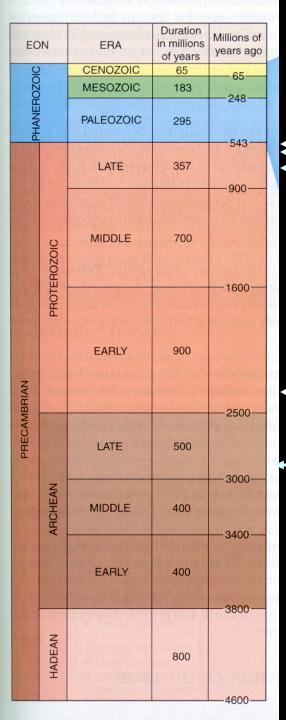
Conditions on Early Earth and the Search for Other Earth-like Planets

James F. Kasting Department of Geosciences Penn State University

Talk outline


- Part 1: Conditions on the early Earth
- Part 2: The search for Earth-like planets and life outside the Solar System (only covered if questions arise...)

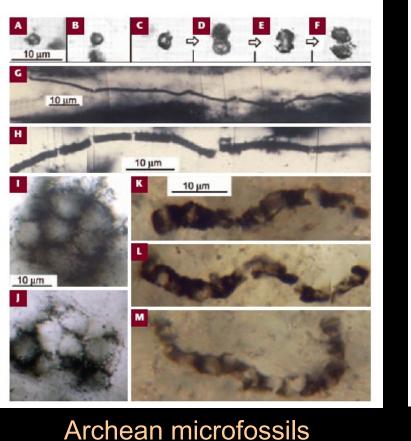
When did life arise?

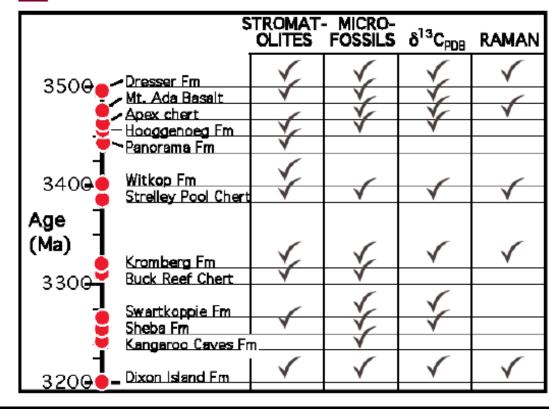
- This question is currently in controversy
- Until the 1940's, geologists thought that life only began around 540 m.y. ago at the dawn of the Phanerozoic Eon
- But we now know that the record of life extends well back into the Precambrian Eon

Artist's depiction of life in the Cambrian oceans

Geologic time

First shelly fossils (Cambrian explosion)
 Snowball Earth ice ages


≻ Warm


- Rise of atmospheric O_2 (Ice age)

- Ice age

Warm (?)

Origin of life

Summary of evidence

- Taken as a whole, the evidence supports the idea that life had evolved by 3.5 Ga, and possibly earlier
- What were the environmental conditions at this time?

J. W. Schopf, *Elements* (2006)

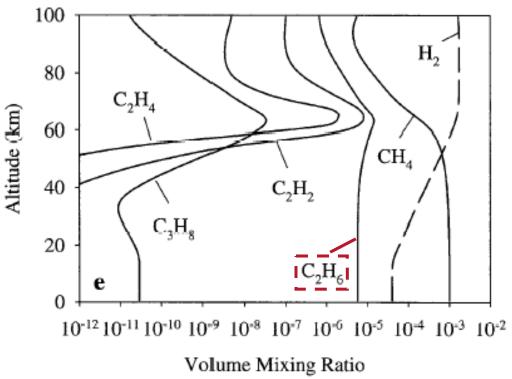
 What was the *atmospheric composition* during the Hadean/early Archean?

Early atmospheric composition

- <u>Old idea</u> : Early atmosphere was dominated by *methane* and *ammonia*
- This was based, in part, on Harold Urey's observations of Jupiter and Saturn
 - He thought that Earth should have resembled these planets before its hydrogen had time to escape
- Earlier thinkers: Oparin and Haldane

Miller-Urey experiment

- This hypothesis was supported by the famous Miller-Urey experiment
- Organic compounds were formed in the atmosphere by electrically and/or photochemically driven reactions
- Requires a strongly reduced atmosphere (CH₄, NH₃, H₂O)

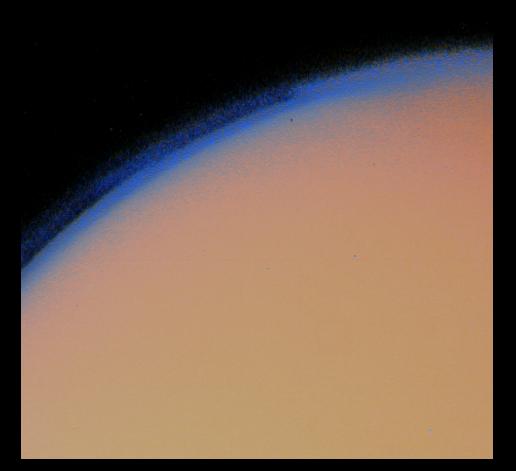

Spark discharge apparatus (Image from Wikipedia)

Why you can't have a dominantly methane-ammonia atmosphere • Ammonia is *photochemically unstable* with

• Ammonia is *photochemically unstable* with respect to conversion to N_2 and H_2 (Kuhn and Atreya, 1979)

(R70)	$NH_3 + h\nu \rightarrow NH_2 + H$
(R75)	$NH_2 + NH_2 + M \rightarrow N_2H_4 + M$
(R 81)	$N_2H_4 + H \rightarrow N_2H_3 + H_2$
(R8 0)	$N_2H_4 + h\nu \rightarrow N_2H_3 + H$
(R 83)	$N_2H_3 + N_2H_3 \rightarrow N_2H_4 + N_2H_2$
	$\rightarrow N_2H_4 + N_2 + H_2$

Why you can't have a dominantly methane-ammonia atmosphere

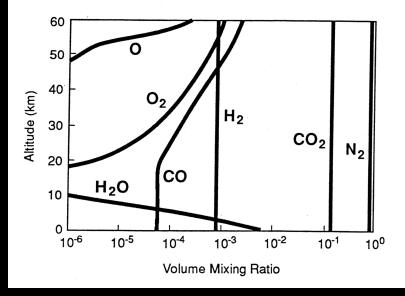

Ethane formation:

1) $CH_4 + h \boxtimes \boxtimes CH_3 + H$ or 2) $CH_4 + OH \boxtimes CH_3 + H_2O$

Then 3) $CH_3 + CH_3 + M$ $\bigotimes C_2H_6 + M$

CH₄ also photolyzes, although at a slower rate than does NH₃
This leads to the formation of longer-chain hydrocarbons by a process termed *polymerization...*

Titan's organic haze layer

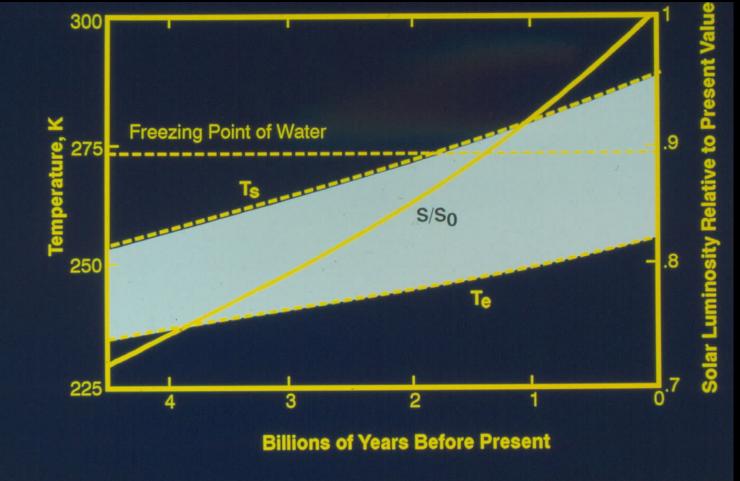

- The net result is formation of organic haze, like the haze that exists on Saturn's moon, Titan
- It can produce an anti-greenhouse effect if it gets too thick

(Picture from Voyager 2)

Weakly reduced atmosphere

Furthermore

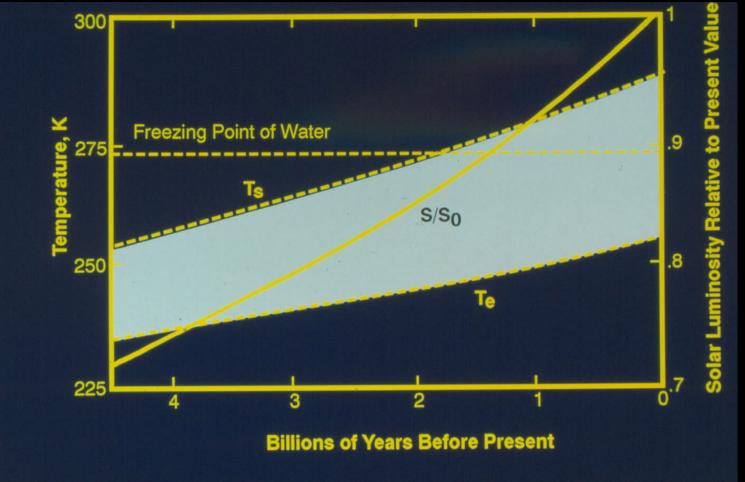
- Modern volcanic gases are relatively oxidized
 - Mostly CO_2 and H_2O , little CH_4 or NH_3
- For all these reasons, the early atmosphere is thought to have been only *weakly reduced*
- Such an atmosphere is not very conducive to Miller-Urey type synthesis



J. F. Kasting, Science (1993)

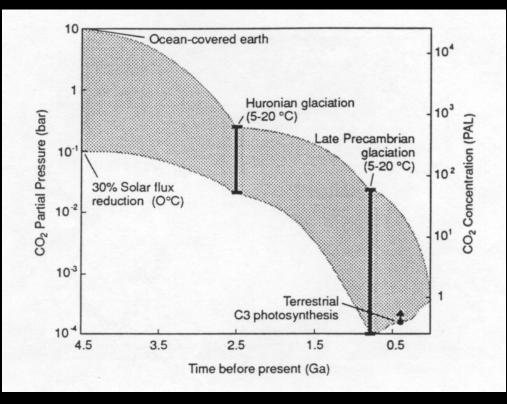
2. What was the *climate* like during the Hadean/early Archean?

The young Sun was significantly (25-30%) *fainter* than today [X]


The faint young Sun problem

 T_e = effective radiating temperature = [S(1-A)/4] T_S = average surface temperature

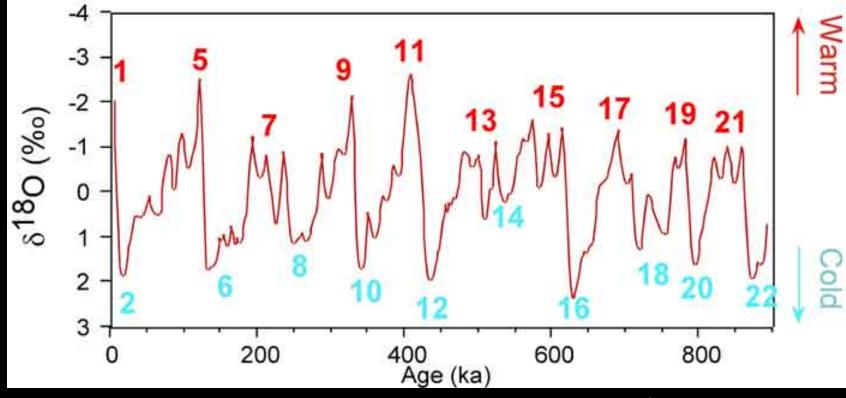
Kasting et al., Scientific American (1988)


The faint young Sun problem

 The best solution to this problem is higher concentrations of greenhouse gases in the distant past

Kasting et al., *Scientific American* (1988)

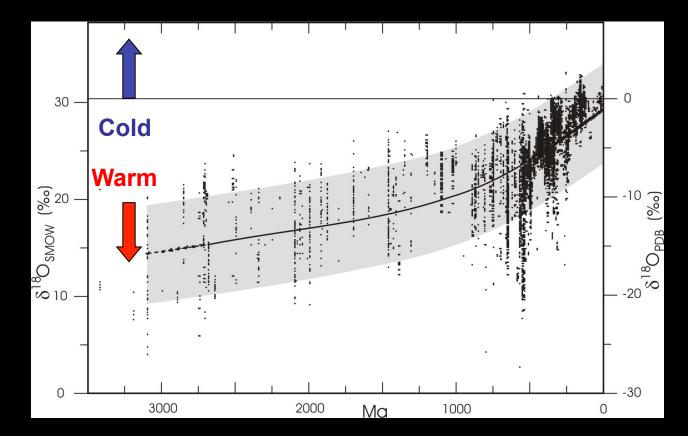
CO₂ vs. time *if* no other greenhouse gases (besides H₂O)



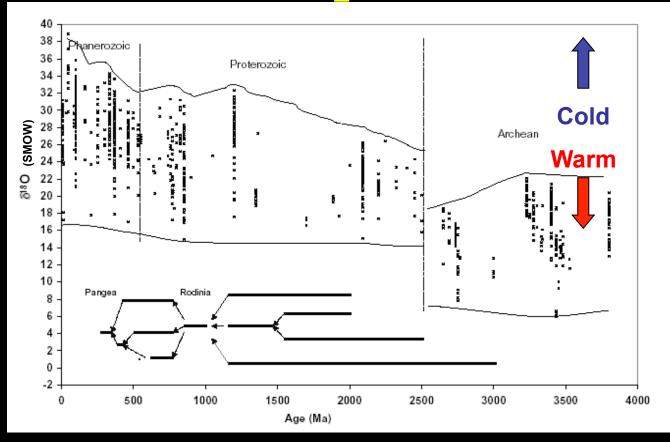
J. F. Kasting, Science (1993)

- In the simplest story, atmospheric CO₂ levels should have declined monotonically with time as solar luminosity increased
- Various geochemists have challenged this hypothesis, but I now think that those challenges are all baseless

 Despite the theoretical expectation for cool temperatures based on low solar flux, oxygen isotopes predict extremely *high* surface temperatures


O isotopes-the last 900 k.y.

after Bassinot et al. 1994


 Oxygen isotopes are used routinely to infer paleotemperatures on the glacial-interglacial time scale

Marine carbonate M¹⁸O vs. time (detailed, time axis reversed)

 When one looks at long time scales, however, one finds a very large negative shift in ¹⁸O, suggesting high surface temperatures Shields & Veizer, G³, 2002

$[N]^{18}O$ of modern and ancient cherts (SiO₂)

• Cherts, which are better preserved, tend to show the same trend, *i.e.*, they get isotopically lighter (in O) as they get older

P. Knauth, Paleo³ 219, 53 (2005)

<u>Chert data:</u>

- Mean surface temperature was 70 15°C at 3.3 Ga
 - Ref.: Knauth and Lowe, GSA Bull., 2003

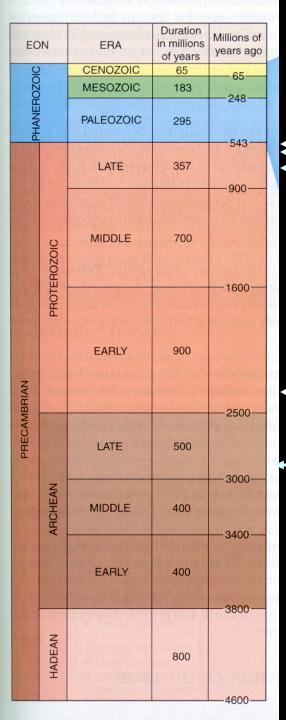
Carbonate data:

 Surface temperatures remain significantly elevated until as recently as the early Devonian (~400 Ma)

- Biological data seem to support the idea of a high-temperature origin of life, and possibly a hot early Earth
- We see this in ribosomal RNA and in proteins

ARCHAEA

E.coli Riftia sym. Haloferax Chromatium mitochondria Methanospirillum Agrobacterium Methanosarcina Sulfolobus Chlorobium Methanobacterium Pyrodictium Cytophaga Thermoproteus Methanococcus Epulopiscium Thermofilum • Bacillus Marine Thermococcus chloroplast group Methanopyrus Synechococcus Thermus Thermomicrobium Thermotoga Aquifex Root (?) EM17 10% change **EUCARYA** macroscopic multicellular Tritrichomonas organisms Zea Ното Coprinus , Hexamita Giardia Paramecium Porphyra Vairimorpha Dictyostelium Physarum Naegleria Entamoeba Euglena Encephalitozoon Trypanosoma


BACTERIA

"Universal" (rRNA) tree of life

Red shading indicates hyperthermophiles (T_{growth}>80°C)

> Courtesy of Norm Pace

 I don't believe that the Archean Earth was hot, however, because there were glaciations at ~2.4 Ga and 2.9 Ga

Geologic time

First shelly fossils (Cambrian explosion)
 Snowball Earth ice ages

≻ Warm

- Rise of atmospheric O_2 (Ice age)

- Ice age

Warm (?)

Origin of life

Possible explanations for the oxygen isotope data

- All ancient carbonates and cherts have been altered by *diagenesis*
 - The X¹⁸O values represent the temperature in the sediments, not in the ocean
- Seawater ¹⁸O has varied with time
- The high temperatures derived from the cherts are a result of widespread hydrothermal activity on the seafloor (van den Boorne et al., Geology, 2007)

Possible explanations for thermophilic common ancestors

- 1. Phylogenetic data may be *biased* (?)
- 2. Surface temperatures on the early Earth were uniformly hot
- 3. Life originated at high temperatures, perhaps in a midocean ridge hydrothermal vent
- 4. Life originated at low temperatures in some surface environment, then colonized the midocean ridge vents
 - Surface life was then wiped out by a big impact, and life recolonized the Earth from the vents

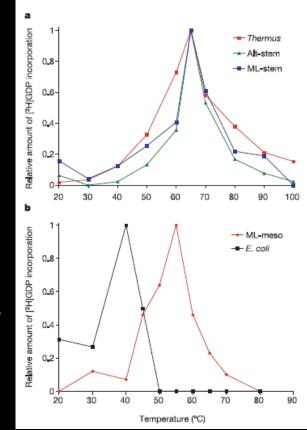
Hydrothermal vent model for life's origin

- Organic synthesis took place in hydrothermal vents at midocean spreading ridges
- Liquid-solid interfaces available
- Strong free energy gradients
- "Pyrite-pulled" reactions (Wächtershauser)

(Photo taken from *Alvin*) T 🐼 350⁰C pH = 4-5

Conclusions

- Earth's early atmosphere was probably weakly reduced
 - Mostly N_2 and CO_2 with a little H_2 and CO
- The climate was probably relatively cool by the time that life originated
- Life may have originated in an off-axis hydrothermal vent environment
 - Such environments may have been widespread on the ancient seafloor
- A promising way to investigate the origin of life is to search for habitable worlds around other stars and see if life has originated elsewhere

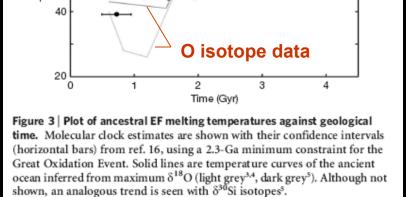

Further biological evidence for warm early temperatures

Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins

Eric A. Gaucher¹, J. Michael Thomson^{2*}, Michelle F. Burgan³ & Steven A. Benner^{1,2,3}

Nature, 2003

 Ancestral elongation factor proteins (EF-Tu) of all organisms (panel a) and even of mesophiles (panel b) indicate a *thermophilic* common ancestor for extant life $(40-80^{\circ}C)$

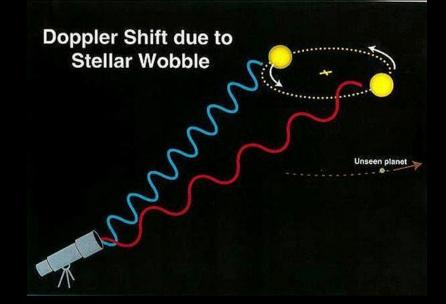

Palaeotemperature trend for Precambrian life inferred from resurrected proteins

80

emperature (°C) 60

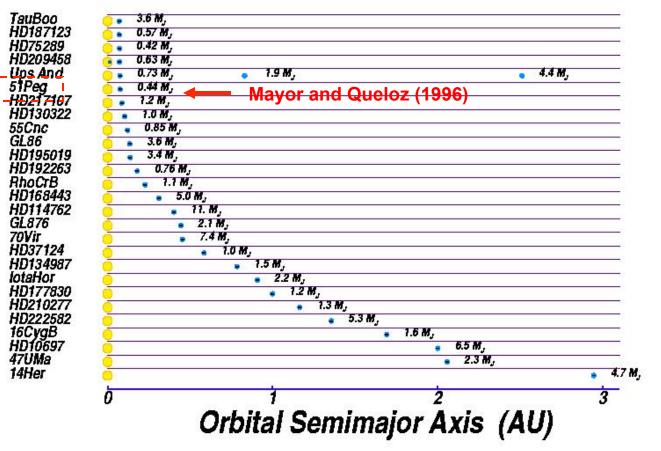
Eric A. Gaucher¹, Sridhar Govindarajan² & Omjoy K. Ganesh³

- More recent work by this \bullet group proposes a detailed time scale for surface temperature evolution, based on two different molecular clock techniques
- Ancestral genes were synthesized and cloned into E. coli to allow them to be expressed as proteins
- Protein *melting points* were ulletthen measured in the lab

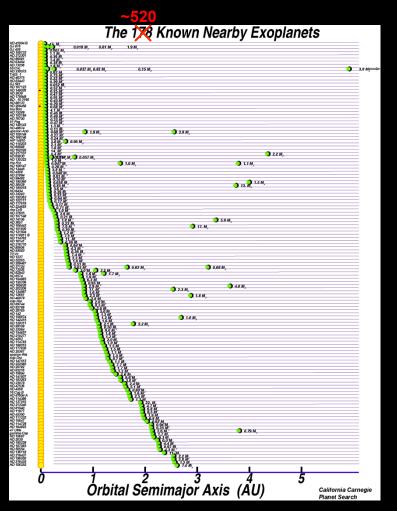


Nature, Feb., 2008

• <u>Part 2</u>: The search for Earth-like planets and life outside the Solar System


Radial velocity (Doppler) method

- Many extrasolar planets (over 500) have been detected already, most by using the *radial velocity*, or Doppler, method
- None of these RV planets are as small as Earth, however
 - Detecting Earth-mass planets around solar-type stars may or may not be possible with this technique (ongoing debate)

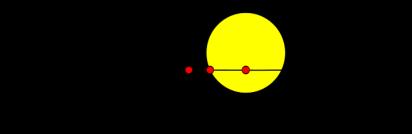


"Hot Jupiters"

G. Marcy and P. Butler (circa 2002)

Known extrasolar planets

http://exoplanets.org/massradiiframe.html


• 548 extrasolar planets identified as of May 11, 2011

- 500 by radial velocity
- 128 transiting planets
- 12 microlensing
- 24 direct imaging
- 12 pulsar planets
- 60(?) multiple planet systems
- Few, if any, of these planets are very interesting, however, from an astrobiological standpoint
 - Gliese 581g (the "Goldilocks planet") is probably not real

Info from *Extrasolar Planets Encyclopedia* (Jean Schneider, CNRS)

Transit method

- The light from the star dims if a planet passes in front of it
- Jupiter's diameter is 1/10th that of the Sun, so a Jupiter transit would diminish the sunlight by 1%
- Earth's diameter is 1% that of the Sun, so an Earth transit decreases sunlight by 1 part in 10⁴
- The plane of the planetary system must be favorably oriented

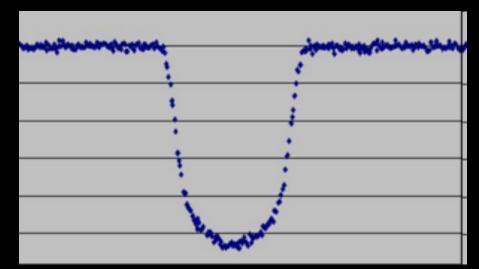
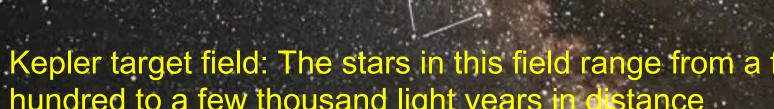
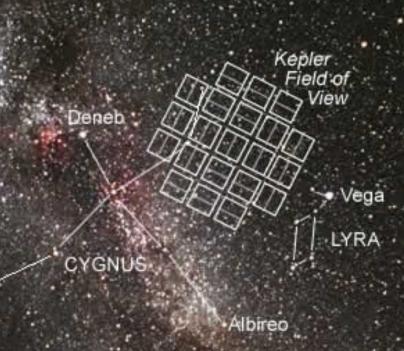


Image from Wikipedia



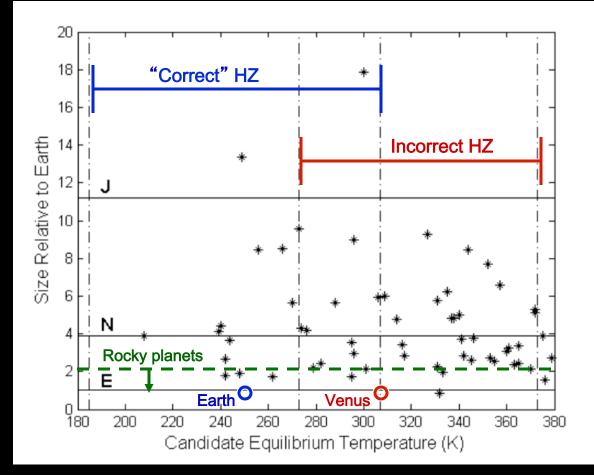
Kepler Mission

- This space-based telescope will point at a patch of the Milky Way and monitor the brightness of ~160,000 stars, looking for transits of Earthsized (and other) planets
- 10^{™5} precision *photometry*
- 0.95-m aperture 🕅 capable of detecting Earths
- <u>Launched</u>: March 5, 2009


http://www.nmm.ac.uk/uploads/jpg/kepler.jpg

Altair

AQUILA



February 2011 data release

Table 5. Number of Candidates versus Size.				
Candidate Label	Candidate Size	Number of		
	(R _*)	Candidates plus		
		known planets		
Earth-size	$R_p \leq 1.25$	68		
super-Earth-size	$1.25 < R_p \le 2.0$	288		
Neptune-size	$2.0 < R_{\rm p} \le 6.0$	662		
Jupiter-size	$6.0 < R_{\rm p} \le 15$	165		
very-Large-size	$15.0 < R_p \le 22.4$	19		
Not considered	$R_{\rm p} > 22.4$	15		

- 1235 "planet candidates" total orbiting 997 stars
- 54 planets within the habitable zone (as defined by the Kepler team), 4 or 5 of which are probably rocky

Kepler habitable zone planets

Borucki et al., Ap. J., v2, submitted Mar., 2011 (Fig. 4)

TPF-I • What we'd really like to TPF-C

TPF-O

- do is to build a big TPF (Terrestrial Planet Finder) telescope and search
 - directly for Earth-like planets
- We can also look for spectroscopic biomarkers (O₂, O₃, CH₄) and try to infer the presence or absence of life on such planets
- Need a lot of money (\$5B or more) to do this!