallest. Then these terms can be estimated against all the

others and the error made by their negligence is of the order 1/N .
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As a result, the equation for the centre of mass is now indeed of type (1) with Vg = V
(A)
g

being given by M times the convolution of |ψ|2 with the Newtonian gravitational

potential for the mass-density ρc. CaseA has been further analysed in [22].

5.2. Born-Oppenheimer-Type approximation

An alternative way to get rid of the dependence of (36) on the relative coordinates, i. e.,

the r′α-dependence on the right-hand side, is to just replace Vg with its expectation

value in the state χ of the relative-motion.+ This procedure corresponds to the

Born-Oppenheimer approximation in molecular physics where the electronic degrees of

freedom are averaged over in order to solve the dynamics of the nuclei. The justification

for this procedure in molecular physics derives from the much smaller timescales for

the motion of the fast and lighter electrons as compared to the slow and heavier nuclei.

Hence the latter essentially move only according to the averaged potential sourced by

the electrons. In case of the Schrödinger-Newton equation the justification is formally

similar, even though it is clear that there is no real material object attached to the centre

of mass. What matters is that the relative interactions (based on electrodynamic forces)

are much stronger than the gravitational ones, so that the characteristic frequencies of

the former greatly exceed those of the latter; compare, e. g., the discussion in [23].

Now, the expectation value is easily calculated:

V (B)
g (t; c) =

{∫ N∏

β=1

d3r′′β

}
|χ(r′′1, · · · , r′′N)|2 Vg(t; c, r′′1, · · · , r′′N)

= −G
N∑

α=1

mα

∫
d3c′

∫
d3r′

{∫ N∏

β=1

d3r′′β

}

×|ψ(t; c′)|2ρc(r′)|χ(r′′1, · · · , r′′N)|2
‖c− c′ − r′ + r′′α‖

= −G
∫

d3c′
∫

d3r′
∫

d3r′′
|ψ(t; c′)|2ρc(r′)ρc(r′′)
‖c− c′ − r′ + r′′‖ . (39)

Note that this expression involves one more R3 integrations than (38).

In [22] we studied two simple models for the matter density ρc: a solid and a hollow

sphere. The solid-sphere suffers from some peculiar divergence issues which we explain

in Appendix B and is also mathematically slightly more difficult to handle than the

hollow sphere whose radial mass distribution is just a δ-function. We therefore use the

hollow sphere as a model to compare the two approximation ansätze given above.

While in [12, 2, 13, 22] the expression “collapse mass” was used in a rather loosely

defined manner, here we define as critical mass the mass value for which at t = 0 the

second order time derivative of the second moment Q(t) =
∫
d3c |c|2|ψ(t; c)|2 vanishes,

i. e. Q̈(t = 0) = 0. (Note that for a real-valued initial wave-packet the first order time

derivative always vanishes.) For the one-particle Schrödinger-Newton equation and a

+ We are grateful to Mohammad Bahrami for this idea.
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Figure 1. Critical mass for a hollow sphere as indicated by the behaviour of the second moment.

We used a wave-packet width of 0.5µm.

Gaussian wave packet of 0.5µm width this yields a critical mass of 6.5 × 109 u which

fits very well with the numerical results obtained in [13].

For the hollow sphere we then obtain the analytic expression

mcrit =

(√
π

2

3~2

Ga f(R/a)

)1/3

≈ 5.153× 109 u

(
(a/µm)× f

(
R

a

))−1/3

(40)

for the critical mass. This expression is derived in Appendix A. The function f is

constantly 1 in case of the one-particle Schrödinger-Newton equation and shows an

exponential dependence on R in case of the wide wave-function approximation. In case

of the Born-Oppenheimer approximation f is a rather complicated function that can be

found in the appendix.

The resulting critical mass for a width of the centre-of-mass wave-function of 0.5µm

is plotted as a function of the hollow-sphere radius in figure 1. The curve that the

figure shows for the wide wave-function approximation coincides well with the results

we obtained in the purely numerical analysis in [22]. For the Born-Oppenheimer-Type

approximation the plot shows a radius dependence of the collapse mass that is almost

linear. This is in agreement with the result by Diósi [15] who estimates the width of the

ground state for a solid sphere to be proportional to (R/M)3/4.

5.3. Narrow wave-functions in the Born-Oppenheimer scheme

With the Born-Oppenheimer-Type approximation scheme just derived we now possess

a tool with which we can consider the opposite geometric situation than that in CaseA,

namely for widths of the centre-of-mass wave-function ψ which are much smaller than

the extensions (diameters of the support) of the matter distribution ρc, i. e., for well

localised mass centres inside the bulk of matter.

Let us recall that in Newtonian gravitational physics the overall gravitational self-

energy of a mass distribution ρ̃ is given by

Ug(ρ̃) := −G
2

∫
d3x

∫
d3x′ ρ̃(x)ρ̃(x

′)

‖x− x′‖ . (41)
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If ρ̃ = ρ+ ρ′, we have by the simple quadratic dependence on ρ̃

Ug(ρ+ ρ′) := Ug(ρ) + Ug(ρ
′) + Ig(ρ, ρ

′) , (42)

where

Ig(ρ, ρ
′) := −G

∫
d3x

∫
d3x′ ρ(x)ρ

′(x′)

‖x− x′‖ . (43)

represents the mutual gravitational interaction of the matter represented by ρ with that

represented by ρ′. In the special case ρ′ = Tdρ, where Td denotes the operation of

translation by the vector d,

(
Tdρ
)
(x) := ρ(x− d) , (44)

we set

Iρ(d) := Ig(ρ, Tdρ) . (45)

It is immediate from (43) that Iρ : R3 → R has a zero derivative at the origin

0 ∈ R3,

I ′ρ(0) = 0 , (46)

and that it satisfies the following equivariance

Iρ(Rd) = Iρ◦R(d) (47)

for any orthogonal 3×3 matrix R. The latter implies the rather obvious result that the

function d 7→ Iρ(d) is rotationally invariant if ρ is a rotationally invariant distribution,

i. e., the interaction energy depends only on the modulus of the shift, not its direction.

For example, given that ρ is the matter density of a homogeneous sphere of radius

R and mass M ,

ρ(x) =

{
3M
4πR3 for ‖x‖ ≤ R

0 for ‖x‖ > R ,
(48)

the gravitational interaction energy is between two such identical distributions a distance

d := ‖d‖ apart is

Iρ(d) = −GM
2

R
×
{

6
5
− 2

(
d
2R

)2
+ 3

2

(
d
2R

)3 − 1
5

(
d
2R

)5
for d ≤ 2R ,

R
d

for d ≥ 2R .
(49)

The second line is obvious, whereas the first line follows, e. g., from specialising the

more general formula (42) of [16] to equal radii (Rp = Rt) and making the appropriate

redefinitions in order to translate their electrostatic to our gravitational case. This

formula also appears in [24].
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Using the definitions (43) and (45), we can rewrite the right-hand side of (39) as

convolution of |ψ|2 with Iρc :

V (B)
g (t; c) =

∫
d3c′ Iρc(c− c′) |ψ(t; c′)|2 . (50)

Since in equation (3) this potential is multiplied with ψ(t, c), we see that only those

values of Iρc(c− c′) will contribute where |ψ(t; c′)|2ψ(t; c) appreciably differs from zero.

Hence if ψ is concentrated in a region of diameter D then we need to know Iρc(c− c′)

only for ‖c−c′‖ < D. Assuming D to be small we expand Iρc in a Taylor series. Because

of (46) there is no linear term, so that up to and including the quadratic terms we have

(using that |ψ(t; c′)|2 is normalised with respect to the measure d3c′)

V (B)
g (t; c) ≈ Iρc(0) +

1
2
I ′′ρc(0) ·

(
c⊗ c− 2 c⊗ 〈c〉+ 〈c⊗ c〉

)
. (51)

Here I ′′ρc(0) denotes the second derivative of the function Iρc : R
3 → R at 0 ∈ R (which

is a symmetric bilinear form on R3) and 〈 · 〉 denotes the expectation value with respect

to ψ. We stress that the non-linearity in ψ is now entirely encoded into this state

dependence of the expectation values which appear in the potential. If, for simplicity,

we only consider centre-of-mass motions in one dimension, the latter being coordinatised

by c ∈ R, then (51) simplifies to

V (B)
g (t; c) ≈ Iρc(0) +

1
2
I ′′ρc(0)

(
c2 − 2c 〈c〉+ 〈c2〉

)
(52a)

= Iρc(0) +
1
2
I ′′ρc(0)

(
c− 〈c〉

)2
+ 1

2
I ′′ρc(0)

(
〈c2〉 − 〈c〉2

)
. (52b)

The first term, Iρc(0), just adds a constant to the potential which can be absorbed by

adding −(i/~)Iρc(0)t to the phase ψ. The second term is the crucial one and has been

shown in [23] to give rise to interesting and potentially observable for Gaussian states.

More precisely, consider a one-dimensional non-linear Schrödinger evolution of the

form (1a) with Vg given by the second term in (52) and an additional external harmonic

potential for the centre of mass, then we get the following non-linear Schrödinger-Newton

equation for the centre-of-mass wave-function,

i~∂tψ(t; c) =

(
− ~2

2M

∂2

∂c2
+ 1

2
Mω2

c c
2 + 1

2
Mω2

SN

(
c− 〈c〉

)2
)
ψ(t; c) , (53)

where ωSN :=
√
I ′′ρc(0)/M is called the Schrödinger-Newton frequency. This equation

has been considered in [23], where the last term on the right-hand side of (52b) has

been neglected for a priori no good reason. Note that 〈c2〉 and 〈c〉2 contain the wave

function and hence are therefore not constant (in time). Now, in the context of [23] the

consequences of interest were the evolution equations for the first and second moments in

the canonical phase-space variables, and it shows that for them only spatial derivatives

of the potential contribute. As a consequence, the term in question makes no difference.

The relevant steps in the computation are displayed in Appendix C.
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Based on the observation that equation (53) evolves Gaussian states into Gaussian

states, it has then been shown that the covariance ellipse of the Gaussian state rotates

at frequency ωq :=
√
ω2
c + ω2

SN whereas the centre of the ellipse orbits the origin in

phase with frequency ωc. This asynchrony results from a difference between first- and

second-moment evolution and is a genuine effect of self gravity. It has been suggested

that it may be observable via the output spectra of optomechanical systems [23].

6. Conclusions and outlook

Although the many-particle Schrödinger-Newton equation (5) does not exactly separate

into centre-of-mass and relative motion, we could show that for some well-motivated

approximations such a separation is possible. As long as the extent of an object is

negligible in comparison to the uncertainty in localisation of its centre of mass the

one-particle equation (3) is a good model in both approximation schemes considered.

In the opposite case of a well localised object, i. e. one that has a narrow wave-

function compared to its extent, the gravitational potential takes the form (52) which

yields a closed system of equations for the first and second moments and therefore

the effects described in [23]. The non-linear Schrödinger equation resulting from the

potential (52) is also considered in [24], where it is used for comparison of Schrödinger-

Newton dynamics with models of quantum state reduction and decoherence.

The modification (38) provides a valid correction of the one-particle Schrödinger-

Newton equation for objects of finite but small radii. This equation was considered

in [25] and studied numerically in [22]. It remains unclear for which ratio of

the object’s extent to the width of the wave-function the Born-Oppenheimer-Type

approximation (39) starts to be superior to the wide wave-function approximation. It

may even be the better approximation throughout the whole range of possible object

sizes and wave-functions since a Born-Oppenheimer like approximation is implicitly

assumed also for the wide wave-function when the mass density is taken to be that of a

solid object.

In passing we make the final technical remark that the analysis of the critical

mass for the hollow sphere shows that this mass increases linearly with the radius R of

the sphere. Given a fixed mass, this implies that the width of the stationary solution

increases like R3/4, a relation already found by Diósi [15].

The interface between Quantum Mechanics and gravity theory remains one of

the most interesting and profound challenges with hopefully revealing experimental

consequences, which we are only beginning to explore. In this context one should

also mention that non-linear one-particle Schrödinger equations are of course also

considered for Einstein-Bose condensates, in which case inclusion of self gravity adds a

Schrödinger-Newton term in addition to that non-linear term obtained from the effective

potential within the Hartree-Fock approximation (Gross-Pitaevskii-Newton equation).

Such equations are derivable for particle numbers N → ∞ without further hypotheses

and may open up the possibility to test self-gravity effects on large quantum systems.
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Recent experiments have demonstrated the high potential of atom interferometry on

freely falling Einstein-Bose condensates [26] and it seems an interesting question whether

this may be used to see self-gravity effects on such systems.
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Appendix A. Comparison of approximations for spherically symmetric

mass distributions

For both the wide wave-function approximation (38) and the Born-Oppenheimer-Type

approximation (39) one must solve integrals of the type

I(a) =

∫
d3r

ρc(r)

‖r− a‖ . (A.1)

In a spherically symmetric situation these take the form

I(a) =

∫ ∞

0

r2 dr

∫ 1

−1

d cos θ

∫ 2π

0

dϕ
ρc(r)√

r2 + a2 − 2ra cos θ

=
4π

a

∫ a

0

dr r2 ρc(r) + 4π

∫ ∞

a

dr r ρc(r) , (A.2)

where we write a for the absolute value |a|, etc. If now we assume that ρc is the mass

density of a hollow sphere of radius R, i. e.

ρc(r) =
M

4π r2
δ(r −R) , (A.3)

these integrals simplify to

IR(a) =

{
M
R

if a < R
M
a

if a ≥ R
. (A.4)

With this the wide wave-function approximation (38) results in

V (A)
g (t; c;R) = −GM

∫
d3c′ |ψ(t; c′)|2 IR(‖c− c′‖) . (A.5)

On the other hand, the Born-Oppenheimer approximation (39) leads to

V (B)
g (t; c;R) = −G

∫
d3c′ |ψ(t; c′)|2

∫
d3r′ ρc(r

′) IR(‖c− c′ − r′‖) . (A.6)
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In order to be able to obtain an analytical result we consider the initial Gaussian

wave packet

ψ(t = 0; c) = (πa2)−3/4 exp

(
− c2

2a2

)
, (A.7)

for which these potentials take the form

V 0
A(c;R) = −GM

2

2

{
a√
π cR

[
exp

(
−(c +R)2

a2

)
− exp

(
−(c−R)2

a2

)]

+
1

c

[
erf

(
c+R

a

)
+ erf

(
c− R

a

)]

+
1

R

[
erf

(
c+R

a

)
− erf

(
c− R

a

)]}
(A.8)

V 0
B(c;R) = −GM

2

2

{
a√
π c

(
1

R
+

8R

3a2

)
exp

(
−(c+ 2R)2

a2

)

+
a√
π R

(
1

2c
− 1

4R

)[
exp

(
−(c+ 2R)2

a2

)
− exp

(
−(c− 2R)2

a2

)]

+
1

c

[
erf

(
c+ 2R

a

)
+ erf

(
c− 2R

a

)]

+
1

R

(
1− c

4R
− a2

8cR

)[
erf

(
c+ 2R

a

)
− erf

(
c− 2R

a

)]}
. (A.9)

Note that both potentials agree in the limits

lim
R→0

V 0
A,B(c;R) = −GM

2

c
erf
( c
a

)
and lim

R→∞
V 0
A,B(c;R) = 0 . (A.10)

As a measure to compare these potentials with each other and the one-particle

Schrödinger-Newton equation we use the second moment Q(t) =
∫
d3c |c|2|ψ(t; c)|2.

For a real wave packet its first order time derivative can be shown to vanish. Therefore

the sign of the second order time derivative Q̈ at t = 0 determines if a wave packet

initially shrinks or increases in width. In general the second order time derivative is

Q̈(t) =

∫
d3c

(
2~2

M2
|∇ψ(t; c)|2 + 2

M
Vg(t; c)

(
3 |ψ(t; c)|2 + c · ∇|ψ(t; c)|2

))
(A.11)

which for the spherically symmetric gaussian state (A.7) takes the form

Q̈(t = 0) =
3~2

M2a2
+

8√
πM a5

∫ ∞

0

dc exp

(
− c2

a2

)
V 0(c)

(
3a2c2 − 2c4

)
(A.12)

=
3~2

M2a2
−
√

2

π

GM

a
f

(
R

a

)
. (A.13)
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The critical mass defined by Q̈(t = 0) = 0 is then given by

mcrit =

(√
π

2

3~2

Ga f(R/a)

)1/3

≈ 5.153× 109 u

(
(a/µm)× f

(
R

a

))−1/3

. (A.14)

The function f is f ≡ 1 for the one-particle Schrödinger-Newton equation. For

the hollow sphere potential in the wide wave-function and Born-Oppenheimer-Type

approximations, (A.8) and (A.9), respectively, this function can be calculated as

fA

(
R

a

)
= exp

(
− R2

2a2

)
(A.15)

fB

(
R

a

)
=

2

3

√
2

π
exp

(
−4R2

a2

)
R

a

(
1−

(
2R

a

)2
)

+exp

(
−2R2

a2

)(
1− erf

(√
2
R

a

))(
1 +

1

3

(
2R

a

)4
)

+
a2

2R2

(
1√
2
erf

(
2
R

a

)
− exp

(
−2R2

a2

)
erf

(√
2
R

a

))
. (A.16)

Appendix B. Divergence of the solid-sphere potential in the wide

wave-function approximation

Given a spherically symmetric situation the wide wave-function approximation (38)

takes the form

V (c) = (|ψ|2 ∗ Φ)(c) = 4π

∫ ∞

0

dc′ c′2 |ψ(c′)|2Φ(|c− c′|) , (B.1)

where for the potential Φ we want to consider the following three cases:

• Coulomb potential (i. e. the case of the Schrödinger-Newton equation (3)):

Φc(c) = −1

c
, (B.2)

• hollow sphere of radius R:

Φh(c) =

{
− 1

R
if c < R

Φc(c) if c ≥ R
, (B.3)

• solid sphere of radius R:

Φs(c) =

{
− 3

2R
+ c2

2R3 if c < R

Φc(c) if c ≥ R
. (B.4)
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First we want to study the behaviour of V0 = V (c = 0) for a Gaussian wave packet

|ψ(c)|2 = 1
4π

exp(−c2). For convenience we omit all pre-factors. Equation (B.1) then

reads:

V0 =

∫ ∞

0

dc c2 exp(−c2) Φ(c) (B.5)

=

∫ R

0

dc c2 exp(−c2) Φ(c) +
∫ ∞

R

dc c2 exp(−c2) Φc(c) (B.6)

=

∫ R

0

dc c2 exp(−c2) Φ(c)− exp(−R2)

2
. (B.7)

For the three different potentials one obtains

V0,c =

∫ R

0

dc c2 exp(−c2) Φc(c)−
exp(−R2)

2

= −1

2
+

exp(−R2)

2
− exp(−R2)

2

= −1

2
(B.8)

V0,h =

∫ R

0

dc c2 exp(−c2) Φh(c)−
exp(−R2)

2

=
exp(−R2)

2
−

√
π

4R
erf(R)− exp(−R2)

2

= −
√
π

4R
erf(R) (B.9)

V0,s =
3

2

∫ R

0

dc c2 exp(−c2) Φh(c)

+
1

2R3

∫ R

0

dc c4 exp(−c2)− exp(−R2)

2

= −3
√
π

8R
erf(R)− 3

8R2
exp(−R2)− 3

√
π

16R2
erf(R) (B.10)

In the limit R → 0 the function erf(R)/R converges to 2/
√
π. Thus, (B.9) converges to

−1/2 and yields the same value as one gets for Φc. For (B.10) both the second and third

term diverge but the sum of both terms converges and altogether V0,s also converges to

the value of −1/2. So everything seems fine.

But now consider the behaviour of V (c) in a small neighbourhood of c = 0, i. e.

Vε = V (c = ε). For the hollow sphere this changes nothing of course, since the potential

is constant within radius R. The potentials Φc and Φs can be expanded around ε = 0

and yield

Φc(c+ ε) = Φc(c) + ε
1

c2
+O(ε2) (B.11)

Φs(c+ ε) = Φs(c) + ε
c

R3
+O(ε2) . (B.12)
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This gives the additional contributions

Vε,c = V0,c + ε

∫ R

0

dc exp(−c2) (B.13)

= V0,c + ε

√
π

2
erf(R) (B.14)

Vε,s = V0,s +
ε

R3

∫ R

0

dc c3 exp(−c2) (B.15)

= V0,s − ε
1 +R2

2
exp(−R2) +

ε

2R3
(B.16)

to the potentials. For the Coulomb potential everything is fine since erf(R) → 0 for

R → 0. Hence, both the Coulomb and the hollow sphere potential obtain no further

contributions at this order and it can be easily checked that this also holds for all higher

orders in ε.

For the solid sphere potential, however, things are not fine at all. Not only does

the term proportional to exp(−R2) in the limit R → 0 yield a contribution −ε/2 which

already makes it differ from the Coulomb potential. The last term is even worse because

it diverges in this limit. Therefore, we cannot take this model seriously for small radii of

the solid sphere and we are better off taking the hollow sphere potential as a toy model

for the density of a molecule.

Appendix C. Evolution equations for first and second moments in the

narrow wave-function limit

Here we will explicitly derive the self-contained system of evolution equations for the

first and second moments given in [23]. It has been noted there that since this system

is closed, Gaussian states will remain Gaussian under evolution. We will show that the

difference of our equation (52) to equation (53) given in [23] has no influence on this set

of equations.

For this we consider the Schrödinger equation

iψ̇ =
p2

2M
ψ +H1ψ , (C.1)

where

H1 =
k

2
x2 − kSNx · 〈x〉+ α〈x〉2 + β〈x2〉

pi = −i∂i

k = kCM + kSN =Mω2
CM +Mω2

SN .

In principle, in the case of equation (52) we have α = 0, β = kSN/2, while in the case of

equation (53) α = kSN/2, β = 0. But note that

∂i〈x〉j = 0 (C.2a)

∂i〈x2〉 = 0 . (C.2b)
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Therefore, independent of the choice of α and β the derivatives of H1 are

∂iH1 = kxi − kSN〈x〉i (C.3a)

∆H1 = 3k . (C.3b)

We will see that H1 will enter into the evolution equations for the first and second

moments only through these derivatives. Thus, for the different equations (52) and (53)

we obtain the same evolution equations for the first and second moments, which are:

∂t〈x〉i =
∫

d3x xi

(
ψ∗ψ̇ + ψψ̇∗

)
=

i

2M

∫
d3xxi (ψ

∗∆ψ − ψ∆ψ∗) (C.4a)

=
i

2M

∫
d3x (−(∂jψ)∂j(xiψ

∗) + (∂jψ
∗)∂j(xiψ)) (C.4b)

=
i

2M

∫
d3x (−ψ∗∂iψ + ψ∂iψ

∗) =
1

M

∫
d3xψ∗(−i∂i)ψ (C.4c)

=
〈p〉i
M

(C.4d)

∂t〈p〉i = −i

∫
d3x

(
ψ̇∗∂iψ + ψ∗∂iψ̇

)
(C.5a)

=
1

2M

∫
d3x (−(∆ψ∗)∂iψ + ψ∗∂i∆ψ)− 〈∂iH1〉 (C.5b)

=
1

2M

∫
d3x ((∂jψ

∗)∂i∂jψ + ψ∗∂i∆ψ)− 〈∂iH1〉 (C.5c)

=
1

2M

∫
d3x (−ψ∗∂i∆ψ + ψ∗∂i∆ψ)− 〈∂iH1〉 (C.5d)

= −k〈x〉i + kSN〈x〉i (C.5e)

= −kCM〈x〉i (C.5f)

∂t〈x2〉 =
∫

d3xx2
(
ψ∗ψ̇ + ψψ̇∗

)
=

i

2M

∫
d3xx2 (ψ∗∆ψ − ψ∆ψ∗) (C.6a)

=
i

2M

∫
d3x (−(∂jψ)∂j(xixiψ

∗) + (∂jψ
∗)∂j(xixiψ)) (C.6b)

=
i

M

∫
d3x (−xiψ∗∂iψ + xiψ∂iψ

∗) (C.6c)

=
1

M

∫
d3x (ψ∗xi(−i∂i)ψ + ψ∗(−i∂i)(xiψ)) (C.6d)

=
1

M
(〈x · p〉+ 〈p · x〉) (C.6e)
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∂t〈p2〉 = −
∫

d3x
(
ψ̇∗∆ψ + ψ∗∆ψ̇

)
=

i

2M

∫
d3x ((∆ψ∗)∆ψ − ψ∗∆∆ψ)

+ 2i

∫
d3xψ∗(∂iH1)∂iψ + i〈∆H1〉 (C.7a)

= 2i

∫
d3xψ∗ (kxi − kSN〈x〉i) ∂iψ + 3ik (C.7b)

= −2k

∫
d3xψ∗xi(−i∂i)ψ + 2kSN〈x〉i

∫
d3xψ∗(−i∂i)ψ + 3ik (C.7c)

= −2k〈x · p〉+ 2kSN〈x〉 · 〈p〉+ k〈x · p〉 − k〈p · x〉 (C.7d)

= −k (〈x · p〉+ 〈p · x〉) + 2kSN〈x〉 · 〈p〉 (C.7e)

∂t〈x · p〉 = ∂t〈p · x〉 =
∫

d3x
(
ψ̇∗xi(−i∂i)ψ + ψ∗xi(−i∂i)ψ̇

)
(C.8a)

= − 1

2M

∫
d3xxi ((∆ψ

∗)∂iψ − ψ∗∂i∆ψ)− 〈xi∂iH1〉 (C.8b)

=
1

2M

∫
d3x (∂jψ

∗)∂j(xi∂iψ) +
1

2M

∫
d3xxiψ

∗∂i∆ψ − 〈xi∂iH1〉 (C.8c)

=
1

2M

∫
d3x ((∂iψ

∗)∂iψ + xi(∂jψ
∗)∂i∂jψ + xiψ

∗∂i∆ψ)− 〈xi∂iH1〉 (C.8d)

=
1

2M

∫
d3x (−ψ∗∆ψ − ψ∗∂j(xi∂i∂jψ) + xiψ

∗∂i∆ψ)− 〈xi∂iH1〉 (C.8e)

= − 1

M

∫
d3xψ∗∆ψ − 〈xi∂iH1〉 (C.8f)

=
〈p2〉
M

− k〈x2〉+ kSN〈x〉2 (C.8g)

The same evolution equations are obtained by operators x and p that in the

Heisenberg picture fulfil

∂tx =
p

M
(C.9a)

∂tp = −kCMx− kSN(x− 〈x〉) . (C.9b)

This was used in [23] to describe the effect of the Schrödinger-Newton equation on

Gaussian states.
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We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object

separated by distances of the order of its size. This method provides unprecedented bounds for objective

collapse models of the wave function by merging techniques and insights from cavity quantum

optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is

performed taking into account standard sources of decoherence. We provide an operational parameter

regime using present-day and planned technology.

DOI: 10.1103/PhysRevLett.107.020405 PACS numbers: 03.65.Ta, 03.75.�b, 42.50.Pq

Quantum superpositions of a massive object at two
spatial locations are allowed by quantum mechanics. This
puzzling prediction has been observed in seminal matter-
wave interferometry experiments with electrons, neutrons,
atoms and dimers, van der Waals clusters, and even com-
plex molecules (e.g., C70, C60F48) [1]. Preparing quantum
superpositions of even larger objects is considered to be
extremely challenging due to the decoherence caused by
interaction with the environment [2]. However, succeeding
in this task would allow completely new tests of quantum
mechanics: this includes experiments in a hitherto un-
achieved parameter regime where collapse theories predict
quantum mechanics to fail [3,4], or even more general tests
of quantum theory against full classes of macrorealistic
theories [5]. Moreover, these states would be so fragile to
environmental interactions that one could exploit this ultra-
high sensitivity to design a new generation of sensors.
Pushing large objects to the quantum regime is also the
aim of cavity quantum optomechanics [6]. Similarly to
laser cooling of atoms, the radiation pressure of light is
exploited to cool and coherently manipulate the mechani-
cal motion of some degree of freedom (e.g., the center of
mass) of a massive object and even to create quantum
superpositions of harmonic vibrational states [7,8].

In this Letter, we present a method to prepare spatial
quantum superpositions of massive objects (with masses of
�107 amu) based on cavity quantum optomechanics and
show how it can be used to test wave function collapse
models. This builds upon the recent proposal of using an
optically levitating nanodielectric as a cavity quantum
optomechanical system [8–11]. The main idea is to trap a
dielectric sphere in the standing wave field of an optical
cavity. The mechanical motion of the sphere’s center of
mass along the cavity axis is predicted to be a high-quality
mechanical oscillator due to the absence of clamping
losses. This facilitates laser cooling to its motional ground
state (see also experiments on feedback cooling of an
optically levitated microsphere [12]). In addition, a cooled

levitating object offers the possibility to be released by
switching off the trap [10], creating in this way a scenario
similar to matter-wave interferometry experiments. Here,
we will use precisely this feature both to coherently expand
the wave function over a large spatial region and to en-
hance the nonlinear coupling that is required to prepare
large quantum superpositions.
More specifically, the linear and quadratic coupling in

cavity optomechanics after displacing the cavity field (see,
e.g., Sec. V.A.1 and Appendix B.2 in [10]) is given by

Ĥ OM ¼ �@gðâþ âyÞ~xþ @gqðâþ âyÞ~x2; (1)

where âðâyÞ is the annihilation (creation) operator of a
cavity photon, ~x ¼ x̂=x0 is the dimensionless position

operator of the mechanical resonator, with x0 ¼
½@=ð2m!tÞ�1=2 its zero point motion, m the mass, and !t

the mechanical frequency. The photon-enhanced linear
optomechanical coupling is given by g and the typical
quadratic coupling by gq ¼ kcx0g, where kc ¼ 2�=�c is

the wave number of the cavity mode.When the equilibrium
position is at the node (antinode) of the standing wave,
g � 0 and gq ¼ 0 (g ¼ 0 and gq � 0). A fundamental

figure of merit of the cavity-mechanical system is the
cooperativity parameter defined as Cl ¼ g2=ð��Þ for
the linear coupling, and Cq ¼ g2q=ð��Þ ¼ Clðkcx0Þ2 for

the quadratic one. Here, � is the decay rate of the cavity
field and � the decoherence rate of the mechanical motion.
Ground-state cooling requires Cl * 1, whereas nonlinear
effects, such as energy quantization detection [13] or
preparation of non-Gaussian states without using hybrid
systems or single photon resources, require Cq * 1. The

latter is a very demanding condition due to the strong
reduction given by ðkcx0Þ2 � 1. In this Letter we propose
to achieve this challenging regime by expanding the wave
function to a given size hx̂2i � �2 � x0, such that

�C q ¼ �g2q

� ��
¼ Clðkc�Þ2; (2)

where �gq and �� are defined below. Thus, for sufficiently
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large � and Cl, the nonlinear regime �Cq * 1 can be

attained. This technique is also applicable to other setups
where the mechanical frequency can be varied and hence
the wave function of the mechanical oscillator expanded
[14,15].

We discuss now the different stages of the protocol using
levitated nanospheres [8–11] trapped within an optical
cavity [Fig. 1(a)]. The optomechanical coupling is given
by g ¼ x0

ffiffiffiffiffiffiffi
nph

p
�ck

2
ccV=ð4VcÞ, where �c � 3Re½ð�r � 1Þ=

ð�r þ 2Þ� depends on the relative dielectric constant �r, c is
the vacuum speed of light, V the volume for a sphere of
radius R and mass m, Vc the cavity volume, and nph the

cavity photon number in the steady state. The decoherence
rate of the center of mass motion is dominated by light
scattering and is given by � ¼ �scx

2
0, with a localization

rate �sc ¼ �2cnphcV
2k6c=ð6�VcÞ [9,10]. The decay rate of

the cavity also has a contribution due to light scattering
given by �sc ¼ �2cV

2k4cc=ð16�VcÞ. Sideband cooling of the
center of mass motion allows the preparation of thermal
states to a final number occupation given by �n �
½�=ð4!tÞ�2 þ C�1

l [16], where backaction heating contrib-

utes with Cl � c=ðk2cVc�Þ for a levitated object at very low
pressures. Moderate cooling along the other directions is
applied to keep the trap stable at low pressures and reduce
the position fluctuations during the time of flight. After
cooling, the harmonic trap is switched off, the object falls
[see Fig. 1(b)], and the state evolves freely according to

_̂� ¼ i

2m@
½�̂; p̂2� ��½x̂; ½x̂; �̂��: (3)

The position-localization dissipation part of this master
equation describes standard decoherence processes such
as scattering of air molecules and emission, absorption,
and scattering of black body radiation [2] with the total
localization rate�sd given below. Decoherence due to light
scattering is absent during the time of flight since the lasers
are switched off. Since both the initial state and the master
equation Eq. (3) are Gaussian, the evolved density matrix
can be fully determined by computing the moments
hx̂2ðtÞi, hp̂2ðtÞi, and hx̂ðtÞp̂ðtÞi, where hx̂2ð0Þi¼ð2 �nþ1Þx20,
and hp̂2ð0Þi ¼ ð2 �nþ 1Þ@2=ð4x20Þ. The spatial coherence

length �l, obtained by noticing that h�x=2j�̂jx=2i /
exp½�x2=�2

l �, is given by �2
l ¼ 8hx̂2ihP i2, where hP i is

the mean value of the parity operator.
After an expansion of duration t1, a second cavity is used

to implement an optomechanical double slit [Fig. 1(c)]. To
this end, the setup is aligned such that the object passes
through a small high-finesse optical cavity at an antinode
of the cavity mode. Simultaneously, a pulse of length � �
2�=� is fed into the cavity such that a short interaction is
triggered. Note that during this interaction, standard deco-
herence and, in particular, light scattering decohere the

state of the system with a rate given by �� ¼ �schx̂2ðt1Þi.
This can be taken into account by adding the corresponding
contribution of time � to the moments of the Gaussian state
before the measurement.

Linear pulsed optomechanics has been discussed re-
cently for tomography and cooling applications [17].
Here, we extend these results to the case of the quadratic
coupling (see also [18]). The interaction Hamiltonian, in
the displaced frame and in the rotating frame with the

resonant laser frequency, is given by Ĥ ¼ p̂2=ð2mÞ þ
@ �gq

ffiffiffiffiffiffiffi
nph

p
~x2 þ @ �gqðây þ âÞ~x2. A key remark is that, at

this stage, the dimensionless position operator is defined
as ~x ¼ x̂=�ðt1Þ [hereafter we define �2 � �2ðt1Þ ¼
x20 þ @

2t21=ð4x20m2Þ]. Then �gq � gqð�=x0Þ2 is the quadratic
optomechanical coupling enhanced by the enlarged wave
function. Note that, as mentioned above, the kinetic term
can be neglected since �hp̂2i=ð2m@Þ � !t�=4 � 1 for
short cavities where � � !t. The squared position mea-
surement is performed by measuring the integrated

output quadrature of the light field p̂L � R
�
0 dt½âyoutðtÞ þ

âoutðtÞ�=
ffiffiffi
�

p
. Using the input-output formalism, âoutðtÞ þ

âinðtÞ ¼
ffiffiffiffiffiffi
2�

p ðâþ ffiffiffiffiffiffiffi
nph

p Þ, one obtains that hp̂Li ¼ 	h~x2i
and hp̂2

L � hp̂Li2i ¼ 1=2þ 	2h~x4 � h~x2i2i (we assume a
coherent drive such that the optical input phase noise is
1=2). Therefore, the measurement strength of the squared

position measurement is defined as 	 ¼ 2
ffiffiffiffiffi
�Cq

q
(the physi-

cal parameters are chosen such that � � 1= �� � 2�=�,
see below). Note that the measurement strength is inti-
mately related to the enhanced nonlinear cooperativity
[see Eq. (2)]. The generalized measurement operator for
the measurement outcome pL of the integrated optical
phase p̂L is given by

M̂ ¼ exp½�i
~x2 � ðpL � 	~x2Þ2�; (4)

where 
 ¼ �gq
ffiffiffiffiffiffiffi
nph

p
� is the phase accumulated during the

interaction with the classical field. The density matrix

after the measurement is described by �̂ðt2 þ �Þ ¼
M̂ �̂M̂y=tr½M̂ �̂M̂y�. The action of the measurement
operator, Eq. (4), is to prepare a superposition of two wave

FIG. 1 (color online). Schematic representation of the pro-
posal. (a) The optically trapped object is laser cooled using a
high-finesse optical cavity. (b) The trap is switched off and the
wave function expands during some time t1. (c) The object enters
into a second small cavity where a pulsed (of time �) interaction
is performed using the quadratic optomechanical coupling. The
homodyne measurement of the output phase measures x̂2 and
prepares a quantum superposition state conditional of the out-
come result pL. (d) The particle falls during a time t2 until its
center of mass position is measured, which after repetition
unveils an interference pattern for each pL.
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packets separated by a distance d ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
pL=	

p
, and a

width given by approximately �2 � �=ð4 ffiffiffiffiffiffiffiffiffi
pL	

p Þ ¼
�2=ð2d	Þ. This can be intuitively understood as a conse-
quence of the projective nature of the pulsed measurement
[17]: for the ideal case, this measurement prepares the
system in an eigenstate of the x̂2 operator, which for a
pure initial state with even parity is of the type jxi þ j � xi,
i.e., a coherent spatial superposition. The separation of the
wave packets, d, determined by the outcome of the mea-
surement, represents the effective slit separation. In order
to prepare (with high probability) and resolve the peaks of
the superposition state, one requires �> d> 2�2. This
sets up an upper bound damax � � and a lower bound

dmin � �
ffiffiffiffiffiffiffiffiffi
2=	

p
for d. A second upper bound is provided

by the decoherence during the expansion of the wave
function; we demand d < dbmax � �l. Finally, the total
number of photons nph used in the pulse and the time of

flight t1 is fixed by enforcing that 
 compensates the
complex phase accumulated during the time of flight,
which is given by �hx̂ðt1Þp̂ðt1Þ þ p̂ðt1Þx̂ðt1Þi=ð4@Þ, as

well as by fulfilling the condition � � 1= �� � 2�=�. This
corresponds to choosing nph � ð2 �nþ 1Þ=½32�Clðkcx0Þ2�
and t21 � 16�Clk2c=½!2ð2 �nþ 1Þ2�sc=nph�.

After the preparation of the superposition state by the
pulsed interaction, the particle falls freely during another
time of flight of duration t2. An interference pattern in the
mean value of the position is formed with fringes separated
by a distance xf ¼ 2�@t2=ðmdÞ. The final step of the

protocol is thus to perform a position measurement of the
center of mass [Fig. 2(d)]. This requires a resolution
�x < xf, providing a third upper bound for d, dcmax �
2�@t2=ðm�xÞ. Note that sufficiently long time t2 �
m�2=ð@	Þ is needed to guarantee the overlap of the two
wave packets. The effect of standard decoherence on the
visibility of the interference pattern can be obtained by
solving the evolution of the position distribution for a non-
Gaussian state under the evolution of Eq. (3). This is given
by the closed expression [19]

hxj�̂ðtÞjxi¼
Z 1

�1
dy

e�y2=�2
b
ðtÞ

�bðtÞ
ffiffiffiffi
�

p hxþyj�̂�¼0ðtÞjxþyi; (5)

where �̂�¼0ðtÞ is the state obtained with the evolution due
to the Schrödinger equation only, that is, with � ¼ 0. As
observed in (5), the effect of decoherence is to blur the
position distribution with a blurring coefficient given by

�bðtÞ ¼ 2@m�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t32�=3

q
. Therefore, the fringes separated

by a distance xf will be visible provided xf > �bðt2Þ=2,
which provides the fourth upper bound ddmax �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ðt2�sdÞ

p
=2. Putting everything together, the

operational regime for the experiment modeled here is
given by dmin < d<minfdamax; d

b
max; d

c
max; d

d
maxg.

We now address the experimental conditions required
for this experiment. The localization rate for black body
radiation �bb has contributions due to scattering �bb;sc /

R6T9
e Re½ð�bb � 1Þ=ð�bb þ 2Þ�2, and emission (absorption)

of blackbody radiation �bb;eðaÞ / R3T6
iðeÞ Im½ð�bb � 1Þ=

ð�bb þ 2Þ� (see [2,9] for the exact expressions). �bb is the
average relative permittivity, which is assumed to be con-
stant across the relevant blackbody spectrum, and TiðeÞ is
the internal (environmental) temperature. Ti at very low
pressure can be computed using the balance between the
emitted blackbody power and the light absorption during
the optical cooling and trapping [9]. Second, decoherence
due to air molecules is described by the master equation

Eq. (3) [20], with the parameter given by [2] �air ¼
8

ffiffiffiffiffiffiffi
2�

p
ma �vPR

2=ð3 ffiffiffi
3

p
@
2Þ, where P is the air pressure, ma

is the mass of the air molecules, and �v their thermal
velocity. The total standard decoherence rate is thus given
by �sd ¼ �bb þ�air. The overall performance of this
challenging experiment is mainly limited by the quality
of the cavity used in the measurement and the vacuum and
temperature conditions required for the environment. In
particular, very good vacuum conditions are needed to
keep the coherence of these fragile states. Note however
that pressures down to 10�17 Torr at cryogenic tempera-
tures of T ¼ 4:5 K were reported in [22]. Extremely good
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FIG. 2 (color online). (a) The operational parameter regime for
the optomechanical double slit distance d and the diameter of the
sphere D is plotted (see legend for the lower and upper bounds).
The simulation of the interference pattern is computed for a
sphere of 40 nm and (b) d ¼ D (triangle), (c) d ¼ 1:3D (square),
and (d) d ¼ 0:7D (circle) in units of D. The solid blue (dashed
grey) line is the simulated interference pattern with (without)
standard decoherence. The dotted red line is the interference
pattern in the presence of the CSL model with � ¼ 104�0 s�1

(the upper bound dCSLmax in the operational parameter plot provided
by the CSL model is also shown—see legend). Experimental
parameters for the environmental conditions are P ¼
10�16 Torr, Te ¼ 4:5 K, Im½ð�bb � 1Þð�bb þ 2Þ� ¼ 0:1,
Re½�bb� ¼ 2:3, �n ¼ 0:1; for the cavity, they are F ¼
1:3� 105, length 2 �m, waist ¼ 1:5 �m, �c ¼ 1064 nm; and
for a silica sphere, �r ¼ 2:1þ i2:5� 10�10, density ¼
2201 kg=m3, !t=2� ¼ 135 kHz, and �x ¼ 10 nm. Using this,
for a sphere of 40 nm and d ¼ D, one obtains �=2� ¼ ��1 ¼
2:8� 108 Hz, Cl ¼ 1500, nph ¼ 272, Ti ¼ 206 K, t1 ¼ 3:3 ms,

t2 ¼ 125 ms, and �=x0 ¼ 2928.
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cavities are needed in order to obtain a large cooperativity
Cl; for instance, consider fiber-based Fabry-Perot cavities
of length of 2 �m and finesseF � 1:3� 105 as discussed
in [23]. In Fig. 2 the operational parameter regime is shown
for different sphere sizes and superposition distances with
the particular set of experimental parameters given in the
caption. The interference pattern simulated by solving the
master equation numerically, which describes the evolu-
tion of the state during the experiment, is also plotted.
Spheres of �40 nm with a mass of �107 amu can be
prepared in a superposition of locations separated by a
distance equal to their diameter. In principle, the scheme
can be applied to even larger objects albeit with further
constraints on the experimental parameters.

To conclude, we shall discuss the application of using
this experiment to test theories beyond quantummechanics
that provide an objective collapse of the wave function for
sufficiently large objects. In particular, we focus on the
paradigmatic model associated to Ghirardi-Rimini-Weber-
Pearle (see [4] and references therein) denoted as the
continuous spontaneous localization model (CSL). This
theory is derived by adding a nonlinear stochastic term to
the Schrödinger equation. The model recovers all the phe-
nomenology of quantum mechanics for elementary parti-
cles but predicts a fast localization (collapse) of the wave
function for larger objects. This comes at the price of
introducing two phenomenological constants given by


�1=2 � 10�7 m (related to the localization extension)
and �0 � 2:2� 10�17 s�1 (related to the intensity of the
localization). For a spherical body [24], the CSL model can
be cast into a master equation of the form of Eq. (3) with
�CSL ¼ m2�0
fð

ffiffiffiffi



p
RÞ=ð2m2

0Þ, where m0 is the mass

of a nucleon, and the function fðxÞ defined in [24] has
the following limits: fð1Þ � 0:62, fðx � 1Þ ¼ 1, and
fðx � 1Þ � 6x�4. Recently, Adler [25] reexamined the
CSL theory and, by considering the collapse of the wave
function at the latent image formation level, predicted
a significantly larger value for �0, namely, �A ¼
2� 109	2�0. This prediction cannot be tested by current
experiments [3]. In Fig. 2 we show however that a possible
CSL process would have a strong impact on our experi-
ment already for � ¼ 104�0 (see the upper bound dCSLmax

provided by the blurring of the interference pattern). The
effect is also clearly visible in the simulation of the inter-
ference pattern. Thus, the experiment proposed here puts
unprecedented bounds for one of the most studied collapse
models and even challenges the recent theoretical predic-
tion given by Adler (see also [26]). Finally we note that our
scheme allows us to prepare superpositions of macroscopi-
cally distinct spatial states of a massive object. In combi-
nation with the specific time-of-flight evolution this may
provide a rigorous experimental test of some of the crucial
assumptions of macrorealism [5].
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Current attempts to probe general relativistic effects in quantum mechanics focus on precision 
measurements of phase shifts in matter–wave interferometry. Yet, phase shifts can always be 
explained as arising because of an Aharonov–Bohm effect, where a particle in a flat space–time 
is subject to an effective potential. Here we propose a quantum effect that cannot be explained 
without the general relativistic notion of proper time. We consider interference of a ‘clock’—a 
particle with evolving internal degrees of freedom—that will not only display a phase shift, but 
also reduce the visibility of the interference pattern. According to general relativity, proper 
time flows at different rates in different regions of space–time. Therefore, because of quantum 
complementarity, the visibility will drop to the extent to which the path information becomes 
available from reading out the proper time from the ‘clock’. Such a gravitationally induced 
decoherence would provide the first test of the genuine general relativistic notion of proper 
time in quantum mechanics. 
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In the theory of general relativity, time is not a global background 
parameter but flows at different rates depending on the space– 
time geometry. Although verified to high precision in various 

experiments1, this prediction (as well as any other general relativistic 
effect) has never been tested in the regime where quantum effects 
become relevant. There is, in general, a fundamental interest in 
probing the interplay between gravity and quantum mechanics2. The 
reason is that the two theories are grounded on seemingly different 
premises and, although consistent predictions can be extrapolated 
for a large range of phenomena, a unified framework is still missing 
and fundamentally new physics is expected to appear at some scale.

One of the promising experimental directions is to reveal,  
through interferometric measurements, the phase acquired by a par-
ticle moving in a gravitational potential3,4. Typically considered is 
a Mach–Zehnder type interferometer (Fig. 1), placed in the Earth’s 
gravitational field, where a particle travels in a coherent superposi-
tion along the two interferometric paths γ1, γ2 that have different 
proper lengths. The two amplitudes in the superposition acquire dif-
ferent, trajectory-dependent phases Φi, i = 1, 2. In addition, the parti-
cle acquires a controllable relative phase shift ϕ. Taking into account 
the action of the first beam splitter and denoting by |ri〉 the mode 
associated with the respective path γi, the state inside the Mach– 
Zehnder setup |ΨMZ〉, just before it is recombined, can be written as 

| = 1
2

| | .1
1

2
2Ψ Φ Φ

MZ
i i iie r e r〉 〉 + 〉( )− − + j

Finally, the particle can be registered by one of the two detectors  
D ±  with corresponding probabilities P ± : 

P± ± +( )= 1
2

1
2

,cos ∆Φ j

where ∆Φ:= Φ1 − Φ2. The phase Φi is proportional to the action 
along the corresponding (semiclassical) trajectory γi on which the 
particle moves. For a free particle on an arbitrary space–time back-
ground, the action can be written in terms of the proper time τ that 
elapsed during the travel, S mci i= 2− ∫g td . This might suggest that 
the measurement of ∆Φ is an experimental demonstration of the 
general relativistic time dilation.

There is, however, a conceptual issue in interpreting experiments 
measuring a gravitationally induced phase shift as tests of the rela-
tivistic time dilation. The action Si above can be written in terms of 
an effective gravitational potential on a flat space–time. Thus, all 
the effects resulting from such an action are fully described by the 
Schödinger equation with the corresponding gravitational potential 
and where the time evolution is given with respect to the global time. 
Note that a particle in a field of arbitrary nature is subject to a Hamil-
tonian where the potential energy is proportional to the field’s charge 
and a position-dependent potential. Therefore, even in a homogene-
ous field, the particle acquires a trajectory-dependent phase although 
the force acting on it is the same at any point—the phase arises only 
because of the potential. For a homogeneous electric field, this rela-
tive phase is known as the electric Aharonov–Bohm effect5. The case 
of Newtonian gravity is directly analogous—the role of the particle’s 
electric charge and of the Coulomb potential are taken by the par-
ticle’s mass and the Newtonian gravitational potential, respectively 6. 
All quantum interferometric experiments performed to date (see for 
example, refs 7–9) are fully explainable by this gravitational analogue 
of the electric Aharonov–Bohm effect. Moreover, even if one includes 
non-Newtonian terms in the Hamiltonian, this dichotomy of interpre-
tations is still present. Again, one can interpret the phase shift ∆Φ as 
a type of an Aharanov–Bohm phase, which a particle moving in a flat 
space–time acquires because of an effective, non-Newtonian, gravita-
tional potential (at least for an effective gravitational potential arising 
from the typically considered Kerr or Schwarzschild space–times).

(1)(1)

(2)(2)

Here we predict a quantum effect that cannot be explained with-
out the general relativistic notion of proper time and thus show how 
it is possible to unambiguously distinguish between the two inter-
pretations discussed above. We consider a Mach–Zehnder interfer-
ometer placed in the gravitational potential and with a ‘clock’ used 
as an interfering particle. By ‘clock’ we mean some evolving internal 
degree of freedom of the particle. If there is a difference in proper 
time elapsed along the two trajectories, the ‘clock’ will evolve into 
different quantum states for the two paths of the interferometer.  
Because of quantum complementarity between interference and 
which-path information the interferometric visibility will decrease 
by an amount given by the which-way information accessible from 
the final state of the clock10–12. Such a reduction in the visibility is a 
direct consequence of the general relativistic time dilation, which 
follows from the Einstein equivalence principle. Seeing the Ein-
stein equivalence principle as a corner stone of general relativity, 
observation of the predicted loss of the interference contrast would 
be the first confirmation of a genuine general relativistic effect in 
quantum mechanics.

One might sustain the view that the interference observed with 
particles without evolving degrees of freedom is a manifestation of 
some intrinsic oscillations associated with the particle and that such 
oscillations can still be seen as the ticking of a clock that keeps track 
of the particle’s time. If any operational meaning was to be attributed 
to this clock, it would imply that which-way information is, in prin-
ciple, accessible. One should then either assume that proper time is 
a quantum degree of freedom, in which case, there should be a drop 
in the interferometric visibility, or that the quantum complementa-
rity relation (between which-path information and interferometric 
visibility) would be violated when general relativistic effects become 
relevant. Our proposed experiment allows to test these possibilities. 
The hypothesis that proper time is a degree of freedom has indeed 
been considered in various works13–15.

The above considerations are also relevant in the context of 
the debate over ref. 16 (determination of the gravitational redshift 
by reinterpreting interferometric experiment9 that measured the  
acceleration of free fall). It was pointed out in refs 17–20 that only 
states non-trivially evolving in time can be referred to as ‘clocks’. In 
ref. 18, the interference in such a case was discussed, however, the 
role of the interferometric visibility as a witness of proper time in 
quantum mechanics and as a tool to test new hypotheses has not 
been previously considered.

D+

g

BS

D–

BS
x

y

∆h
�1

�2

PS

�

Figure 1 | Mach–Zehnder interferometer in the gravitational field. 
The setup considered in this work consists of two beam splitters (BS), a 
phase shifter (PS) and two detectors D ± . The PS gives a controllable phase 
difference ϕ between the two trajectories γ1 and γ2, which both lie in the x − y 
plane. A homogeneous gravitational field (g) is oriented antiparallel to the 
x direction. The separation between the paths in the direction of the field is 
∆h. General relativity predicts that the amount of the elapsed proper time is 
different along the two paths. In our approach, we will consider interference 
of a particle (which is not in free fall) that has an evolving internal degree 
of freedom that acts as a ‘clock’. Such an interference experiment will 
therefore not only display a phase shift, but also reduce the visibility of the 
interference pattern to the extent to which the path information becomes 
available from reading out the proper time of the ‘clock’.
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In the present paper, we discuss an interferometric experiment 
in the gravitational field where the interfering particle can be opera-
tionally treated as a ‘clock’. We predict that as a result of the quan-
tum complementarity between interference and which-path infor-
mation the general relativistic time dilation will cause the decrease 
in the interferometric visibility. The observation of such a reduction 
in the visibility would be the first confirmation of a genuinely gen-
eral relativistic effect in quantum mechanics, in particular, it would 
unambiguously probe proper time as predicted by general relativ-
ity. The proposed experiment can also lead to a conclusive test of 
theories in which proper time is treated as a quantum degree of 
freedom.

Results
Which-way information from proper time. Consider an 
interferometric experiment with the setup as in Fig. 1, but in a 
situation where the particle in superposition has some internal 
degree of freedom that can evolve in time. In such a case, state (1) is 
no longer the full description of the system. Moreover, if this degree 
of freedom can be considered as a ‘clock’, according to the general 
relativistic notion of proper time it should evolve differently along 
the two arms of the interferometer in the presence of gravity. For a 
trajectory γi, let us call |τi〉 the corresponding state of the ‘clock’. The 
superposition (1) inside the interferometer now reads 

| = 1
2

| | | | .1
1 1

2
2 2Ψ Φ Φ

MZ
i i iie r e r〉 〉 〉 + 〉 〉( )− − +t tj

In general, the state (3) is entangled and according to quantum 
mechanics interference in the path degrees of freedom should 
correspondingly be washed away. The reason is that one could 
measure the ‘clock’ degrees of freedom and in that way read out the 
accessible which-path information. Tracing out the ‘clock’ states in 
equation (3) gives the detection probabilities 

P± ± 〈 〉 + +( )= 1
2

1
2

| | | ,1 2t t a jcos ∆Φ

where 〈τ1|τ2〉 = |〈τ1|τ2〉|eiα. When the ancillary phase shift ϕ is varied, 
the probabilities P ±  oscillate with the amplitude V , called the 
visibility (contrast) of the interference pattern. Formally 

V :=
Max P Min P
Max P Min P

j j

j j

± ±

± ±

−
+

.

Whereas without the ‘clock’ the expected contrast is always maximal 
(equation (2) yields V = 1), in the case of equation (4) it reads 

	  
V =| | | .1 2〈 〉t t

The distinguishability D  of the trajectories is the probability to 
correctly guess which path was taken in the two-way interferometer 
by measuring the degrees of freedom that serve as a which-way 
detector12 (in mathematical terms it is the trace norm distance 
between the final states of the detectors associated with different 
paths). In our case, these are the ‘clock’ degrees of freedom and 
we obtain D = 1 | | |1 2

2− 〈 〉t t . The amount of the which-way 
information that is potentially available sets an absolute upper 
bound on the fringe visibility and we recover the well-known duality 
relation10–12 in the form V D2 2 = 1+ , as expected for pure states.

The above result demonstrates that general relativistic effects  
in quantum interferometric experiments can go beyond previously 
predicted corrections to the non-relativistic phase shift. When 
proper time is treated operationally we anticipate the gravitational 
time dilation to result in the reduction of the fringe contrast. This 
drop in the visibility is expected independently of how the proper 
time is measured and which system and interaction are used for  

(3)(3)

(4)(4)

(5)(5)

the ‘clock’. Moreover, when the information about the time elapsed 
is not physically accessible, the drop in the visibility will not occur. 
This indicates that the effect unambiguously arises because of the 
proper time as predicted by general relativity, in contrast to measure-
ments of the phase shift alone. The gravitational phase shift occurs 
independently of whether the system can or cannot be operationally 
treated as a ‘clock’, just as the phase shift acquired by a system in the 
electromagnetic potential. Therefore, the notion of proper time is 
not probed in such experiments.

Massive quantum ‘clock’ in an external gravitational field. In 
the next paragraphs, we present how the above idea can be real-
ized when the ‘clock’ degrees of freedom are implemented in inter-
nal states of a massive particle (neglecting the finite-size effects). 
Let H  be the Hamiltonian that describes the internal evolution. 
In the rest reference frame, the time coordinate corresponds to the 
proper time τ, and the evolution of the internal states is given by 
i H ( )∂ ∂t = . Changing coordinates to the laboratory frame, the 
evolution is given by i t H ( )∂ ∂ = t , where t t= d dt  describes 
how fast the proper time flows with respect to the coordinate time. 
For a general metric gµν, it is given by   t mn

m n= −g x x , where we 
use the signature ( −  +  +  + ) and summation over repeated indices 
is understood. The energy–momentum tensor of a massive particle 
described by the action S can be defined as the functional deriva-
tive of S with respect to the metric, that is, T S gmn

mnd d:=  (see, 
for example, ref. 21). Since the particle’s energy E is defined as the 
T00 component, it reads E = g0 µg0νTµν. In the case of a free evolution  
in a space–time with a stationary metric (in coordinates such that 
g0j = 0 for j = 1, 2, 3), we have 

E mc g

g x x
= ,2 00−

− mn
m n 

where m is the mass of the particle. Space–time geometry in the 
vicinity of Earth can be described by the Schwarzschild metric.  
In isotropic coordinates (x, θ, ϑ) and with d d dΩ2 2 2 2≡ +q q Jsin  it 
takes the form21

c

x
c
x
c

c t x
c

x x2 2 2
2

2
2

2 2
2

4
2 2=

(1 ( )
2

)

(1 ( )
2

)
1 ( )

2
d d dt

f

f
f+

−
− −



 + ddΩ2( ) ,

where f( ) =x GM x−  is the Earth’s gravitational potential (G 
denotes the gravitational constant and M is the mass of Earth). We 
consider the limit of a weak field and of slowly moving particles. 
In the final result, we therefore keep up to quadratic terms in the 
kinetic and potential energy. In this approximation, the metric 
components read21 

g x
c

x
c00 2

2

41 2 ( ) 2 ( )
 − + +







f f
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c
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1 1 2 ( )
2 2d f−



 , 

so that 




t f f f
 1 2 ( ) 2 ( ) 1 2 ( )

2

2

4

2

2+ + − 



 −



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x
c

x
c

x
c

x
c .

The total Hamiltonian in the laboratory frame is given by 
H H HLab = 0 + t , where the operator H0 describes the dynamics 
of the external degrees of freedom of the particle and is obtained 
by canonically quantizing the energy (6), that is, the particle’s 
coordinate x and kinematic momentum p mx=   become operators 
satisfying the canonical commutation relation ( )[ , ] =x p i . Thus, 
approximating up to the second order also in the internal energy, 

(6)(6)
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HLab reads

H mc H E x
c

mc H Ek
GR GR

Lab corr 2
2

2( ) ,+ + + + +( )f

where 

E p
m

p
mc mc

Hk
GR =

2
1 3

2
12 2

2+ 








− 
  

and

 E m x p
m

GR
corr = 1

2
( ) 3

2

2
f −  . 

We consider a semiclassical approximation of the particle’s motion 
in the interferometer. Therefore, all terms in HLab, apart from the 
internal Hamiltonian H  , appear as purely numerical functions 
defined along the fixed trajectories.

In a setup as in Figure 1, the particle follows in superposition 
two fixed non-geodesic paths γ1, γ2 in the homogeneous gravita-
tional field. The acceleration and deceleration, which the particle 
undergoes in the x direction, is assumed to be the same for both 
trajectories, as well as the constant velocity along the y axis. This 
assures that the trajectories have different proper length, but there 
will be no time dilation between the paths stemming from special 
relativistic effects. The particle inside the interferometer will thus 
be described by the superposition | = 1

2
| |1 2Ψ Ψ ΨMZ i ei〉 〉 + 〉( )j ,  

where the states |Ψi〉 associated with the two paths γi are given by 
applying the Hamiltonian (7) to the initial state, which we denote by 
|xin〉|τ in〉. Up to an overall phase, these states read 

| = | | .

( )
2

2

Ψi

i

i
t x

c
mc H E

e x
GR

〉 〉 〉
− + +( )∫ g

f

t
d corr

in in

For a small size of the interferometer, the central gravitational 
potential φ(x) can be approximated to linear terms in the distance 
∆h between the paths: 

f f( ) = ( ) ( ),2R h R g h h+ + +∆ ∆ ∆O

where g GM R= 2  denotes the value of the Earth’s gravitational 
acceleration in the origin of the laboratory frame, which is at dis-
tance R from the centre of Earth.

For a particle having two internal states |0〉, |1〉 with correspond-
ing energies E0, E1, the rest frame Hamiltonian of the internal 
degrees of freedom can be written as 

H E E= | 0 0 | |1 1|0 1〉〈 + 〉〈

and if we choose the initial state of this internal degrees to be 

| = 1
2

(| 0 |1 )t in 〉 〉+ 〉

the detection probabilities read 

P m E V T E V T
c

mc H

E

± ± 








+(
+

( , , , , ) = 1
2

1
2 2 2

2j ∆ ∆ ∆ ∆ ∆ ∆cos cos


corrr
GR V T

c) + + 


∆ ∆
 2 j ,

where ∆T is the time (as measured in the laboratory frame) for 
which the particle travels in the interferometer in a superposition 
of two trajectories at constant heights, ∆V: = g∆h is the difference 
in the gravitational potential between the paths, EGR

corr  represents 

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)

(12)(12)

the corrections EGR
corr from equation (7) averaged over the two tra-

jectories and ∆E: = E1 − E0. The expectation value 〈H 〉 is taken with 
respect to the state (11). The corresponding visibility (5) is 

V =
2

.2cos ∆ ∆ ∆E V T
c







The introduction of the ‘clock’ degrees of freedom results in two 
new quantum effects that cannot be explained without including 
general relativity: the change of the interferometric visibility and the 
extra phase shift proportional to the average internal energy (Fig. 2; 
equation (12)). The drop in the visibility is a consequence of a direct 
coupling of the particle’s internal degrees of freedom to the potential 
in the effective Hamiltonian (7). Such a coupling is never found in 
Newtonian gravity, and it is the mathematical expression of the pre-
diction that the ‘clock’ ticks at different rates when placed in different 
gravitational potentials. This coupling can directly be obtained from 
the Einstein equivalence principle. Recall that the latter postulates 
that accelerated reference frames are physically equivalent to those 
in the gravitational field of massive objects. When applied within 
special relativity, this exactly results in the prediction that initially 
synchronized clocks subject to different gravitational potentials will 
show different times when brought together. The proposed experi-
ment probes the presence of such a gravitational time dilation effect 
for a quantum system—it directly shows whether the ‘clock’ would 
tick at different rates when taken along the two possible trajecto-
ries in the interferometer. On the other hand, to obtain the correct 
phase shift, it is sufficient to consider a semiclassical coupling of 
the average total energy of the system to the gravitational poten-
tial. With such a coupling, the time displayed by the ‘clock’ used in 

(13)(13)

1

–1

P+ – P–

π ∆T (s)

Figure 2 | Visibility of the interference pattern and the phase shift in the 
cases with and without the ‘clock.’ The plot of the difference between 
the probabilities P ± (ϕ, m, ∆E, ∆V, ∆T), equation (12), to find the particle 
in the output path of the Mach–Zehnder interferometer as a function 
of the time ∆T for which the particle travels in a superposition of two 
trajectories at constant heights (this corresponds to changing the length of 
the interferometric arms). The term proportional to the particle’s mass is 
the phase originating from the Newtonian potential energy m∆V. General 
relativistic corrections stemming from external degrees of freedom are 
given by EGRcorr , see for example, ref. 3. Without the ‘clock’ degrees of 
freedom, only these terms are present in the result (dashed, black line 
in the plot). In the situation with the ‘clock’ (blue line), we expect two 
new effects: the change of the interferometric visibility given by the 
absolute value of the first cosine (thick red line) and an extra phase shift 
proportional to the average internal energy of the ‘clock’. The values for the 
energy gap ∆E and the gravitational potential difference ∆V between the 
interferometric paths are chosen such that ∆ ∆E V c2 = 12 Hz . Whereas the 
phase shift alone can always be understood as an Aharonov–Bohm phase 
of an effective potential, the notion of general relativistic proper time is 
necessary to explain the decrease of the visibility.
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the experiment will not depend on the path taken. This means that 
a gravitationally induced phase shift can probe general relativistic 
corrections to the Newtonian gravitational potential but is always 
consistent with having an operationally well-defined notion of  
global time, that is, with a flat space–time.

The effect described in our work follows directly from the  
Einstein equivalence principle, which is itself crucial for the formu-
lation of general relativity as a metric theory22. Thus, the drop in the 
fringe contrast is not only genuinely quantum mechanical but also a 
genuine general relativistic effect that in particular unambiguously 
probes the general relativistic notion of proper time.

General ‘clocks’ and gravitational fields. Let us call t the orthog-
onalization time of a quantum system, that is, the minimal time 
needed for a quantum state to evolve under a given Hamiltonian 
into an orthogonal one23,24. For the initial state (11) subject to the 
rest frame Hamiltonian H  given by equation (10) we obtain 

t
E⊥ = p

∆
.

A system with finite t can be seen as a clock that ticks at a rate 
proportional to t

−1. Thus, the orthogonalization time gives also the 
precision of a considered ‘clock’. From the expression for t  in the 
approximation (9), it follows that the total time dilation ∆τ between 
the trajectories is 

∆ ∆ ∆t = .2
V T
c

We can, therefore, phrase the interferometric visibility V  solely in 
terms of t and ∆τ: 

V =
2

.cos ∆t p
t⊥







The total time dilation ∆τ is a parameter capturing the relevant infor-
mation about the paths, and t grasps pertinent features of the ‘clock’. 
It is only their ratio that matters for the fringe visibility. Equation (16)  
is a generalization of the result (13) to the case of an arbitrary initial 
state, ‘clock’ Hamiltonian and a non-homogeneous gravitational field: 
whenever the time dilation ∆τ between the two trajectories through 
the Mach–Zehnder interferometer is equal to the orthogonalization 
time t of the quantum mechanical system that is sent through the 
setup, the physically accessible proper time difference will result 
in the full loss of fringe contrast. There are several bounds on the 
orthogonalization time based on energy distribution moments23,25,26. 
Such bounds can through equation (16) give some estimates on the 
gravity-induced decoherence rates in more general situations. As an 
example, for mixed states one generally has26:

(14)(14)

(15)(15)

(16)(16)

1 2 ( )

1
1

t
H Egr

⊥
≤ 〈 − 〉

a
a a

p
,

α > 0 (provided the initial state is in the domain of (H − Egr)α) 
where H denotes the internal Hamiltonian and Egr the energy of 
its ground state.

Discussion
Current approaches to test general relativistic effects in quantum 
mechanics mainly focus on high precision measurements of the  
phase induced by the gravitational potential. Although such 
experiments would probe the potential and thus could verify 
non-Newtonian corrections in the Hamiltonian, they would not 
constitute an unambiguous proof of the gravitational time dila-
tion, because they are also explainable without this concept by the  
Aharonov–Bohm effect: a trajectory-dependent phase acquired by 
a particle moving in a flat space–time in the presence of a position-
dependent potential.

In our proposed experiment, the effects arising from general 
relativistic proper time can be separated and probed independently 
from the Aharonov–Bohm type of effects. Unlike the phase shift, 
which occurs independently of whether the interfering particle can 
be treated as a ‘clock’, the change of the interferometric visibility 
(equation (13)) is a quantum effect that arises if and only if gen-
eral relativistic proper time has a well defined operational mean-
ing. Indeed, if one prepares the initial state |τin〉 as an eigenstate of 
the internal energy Hamiltonian H , only the phase of such a state 
would change during the time evolution and, according to equation 
(16), interferometric visibility would be maximal. This ‘clock’ would 
not ‘tick’ (it has orthogonalization time t = ∞) so the concept of 
proper time would have no operational meaning in this case. More-
over, reasoning that any (even just an abstract) frequency which 
can be ascribed to the particle allows considering proper time as 
a physical quantity would imply that interference should always be 
lost, as the which-path information is stored ‘somewhere’. This once 
again shows that, in quantum mechanics, it makes no sense to speak 
about quantities without specifying how they are measured.

The interferometric experiment proposed in this work can also 
be used to test whether proper time is a new quantum degree of 
freedom. This idea was discussed in the context of, for example, the 
equivalence principle in refs 13,14 and a mass–proper time uncer-
tainty relation15. The equations of motion for proper time treated 
dynamically, as put forward in refs 13–15, are in agreement with 
general relativity. Therefore, the predictions of equation (5) would 
also be valid, if the states |τi〉, introduced in equation (3), stand for 
this new degree of freedom. Already performed experiments, like 

Table 1 | Discussion of possible outcomes of the proposed interferometric experiment.

Experimental visibility Possible explanation Current experimental status

 Vm = 0 Proper time: quantum d.o.f., sharply defined Disproved in, for example, refs 7,9

 0 V V< <m QM
Proper time: quantum d.o.f. with uncertainty στ Consistent with current data for 

st t> | | 8 (1 )∆ ∆− −ln V
    

 V Vm QM= Proper time: not a quantum d.o.f. or has a very broad uncertainty Consistent with current data

 V Vm QM> Quantum interferometric complementarity does not hold when 
general relativistic effects become relevant

Not tested

The measured visibility Vm  is compared with the quantum mechanical prediction VQM given by equation (13). Depending on their relation, different conclusions can be drawn regarding the possibility 
that proper time is a quantum degree of freedom (d.o.f.). Assuming that the distribution of the proper time d.o.f. is a Gaussian of the width στ, current interferometric experiments give bounds on  
possible στ in terms of the proper time difference ∆τ between the paths and the experimental error ∆V  of the visibility measurement.
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in refs 7,16, which measured a gravitational phase shift, immedi-
ately rule out the possibility that the state of proper time was sharply 
defined in those tests, in the sense of 〈τ1|τ2〉 = δ(τ1 − τ2). However, 
such experiments can put a finite bound on the possible uncer-
tainty in the state of proper time. The phase shift measured in those 
experiments can be phrased in terms of the difference in the proper 
time ∆τ between the paths. Denote by ∆V  the experimental error 
with which the visibility of the interference pattern was measured 
in those tests. As a result, a Gaussian state of the proper time degree 
of freedom of width στ such that s tt >| | 8 (1 )∆ ∆/ ln− − V , is con-
sistent with the experimental data. An estimate of the proper time 
uncertainty can be based on the Heisenberg uncertainty principle 
for canonical variables and the equation of motion for the proper 
time. In such an analysis, the rest mass m can be considered as a 
canonically conjugated momentum to the proper time variable τ, 
that is, one assumes [ , ] =2t mc i 13–15. In Table 1, we discuss what 
can be inferred about proper time as a quantum degree of freedom 
from an experiment in which the measured visibility would be Vm 
and where VQM  is the visibility predicted by quantum mechanics, as 
given by equation (13).

In conclusion, we predicted a quantum effect in interferometric 
experiments that, for the first time, allows probing general relativis-
tic proper time in an unambiguous way. In the presence of a gravita-
tional potential, we showed that a loss in the interferometric visibility  
occurs, if the time dilation is physically accessible from the state 
of the interfered particle. This requires that the particle is a ‘clock’ 
measuring proper time along the trajectories, therefore revealing 
the which-way information. Our predictions can be experimen-
tally verified by implementing the ‘clock’ in some internal degrees 
of freedom of the particle (see Methods). The proposed experiment 
can also lead to a conclusive test of theories in which proper time is 
treated as a quantum degree of freedom. As a final remark, we note 
that decoherence due to the gravitational time dilation may have 
further importance in considering the quantum to classical transi
tion and in attempts to observe collective quantum phenomena in 
extended, complex quantum systems because the orthogonaliza-
tion time may become small enough in such situations to make the  
predicted decoherence effect prominent.

Methods
Systems for the implementation of the interferometric setup. Here we briefly 
discuss various systems for the possible implementation of the interferometric 
setup. Interferometry with many different massive quantum systems has been 
achieved, for example, with neutrons7,8, atoms16,27, electrons28,29 and molecules30,31. In 
our framework, further access to an internal degree of freedom is paramount, as to 
initialize the ‘clock’ which measures the proper time along the interferometric path. 
Therefore, the experimental requirements are more challenging. To observe full loss 
of the interferometric visibility, the proper time difference in the two interferomet-
ric arms needs to be ∆τ = t. For a two level system, the revival of the visibility due 
to the indistinguishability of the proper time in the two arms occurs when ∆τ = 2t.

The best current atomic clocks operate at optical frequencies ω around 1015 Hz. 
For such systems, we have t = π /ω, and one would therefore require an atomic 
superposition with ∆h∆T~10 ms to see full disappearance of the interferometric 
visibility. For example, the spatial separation would need to be of the order of 1 m, 
maintained for about 10 s. Achieving and maintaining such large superpositions of 

atoms still remains a challenge, but recent rapid experimental progress indicates  
that this interferometric setup could be conceivable in the near future. For 
neutrons, a separation of ∆h~10 − 2 m with a coherence time of t~10 − 4 s has been 
achieved8. To implement our ‘clock’ in neutron interferometry, one can use spin 
precession in a strong, homogeneous magnetic field. However, such a ‘clock’ could 
reach frequencies up to ω~109 Hz (for a magnetic field strength of order of 10T 
(ref. 32)), which is still a few orders of magnitude lower than necessary for the 
observation of full decoherence owing to a proper time difference. Improvements 
in the coherence time and the size of the interferometer would still be necessary. 
Other systems, such as molecules, could be used as well and Table 2 summarizes 
the requirements for various setups (note again that the particles are assumed to 
travel at fixed height during the time ∆T).

The effect we predict can be measured even without achieving full orthogonali-
zation of the ‘clocks’. Note that even for ∆τ  t the small reduction of visibility  
can already be sufficient to prove the accessibility of which-path information due 
to the proper time difference. With current parameters in atom interferometry, 
an accuracy of the measurement of the visibility of ∆V = 10 − 6 would have to be 
achieved for the experimental confirmation of our predictions. A very good  
precision measurement of the interferometric visibility and a precise knowledge 
about other decoherence effects would therefore make the requirements for the 
other parameters less stringent. 
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