

7 Pines, Stillwater, Minnesota, May, 2012

Drude-Sommerfeld model of metals = Free electrons in a box + Schrodinger equation + Pauli exclusion principle results in a Fermi Surface and many of the properties of metals.

Dirac equation

The Dirac equation

$$\left[i\hbar\frac{\partial}{\partial t} + i\hbar c\vec{\alpha}\cdot\vec{\nabla} + \beta mc^2\right]\psi(t,\vec{x}) = 0$$

describes the quantum physics of a relativistic electron traveling at speeds comparable to light, c = 299,792,849 m/s.

Has negative energy states. Stability?

Dirac Hole Theory: Use Pauli exclusion principle, "ground state" has all negative energy states filled, in exact analogy with Drude-Sommerfeld theory of metals.

Graphene has an emergent Dirac equation

$$i\hbar \frac{\partial}{\partial t}\psi(x, y, z, t) = -\frac{\hbar^2 \nabla^2}{2m}\psi(x, y, z, t) + V_{\text{lattice}}(\vec{x})\psi(x, y, z, t)$$

results in
$$\left[i\hbar \frac{\partial}{\partial t} + i\hbar v_F \left(\alpha_x \frac{\partial}{\partial x} + \alpha_y \frac{\partial}{\partial y}\right)\right]\psi(t, x, y) = 0$$

becibes the quantum physics of the graphene electron which

describes the quantum physics of the graphene electron which **always** has speed, $v_F \sim 1,000,000m/s \sim \frac{c}{300}$.

Graphene is a 2-dimensional array of carbon atoms with a hexagonal lattice structure:

7 Pines, Stillwater, Minnesota, May, 2012

Graphene was produced and identified in the laboratory in 2004

 Micromechanical cleavage of bulk graphite up to 100 micrometer in size via adhesive tapes !

Novoselov et al, Science 306, 666 (2004)

7 Pines, Stillwater, Minnesota, May
,2012

A carbon atom has four valence electrons. Three of these electrons form strong covalent σ -bonds with neighboring atoms. The fourth, π -orbital is un-paired.

L. Pauling 1972 "The Nature of the Chemical Bond"

hexagonal lattice = two triangular sub-lattices \vec{A} and \vec{B} connected by vectors $\vec{s_1}, \vec{s_2}, \vec{s_3}$.

$$H = \sum_{\vec{A},i} \left(t \ b^{\dagger}_{\vec{A}+\vec{s}_{i}} a_{\vec{A}} + t^{*} \ a^{\dagger}_{\vec{A}} b_{\vec{A}+\vec{s}_{i}} \right) \quad , \quad t \sim 2.7 ev \quad |\vec{s}_{i}| \sim 1.4 \mathring{A}$$

P. R. Wallace, Phys. Rev. 71, 622 (1947)
J. C. Slonczewsi and P. R. Weiss, Phys. Rev. 109, 272 (1958).
G. W. S., Phys. Rev. Lett. 53, 2449 (1984)

7 Pines, Stillwater, Minnesota, May, 2012

Band structure of graphene

$$E(k) = \pm |t| \sqrt{(1 + 2\cos(\frac{3k_y}{2})\cos(\frac{\sqrt{3}k_x}{2}))^2 + \sin^2(\frac{3k_y}{2})}$$

4

Linearize spectrum near degeneracy points

$$E(k) = \hbar v_F |\vec{k}|$$

$$v_F \sim 10^6 m/s \sim c/300, \text{ good up to } \sim 1ev$$

$$2 \text{ valleys } \times 2 \text{ spin states} = 4 \text{ 2-component spinors } \psi$$

$$H\psi = \hbar v_F \begin{bmatrix} 0 & k_x - ik_y & 0 & 0 \\ k_x + ik_y & 0 & 0 & 0 \\ 0 & 0 & 0 & k_x + ik_y \\ 0 & 0 & k_x - ik_y & 0 \end{bmatrix} \begin{bmatrix} \psi_A(k-K) \\ \psi_B(k-K) \\ \psi_A(k-K') \\ \psi_B(k-K') \\ \psi_B(k-K') \end{bmatrix}$$

$$S = \int d^3x \sum_{\sigma=1}^4 \bar{\psi}^\sigma i\gamma^\mu \partial_\mu \psi^\sigma + \text{interactions}$$

7 Pines, Stillwater, Minnesota, May, 2012

Consequence of the Dirac equation Minimal coupling to magnetic field: $B = \vec{\partial} \times \vec{A}$ $\vec{\partial} \rightarrow \vec{D} = \vec{\partial} + i\vec{A}$ $H_{\text{Dirac}} = \begin{bmatrix} 0 & -iD_x - D_y & 0 & 0\\ -iD_x + D_y & 0 & 0 & 0\\ 0 & 0 & 0 & -iD_x + D_y\\ 0 & 0 & -iD_x - D_y & 0 \end{bmatrix}$ **Atiyah-Singer Index Theorem**

zero modes = $2(2) \left| \frac{1}{2\pi} \int d^2 x B(x) \right|$ solutions of $H_{\text{Dirac}} \psi_0(x) = 0$ In neutral ground state, half of zero modes are filled. **G. W. S.**, *Phys. Rev. Lett.* 53, 2449 (1984)

Electron dispersion relation with ARPES D.A. Siegel et. al. PNAS,1100242108

The Dirac equation in condensed matter

- unusual electronic properties: redo all of semiconductor physics with Schrödinger \rightarrow Dirac
- nanotechnology using graphene
- explore issues in relativistic quantum mechanics which are otherwise inaccessible to experiment
 Zitterbewegung
 Klein paradox
- explore dynamical issues in graphene as an analog of those in quantum field theory, e.g. symmetry breaking, phase transitions, quantum critical behavior

Graphene with Coulomb interaction

Relativistic electrons in 2 space dimensions

$$\left(i\hbar\gamma^{0}\frac{\partial}{\partial t}+i\hbar v_{F}\alpha_{x}\frac{\partial}{\partial x}+i\hbar v_{F}\alpha_{y}\frac{\partial}{\partial y}\right)\psi_{a}(t,x,y)=0 \quad , \quad a=1,\ldots,4$$

Coulomb interaction

$$V(x-y) = \frac{e^2}{4\pi |\vec{x} - \vec{y}|}$$

Since $v_F \sim \frac{c}{300} \ll c$ approximately instantaneous. Coulomb is a **strong** force: Graphene fine structure constant is the ratio of potential to kinetic energy

$$\alpha_{\text{graphene}} = \frac{e^2}{4\pi\lambda} \frac{1}{\hbar v_F/\lambda} = \frac{e^2}{4\pi\hbar v_F} = \frac{e^2}{4\pi\hbar c} \frac{c}{v_F} \approx \frac{300}{137} \quad \left(\cdot\frac{1}{\epsilon}\right)$$

Tight binding $t \sim 2.7ev, E_c \sim 10ev$.

7 Pines, Stillwater, Minnesota, May, 2012

AC Conductivity of Neutral Graphene $\omega >> k_B T$ RG improved two-loop correction

$$\sigma(\omega) = \frac{e^2}{4\hbar} \left(1 + \frac{11-3\pi}{6} \frac{e^2}{4\pi\hbar} \frac{1}{v_F \left(1 + \frac{e^2}{4\pi\hbar v_F} \frac{1}{4} \ln(\Lambda/\omega) \right)} \right)$$

V. Juricic et.al. Phys. Rev. B 82, 235402 (2010) Experiments $\sigma(\omega) \simeq \frac{e^2}{4\hbar}$, ω -independent R. Nair et.al., Science 320, 1308 2008.

Hypothesis

- Graphene is in a quantum fluid state which is described by a conformal field theory with fermion content.
- Perhaps strongly coupled.
- How does one analyze it?
- What are the consequences?

Electron dispersion relation with ARPES D.A. Siegel et. al. PNAS,1100242108

String theory holographic construction of graphene solutions of superstring theory that resemble idealized low energy graphene

String theory holographic construction of graphene

• D3-D7 system brane extends in directions X brane sits at single point in directions O

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	X	0	0	0	0	0	0
D7	X	X	X	0	X	X	X	X	X	O

- #ND = 6 system no supersymmetry no tachyon only zero modes of 3-7 strings are in R-sector and are 2-component fermions
- need flux on brane worldvolume for stability

$$S = \int d^3x \sum_{\sigma=1}^{N_7} \sum_{\alpha=1}^{N_3} \bar{\psi}^{\sigma}_{\alpha} i\gamma^{\mu} \partial_{\mu} \psi^{\sigma}_{\alpha} + \text{interactions}$$

AC conductivity

$$\sigma(\omega) \simeq \frac{3e^2}{\pi^2 \hbar}$$

Debye screeming length

$$\mu L_D \simeq e$$
 , $e \simeq 5$

Diamagnetism

$$M\simeq -(0.24)e\sqrt{B}$$

Free fermions:

$$\sigma(\omega) = \frac{e^2}{4\hbar}$$
$$\mu L_D \simeq 1.6$$
$$M \simeq -0.28\sqrt{B} \operatorname{sign}(B)$$

WIP: Plasmon frequency, Thermodynamics, Heat transport

Conclusions

- Review of graphene
- Graphene as a strongly coupled quantum fluid
- D7-D3 system as strongly coupled 2+1-dimensional relativistic fermions
- Conformal field theory at strong coupling
 - AC conductivity
 - Screening length versus chemical potential
 - Magnetization density
 - Other computation in progress