Decoherence and the Measurement Problem

David Wallace (Balliol College, Oxford University)

Some books you don't see

Some books you don't see

 Proceedings of the 2008 interdisciplinary conference on the interpretation of classical electromagnetism

Some books you don't see

- Proceedings of the 2008 interdisciplinary conference on the interpretation of classical electromagnetism
- The Mysterious Fossil: New Directions in the Interpretation of Dinosaurs

The measurement problem

- In general, we "interpret" theories by taking them literally as describing / representing real features of the world's structure
- This doesn't seem possible for quantum mechanics, because
 - we can't take the quantum state as a probability distribution over microscopic states of affairs because of interference phenomena
 - we can't take the quantum state as a state of physical reality because it can exist in macroscopic superpositions and we don't see them

Some ways to solve the problem

- "Change the physics" replace, modify or augment the formalism of quantum theory so that it can be understood literally as a description of the world
- (e.g. Dynamical collapse theories, hidden-variable theories)
- "Change the philosophy" drop the strategy of interpreting theories by taking them literally, and come up with a new one
- (e.g. operationalism, quantum logic, state as beliefs about measurement outcomes)

Everett's insight

- We're forced to try these strategies because it seems that we can't just take the theory literally on its own terms
- It seems that we can't do that because
 - the theory says that the world should be in a superposition of macroscopically distinct states
 - The world doesn't look as if it's in a superposition of macroscopically distinct states
- Everett: what would the world look like if it *did* look like it was in a superposition of macroscopically distinct states?

Multiplicity at the level of structure

- macrocopic superpositions are to be understood in terms of multiplicity
 - (**not** that we add multiplicity to the theory)
 - (not that the world doesn't really have multiplicity in it, it just looks that way)
- The physics problem: show that the world is structured, at the emergent, approximate, macro level, like a collection of non-interacting classical systems
- (The metaphysics problem: defend the claim that being structured that way is enough)

Dynamical autonomy

- We can't just take any old quantum system, decompose it in any old basis, and declare it to be a collection of parallel worlds
- Why not? interference effects
- A quantum system is structured like a collection of autonomous systems if there's some basis with respect to which interference is negligible
- Equivalently: it's structured that way if there's branching but negligible recombination of branches
- Equivalently: it's structured that way if branch weights approximately obey the probability calculus

When is interference negligible?

- When we very carefully arrange for it to be negligible in some microscopic system
- When the system is massive and evolving under some non-chaotic classical-type Hamiltonian
- When the system is being decohered by an (internal or external) environment with a very large number of degrees of freedom

(The last of these has a statistical-mechanical character)

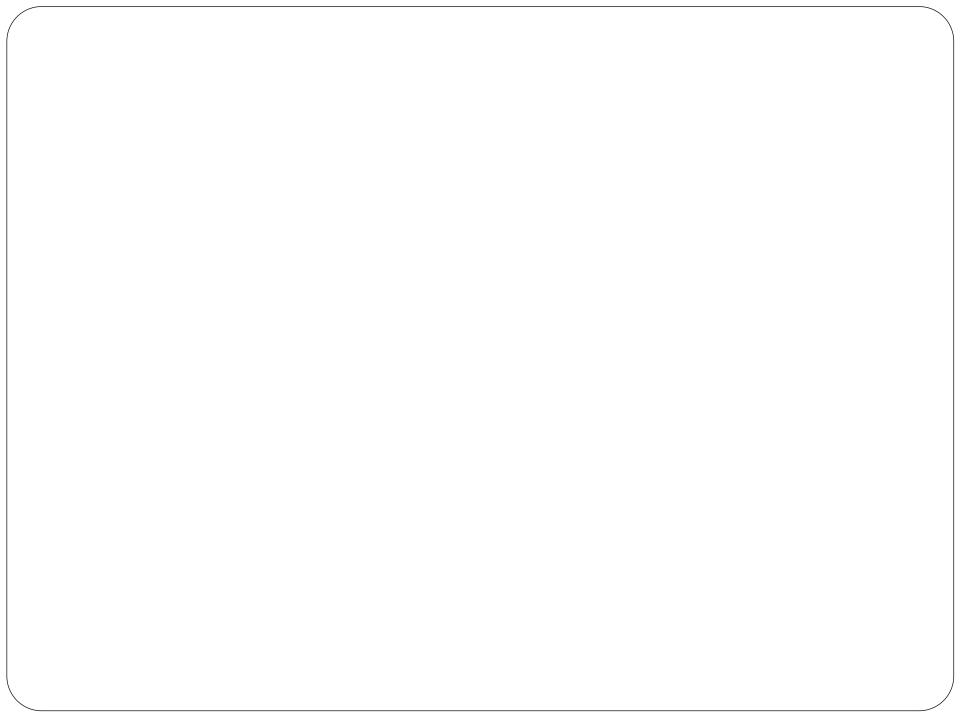
Metaphysics of Everett branches

 Branches are emergent, approximate, structural features of the world

(like basically everything in the world)

- Branches don't have a well-defined number (any given precisification of the decoherence basis will give such a number, but it's an artifact of that precisification)
- Branches are local, and spread out at lightspeed or below

Do we have to believe in other worlds?


- The existence of the branches is straightforwardly entailed by quantum mechanics on a literal reading.
- There is no experimental way to test the manyworlds interpretation against ordinary quantum mechanics, because the many-worlds interpretation just is ordinary quantum mechanics taken literally
- Still, if you want to use quantum mechanics (and decoherence theory) without believing that branches are real, go ahead. It's a free country.

Do we have to believe in dinosaurs?

- The existence of dinosaurs is straightforwardly entailed by palaeontology on a literal reading
- There is no way to test the dinosaurs-are-real interpretation against ordinary palaeontology, because the dinosaurs-are-real interpretation just is ordinary palaeontology taken literally
- Still, if you want to use palaeontology without believing in dinosaurs, go ahead. It's a free country.

Clearly ontologically excessive

