Towards Quantum Superpositions of a Mirror

D. Bouwmeester

7 Pines, May 9, 2010

$|\Psi\rangle = \alpha |\text{UCSB}\rangle + \beta |\text{Leiden}\rangle$

Oxford 2001

-

Towards Quantum Superpositions of a Mirror

William Marshall,^{1,2} Christoph Simon,¹ Roger Penrose,^{3,4} and Dik Bouwmeester^{1,2}

$$V^{a} \in M \text{ (Minkowski space) with components } (V^{0}, V^{1}, V^{2}, V^{3})$$

$$\Rightarrow V^{AA'} = \begin{bmatrix} V^{00'} & V^{01'} \\ V^{10'} & V^{11'} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} V^{0} + V^{3} & V^{1} + iV^{2} \\ V^{1} - iV^{2} & V^{0} - V^{3} \end{bmatrix}, \text{ Det} = 4 - \text{interv}$$

$$V^{AA'} \rightarrow \tilde{V}^{AA'} = t^{A}_{B} V^{BB'} \overline{t}^{A'}_{B'}, \text{ where } \begin{bmatrix} t^{0}_{0'} & t^{0}_{1'} \\ t^{1}_{0'} & t^{1}_{1'} \end{bmatrix} \in SL(2, C), \text{ and } \overline{t}^{A'}_{B'} = \overline{t}^{A}_{B}$$

$$SL(2, C) \rightarrow L^{\uparrow}_{+} \text{ (Lorentz group) is 2-1 isomorphism.}$$

example 1: Lorentz boost in z-direction: $t = \begin{bmatrix} e^{\frac{\phi}{2}} & 0 \\ 0 & e^{-\frac{\phi}{2}} \end{bmatrix}$
example 2: Rotation through φ in the x-y plane: $t = \begin{bmatrix} e^{\frac{i\varphi}{2}} & 0 \\ 0 & e^{-\frac{\phi}{2}} \end{bmatrix}$

$$V^{a} \in M \text{ (Minkowski space) with components } (V^{0}, V^{1}, V^{2}, V^{3})$$

$$\Rightarrow V^{AA'} = \begin{bmatrix} V^{00'} & V^{01'} \\ V^{10'} & V^{11'} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} V^{0} + V^{3} & V^{1} + iV^{2} \\ V^{1} - iV^{2} & V^{0} - V^{3} \end{bmatrix}, \text{ Det} = 4 - \text{ interval}$$

$$V^{AA'} \rightarrow \tilde{V}^{AA'} = t^{A}_{B} V^{BB'} \overline{t}^{A'}_{B'}, \text{ where } \begin{bmatrix} t^{0}_{0'} & t^{0}_{1'} \\ t^{1}_{0'} & t^{1}_{1'} \end{bmatrix} \in SL(2, C), \text{ and } \overline{t}^{A'}_{B'} = \overline{t}^{A}_{B}$$

$$SL(2, C) \rightarrow L^{\uparrow}_{+} \text{ (Lorentz group) is 2-1 isomorphism.}$$

example 1: Lorentz boost in z-direction: $t = \begin{bmatrix} e^{\frac{\varphi}{2}} & 0 \\ 0 & e^{-\frac{\varphi}{2}} \end{bmatrix}$
example 2: Rotation through φ in the x-y plane: $t = \begin{bmatrix} e^{\frac{i\varphi}{2}} & 0 \\ 0 & e^{-\frac{i\varphi}{2}} \end{bmatrix}$

Note: rotation by 2π gives -I in *SL*(2,*C*), rotation by 4π gives I in *SL*(2,*C*),

if det
$$V^{AA'} = 0$$
, $\begin{bmatrix} V^{00'} & V^{01'} \\ V^{10'} & V^{11'} \end{bmatrix} = \begin{bmatrix} \alpha^0 \overline{\alpha}^{0'} & \alpha^0 \overline{\alpha}^{1'} \\ \alpha^1 \overline{\alpha}^{0'} & \alpha^1 \overline{\alpha}^{1'} \end{bmatrix} = \alpha^A \overline{\alpha}^{A'}$

Note:

- spinor α^A determined up to phase factor by this construction
- \Rightarrow intrinsic quantum mechanical features

Note:

- SL(2,C) acts on spinor α^A
- \Rightarrow intrinsic fermionic properties

A twistor $Z^{\alpha} = (\omega^{A}, \pi_{A'}) \in T(4$ -complex dimensional twistor space) defines a spinor field $\Omega^{A}(x)$ in M by $\Omega^{A}(x) = \omega^{A} - ix^{AA'}\pi_{A'}$

 $\Omega^{A}(x) = 0$ defines planes in complexified compactified Minkowski space. If this plane intersects with real M the resulting line is a null geodesic and Z^{α} is called null.

For Z^{α} non-null we can get a visualization of the twistor by drawing the null geodesics corresponding to null twistors that are "orthogonal" to it \Rightarrow Robinson congruence of null geodesics.

Robinson congruence: visualization of a (non-null) twistor:

KNOTS OF LIGHT

A.F. Ranada and J.L. Trueba, Phys. Lett. 232 A, 25 (1997). William Irvine and Dirk Bouwmeester, Nature Physics, September 2008

Space-time is a secondary concept and has:

- naturally 3 space 1 time coordinates
- intrinsic fermionic properties
- intrinsic quantum mechanical properties
- should be considered as complexified (and compactified and conformally invariant)
- has elementary solutions to wave equations that are related to Robinson congruences

Quantum Mechanics

Niels Bohr Copenhagen interpretation:

The wavefunction $|\Psi\rangle$ is not to be taken seriously as describing a quantum level physical reality, but is to be regarded as merely referring to our knowledge of the system.

Quantum Measurements

Zurek (and others):

Environment Induced Decoherence

Caldeira-Leggett model (and others) assumes a linear coupling between the position of the system and a bath of harmonic oscillators

Stamp (and others) considers coupling to spin bath

The wavefunction $|\Psi\rangle$ is a representation of a *real* physical state.

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

EJOBS INVESTIGA

FIFTY YEARS OF THE ULTIMATE QUANTUM STRANGENESS

5 July 2007 |www.nature.com/nature €10

THEY LIE WITH THEIR BODIES! Mimicry as self-defence THE GREAT SPONGE OF SATURN! How weird is Hyperion? BACK TO THE FUTURES! Sci-fi page rises from the dead Many Worlds Interpretation

Deutsch

Vaidman's watch

NO

Single Photon Source-

The Universe is not subject to external measurements, therefore it should be described by a single quantum wavefunction.

Penrose:

There is a conflict between Einstein's general covariance principle and the quantum superposition principle.

Two alternative locations of a massive object will each have stationary states, and have wavefunctions $|\Psi\rangle$ and $|\Phi\rangle$, that are eigenstates of the $\frac{\partial}{\partial t}$ operator with eigenvalues related to the

$$\frac{\partial}{\partial t} |\Psi\rangle = -i\hbar E_{\Psi} |\Psi\rangle$$
$$\frac{\partial}{\partial t'} |\Phi\rangle = -i\hbar E_{\Phi} |\Phi\rangle$$

But how to deal with superpositions

$$\frac{\partial}{\partial t} \Big) (\alpha |\Psi\rangle + \beta |\Phi\rangle) = ???$$

Consider an equal superposition $\frac{1}{\sqrt{2}} (|\Psi\rangle + |\Phi\rangle)$

f and **f**' are the acceleration 3-vectors of the free-fall motion in the two space-times (**f** and **f**' are gravitational forces per unit test mass).

Penrose postulate: at each point the scalar $(|\mathbf{f}-\mathbf{f}'|)^2$ is a measure of incompatibility of the identification. The total measure of incompatibility (or "uncertainty) Δ at time *t* is:

$$\Delta = \frac{1}{4\pi G} \int (f - f)^2 d^3 x$$
$$\equiv E_G$$

This is the gravitational self energy of the difference between the mass distributions of each of the two lump locations.

Prediction: The superposition state is unstable and has a lifetime of the order of $\frac{\hbar}{E_G}$

Towards a Macroscopic Quantum Superposition

$$E_{i,j} = -G \int \int d\vec{r_1} d\vec{r_2} \frac{\rho_i(\vec{r_1})\rho_j(\vec{r_2})}{|\vec{r_1} - \vec{r_2}|},$$

$$\Delta E = 2E_{1,2} - E_{1,1} - E_{2,2},$$

$$\Delta E = 2Gmm_1 \left(\frac{6}{5\pi} - \frac{1}{5\pi}\right), \quad (\text{given} : \Delta x \ge 2)$$

 $\int 5a \Delta x$

 $m \sim 10^{-12}$ kg, $\omega_c \sim 1 - 10$ kHz $\kappa \sim 1$ $m_1 = 4.7 \times 10^{-26}$ kg

Take, $a=10^{-15}$ m size of nucleus, or size of ground-state wave function Decoherence time ~1 ms, or ~1s

Compare: For C_{60} experiments decoherence time is 10^{10} s

Towards Quantum Superpositions of a Mirror W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester Phys. Rev. Lett. 91, 130401 (2003).

Cavities

Beam splitter

Photon source

Cantilever

Tiny mirror

 $\mathcal{A} = \hbar \omega_{a} a^{\dagger} a + \hbar \omega_{m} b^{\dagger} b - \hbar g a^{\dagger} a (b + b^{\dagger})$

$$J = \frac{\omega_c}{L} \sqrt{\frac{h}{2M\omega_m}}$$

Law, PRA, **49**, 433 (1993) Bose et al. PRA **59**, 3204 (1999) Marshall et al. PRL **91**, 130401 (2003)

mitrial state (14(0)) = $\int_{Z} (10) [1]_{B} + [1]_{A}[0]_{B}) [1]_{B}$ |1/(t)) = entangled state of mirror and photonexcept ofter full period of oscillation

T is effective temperature of the fundamental resonance of cantilever

Experimental Requirements 1) Momentum Kick imparted by photon has to be Larger than the initial quantum uncertainty of the mirror's momentum $2 \pm N^3 L$ $\pi c M J^2$ Optimum 700 nm POXIDXIO Mm SiO2/Ta2Os Mirror Nr 105-106 $L \sim 1-5 \text{ cm}$ $W_m \sim 2 \text{ kHz} \rightarrow$ $\Delta X_{mirror} = 10^{13} \text{ m}$

Experimental Requirements 2) environmental decoherence time ~1period

 $Y_{\rm D} = \chi_{\rm B} T M(\Delta x)^2 / h^2$ (Zurek et al) $T_{\rm damping}$ rate cantilever

> S= Wm/Ym 2105 (@3mk Rugar et al)

Q=150.000 leads to required T<8mK for bulk material

Experimental Requirements 3) Stability of order 7/201 ~ 10 m On timescale of experiment. STM 10 m/min Gravitational wave detection 10 m/ms Switchable mirrors Great help background density ~ 100 particles 4) UUHV

Optical Q=2100 Mechanical Q=137.000 PRL **96**, 173901 (2006)

Dustin Kleckner UCSB, Si₃N₄ based resonator with SiO₂ TaO₅ mirror

40 μm mirror Optical Q>30,000 Mechanical Q>1,000,000

Simulate diffraction limited finesse

Laguerre Gaussian mode decomposition

$$E_{n,m}^{\pm}(r,\phi,z) \propto \left[\frac{r^{|m|}}{w(z)^{|m|+1}}\right] L_n^{|m|} \left[\frac{2r^2}{w(z)^2}\right] \exp\left[-\left(\frac{r}{w(z)}\right)^2 - im\phi \pm i\Theta(r,z)\right]$$

$$\Theta(r,z) = (2n + |m| + 1) \tan^{-1}\left(\frac{z}{z_0}\right) - k\left(z + \frac{r^2}{2R(z)}\right)$$

$$z_0 = \frac{kw_0^2}{2}$$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$R(z) = z \left[1 + \left(\frac{z_0}{z}\right)^2\right]$$

Simulate diffraction limited finesse

$$r_{a} = \alpha w_{0}$$

$$R_{a} = \infty$$

$$z_{a} = 0$$

$$r_{b} = \alpha w(z_{b})$$

$$R_{b} = R(z_{b})$$

$$z_{b} = L = \zeta z_{0}$$

Effect of defocusing: radial phase shift $\exp[-2i\epsilon\rho^2]$

For Finesse 10⁶ and $z_0=10\mu m$ alignment accuracy 1nm required!

Effect of mirror roughness

Super polished mirrors might not be good enough

D. Kleckner et al, PRA 2010

Optical Cooling

Gain factor 2500

D. Kleckner and D.B. Nature 444, 75 (2006).

Leiden, the Netherlands

Vibration damping Dilution refrigeration 10mK

Optics/cantilever

Base temperature 100µK

> Optical cooling 100nK

Adiabatic nuclear demagnetisation

T=7,3 mK, B=2,16T

Vibration damping: Multi stage Eddy current damping

Work in progress

Evan Jeffrey Petro Sonin

Harmen van der Meer

Molecular Beam Epitaxy (MBE) grown quantum dots

Self-assembled GaAs/InGaAs QUANTUM DOTS

add extra electron to QD

Spin of extra electron is qubit (0.1ms?) coupled to excitons (gates ns)

Reflection Spectroscopy

Jaynes-Cummings model

$$R(\omega) = \left| 1 - \frac{\kappa \left(\gamma - i \left(\mu \omega - \omega_{QD} \right) \right)}{\left(\gamma - i \left(\omega - \omega_{QD} \right) \kappa \right) - i \left(\omega - \omega_{c} \right) + g^{2}} \right|^{2}$$

 κ is cavity field decay rate:

 $\kappa = 24.1 \mu \text{eV}$, corresponding to Q = 27,000,

g is emitter-cavity coupling

 $g = 9.7 \,\mu \,\mathrm{eV},$

 γ is emitter decay rate:

 $\gamma = 1.9 \mu \,\mathrm{eV},$

 $\frac{g}{\kappa} = 0.40$, deep in Purcell (weak-coupling) regime,

 $\frac{g}{\kappa} > 0.5 \text{ is strong coupling}$ 96% mode matched!!!
Ideal for hybrid QIP schemes

PRL Rakher et al. '09

Reflection Spectroscopy

Fit Parameters: Strong Coupling

Mode polarization tuning

Fine tuning by hole burningFibre coupling (two sided)

Birefringence tuning by hole burning

After hole burning:

Prediction: For pol. deg. cavity and a X⁻ charged QD

Prediction: For polarization generate cavity and a X⁻ charged QD

Transmission $\pi \mod 2\pi$ with respect to reflection

$$\begin{aligned} \left| \psi_{ph} \right\rangle &= \alpha \left| R \right\rangle + \beta \left| L \right\rangle, \quad \left| \psi_{el} \right\rangle &= \gamma \left| \uparrow \right\rangle + \delta \left| \downarrow \right\rangle \\ \left| \psi \right\rangle_{in} &= \left| \psi_{ph} \right\rangle \otimes \left| \psi_{el} \right\rangle \\ \left| \psi \right\rangle_{out} &= \gamma \left| \uparrow \right\rangle \left[\alpha \left| R \right\rangle + \beta \left| L \right\rangle \right] + \delta \left| \downarrow \right\rangle \left[\alpha \left| L \right\rangle + \beta \left| R \right\rangle \right] \end{aligned}$$