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abstract

2

This talk is about the role of experiment* in condensed matter physics. 
Specifically, it focuses upon two points:
•  Emergence, that is how unexpected result may arise in science, and 
•  Analogy, how the results of a few experimental observations may be 
generalized to give an overall picture of natural behavior.  

Here I shall focus upon the qualitatively different kinds of motions 
observed in classical mechanics, and how we learn about them. 

*Here, computer simulations are viewed as parts of experimental science 
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So says the sign on the door of Sidney Nagel’s laboratory at the University of Chicago.
Sid, a condensed matter experimentalist, and son of the late philosopher of science Earnest 
Nagel, clearly has a strong view of the role of experiment in physics.

Despite my high respect for Sid’s views, and the earlier representation of such views in the work 
of Popper* and others,  I offer here a different view, viz that the experimental laboratory is 

Where Theories Come to Life

You recall that Popper said that one crucial experiment can eliminate a physics theory*.   So I 
start with one candidate for a crucial experiment:

* John Gray, Straw Dogs, p.22 Granta Books, London, 2002
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abstract

In 1665, the clockmaker Christiaan Huygens noticed that 
two pendulum clocks hanging on a wall tend to synchronize 
the motion of their pendulums.  A similar scenario occurs 
with two metronomes placed on a piano: they interact 
through vibrations in the wood and will eventually 
coordinate their motion. 

This result is somewhat surprising since the coupling 
between two clocks or two metronomes is likely to be very 
weak.  A result that is surprising and that we cannot explain 
immediately using the natural laws at our fingertips is said to 
be “emergent.”   Huygens then looked further into his 
accidental discovery by setting up an experiment to 
demonstrate the synchronization phenomenon.  
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Huygens’ Experiment

5

and the observed synchronization was duly reported to the Royal Society in London.  The 
report included the illustration

I wonder whether Huygen’s crude picture* was intended to remind us that this phenomenon 
can be observed using only the simplest of experimental setups.    

* Drawn in the time and country of Rembrandt and Vermeer. 
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In modern language, 
Huygens has set up a 
dynamical system, and 
observed that the 
synchronized state of this 
system is an attractor*.  

6

* An attractor is a region of phase space into which orbits are drawn.   The concept of “attactor” 
is, I think, a product of the 20th Century.  

However, further study makes this result more surprising.    In Newtonian mechanics, all 
regions of phase space can be equally occupied.  The dynamical flows conserve volumes in 
phase space.  Having an attractor& arise from the Newtonian mechanics of a few bodies is 
quite impossible.    Therefore, surprisingly enough,  the Huygens experiment demonstrates 
a qualitative failure of Newtonian mechanics. 

& We might be more surprised than was Huygens, since his experiment was done before 
Newton’s Principia was published.  Philosophiæ Naturalis Principia Mathematica, published in 1687 

Huygen’s experiment remains unrefuted to this day.  Nonetheless we accept Galilian-Newtonian 
mechanics as a frictionless limit of a frictional world.  In fact, we may accord a higher degree of 
reality to the frictionless theory than to the more “realistic” frictional one.  

Saturday, May 19, 2012

http://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica
http://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica


Synchronization 9.21.11   Leo Kadanoff

What do we want from our experimental 
observations?   and from our theory?
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Answer:  We want them to suggest the kinds of things we may see in the world.

Thus, Newtonian mechanics gives us closed of planets and suggests that the solar system 
might be a collection of different orbits each with its own characteristic frequency.  This 
quasiperiodic behavior (i.e. superposition of different periodic behaviors) is a natural 
extrapolation by analogy from two body Newtonian mechanics to the description of 
additional bodies.   However, this extrapolation by analogy is wrong in two regards:

•  As Huygens showed, mechanical motion often  includes attractors.    These attractos are 
results of friction and therefore fall outside of few-body Newtonian mechanics.

• In addition to periodic and quasiperiodic motion, to be defined soon,  Newtonian mechanics 
generically gives rise to chaotic motion.  In fact, Newton had considered that the solar system 
might be unstable, and hence probably chaotic, but he believed that God intervened from 
time to time and put things right.

We construct these different kinds of motion in our mind in analogy to and as a generalization and 
extrapolation of experimental experience and/or of the results of simple models.  This 
extrapolation and process of generalization forms our view of the world.
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More frictional effects: inelastic collapse

8

theoretical model:  balls which collide conserving momentum but disssipating some 
energy

before:
approach with speed v

after:
depart with speed γ v,
γ <1 

before:
several balls collide together

after many collisions:
they can all move together:
An unexpected attractor
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One-dimensional motion:
computer model of inelastic balls

9

before: balls in random motion in a container with reflecting ends

after many collisions: balls at ends almost stop.  Ball in center in rapid motion.
when center ball hits end balls, they act as a spring and send center
ball back at high speed.

This is interesting and unexpected.  It is the result of sticking of inelastic balls sticking together, i.e.  
inelastic collapse.  It is another emergent phenomenon, impossible in Newtonian mechanics.  
Good computer experiments can give emergent results.

Breakdown of Hydrodynamics in a One Dimensional System of Inelastic Particles, Y. Du, H. 
Li, L.P. Kadanoff, Phys. Rev. Letts. 74 (8) 1268-1271 (1995).
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Real world: experiment brings collapse to life 

10

Shoot a jet of water at a target.  Water fans out, but surface tension keeps 
water together.  See cross section below.

target

What will happen if you replace water by glass beads.  There is no surface 
tension, but there are inelastic collisions
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Granular jet

11

The glass beads stick together also, despite the lack of surface tension.  Note that we are here 
using a natural system, a jet of water, as an anlog to understand the flow of a more artificial 
system made up of glass beads.

labs of 
Heinrich 
Jaeger and 
Sidney Nagel

Xiang Cheng, 
German Varas, 
Daniel Citron, 
Heinrich M. Jaeger 
and Sidney R. 
Nagel, “Collective 
Behavior in a 
Granular Jet: 
Emergence of a 
Liquid with Zero 
Surface Tension”, 
Phys. Rev. Lett. 
99, 188001 (2007).
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Unexpectedly, sand jet behaves like water jet.

Compacted sand behaves like a solid.
Low density sand grains behave like a gas.
Intermediate densities show a liquid-like behavior. 

Work with granular materials started with (over- ??) simplified models due to 
theorists and then continued with exemplifications of these models in 
simulations.
 
Experiment explored and discovered the rich behavior of granular materials, 
soon got ahead of theory and the simulations.  Since then, theory has been 
gradually working to catch up.

12
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Physicists love phenomena to be exemplified by many 
different realizations

13

• They tend to ignore experimental observations unless there is a 
theoretical model or (second-best) a computer simulation model to 
describe the observations.  

• They love best those phenomena that appear in many natural guises.  For 
example, a fluid with a particularly low viscosity coefficient is beloved in part 
because it appears in field theory, theoretical astrophysics, relativity, (AdS-CFT)
heavy ion collisions, and low temperature atomic systems.

• Important physicists, including Einstein and Uhlenbeck,  looked for an 
illusory universal behavior in the phase diagram of fluids.  Later, when such a 
universality was discovered near the critical point of the liquid-gas phase 
transition, this universal behavior became, for a time,  an important subject of 
study for physicists and chemists.  (Interestingly, important metallurgists never 
believed in this universality.)

Conversely, biologists tend to be wary of theory.   Instead of a theory of a 
disease they look for an animal that exhibits the disease and then speak of 
this analog result as “an animal-model” for the disease.
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Back to the fundamentals of motion in classical mechanics:
Ed. Lorenz discovered another kind of motion by studying a 
very primitive model of a weather system in a computer 
simulation. 

14

Chaotic behavior, now characterized as 
sensitive dependence upon initial 
conditions, or “the butterfly effect”, 
was discovered “accidentally” by 
Edward Lorenz working with an early 
and very primitive program for solving 
linked sets of ordinary differential 
equations.  
The crucial element is exponential 
separation of initially close orbits.   
-A study of weather brought about an 
important advance in pure science.

dx/dt= 3 (y-x)
dy/dt= 26.5 x- y -xz
dz/dt= xy - z
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Back to Huygens

15

The analysis of Galileo and Newton would give us pendulum equations

mℓ2 d2θ1/dt2   =  - mgℓ θ1  − k( θ1  −  θ2)
mℓ2 d2θ2/dt2   =  - mgℓ θ2  + k( θ1  −  θ2)

but Huygens result clearly showed the need for another term, a friction term. With 
friction, we need forcing terms to keep the system in motion.  Thus our analysis 
requires equations 

        d2θ1/dt2   = - γ dθ1/dt   - ω12  θ1   − k( θ1  −  θ2) + F1 sin(ω t)
        d2θ2/dt2   = - γ dθ2/dt   - ω22 θ2   +  k( θ1  −  θ2) + F2 sin(ω t)

The friction  term is not accessible through any analysis that describes the coupled 
pendulums as a Newtonian system.    Indeed, to bring in friction, one requires a quite 
different point of view, admitting effects not contained in simple Newtonian mechanics. 
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Different Kinds of Pendulum Motion

16

 Nothing very interesting happens to the pendulums described in this way for short periods 
of time, but over long periods, we can see three different kinds of motion:

periodic motion:  the motion gains some period 2 π/Ω.  It simply repeats itself.  This is 
the synchrony seen by Huygens.  The frequency Ω  can be different from the forcing 
grequency, ω, and from either of the “natural” periods of the pendulums, ω1 or ω2.  This 
periodic motion was detected by Huygens in his synchronization study and much studied 
after his work.

but, as you know, there are more possibilities 

Saturday, May 19, 2012



Synchronization 9.21.11   Leo Kadanoff

Different Kinds of Motion…..

17

periodic motion:  ….

quasiperiodic motion:  This motion can be described as an infinite sum of terms in the 
expansion of the θ’s of the  form  A sin (n1 Ω1t + n2 Ω2 t + …) with the n’s being integers, 
the Ω’s being incommensurate. The amplitudes of these terms decreases rapidly for the 
larger values of the n’s.  An understanding of this case is a product of our times produced by 
Lev Landau, David Ruelle, and Floris Takens. 

chaotic motion:  The motion is of the form  ∫ dΩ  A(Ω) sin (Ω t ) with a smooth A(Ω).    
The understanding of this form of motion is also a product of our own era.  Edward Lorenz 
and Lev Landau made us aware of this possibility toard the middle of the 20th Century.   
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abstract

An undamped pendulum model well-served Galileo and Huygens’ needs.  To 
analyze the different kinds of motion actually realized with the addition of 
damping and forcing, it is useful to have a more compact description than that 
provided by the two ODE’s.   The circle map, introduced by A.N.Kolmogorov 
and extensively analyzed by V. I. Arnold, serves this purpose.   When expressed 
as an equation, this model looks simpler than pendulum equations. It is an 
equation for a phase angle, θ in a system that is kicked at regular intervals to 
produce a new values of the angle, θj.  The new angle depends upon the old as

θj+1  = θj + ω  +k/(2π ) sin (2 π θj)
This equation exemplifies an approach that goes back to the work of Poincaré 
at the end of the Nineteenth Century in which one replaces a problem with 
continuous changes in time, like the pendulum, with a strobed description that 
catches the essence of the continuous problem.  This approach is described as 
replacing a flow by a map.
The point that I wish to make is that the circle map gives all the qualitative 
information of the two pendulum equations, and hence serves as a good 
starting point for developing analogies that describe the nature of mechanical 
motion.  

A simplified Model
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abstract

θj+1  = θj + ω  +k/(2π ) sin (2 π θj)
It looks simple but it is not. 
This equation leads to a very complex phase diagram that probes the 
difference between rational and irrational numbers. The complexities 
of this phase diagram have been observed within experimental 
observations of fluid flow, solid state devices,  and non-linear electrical 
circuits.  It has been analyzed by physicists, mathematicians, and 
engineers using, among other methods, computer simulations and 
renormalization analysis.  

Philosophers of science will wish to notice that for 20th and 21st 
Century theory, the simplified model became an interest in itself, to a 
large extent replacing the analysis of pendulums.  

That occurs because the map has some generic features realized by 
real pendulums and more broadly by a wide variety of analogous 
systems. 

The circle map is 
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The phase diagram for the circle map

20

k

ω 

blue= periodic regions
red= chaos
white=mixed 
quasiperiodic  and 
periodic

Periodic orbits are 
described by numbers,   
Ω = P/Q. In Q steps a 
periodic orbit will 
advance θ by the integer 
amount P.    

Saturday, May 19, 2012



Synchronization 9.21.11   Leo Kadanoff 21

different kinds of orbits in mapping
After many iterations the system approaches a repeating orbit. The different kinds are

periodic:  θ1, θ2, θ3 .... θQ =θ1 + P        P,Q are integers    Ω = P/Q is rational
The Fourier spectrum has Q lines

quasiperiodic:  infinite orbit:
θj = Ω  +f(θj )          Ω is an irrational number,     f(x+1)=f(x)  0<k<1 and f(x) is smooth
The Fourier spectrum consists of an infinite number of lines, appearing  at nΩ +m 
with n and m being integers

chaotic:  infinite orbit,  exponential separation of trajectories in long run:
The Fourier spectrum is smooth

Generic Features
These three kinds of motion can be observed in a very wide variety of  situations, 
ones described by
Ordinary Differential Equations, ODE, e.g. electrical circuits or granular materials
Partial Differential Equations, PDE, e.g., fluids or electromagnetism
Maps, e.g Population Biology, one generation following upon another. 

All these systems show a local ordering much like that in local regions of the circle 
map. 
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A phase diagram

22

k

ω 

strong coupling. Disorder 
lives here.  Chaos, 
quasiperiodicity, periodicity 
all mixed together.
Many chaotic orbits.  
Different initial θ’s may 
produce different behavior. 

Orderly.  Orbits characterized by Ω 
value giving average change in θ in 
one step. Rational Ω gives periodic 
orbit.  Irrational Ω is quasiperiodic.
Ω increases monotonically with ω.
Periodic and quasiperiodic orbit 
both have non-zero measure.  

Number theory says that there are infinitely more 
irrational numbers than rational ones.  Note that 
behavior of orbits is determined by number theory 
considerations. 
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Experiments
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There are many experimental and computational studies 
informed by the circle map.  These studies use fluids, electrical 
circuits, biological systems, … to explore circle map behavior.   
The point is that the different behaviors of the mapping all 
depend upon what happens after very large numbers of 
iterations.  In contrast to properties based on few iterations,  
these “approaching infinity” properties are very robust.  The 
technical word for this kind of robustness is “universality.”   The 
word “universality” implies that the behavior will persist under 
small changes in the parameters defining the map or flow or 
other mathematical basis of the problem. 

Physicists like to study problems with universal features.  Many 
problems in the theory of dynamical systems have been studied 
precisely because of their universality.    
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Predictability

24

Synchrony and quasiperiodicity can produce rather predictable 
forms of motion.  In the synchronized cases, a small perturbation 
will generically give a small effect.   In the quasiperiodic case, a 
small perturbation can, but will not always, give rise to a change 
that grows no more than algebraically in time.   In contrast, the 
chaotic situation is one of exponentially rapid separation of orbits.  
Thus detailed predictions are possible in the periodic case:
The sun will rise tomorrow.
In the chaotic case, we cannot know what will happen. 
Predictability decays exponentially in time/
Will it be sunny in Chicago exactly one year from now?
In the quasiperiodic case, we will see an algebraic decay of 
predictability with time, rather than an exponential decay.   

These possibilities have proven to be rather important in our 
qualitative view of the physical world.  Any belief that important events 
are either entirely predictable (Marx’s view of history) or quite 
unpredictable (the traditional conservative view of Donald Rumsfeld) 
has been eroded away, leaving us with both options as possibilities, 
depending upon the situation.  
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In contrast to the view of the philosopher Nancy Cartwright 
who says that only tiny portions of the real world are 
described by physical models…..

25

…. I argue that the effects of 
physical models are observable 
everywhere, if one but has the 
eyes to look.  No fancy 
apparatus is required.

Just recognize the synchronization of ones 
own sleep patterns with the rotation of the 
earth, and the incommensuration of the 
length of year, month, and day.  

Our models and analogical thinking exist precisely to enable us to see better.
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