The big quest: what is life?

The smaller quest: how do you make
it?

The practical quest: how do you make
money off of it?



In defining the origins of life,
there is one major problem:
What is life?

In 1944, the physicist Erwin Shrodinger
defined living matter as that which
"avoids the decay into

equilibrium."




Professor, Departments of Chemistry and
Molecular Biology, The Scripps Research Institute

Investigator, The Skaggs Institute for Chemical
Biology

Another definition of life created by Gerald Joyce of the Scripps
Research Institute doesn't mention disequilibrium per se. This

definition says that life is "a self-sustaining system capable of
Darwinian evolution."

This is a circular definition. ‘Life’ is a term similar to
‘pornography:” we apparently know it when we see it, but
we can’t actually define it with any precision. Because of
this, ‘life’ is a term more suited to poets than scientists.



Here’s what fascinates us:

Simple components

Replication and

selection

v

Complex function



* Nucleic acid imperialism
* Doppelgangers

* Looking backwards



We can also go the other way.

The Miller-Urey experiment

Is an ‘icon of evolution.” While Miller
originally used a reducing atmosphere
and electricity to create amino acids,
some work suggests that the Earth
originally had a neutral atmosphere.

But ... there were plenty of sites where
a reducing environment was present
(deep sea vents, volcanoes) and

recent research suggests that a neutral
atmosphere was not an impediment to
amino acid formation.

But ... no one knows whether and how
much amino acid formation may have
been necessary for abiogenesis.




Purines from Poison! l

-HCN polymerization to yield I i
adenosine (Oré, 1960) l
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-HCN concentration by eutectic freezing l

(Schwartz, Joosten, Voet, 1982)
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Another case in point: it was thought to be difficult to
Prebiotically synthesize sugars for RNA; the formose
reaction typically yields ‘tar.’

Until Steve
Benner recently
found that the
addition of
borate simplified
the mixture
considerably
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So, how does a replicable material replicate?
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‘Enantiomeric poisoning’ can completely
stop monomer replication




Oligonucleotide ligation rather than polymerization can

overcome this barrier
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Parabolic replication:
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While there is sequence specificity, there is also
a great deal of cross-catalysis
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Exponential amplification requires strand separation

Immobilize (1) (2) Anneal

Separate (4)
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Picture taken from Luther et al. (1998), Nature 396:245




The possibilities inherent in DNA computation are nicely
lllustrated by two young lions of the Wyss Institute:

Abstraction
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Molecular programs

Catalytic geometry
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Molecular implementation
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Key discoveries by Ghadiri and co-workers have
provided alternatives to nucleic acid replicators
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However, peptide replicators show tendencies
for ‘error correction,” either in terms of sequence
or stereochemistry. While there are advantages
to such features, they ultimately limit evolution.
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Different lipids can aggregate into different morphologies
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These aggregates can grow and change
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This includes the ability to grow and divide
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In fact, lipid aggregates are capable of self-replication
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However, such
replicative
processes do
not yet appear
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Nonetheless, such self-replication could be imagined to
have occurred in a variety of ways in the prebiotic world

4 Q s Figure 3 Modes of vesicle growth
% d %ﬁ O and division. Self-replicating
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The balance of synthetic and destructive forces might
have led to a type of (sustainable?) dynamic equilibrium

A simple experimental model of chemical homeostasis
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Nucleic acids
and lipid
aggregates
could have
interacted
with one
another

nucleotides

A ribozyme that is an
RNA-replicase. Makes
itself and RNA-2

A ribozyme that makes
the lipid membrane

This cell can replicate and evolve. It does not make proteins




And in fact basal experiments of this type work

REPLICATION OF DNA IN
SELF -REPRODUCING VESICLES

QB replicase
ATP, CTP, GtP, UTP

Mg+




Cooperative
interactions
might have

led to a
‘protocell’

in which
genetic and
lipid replicators
were mutually
interdependent

Self-replicating
vasick

Linking function
(e.q. ribozyme)

Figure 2 Outline of propo sad pathway for
synthesis of a cell. The first major syathetic
intermediates are an RNA replicase and a self-
replicating vesicle. These are combined into a
protocell, enabling rapid evolutionary
optimiztion of the replicase. Addition of an
RNA-coded Hnking function, such asa Npid-
synthesizing ribozyme, completes the cellular
structure.



Such cooperative interactions would ultimately have
enabled the true Darwinian evolution of self-replicases

Time
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Figure 1 Role of vesicles in enabling darwinlan evolution of a replicase. The vesicular compartment
ensures that molecnles related by descent are, on average, kept in physical proximity to each other,
allowing a superior mutant replicase (red) to preferentially self-replicate, o comparison to the

parental replicase (black). The evolutionary advantage of increased replication is amplified as
vesicles with superior replicase molecules are more likely to give rise to vesicles with at least two
replicase molecules (or a replicase and a template molecule). Vesicles with less than two replicase
moleculss (indicated by an X) and the progeny of these vesicles cannot continue RNA self-
replication. [n this way, vesicles with supedor replicase molecules become an increasing fraction of
the vesicles that maintain replicase activity.




* Nucleic acid imperialism
* Doppelgangers

* Looking backwards



The utility of doppelgangers

That which | can make money off of, | understand.



In some ways, what we are trying to do is show that it is
pssible to demonstrate a path for early life. We can never

fully recapitulate it.
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A conformational replicator based on the 10-23 deoxyribozyme
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concentration (nM)

Remarkably, this works
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Can we evolve better replicators?
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Selection Procedure
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“Winners”, species that can cleave and be cleaved, seed the next round
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Amongst competitors, the dominant species

was the fittest species
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In some ways, what we are trying to do is show that it is
pssible to demonstrate a path for early life. We can never
fully recapitulate it.
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Replicases can assemble themselves from pieces
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wildtype Azoarcus ribozyme

198 nt

Ribozymes can assemble

themselves into longer
‘eenomes’

Draper et al. (2008)
NAR 36:520

add CAU triplets
to L5, L6, and L8
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Some researchers have tried to build a ‘ribozyme
polymerase’ based on the Bartel Class | ligase: the
ribozyme ... that shouldn’t exist!
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David Bartel,
TN Whitehead Institute




The miracle of the Bartel ligase

* The probability of finding the Class | ligase was ca. 4x10°1° (Ekland et al., 1995).
In other words, Bartel should have found it once every 10,000 times
he did the experiment. This is rightly interpreted to mean that there
are multiple motifs out there with similar catalytic activities.

e |t seems that the nature of the fitness landscape surrounding these extremely
active ribozymes is very sparse. That is, movement away from the
privileged structure produces much less active variants.

e Therefore, it may be that highly complex ribozymes do not evolve from simpler
ribozymes by ‘hill climbing’ or by the accretion of additional information.

e |t is possible that new complex ribozymes evolve from old complex ribozymes
with different functions, or that recombination of simple ribozymes can
lead to complex ribozymes.

e But it is also possible that novel functions are miracles, in the sense of being
extremely improbable events. In the absence of gradualism, origins
becomes even harder to investigate.



In vitro compartmentalization (IVC)
for acellular evolution

. ) ) Mineral Qil
e Utilizes water-in-oil

emulsion to generate
discrete cell-like
compartments

Aqueous
compartments

* Rapid screening
of large libraries
~10%-12 sequences/mL

e Alljn vitro




Our entry point was to use IVC to select for
ribozymes capable of functioning in trans

gene encoding ribozyme

RNA

substrate A Y’

RNA %
substrate B % %

Components for in vitro
transcription

v

Emulsification in oil droplets
(in vitro compartmentalization)
Levy et al., RNA (2005)



XY
Fluorescent beads identified by FACS



Progress of the Selection

reaction |# of beads # of # of events
round | genes/bead . sequences
time sorted collected
snrteg
1 10 20hr 7.2x107 7.2x10° 5.7x10°
2 1 20hr 5.9x10" 5.9x10° 2.6x10*
3 0.33 Z2hr 5.1x107 1.7x107 2.3x10°
4 0.1 2hr 6.3x107 6.3x10° 1.7x10°

S product

. — e . - substrate

Round O 1 2 3 4



Selected ligase
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Selection statistics

Pool size was ~7x108

Wildtype ribozyme was expected ~1 in 6x10%3

Mutant with any 5 mutations is expected ~1 in 1.4x108

Upper estimate assumes for the selected ribozyme
— 22 invariant and semi-conserved residues in single stranded regions
— 26 basepairs conserved base pairs (includes wobbles)

0.7%2x 0.6%° =6.7x1010
~1in 1.5x10°



Other reselection studies also reveal the optimality

of the Bartel ligase

=G
A=l
C=G
U==A

G=C inverted, Kuhne and Joyce (2003)
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target-activated ribozyme” /G "GA=A=A=A=G=A=C=A=A=A

“Continuous in vitro evolution of ribozymes that
operate under conditions of extreme pH”



The Bartel ligase can even be adapted to function
in @ manner similar to a living organism

RNA
polymerase

/

NTPs

prom (-)
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prom (+) =

reverse
transcriptase

N

ke dNTPs

prom (-)
—— _P

Wright and Joyce (1997), Science 276:614




Serial transfer of molecular ‘life’

N N N N

Food = RNA polymerase, reverse transcriptase, nucleotides
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Mutational improvement
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In some ways, what we are trying to do is show that it is
pssible to demonstrate a path for early life. We can never
fully recapitulate it.
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* Nucleic acid imperialism
* Doppelgangers

* Looking backwards



Origins is different from ‘evolution’ only in that the gaps
are larger, not qualitatively different. We have virtually no
record of the major molecular events that occurred, and
must infer what is possible.

BACTERIA
Haloferax
Chromatium E.coli
Methanospirilium mitochondria
ARCHAEA Mothanosarcina J/-Agmbac,en-um
Chiorobium
The |aSt COmmon Thermoplasma Cytophaga
Sulifolobus Methanobacterium Bacillus
1 Thermoproteus Meth th
ancestor Is as Thermofitum Methanocoscus: Clostridium
Group 4 .RSL50 Thermococcus chloroplasts
Synechococcus
removed from Sroup 3 ~— _— Thormys
. Group 2 / Thermomicrobium
origins as we are pSL22 Roor aqlhermotoga
pSL12 EM17
. OctSpA1-106 OctSpd2
from the LCA; Group 1
maybe more SO Marine mesophiles

EUCARYA

Tritrichomonas Coprinus (Fungi)

Homo {(Animals)
Zea {Plants)
Chlorella
Paramecium
Porphyra

Giardia
Hexamita

Chiamydomonas
Vairimorpha Dictyostelium
Physarum

Naegleria
Entamoeba
Euglena

Encephalitozoon Trypanosoma




Examining life by looking backwards ....

THE TREE OF LIFE

5 Archaea Eukaryotes
E3 Animals
ol 4
2.3 %, %, Entamoebae  Slime
e S = molds
G- ER> 2
< = 0.
: 2 “ >
Bacteria %, Halophiles Plants
& Ciliates

Purple bacteria

Cyanobacteria

Thermotogales

> The RNA world: two
big pieces of evidence

I))

“Real” origins /



This analysis in turn brings up the quite salient
question:

What color were the dinosaurs?

— ALV ) .
Tyrannosaurus Pachycephalosaurus PG 2‘.‘. o b
G S

Apatosaurus

Triceratops Compsognathus _I Elephant

(modern) (rodern) M i no rity Vi ew

Edmontosaurus Deinonychus

There are only so many things we can know about
origins. It is useful to remember that agnosticism
is an intellectually viable position.



Most cofactors are nucleotide-based
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The remnants of nucleic acid ‘life’ can still be found in modern
metabolism

NH C|) H
2 O=ﬁ,_o \/ﬁ]/ \/\SH
N
Coenzyme A N/I ) o o
N N 0=P—0
|
0
(o]
OH Cl)
0=p-0
OH
OH

o) H H
. . —_ ! - N N\/\
Acyl Carrier Protein o=p O/7<J\y( \/\[( SH

(Fatty Acid Synthesis) o)
~ L
H

s
FAS-ACP
oH
i N N
Acy! Carrier Protein 0=p—0 R gt
(Polyketide Synthesis) o o o
~
H o
PKS-ACP
oH

o} H H
Peptidyl Carrier Protein O=%_O/><KI(N\/\[rN\/\SH

(Nonribosomal peptide Synthesis) O
A
O



Aptamer

SeleCtiOn — NNNN—— / .

(-) incubation;
remove filter-
binding species

Random sequence library . .
———NNNN (+) incubation;
T Typically 10”13 capture protein-

, binding species
Or more species by filtration

1. reverse transcription
2. PCR

3. transcription

1073
Elute binding purification
species of active
. species /
———NNNN—— cycle

Length = 30 — 70 random residues eluant



Nucleic acids can indeed form structured binding
pockets, and could have interacted with ‘ribo-cofactors’

GA A
lOA A
A AMP CI5
G U
1 5G G 2
GGGUUG UGGcAcCUUS

CCCAAC ~ ACCGUG_C

40 35 G 30 G
34




The large, incredibly complex machine that makes proteins in a cell is
known as the ribosome. The ribosome is composed of both proteins
and RNA molecules, leading to a ‘chicken and egg’ problem. However,
structural evidence reveals that:

of Earth’s  totaling 3043 nucleotides, have been fitte ¢ part of t
must have most devoid of pro
¢ ¢common gion, This was preg
though the the crystals in a sms
y the ribo- vided by Michael
g of amino an analog of the 2
de) diate fo
tacks a
figure
nucicc
of the
some
bonyl
amino ag
bosz of 1R
any protein
earrcctly bou

83&51

Pepﬂ*o Hj

wNA" O
A ribosome's true colors. (Top) The large (P-site) 1ANA
subunit of the ribosome ( 7) seen from the { R(A"“)

viewpoint of the small subunit, with pro-

teins in purple, 235 rRNA in orange and | eplide
white, 55 RNA (at the top) inburgundy '@ W~ O

and white, and A-site tRNA (green) and P- 1RNA 1ANA

p tRNA [red) docked according to (5]

{s]




And almost all of the reactions leading to protein translation
have proven to be amenable to ribozyme selections




Fun and profit with synthetic biology



Gene Fabrication

Break down target
sequences into
overlaps; PCR assembly
in two steps

Oligonucleotide
databasing enables
efficient manufacture of
variants

100x 1 kb / week

ez

Gene fabrication facility (recently declas_siﬁed)

TCATAGCTATGGAACTGGTCGAACCGGCTGAATTTAGACGTGTAGCGTCTCATAGCTAAAGACGTGTAGCGTCTCATAGCTATGGAACTGGTCGAACCGGCTGAGGACACA

' Primers : S = o=
e _ e _ ——
H Inside-OutiNucleation '
2 A / i
Fragments v
Stitch-Over/apiExtension
3 \4
Product
(G (@ 0000000000 0)
. lo 000000000000
Robotic |O 000000000000
Liouid 1@ 000000000000
g |5 889583838858
Handling |5 000000000000
O [OOO00000O0O000)

Design of synthetic
schemes, oligonucleotide
synthesis and databasing,
and generation of robotic
operations scripts are all
automated in custom
software.



Effect of codon usage on viral fithess

Legend:
¥ELLOV = Base is INSIDE a segment at least 12 nt long that is identical to wildtype

GRAY = Base is OUTSIDE a segment at least 12 nt long that is identical to wildtype




There are many human viruses on the same scale
(such as human parvoviruses: B19; Fifth’s disease)

Canine parvovirus was derived
from feline panleukopenia virus
via a small number of point
mutations in the viral capsid
genes that expanded the

host range to canine cells.
Following its emergence in the
late 1970s, canine parvovirus
caused a pandemic that killed a
large fraction of world’s dogs




Parts Standardization via Nucleobase Amino Acids

Natural Amino Acids

PNA-like amino acid surrogates

0

HyN——CH— C——CH

CHa

=

HM

Tryptophan

8]

HeM——CH—C——0OH

CHz

Phenylalanine

8]

HeM——CH—C——0H

CHz

o
OH

=

Tyrosine

0]

HaM——CH—C ——0OH

[
Y

HzM

Adenylalanine

8]

HyM—— CH —C——0OH

CH-

X

MHZ

o

Cytidylalanine

8]

HgM——CH—C ——0H

CH

N

N

Guanylalanine

o]

HoM ——CH—C ——OH

CHs

Thymidylalanine

Protein ‘hybridization’



Choice of synthetase:tRNA pairs

Tryptophanyl tRNA Synthetase B Tyrosyl tRNA Synthetase

GlIn 155
Tryptophan n Tyr 32
Asp 158 m
Pro 308 His 70
Tyrosine
lle 307 ﬂly 34

Cys 309

Ala 67 Leu 65




Ade-Ala RS rational designs

Adenyl alanine docked into the active site
of tryptophanyl tRNA synthetase; mutations
Introduced by rational design (eyeballing)

A>N256

Ade-Ala:

25kDa




Nucleobase amino acids = Proteins with
nucleic acid-like properties = Programming

1
1
1

CPP OmpT

Lacl TetP LacP GAP-AIDA



