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Fighting decoherence:

e Magic state distillation

Befriending decoherence:

e Measurement-based quantum computation

e Quantum computation by dissipation



Part I:
Quantum computation with magic states

S. Bravyi and A. Kitaev, Phys. Rev. A, 2005




Undoing decoherence

Capstone result:

Threshold theorem. Given [fill in a suitable error model], if the
error per elementary gate in a quantum computer is below a crit-
ical threshold, arbitrarily long and arbitrarily accurate quantum
computation is possible.

Q: What is the noise threshold?



Noise threshold for fault-tolerance
. exact value may be hard to calculate. Instead derive

e Upper bound: For a given set of computational primitives,
if the noise level exceeds the upper bound, then no method,
however clever, can achieve fault-tolerance.

e Lower bound: For a given set of computational primitives,
if the noise level is less than the lower bound, then at least
one method makes the computation fault-tolerant.
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Quantum computation using magic states

We consider the computational primitives

{CNOT-gate, Hadamard-gate, |T)}

Therein,

_[0) + e/

Is the “magic’ state.



Computational primitives - CNOT

e The CNOT gate is a two-qubit gate. It acts as

CNOT ¢y = [0)¢(0] @ T 4 1)(1] @ o7 (2)

e [The CNOT is the only computational primitive in the set
which has the power to entangle.
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Computational primitives - Hadamard

e [ he Hadamard gate H acts as

H = |4)(0] + |=)(1], (3)
where |£) := 1/4/2(]0) £ |1)).

e [ he Hadamard gate rotates the Bloch sphere of a qubit by
an angle of w about the axis in the middle between = and z.




Computational primitives - magic state |T')
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e (Gate construction is probabilistic. Repeat until success.

e [ he used primitives are universal for quantum computation!
Any unitary in U € SU(2"), for any n, can be built as a sequence of the

above gates.



Decoherence model

Computational primitive Quality

CNOT-gate perfect
Hadamard-gate perfect
magic state |T’) noisy

e Instead of pure states |T) have states pp = |T)(T|. Use
fidelity F(pp) = \/<T|pT|T> as measure for quality.

e Motivation for this noise model: certain versions of topo-
logical quantum computation which are non-universal.



Bravyi & Kitaev’s results

Result 1. If the noisy magic states pp are in-
side the octahedron Pg inscribed in the Bloch
sphere, then quantum computation using the -

primitives {CNOT, H, py} can be efficiently X
classically simulated. I

Result 2 [Magic state distillation]. If the noisy magic states pp
are such that F'(pp) > 0.927, then arbitrarily long and accurate
universal quantum computation is possible with the primitives
{CNOT,H, pT}.



Derivation of Result 1

e How powerful is the gate set {CNOT,H,S = exp(2xin/8Z)}7
e Not powerful at all. It is efficiently classically simulatable.

First, consider the one-qubit gates H, S = exp(in/4 Z):

s0degs @ H, S leave the octahedron invariant.

e H, S generate the octahedral group.
Not dense in SU(2), hence no 1-
qubit universality.




Heisenberg picture

Consider the action of H, S = exp(in/4Z), CNOT on Pauli
operators:

180degs o HXHT:Z, HZHT = X.
e SXST =Y, 525t = 2.

\/ X o CNOTXO@coNOTT = x(© g x®

e Above gates map Pauli operators onto Pauli operators.

= Evolution easily trackable in Heisenberg picture.



Gottesman-Knill theorem

= Evolution easily trackable in Heisenberg picture. Leads to
Gottesman-Knill Theorem:

Theorem 1. Quantum computation with {CNOT, H, S}, on ini-
tial qubit states |0/1), |£), |£y), and with readout measurements
in the X, Y or Z-basis can be efficiently classically simulated.




Result 1 of Bravyi & Kitaev

e The only computational primitive that evades the
Gottesman-Knill theorem is the magic state |T').

e Can the noisy state pp be described as a probabilistic mix-
ture of {|07 1>7 |:|:>7 |:|:y>}?

e If yes, then the computation can be efficiently simulated us-
ing the Gottesman-Knill theorem + Monte Carlo sampling.

Result 1. If the noisy magic states pr are inside the octahedron Ps in-
scribed in the Bloch sphere, then quantum computation using the primi-
tives {CNOT, H, pr} can be efficiently classically simulated.




Result 2: Magic state distillation
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Result 2 [Magic state distillation]. If the noisy magic states pr are such
that F'(pr) > 0.927, then arbitrarily long and accurate universal quantum
computation is possible using the primitives {CNOT, H, pr}.




Results 1 & 2

I
F(Pr)<0.927:
Universal QC

X/Y - equator of the Bloch sphere



But where’s the magic?




Part II:
Measurement-based quantum computation

R. Raussendorf and H.J. Briegel, PRL 86, 5188 (2001).



Measurement-based Quantum Computation

Unitary transformation Projective measurement
Z Z
P
X X
]-
Y Y P
deterministic, probabilistic,

reversible irreversible



The one-way quantum computer
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measurement of Z (®), X (1), cosa X +sinaY ()

e Universal computational resource: cluster state.

e Information written onto the cluster, processed and
read out by one-qubit measurements only.



Trading entanglement for output

A measurement
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e Intuition: Entanglement = Resource



Part III:
Quantum computation by dissipation

F. Vertraete, M. Wolf and J.I. Cirac, Nature Phys. 5 (2009).




Computing fridges

e Cooling into the ground state of a simple (3-body, say)
Hamiltonian were an incredibly powerful computational

tool ...

If one could avoid local minima.

e Bold task: Solve NP-complete problems by cooling.

e [ask: Universal quantum computation by cooling.



Computing fridges

Result 3. Consider a quantum circuit of n qubits and T gates,
Wout) = UrUr—1..U2U1|0). The output of this quantum com-
putation can be efficiently simulated by local dissipative evolution
on n + 1" qubits.
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Why n + 1T qubits?

Total Hilbert space ' H = Hp_reqi ® H :
"tQ-register clock

n qubits T qubits

*: Image adapted from Nature Physics.



Computing fridges

Consider dissipative evolution described by Lindblad equation
with a Liouville operator

1
£(p) = X LipLj, = S {LjLip} (4)
k

where

L, = |0);(1] ® [0){0], Vi = 1..n, (initialize QR)

_ _ (5)
Ly = U |t+ 1){t|+h.c., Vt=1..T, (advance clock)



Computing fridges

The above dissipative evolution has the following properties

1. Unique fixpoint is a history state

LS e (] ® )], (6)
t

pO:T—|—1

where |¢); = state of QR at time t.

2. Liouville operator has a spectral gap A ~ 1/T2.
Good approximation to pg is reached in poly time 7 ~ T2,

Final step of the computation: After evolution for time 7, mea-
sure the clock register. If obtain ¢t = T then read out |W,,t)-
Otherwise start over.



Why decoherence did not hurt in Ex. II, III?

Closing remark on entanglement



Why did decoherence not hurt in Ex. II, III ?

Because we only depleted
coherences
that we didn’'t care about.



Example III - Universal AQC vs. DQC

Adiabatic QC (unitary) Dissipative QC

N
N

H(O)=H, (1-0) + Hy

initial Hamiltonian: final Hamiltonian:
GS easy to prepare encodes comp. result
in its ground state

H;, Hp exist such thatl L exists such that
1. GS is history state: 1. FP is history state:

W) = g e vn)l) po = 7o o I (Y] ® [£) (1]
2. Min gap ~ 1/T2. 2. Gap ~ 1/7T2.

1: D. Aharonov et al., arXiv:quat-ph/0405098 (2004).



Example III - Universal AQC vs. DQC

Adiabatic QC: Dissipative QC:
Hjyp, Hp exist such that L exists such that
1. GS is history state: 1. FP is history state:
_ 1
W) = g 2t [vnt) PO = %HZt [1he) {he| @ [£) (]
2. Min gap ~ 1/T2. 2. Gap ~ 1/T2.

e Adiabatic QC: history state is a coherent superposition,
Dissipative QC: history state is a mixture.

e Recall: Measure clock at end of computation.

= Coherence between clock states is not important.



Example II - Measurement-based QC

Instead of the one-way QC, ook at simpler example:

7> () XS 7|V

Ii I H ﬂ ?\/“’
)

Recall: S =exp(inr/47Z), T = exp(in/82)

e Decohered is only the post-measurement state or the lower
qubit, which we discard.

e Again, decoherence does not affect the computational de-
grees of freedom.



Remark on entanglement

Do the dissipative evolutions discussed in Examples II, III drive
the respective system to a ‘“classical’ state?

e One-way QC: Yes. Final state is a product state.

e Dissipative QC: No. Final state is highly entangled*.

*: The entanglement of the history state pg equals the time-averaged entan-

glement of the circuit quantum register.



