
 
 

Robert Raussendorf 
  

 
Statement  

 
and  

 
Readings 

 



 



Decoherence in quantum computation - foe or friend?

Robert Raussendorf, University of British Columbia

Abstract: Decoherence is detrimental to quantum computation because it makes the computation
“noisy”. Or is it? Upon closer inspection, it turns out that decoherence can both compromize and
help realize quantum computation. Which of the two applies does very much depend on the
decoherence model considered.
I will start out by proving the expected, namely that decoherence, for a certain (justifiable) class of
decoherence models, does indeed compromise quantum computation. In this regard, I will review
a result of Bravyi and Kitaev [1b]/ van Dam and Howard [1a] demonstrating an upper bound to
the error threshold for fault-tolerant quantum computation. The significance of this upper bound
is that no method of error correction, however clever, can put the quantum computation back on
track if the decoherence level per elementary gate operation is above the threshold value.
In the second part of my introduction, I will discuss two computational models [2], [3] that use
decoherent dynamics to realize quantum computation. In the case of [2], the computation is driven
by local projective measurements on a highly entangled quantum state. Therein, the entanglement
of the initial quantum state is progressively destroyed as the computation proceeds. Thus, entan-
glement is a resource for this computational model. In the second case, Ref. [3], universal quantum
computation is implemented in a dissipative quantum system whose evolution is governed by time-
independent and local couplings to the environment. Due to the purely dissipative nature of the
process, this way of doing quantum computation exhibits some inherent robustness and defies some
of the DiVincenzo criteria for quantum computation.
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Remark: The results of refs. [1a] and [1b] are very closely related. For background reading, I
recommend Ref. [1b] over [1a] because it is shorter. In my introduction, I will discuss [1a] (first
part only), however, because the result therein is better suited for graphical display.
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Universal quantum computation with ideal Clifford gates and noisy ancillas
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We consider a model of quantum computation in which the set of elementary operations is limited to
Clifford unitaries, the creation of the state #0$, and qubit measurement in the computational basis. In addition,
we allow the creation of a one-qubit ancilla in a mixed state !, which should be regarded as a parameter of the
model. Our goal is to determine for which ! universal quantum computation !UQC" can be efficiently simu-
lated. To answer this question, we construct purification protocols that consume several copies of ! and
produce a single output qubit with higher polarization. The protocols allow one to increase the polarization
only along certain “magic” directions. If the polarization of ! along a magic direction exceeds a threshold value
!about 65%", the purification asymptotically yields a pure state, which we call a magic state. We show that the
Clifford group operations combined with magic states preparation are sufficient for UQC. The connection of
our results with the Gottesman-Knill theorem is discussed.

DOI: 10.1103/PhysRevA.71.022316 PACS number!s": 03.67.Lx, 03.67.Pp

I. INTRODUCTION AND SUMMARY

The theory of fault-tolerant quantum computation defines
an important number called the error threshold. If the physi-
cal error rate is less than the threshold value ", it is possible
to stabilize computation by transforming the quantum circuit
into a fault-tolerant form where errors can be detected and
eliminated. However, if the error rate is above the threshold,
then errors begin to accumulate, which results in rapid deco-
herence and renders the output of the computation useless.
The actual value of " depends on the error correction scheme
and the error model. Unfortunately, this number seems to be
rather small for all known schemes. Estimates vary from
10−6 !see Ref. %1&" to 10−4 !see Refs. %2–4&", which is hardly
achievable with the present technology.
In principle, one can envision a situation in which qubits

do not decohere, and a subset of the elementary gates is
realized exactly due to special properties of the physical sys-
tem. This scenario could be realized experimentally using
spin, electron, or other many-body systems with topologi-
cally ordered ground states. Excitations in two-dimensional
topologically ordered systems are anyons—quasiparticles
with unusual statistics described by nontrivial representa-
tions of the braid group. If we have sufficient control of
anyons, i.e., are able to move them around each other, fuse
them, and distinguish between different particle types, then
we can realize some set of unitary operators and measure-
ments exactly. This set may or may not be computationally
universal. While the universality can be achieved with suffi-
ciently nontrivial types of anyons %5–8&, more realistic sys-
tems offer only decoherence protection and an incomplete set
of topological gates. !See Refs. %9,10& about non-Abelian
anyons in quantum Hall systems and Refs. %11,12& about
topological orders in Josephson junction arrays." Neverthe-
less, universal computation is possible if we introduce some

additional operations !e.g., measurements by Aharonov-
Bohm interference %13& or some gates that are not related to
topology at all". Of course, these nontopological operations
cannot be implemented exactly and thus are prone to errors.
In this situation, the threshold error rate " may become

significantly larger than the values given above because we
need to correct only errors of certain special type and we
introduce a smaller amount of error in the correction stage.
The main purpose of the present paper is to illustrate this
statement by a particular computational model.
The model is built upon the Clifford group—the group of

unitary operators that map the group of Pauli operators to
itself under conjugation. The set of elementary operations is
divided into two parts: O=Oideal!Ofaulty. Operations from
Oideal are assumed to be perfect. We list these operations
below:

!i" prepare a qubit in the state #0$;
!ii" apply unitary operators from the Clifford group;
!iii" measure an eigenvalue of a Pauli operator !#x ,#y,

or #z" on any qubit.
Here we mean nondestructive projective measurement.

We also assume that no errors occur between the operations.
It is well known that these operations are not sufficient for

universal quantum computation !UQC" !unless a quantum
computer can be efficiently simulated on a classical com-
puter". More specifically, the Gottesman-Knill theorem states
that by operations from Oideal one can only obtain quantum
states of a very special form called stabilizer states. Such a
state can be specified as an intersection of eigenspaces of
pairwise commuting Pauli operators, which are referred to as
stabilizers. Using the stabilizer formalism, one can easily
simulate the evolution of the state and the statistics of mea-
surements on a classical probabilistic computer !see Ref.
%14& or a textbook %15& for more details".
The set Ofaulty describes faulty operations. In our model, it

consists of just one operation: prepare an ancillary qubit in a
mixed state !. The state ! should be regarded as a parameter
of the model. From the physical point of view, ! is mixed
due to imperfections of the preparation procedure !entangle-
ment of the ancilla with the environment, thermal fluctua-
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tions, etc.". An essential requirement is that by preparing n
qubits we obtain the state !!n, i.e., all ancillary qubits are
independent. The independence assumption is similar to the
uncorrelated errors model in the standard fault-tolerant com-
putation theory.
Our motivation for including all Clifford group gates into

Oideal relies mostly on the recent progress in the fault-tolerant
implementation of such gates. For instance, using a concat-
enated stabilizer code with good error correcting properties
to encode each qubit and applying gates transversally !so that
errors do not propagate inside code blocks" one can imple-
ment Clifford gates with an arbitrary high precision, see Ref.
%16&. However, these nearly perfect gates act on encoded
qubits. To establish a correspondence with our model, one
needs to prepare an encoded ancilla in the state !. It can be
done using the schemes for fault-tolerant encoding of an ar-
bitrary known one-qubit state described by Knill in Ref. %17&.
In the more recent paper %18& Knill constructed a scheme of
fault-tolerant quantum computation which combines !i" the
teleported computing and error correction technique by Got-
tesman and Chuang %19&; !ii" the method of purification of
CSS states by Dür and Briegel %20&; and !iii" the magic states
distillation algorithms described in the present paper. As was
argued in Ref. %18&, this scheme is likely to yield a much
higher value for the threshold " !it may be up to 1%".
Unfortunately, ideal implementation of the Clifford group

cannot be currently achieved in any realistic physical system
with a topological order. What universality classes of anyons
allow one to implement all Clifford group gates !but do not
allow one to simulate UQC" is an interesting open problem.
To fully utilize the potential of our model, we allow adap-

tive computation. It means that a description of an operation
to be performed at step t may be a function of all measure-
ment outcomes at steps 1 ,… , t−1. !For even greater gener-
ality, the dependence may be probabilistic. This assumption
does not actually strengthen the model since tossing a fair
coin can be simulated using Oideal" At this point, we need to
be careful because the proper choice of operations should not
only be defined mathematically—it should be computed by
some efficient algorithm. In all protocols described below,
the algorithms will actually be very simple. !Let us point out
that dropping the computational complexity restriction still
leaves a nontrivial problem: can we prepare an arbitrary mul-
tiqubit pure state with any given fidelity using only opera-
tions from the basis O?"
The main question that we address in this paper is as

follows: For which density matrices ! can one efficiently
simulate universal quantum computation by adaptive compu-
tation in the basis O?
It will be convenient to use the Bloch sphere representa-

tion of one-qubit states:

! = 1
2 !I + !x#

x + !y#
y + !z#

z" .

The vector !!x ,!y ,!z" will be referred to as the polarization
vector of !. Let us first consider the subset of states satisfy-
ing

#!x# + #!y# + #!z# $ 1.

This inequality says that the vector !!x ,!y ,!z" lies inside the
octahedron O with vertices !±1, 0, 0", !0, ±1, 0", !0, 0, ±1",

see Fig. 1. The six vertices of O represent the six eigenstates
of the Pauli operators #x ,#y, and #z. We can prepare these
states by operations from Oideal only. Since ! is a convex
linear combination !probabilistic mixture" of these states, we
can prepare ! by operations from Oideal and by tossing a coin
with suitable weights. Thus we can rephrase the Gottesman-
Knill theorem in the following way.
Theorem 1. Suppose the polarization vector !!x ,!y ,!z" of

the state ! belongs to the convex hull of !±1, 0, 0", !0, ±1, 0",
!0, 0, ±1". Then any adaptive computation in the basis O can
be efficiently simulated on a classical probabilistic computer.
This observation leads naturally to the following question:

is it true that UQC can be efficiently simulated whenever !
lies in the exterior of the octahedron O? In an attempt to
provide at least a partial answer, we prove the universality
for a large set of states. Specifically, we construct two par-
ticular schemes of UQC simulation based on a method which
we call magic states distillation. Let us start by defining the
magic states.
Definition 1. Consider pure states #H$ , #T$!C2 such that

#T$'T# =
1
2(I + 1

)3 !#x + #y + #z"* ,
and

#H$'H# =
1
2(I + 1

)2 !#x + #z"* .
The images of #T$ and #H$ under the action of one-qubit
Clifford operators are called magic states of T type and H
type, respectively.

%This notation is chosen since #H$ and #T$ are eigenvectors
of certain Clifford group operators: the Hadamard gate H and
the operator usually denoted T, see Eq. !7".& Denote the one-
qubit Clifford group by C1. Overall, there are 8 magic states
of T type, +U#T$ ,U!C1, !up to a phase" and 12 states of H
type, +U#H$ ,U!C1,, see Fig. 1. Clearly, the polarization vec-
tors of magic states are in one-to-one correspondence with
rotational symmetry axes of the octahedron O !H-type states
correspond to 180° rotations and T-type states correspond to
120° rotations". The role of magic states in our construction
is twofold. First, adaptive computation in the basis Oideal
together with the preparation of magic states !of either type"
allows one to simulate UQC !see Sec. III". Second, by adap-

FIG. 1. Left: the Bloch sphere and the octahedron O. Right: the
octahedron O projected on the x−y plane. The magic states corre-
spond to the intersections of the symmetry axes of O with the Bloch
sphere. The empty and filled circles represent T-type and H-type
magic states, respectively.
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tive computation in the basis Oideal one can “purify” imper-
fect magic states. It is a rather surprising coincidence that
one and the same state can comprise both of these properties,
and that is the reason why we call them magic states.
More exactly, a magic state distillation procedure yields

one copy of a magic state !with any desired fidelity" from
several copies of the state !, provided that the initial fidelity
between ! and the magic state to be distilled is large enough.
In the course of distillation, we use only operations from the
set Oideal. By constructing two particular distillation
schemes, for T-type and H-type magic states, respectively,
we prove the following theorems.
Theorem 2. Let FT!!" be the maximum fidelity between !

and a T-type magic state, i.e.,

FT!!" = max
U!C1

)'T#U†!U#T$ .

Adaptive computation in the basis O=Oideal! +!, allows one
to simulate universal quantum computation whenever

FT!!" % FT = (12-1 +)3
7
.*1/2 / 0.910.

Theorem 3. Let FH!!" be the maximum fidelity between !
and an H-type magic state,

FH!!" = max
U!C1

)'H#U†!U#H$ .

Adaptive computation in the basis O=Oideal! +!, allows one
to simulate universal quantum computation whenever

FH!!" % FH / 0.927.

The quantities FT and FH have the meaning of threshold
fidelity since our distillation schemes increase the polariza-
tion of !, converging to a magic state as long as the inequali-
ties FT!!"%FT or FH!!"%FH are fulfilled. If they are not
fulfilled, the process converges to the maximally mixed state.
The conditions stated in the theorems can also be understood
in terms of the polarization vector !!x ,!y ,!z". Indeed, let us
associate a “magic direction” with each of the magic states.
Then Theorems 2 and 3 say that the distillation is possible if
there is a T direction such that the projection of the vector
!!x ,!y ,!z" onto that T direction exceeds the threshold value
of 2FT

2−1/0.655, or if the projection on some of the H
directions is greater than 2FH

2 −1/0.718.
Let us remark that, although the proposed distillation

schemes are probably not optimal, the threshold fidelities FT
and FH cannot be improved significantly. Indeed, it is easy to
check that the octahedron O corresponding to probabilistic
mixtures of stabilizer states can be defined as

O = +!:FT!!" $ FT
*, ,

where

FT
* = (12-1 +)1

3
.*1/2 / 0.888.

It means that FT
* is a lower bound on the threshold fidelity FT

for any protocol distilling T-type magic states. Thus any po-
tential improvement to Theorem 2 may only decrease FT

from 0.910 down to FT
* =0.888. From a practical perspective,

the difference between these two numbers is not important.
On the other hand, such an improvement would be of

great theoretical interest. Indeed, if Theorem 2 with FT re-
placed by FT

* is true, it would imply that the Gottesman-Knill
theorem provides necessary and sufficient conditions for the
classical simulation, and that a transition from classical to
universal quantum behavior occurs at the boundary of the
octahedron O. This kind of transition has been discussed in
context of a general error model %21&. Our model is simpler,
which gives hope for sharper results.
By the same argument, one can show that the quantity

FH
* =
def
max
!!O

)'H#!#H$ = (12-1 +)1
2
.*1/2 / 0.924

is a lower bound on the threshold fidelity FH for any protocol
distilling H-type magic states.
A similar approach to UQC simulation was suggested in

Ref. %22&, where Clifford group operations were used to dis-
till the entangled three-qubit state #000$+ #001$+ #010$
+ #100$, which is necessary for the realization of the Toffoli
gate.
The rest of the paper is organized as follows. Section II

contains some well-known facts about the Clifford group and
stabilizer formalism, which will be used throughout the pa-
per. In Sec. III we prove that magic states together with
operations from Oideal are sufficient for UQC. In Sec. IV
ideal magic are substituted by faulty ones and the error rate
that our simulation algorithm can tolerate is estimated. In
Sec. V we describe a distillation protocol for T-type magic
states. This protocol is based on the well-known five-qubit
quantum code. In Sec. VI a distillation protocol for H-type
magic states is constructed. It is based on a certain CSS
stabilizer code that encodes one qubit into 15 and admits a
nontrivial automorphism %23&. Specifically, the bitwise appli-
cation of a certain non-Clifford unitary operator preserves the
code subspace and effects the same operator on the encoded
qubit. We conclude with a brief summary and a discussion of
open problems.

II. CLIFFORD GROUP, STABILIZERS, AND SYNDROME
MEASUREMENTS

Let Cn denote the n-qubit Clifford group. Recall that it is a
finite subgroup of U!2n" generated by the Hadamard gate H
!applied to any qubit", the phase-shift gate K !applied to any
qubit", and the controlled-not gate &!#x" !which may be ap-
plied to any pair qubits",

H =
1
)2-1 1

1 − 1 ., K = -1 0
0 i ., &!#x" = - I 0

0 #x . .
!1"

The Pauli operators #x ,#y ,#z belong to C1, for instance, #z

=K2 and #x=HK2H. The Pauli group P!n""Cn is generated
by the Pauli operators acting on n qubits. It is known %24&
that the Clifford group Cn augmented by scalar unitary op-
erators ei'I coincides with the normalizer of P!n" in the uni-
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tary group U!2n". Hermitian elements of the Pauli group are
of particular importance for quantum error correction theory;
they are referred to as stabilizers. These are operators of the
form

±#(1 ! ¯ ! #(n, ( j ! +0,x,y,z, ,

where #0= I. Let us denote by S!n" the set of all n-qubit
stabilizers:

S!n" = +S ! P!n" : S† = S, .

For any two stabilizers S1 ,S2 we have S1S2= ±S2S1 and S1
2

=S2
2= I. It is known that for any set of pairwise commuting

stabilizers S1 ,… ,Sk!S!n" there exists a unitary operator V
!Cn such that

VSjV† = #z%j&, j = 1,…,k ,

where #z%j& denotes the operator #z applied to the jth qubit,
e.g., #z%1&=#z ! I! ¯ ! I.
These properties of the Clifford group allow us to intro-

duce a very useful computational procedure which can be
realized by operations from Oideal. Specifically, we can per-
form a joint nondestructive eigenvalue measurement for any
set of pairwise commuting stabilizers S1 ,… ,Sk!S!n". The
outcome of such a measurement is a sequence of eigenvalues
)= !)1 ,… ,)k", ) j= ±1, which is usually called a syndrome.
For any given outcome, the quantum state is acted upon by
the projector

*) =0
j=1

k 1
2

!I + ) jSj" .

Now, let us consider a computation that begins with an
arbitrary state and consists of operations from Oideal. It is
clear that we can defer all Clifford operations until the very
end if we replace the Pauli measurements by general syn-
drome measurements. Thus the most general transformation
that can be realized by Oideal is an adaptive syndrome mea-
surement, meaning that the choice of the stabilizer Sj to be
measured next depends on the previously measured values of
)1 ,… ,) j−1. In general, this dependence may involve coin
tossing. Without loss of generality one can assume that Sj
commutes with all previously measured stabilizers
S1 ,… ,Sj−1 !for all possible values of )1 ,… ,) j−1 and coin
tossing outcomes". Adaptive syndrome measurement has
been used in Ref. %25& to distill entangled states of a bipartite
system by local operations.

III. UNIVERSAL QUANTUM COMPUTATION WITH
MAGIC STATES

In this section, we show that operations from Oideal are
sufficient for universal quantum computation if a supply of
ideal magic states is also available. First, consider a one-
qubit state

#A+$ = 2−1/2!#0$ + ei+#1$" !2"

and suppose that + is not a multiple of , /2. We now describe
a procedure that implements the phase shift gate

&!ei+" = -1 0
0 ei+ .

by consuming several copies of #A+$ and using only opera-
tions from Oideal.
Let #-$=a#0$+b#1$ be the unknown initial state which

should be acted on by &!ei+". Prepare the state #.0$= #-$
! #A+$ and measure the stabilizer S1=#z ! #z. Note that both
outcomes of this measurement appear with probability 1 /2.
If the outcome is “+1”, we are left with the state

#.1
+$ = !a#0,0$ + bei+#1,1$" .

In the case of “−1” outcome, the resulting state is

#.1
−$ = !aei+#0,1$ + b#1,0$" .

Let us apply the gate &!#x"%1,2& !the first qubit is the control
one". The above two states are mapped to

#.2
+$ = &!#x"%1,2&#.1

+$ = !a#0$ + bei+#1$" ! #0$ ,

#.2
−$ = &!#x"%1,2&#.1

−$ = !aei+#0$ + b#1$" ! #1$ .

Now the second qubit can be discarded, and we are left with
the state a#0$+be±i+#1$, depending upon the measured eigen-
value. Thus the net effect of this circuit is the application of
a unitary operator that is chosen randomly between &!ei+"
and &!e−i+" !and we know which of the two possibilities has
occurred".
Applying the circuit repeatedly, we effect the transforma-

tions &!eip1+", &!eip2+",… for some integers p1 ,p2,… which
obey the random-walk statistics. It is well known that such a
random walk visits each integer with the probability 1. It
means that sooner or later we will get pk=1 and thus realize
the desired operator &!ei+". The probability that we will need
more than N steps to succeed can be estimated as cN−1/2 for
some constant c%0. Note also that if + is a rational multiple
of 2,, we actually have a random walk on a cyclic group Zq.
In this case, the probability that we will need more than N
steps decreases exponentially with N.
The magic state #H$ can be explicitly written in the stan-

dard basis as

#H$ = cos-,

8 .#0$ + sin-,

8 .#1$ . !3"

Note that HK#H$=ei,/8#A−,/4$. So if we are able to prepare
the state #H$, we can realize the operator &!e−i,/4". It does
not belong to the Clifford group. Moreover, the subgroup of
U!2" generated by &!e−i,/4" and C1 is dense in U!2". 1 Thus
the operators from C1 and C2 together with &!e−i,/4" consti-
tute a universal basis for quantum computation.
The magic state #T$ can be explicitly written in the stan-

dard basis:

1Recall that the action of the Clifford group C1 on the set of
operators ±#x, ±#y, ±#z coincides with the action of rotational sym-
metry group of a cube on the set of unit vectors ±ex, ±ey, ±ez,
respectively.
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#T$ = cos /#0$ + ei!,/4"sin /#1$, cos!2/" =
1
)3 . !4"

Let us prepare an initial state #.0$= #T$ ! #T$ and measure the
stabilizer S1=#z ! #z. The outcome +1 appears with prob-
ability p+=cos4/+sin4/=2/3. If the outcome is −1, we dis-
card the reduced state and try again, using a fresh pair of
magic states. !On average, we need three copies of the #T$
state to get the outcome +1." The reduced state correspond-
ing to the outcome +1 is

#.1$ = cos 0#0,0$ + i sin 0#1,1$, 0 =
,

12
.

Let us apply the gate &!#x"%1,2& and discard the second
qubit. We arrive at the state

#.2$ = cos 0#0$ + i sin 0#1$ .

Next apply the Hadamard gate H:

#.3$ = H#.2$ = 2−1/2ei0!#0$ + e−2i0#1$" = #A−,/6$ .

We can use this state as described above to realize the op-
erator &!e−i,/6". It is easy to check that Clifford operators
together with &!e−i,/6" constitute a universal set of unitary
gates.
Thus we have proved that the sets of operations

Oideal! +#H$, and Oideal! +#T$, are sufficient for universal
quantum computation.

IV. ERROR ANALYSIS

To establish a connection between the simulation algo-
rithms described in Sec. III and the universality theorems
stated in the introduction we have to substitute ideal magic
states by faulty ones. Before doing that let us discuss the
ideal case in more detail. Suppose that a quantum circuit to
be simulated uses a gate basis in which the only non-Clifford
gate is the phase shift &!e−i,/4" or &!e−i,/6". One can apply
the algorithm of Sec. III to simulate each non-Clifford gate
independently. To avoid fluctuations in the number of magic
states consumed at each round, let us set a limit of K magic
states per round, where K is a parameter to be chosen later.
As was pointed out in Sec. III, the probability for some par-
ticular simulation round to “run out of budget” scales as
exp!−(K" for some constant (%0. If at least one simulation
round runs out of budget, we declare a failure and the whole
simulation must be aborted. Denote the total number of non-
Clifford gates in the circuit by L. The probability pa for the
whole simulation to be aborted can be estimated as

pa 1 1 − %1 − exp!− (K"&L 1 L exp!− (K" 1 1,

provided that L exp!−(K"11. We will assume

K 2 (−1ln L ,

so the abort probability can be neglected.
Each time the algorithm requests an ideal magic state, it

actually receives a slightly nonideal one. Such nearly perfect
magic states must be prepared using the distillation methods

described in Secs. V and VI. Let us estimate an affordable
error rate 3out for distilled magic states. Since there are L
non-Clifford gates in the circuit, one can tolerate an error
rate of the order 1 /L in implementation of these gates.2 Each
non-Clifford gate requires K1 ln L magic states. Thus the
whole simulation is reliable enough if one chooses

3out 1 1/!L ln L" . !5"

What are the resources needed to distill one copy of a
magic state with the error rate 3out? To be more specific, let
us talk about H-type states. It will be shown in Sec. VI that
the number n of raw !undistilled" ancillas needed to distill
one copy of the #H$ magic state with an error rate not ex-
ceeding 3out scales as

n 1 %ln!1/3out"&0, 0 = log315/ 2.5,

see Eq. !39". Taking 3out from Eq. !5", one gets

n 1 !ln L"0.

Since the whole simulation requires KL1L ln L copies of
the distilled #H$ state, we need

N 1 L!ln L"0+1

raw ancillas overall.
Summarizing, the simulation theorems stated in the intro-

duction follow from the following results !the last one will
be proved later":

!i" the circuits described in Sec. III allow one to simulate
UQC with the sets of operations Oideal! +#H$, and
Oideal! +#T$,;

!ii" these circuits work reliably enough if the states #H$
and #T$ are slightly noisy, provided that the error rate does
not exceed 3out11/ !L ln L";

!iii" a magic state having an error rate 3out can be pre-
pared from copies of the raw ancillary state ! using the dis-
tillation schemes provided that FT!!"%FT or FH!!"%FH.
The distillation requires resources that are polynomial in
ln L.

V. DISTILLATION OF T-TYPE MAGIC STATES

Suppose we are given n copies of a state !, and our goal
is to distill one copy of the magic state #T$. The polarization
vector of ! can be brought into the positive octant of the
Bloch space by a Clifford group operator, so we can assume
that

!x,!y,!z 4 0.

In this case, the fidelity between ! and #T$ is the largest one
among all T-type magic states, i.e.,

FT!!" = )'T#!#T$ .

A related quantity,

2This fault tolerance does not require any redundancy in the
implementation of the circuit !e.g., the use of concatenated codes".
It is achived automatically because in the worst case the error prob-
ability accumulates linearly in the number of gates. In our model
only non-Clifford gates are faulty.
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3 = 1 − 'T#!#T$ =
1
2(1 − 1

)3 !!x + !y + !z"* ,
will be called the initial error probability. By definition, 0
$3$1/2.
The output of the distillation algorithm will be some one-

qubit mixed state !out. To quantify the proximity between !out
and #T$, let us define a final error probability:

3out = 1 − 'T#!out#T$ .

It will be certain function of n and 3. The asymptotic behav-
ior of this function for n→5 reveals the existence of a
threshold error probability,

30 =
1
2
-1 −)3

7
. / 0.173,

such that for 3630 the function 3out!n ,3" converges to zero.
We will see that for small 3,

3out!n,3" 1 !53"n
7
, 7 = 1/log2 30/ 0.2. !6"

On the other hand, if 3%30, the output state converges to the
maximally mixed state, i.e., limn→53out!n ,3"=1/2.
Before coming to a detailed description of the distillation

algorithm, let us outline the basic ideas involved in its con-
struction. The algorithm recursively iterates an elementary
distillation subroutine that transforms five copies of an im-
perfect magic state into one copy having a smaller error
probability. This elementary subroutine involves a syndrome
measurement for certain commuting stabilizers S1 ,S2 ,S3 ,S4
!S!5". If the measured syndrome !)1 ,)2 ,)3 ,)4" is non-
trivial !) j=−1 for some j", the distillation attempt fails and
the reduced state is discarded. If the measured syndrome is
trivial !) j=1 for all j", the distillation attempt is successful.
Applying a decoding transformation !a certain Clifford op-
erator" to the reduced state, we transform it to a single-qubit
state. This qubit is the output of the subroutine.
Our construction is similar to concatenated codes used in

many fault-tolerant quantum computation techniques, but it
differs from them in two respects. First, we do not need to
correct errors—it suffices only to detect them. Once an error
has been detected, we simply discard the reduced state, since
it does not contain any valuable information. This allows us
to achieve higher threshold error probability. Second, we do
not use quantum codes in the way for which they were origi-
nally designed: in our scheme, the syndrome is measured on
a product state.
The state #T$ is an eigenstate for the unitary operator

T = ei,/4KH =
ei,/4

)2 -1 1
i − i . ! C1. !7"

Note that T acts on the Pauli operators as follows:3

T#xT† = #z, T#zT† = #y, T#yT† = #x. !8"

We will denote its eigenstates by #T0$ and #T1$, so that

T#T0$ = e+i,/3#T0$, T#T1$ = e−i,/3#T1$ ,

#T0,1$'T0,1# =
1
2(I ± 1

)3 !#x + #y + #z"* .
Note that #T0$ =

def
#T$ and #T1$=#yH#T0$ are T-type magic

states.
Let us apply a dephasing transformation,

D!8" =
1
3

!8 + T8T† + T†8T" , !9"

to each copy of the state !. The transformation D can be
realized by applying one of the operators I ,T ,T−1 chosen
with probability 1 /3 each. Since

D!#T0$'T1#" = D!#T1$'T0#" = 0,

we have

D!!" = !1 − 3"#T0$'T0# + 3#T1$'T1# . !10"

We will assume that the dephasing transformation is applied
at the very first step of the distillation, so ! has the form !10".
Thus the initial state for the elementary distillation subrou-
tine is

!in = !!5 = 2
x!+0,1,5

3#x#!1 − 3"5−#x##Tx$'Tx# , !11"

where x= !x1 ,… ,x5" is a binary string, #x# is the number of
1’s in x, and

#Tx$=
def

#Tx1$ ! ¯ ! #Tx5$ .

The stabilizers S1 ,… ,S4 to be measured on the state !in
correspond to the famous five-qubit code, see Refs. %26,27&.
They are defined as follows:

S1 = #x
! #z

! #z
! #x

! I ,

S2 = I ! #x
! #z

! #z
! #x,

S3 = #x
! I ! #x

! #z
! #z,

S4 = #z
! #x

! I ! #x
! #z. !12"

This code has a cyclic symmetry, which becomes explicit if
we introduce an auxiliary stabilizer, S5=S1S2S3S4=#z ! #z

! #x ! I! #x. Let L be the two-dimensional code subspace
specified by the conditions Sj#.$= #.$, j=1,…, 4, and * be
the orthogonal projector onto L:

* =
1
160j=1

4

!I + Sj" . !13"

It was pointed out in Ref. %16& that the operators

X̂ = !#x"!5, Ŷ = !#y"!5, Ẑ = !#z"!5,

and
3The operator denoted by T in Ref. %16& does not coincide with
our T. They are related by the substitution T→e−i,/4T† though.
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T̂ = !T"!5 !14"

commute with *, thus preserving the code subspace. More-
over, X̂ , Ŷ , Ẑ obey the same algebraic relations as one-qubit
Pauli operators, e.g., X̂Ŷ= iẐ. Let us choose a basis in L such
that X̂ , Ŷ, and Ẑ become logical Pauli operators #x ,#y, and
#z, respectively. How does the operator T̂ act in this basis?
From Eq. !8" we immediately get

T̂X̂T̂† = Ẑ, T̂ẐT̂† = Ŷ, T̂ŶT̂† = X̂ .

Therefore T̂ coincides with the logical operator T up to an
overall phase factor. This factor is fixed by the condition that
the logical T has eigenvalues e±i!,/3".
Let us find the eigenvectors of T̂ that belong to L. Con-

sider two particular states from L, namely

#T1
L$ = )6*#T00000$, and #T0

L$ = )6*#T11111$ .

In the Appendix we show that

'T00000#*#T00000$ = 'T11111#*#T11111$ =
1
6
, !15"

so that the states #T0
L$ and #T1

L$ are normalized. Taking into
account that %T̂ ,*&=0 and that

T̂#Tx$ = ei!,/3"!5−2#x#"#Tx$ for all x ! +0,1,5, !16"

we get

T̂#T1
L$ = )6T̂*#T00000$ = )6*T̂#T00000$ = e−i,/3#T1

L$ .

Analogously, one can check that

T̂#T0
L$ = e+i,/3#T0

L$ .

It follows that T̂ is exactly the logical operator T, including
the overall phase, and #T0

L$ and #T1
L$ are the logical states #T0$

and #T1$ !up to some phase factors, which are not important
for us". Therefore we have

#T0,1
L $'T0,1

L # =*
1
2(I ± 1

)3 !X̂ + Ŷ + Ẑ"* . !17"

Now we are in a position to describe the syndrome mea-
surement performed on the state !in. The unnormalized re-
duced state corresponding to the trivial syndrome is as fol-
lows:

!s =*!in* = 2
x!+0,1,5

3#x#!1 − 3"5−#x#*#Tx$'Tx#* , !18"

see Eq. !11". The probability for the trivial syndrome to be
observed is

ps = Tr !s.

Note that the state *#Tx$ is an eigenvector of T̂ for any x
! +0,1,5. But we know that the restriction of T̂ on L has
eigenvalues e±i,/3. At the same time, Eq. !16" implies that

T̂*#Tx$ = −*#Tx$

whenever #x#=1 or #x#=4. This eigenvalue equation is not a
contradiction only if

*#Tx$ = 0 for #x# = 1,4.

This equality can be interpreted as an error correction prop-
erty. Indeed, the initial state !in is a mixture of the desired
state #T00000$ and unwanted states #Tx$ with #x#%0. We can
interpret the number of “1” components in x as a number of
errors. Once the trivial syndrome has been measured, we can
be sure that either no errors or at least two errors have oc-
curred. Such error correction, however, is not directly related
to the minimal distance of the code.
It follows from Eq. !16" that for #x#=2, 3 one has

T̂*#Tx$=e±i,/3*#Tx$, so that *#Tx$ must be proportional to
one of the states #T0

L$, #T1
L$. Our observations can be summa-

rized as follows:

*#Tx$ =3
6−1/2#T1

L$ , if #x# = 0,
0, if #x# = 1,
ax#T0

L$ , if #x# = 2,
bx#T1

L$ , if #x# = 3,
0, if #x# = 4,
6−1/2#T0

L$ , if #x# = 5.
4 !19"

Here the coefficients ax ,bx depend upon x in some way. The
output state !18" can now be written as

!s = (1635 + 32!1 − 3"3 2
x:#x#=2

#ax#2*#T0
L$'T0

L#

+ (16 !1 − 3"5 + 33!1 − 3"2 2
x:#x#=3

#bx#2*#T1
L$'T1

L# . !20"

To exclude the unknown coefficients ax and bx, we can use
the identity

#T0
L$'T0

L# + #T1
L$'T1

L# =* = 2
x!+0,1,5

*#Tx$'Tx#* .

Substituting Eq. !19" into this identity, we get

2
x:#x#=2

#ax#2 = 2
x:#x#=3

#bx#2 =
5
6
.

So the final expression for the output state !s is as follows:

!s = ( 35 + 532!1 − 3"3

6 *#T0
L$'T0

L# + ( !1 − 3"5 + 533!1 − 3"2

6 *
9#T1

L$'T1
L# . !21"

Accordingly, the probability to observe the trivial syndrome
is

ps =
35 + 532!1 − 3"3 + 533!1 − 3"2 + !1 − 3"5

6
. !22"

A decoding transformaion for the five-qubit code is a uni-
tary operator V!C5 such that

UNIVERSAL QUANTUM COMPUTATION WITH IDEAL… PHYSICAL REVIEW A 71, 022316 !2005"

022316-7



VL = C2 ! #0,0,0,0$ .

In other words, V maps the stabilizers Sj, j=2, 3, 4, 5 to
#z%j&. The logical operators X̂ , Ŷ , Ẑ are mapped to the Pauli
operators #x ,#y ,#z acting on the first qubit. From Eq. !17"
we infer that

V#T0,1
L $ = #T0,1$ ! #0,0,0,0$

!maybe up to some phase". The decoding should be followed
by an additional operator A=#yH!C1, which swaps the
states #T0$ and #T1$ !note that for small 3 the state !s is close
to #T1

L$, while our goal is to distill #T0$". After that we get a
normalized output state

!out = !1 − 3out"#T0$'T0# + 3out#T1$'T1# ,

where

3out =
t5 + 5t2

1 + 5t2 + 5t3 + t5
, t =

3

1 − 3
. !23"

The plot of the function 3out!3" is shown on Fig. 2. It
indicates that the equation 3out!3"=3 has only one nontrivial
solution, 3=30/0.173. The exact value is

30 =
1
2
-1 −)3

7
. .

If 3630, we can recursively iterate the elementary distilla-
tion subroutine to produce as good an approximation to the

state #T0$ as we wish. On the other hand, if 3%30, the distil-
lation subroutine increases the error probability and itera-
tions converge to the maximally mixed state. Thus 30 is a
threshold error probability for our scheme. The correspond-
ing threshold polarization is 1−230=)3/7/0.655. For a suf-
ficiently small 3, one can use the approximation 3out!3"
/532.
The probability ps=ps!3" to measure the trivial syndrome

decreases monotonically from 1/6 for 3=0 to 1/16 for 3
=1/2, see Fig. 2. In the asymptotic regime where 3 is small,
we can use the approximation ps/ps!0"=1/6.
Now the construction of the whole distillation scheme is

straightforward. We start from n:1 copies of the state !
= !1−3"#T0$'T0#+3#T1$'T1#. Let us split these states into
groups containing five states each and apply the elementary
distillation subroutine described above to each group inde-
pendently. In some of these groups the distillation attempt
fails, and the outputs of such groups must be discarded. The
average number of “successful” groups is obviously ps!3"
9!n /5"/n /30 if 3 is small. Neglecting the fluctuations of
this quantity, we can say that our scheme provides a constant
yield r=1/30 of output states that are characterized by the
error probability 3out!3"/532. Therefore we can obtain r2n
states with 3out/5334, r3n states with 3out/5738, and so on.
We have created a hierarchy of states with n states on the
first level and four or fewer states on the last level. Let k be
the number of levels in this hierarchy and 3out the error prob-
ability characterizing the states on the last level. Up to small
fluctuations, the numbers n ,k ,3out, and 3 are related by the
following obvious equations:

3out /
1
5 !53"2

k
, rkn / 1. !24"

Their solution yields Eq. !6".

VI. DISTILLATION OF H-TYPE MAGIC STATES

A distillation scheme for H-type magic states also works
by recursive iteration of a certain elementary distillation sub-
routine based on a syndrome measurement for a suitable sta-
bilizer code. Let us start with introducing some relevant cod-
ing theory constructions, which reveal an unusual symmetry
of this code and explain why it is particularly useful for
H-type magic states distillation.
Let F2

n be the n-dimensional binary linear space and A be
a one-qubit operator such that A2= I. With any binary vector
u= !u1 ,… ,un"!F2

n we associate the n-qubit operator

A!u" = Au1 ! Au2 ! ¯ ! Aun.

Let !u ,v"=2i=1
n uivi mod 2 denote the standard binary inner

product. If L#F2
n is a linear subspace, we denote by L" the

set of vectors which are orthogonal to L. The Hamming
weight of a binary vector u is denoted by #u#. Finally, u ·v
!F2

n designates the bitwise product of u and v, i.e., !u ·v"i
=uivi.
A systematic way of constructing stabilizer codes was

suggested by Calderbank, Shor, and Steane, see Refs.
%28,29&. Codes that can be described in this way will be
referred to as standard CSS codes. In addition, we consider

FIG. 2. The final error probability 3out and the probability ps to
measure the trivial syndrome as functions of the initial error prob-
ability 3 for the T-type states distillation.
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their images under an arbitrary unitary transformation V
!U!2" applied to every qubit. Such “rotated” codes will be
called CSS codes.
Definition 2. Consider a pair of one-qubit Hermitian op-

erators A ,B such that

A2 = B2 = I, AB = − BA ,

and a pair of binary vector spaces LA ,LB#F2
n, such that

!u,v" = 0 for all u ! LA,v ! LB.

A quantum code CSS!A ,LA ;B ,LB" is a decomposition

!C2"!n = #
;!LA

*

#
8!LB

*

H!;,8" , !25"

where the subspace H!; ,8" is defined by the conditions

A!u"#.$ = !− 1";!u"#.$, B!v"#.$ = !− 1"8!v"#.$

for all u!LA and v!LB. The linear functionals ; and 8 are
referred to as A syndrome and B syndrome, respectively. The
subspace H!0,0" corresponding to the trivial syndromes ;
=8=0 is called the code subspace.
The subspaces H!; ,8" are well defined since the opera-

tors A!u" and B!v" commute for any u!LA and v!LB:

A!u"B!v" = !− 1"!u,v"B!v"A!u" = B!v"A!u" .

The number of logical qubits in a CSS code is

k = log2%dimH!0,0"& = n − dim LA − dim LB.

Logical operators preserving the subspaces H!; ,8" can be
chosen as

+A!u" : u ! LB
"/LA, and +B!v" : v ! LA

"/LB, .

!By definition, LA#LB
" and LB#LA

", so the factor spaces
are well defined." In the case where A and B are Pauli op-
erators, we get a standard CSS code. Generally, A=V#zV†
and B=V#xV† for some unitary operator V!SU!2", so an
arbitrary CSS code can be mapped to a standard one by a
suitable bitwise rotation. By a syndrome measurement for a
CSS code we mean a projective measurement associated
with the decomposition !25".
Consider a CSS code such that some of the operators

A!u", B!v" do not belong to the Pauli group P!n". Let us pose
this question: can one perform a syndrome measurement for
this code by operations from Oideal only? It may seem that
the answer is no, because by definition of Oideal one cannot
measure an eigenvalue of an operator unless it belongs to the
Pauli group. Surprisingly, this naive answer is wrong. In-
deed, imagine that we have measured part of the operators
A!u", B!v" !namely, those that belong to the Pauli group".
Now we may restrict the remaining operators to the subspace
corresponding to the obtained measurement outcomes. It
may happen that the restriction of some unmeasured operator
A!u", which does not belong to the Pauli group, coincides
with the restriction of some other operator Ã!ũ"!P!n". If
this is the case, we can safely measure Ã!ũ" instead of A!u".
The 15-qubit code that we use for the distillation is actually
the simplest !to our knowledge" CSS code exhibiting this

strange behavior. We now come to an explicit description of
this code.
Consider a function f of four Boolean variables. Denote

by %f&!F2
15 the table of all values of f except f!0000". The

table is considered as a binary vector, i.e.,

%f& = „f!0001", f!0010", f!0011",…, f!1111"… .
Let L1 be the set of all vectors %f&, where f is a linear func-
tion satisfying f!0"=0. In other words, L1 is the linear sub-
space spanned by the four vectors %xj&, j=1, 2, 3, 4 !where xj
is an indicator function for the jth input bit":

L1 = linear span!%x1&,%x2&,%x3&,%x4&" .

Let also L2 be the set of all vectors %f&, where f is a poly-
nomial of degree at most 2 satisfying f!0"=0. In other words,
L2 is the linear subspace spanned by the four vectors %xj& and
the six vectors %xixj&:

L2 = linear span!%x1&,%x2&,%x3&,%x4&,%x1x2&,%x1x3&,

%x1x4&,%x2x3&,%x2x4&,%x3x4&" . !26"

The definition of L1 and L2 resembles the definition of punc-
tured Reed-Muller codes of order 1 and 2, respectively, see
Ref. %30&. Note also that L1 is the dual space for the 15-bit
Hamming code. The relevant properties of the subspaces L j
are stated in the following lemma.
Lemma 1.
!1" For any u!L1 one has #u#50!mod 8".
!2" For any v!L2 one has #v#50!mod 2".
!3" Let %1& be the unit vector !1, 1,…, 1, 1". Then L1

"

=L2# %1& and L2
"=L1# %1&.

!4" For any vectors u ,v!L1 one has #u ·v#50!mod 4".
!5" For any vectors u!L1 and v!L2

" one has #u ·v#
50!mod 4".
Proof.
!1" Any linear function f on F2

4 satisfying f!0"=0 takes
value 1 exactly eight times !if f!0" or zero times !if f =0".

!2" All basis vectors of L2 have weight equal to 8 !the
vectors %xi&" or 4 !the vectors %xixj&". By linearity, all ele-
ments of L2 have even weight.

!3" One can easily check that all basis vectors of L1 are
orthogonal to all basis vectors of L2, therefore L1#L2

",
L2#L1

". Besides, we have already proved that %1&!L1
" and

%1&!L2
". Now the statement follows from dimension count-

ing, since dim L1=4 and dim L2=10.
!4" Without loss of generality we may assume that u!0

and v!0. If u=v, the statement has been already proved, see
property 1. If u!v, then u= %f&, v= %g& for some linearly
independent linear functions f and g. We can introduce new
coordinates !y1 ,y2 ,y3 ,y4" on F2

4 such that y1= f!x" and y2
=g!x". Now #u ·v#= #%y1y2&#=4.

!5" Let u!L1 and v!L2
". Since L2

"=L1# %1&, there are
two possibilities: v!L1 and v= %1&+w for some w!L1. The
first case has been already considered. In the second case we
have
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#u · v# =2
j=1

15

uj!1 − wj" = #u# − #u · w# .

It follows from properties 1 and 4 that #u ·v#50!mod 4". $
Now consider the one-qubit Hermitian operator

A =
1
)2 !#x + #y" = - 0 e−i!,/4"

e+i!,/4" 0 . = e−1!,/4"K#x,

where K is the phase shift gate, see Eq. !1". By definition, A
belongs to the Clifford group C1. One can easily check that
A2= I and A#z=−#zA, so the code CSS!#z ,L2 ;A ,L1" is well
defined. We claim that its code subspace coincides with the
code subspace of a certain stabilizer code.
Lemma 2. Consider the decomposition

!C2"!15 = #
;!L2

*

#
8!L1

*

H!;,8" ,

associated with the code CSS!#z ,L2 ;A ,L1" and the decom-
position

!C2"!15 = #
;!L2

*

#
8!L1

*

G!;,8" ,

associated with the stabilizer code CSS!#z ,L2 ;#x ,L1". For
any syndrome 8!L1

* one has

H!0,8" = G!0,8" .

Moreover, for any ;!L2
* there exists some w!F2

15 such that
for any 8!L1

*

H!;,8" = A!w"G!0,8" . !27"

This Lemma provides a strategy to measure a syndrome
of the code CSS!#z ,L2 ;A ,L1" by operations from Oideal.
Specifically, we measure ; !i.e., the #z part of the syndrome"
first, compute w=w!;", apply A!w"†, measure 8 using the
stabilizers #x!%xj&", and apply A!w".
Proof of the lemma. Consider an auxiliary subspace,

H = #
8!L1

*

H!0,8" = #
8!L1

*

G!0,8" ,

corresponding to the trivial #z syndrome for both CSS codes.
Each state #.$!H!0" can be represented as

#.$ = 2
v!L2

"

cv#v$ ,

where cv are some complex amplitudes and #v$
= #v1 ,… ,v15$ are vectors of the standard basis. Let us show
that

A!u"#.$ = #x!u"#.$ for any #.$ ! H, u ! L1.

To this end, we represent A as #xei,/4K†. For any u!L1 and
v!L2

" we have

A!u"#v$ = #x!u"ei!,/4"#u#−i!,/2"#u·v##v$ = #x!u"#v$ ,

because #u#50!mod 8" and #u ·v#50!mod 4" !see Lemma 1,
parts 1 and 5".

Since for any u!L1 the operators A!u" and #x!u" act on
H in the same way, their eigenspaces must coincide, i.e.,
H!0,8"=G!0,8" for any 8!L1

*.
Let us now consider the subspace H!; ,8" for arbitrary

;!L2
*, 8!L1

*. By definition, ; is a linear functional on
L2#F2

15; we can extend it to a linear functional on F2
15, i.e.,

represent it in the form ;!v"= !w ,v" for some w!F2
15. Then

for any #.$!H!; ,8", v!L2, and u!L1 we have

#z!v"A!w"†#.$ = !− 1"!w,v"A!w"†#z!v"#.$ = A!w"†#.$ ,

A!u"A!w"†#.$ = A!w"†A!u"#.$ = !− 1"8!v"A!w"†#.$

!as #z and A anticommute", hence A!w"†#.$!H!0,8". Thus

H!;,8" = A!w"H!0,8" = A!w"G!0,8" .

$
Lemma 2 is closely related to an interesting property of

the stabilizer code CSS!#z ,L2 ;#x ,L1", namely the existence
of a non-Clifford automorphism %23&. Consider a one-qubit
unitary operator W such that

W#zW† = #z and W#xW† = A .

It is defined up to an overall phase and obviously does not
belong to the Clifford group C1. However, the bitwise appli-
cation of W, i.e., the operator W!15, preserves the code sub-
space G!0,0". Indeed, W!15G!0,0" corresponds to the trivial
syndrome of the code

CSS!W#zW†,L2;W#xW†,L1" = CSS!#z,L2;A,L1" .

Thus W!15G!0,0"=H!0,0". But H!0,0"=G!0,0" due to the
lemma.
Now we are in a position to describe the distillation

scheme and to estimate its threshold and yield. Suppose we
are given 15 copies of the state !, and our goal is to distill
one copy of an H-type magic state. We will actually distill
the state,

#A0$ =
1
)2 !#0$ + ei4

,
#1$" = ei8

,
HK†#H$ .

Note that #A0$ is an eigenstate of the operator A; specifically,
A#A0$= #A0$. Let us also introduce the state

#A1$ = #z#A0$ ,

which satisfies A#A1$=−#A1$. Since the Clifford group C1 acts
transitively on the set of H-type magic states, we can assume
that the fidelity between ! and #A0$ is the maximum one
among all H-type magic states, so that
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FH!!" = )'A0#!#A0$ .

As in Sec. V we define the initial error probability

3 = 1 − %FH!!"&2 = 'A1#!#A1$ .

Applying the dephasing transformation

D!8" =
1
2

!8 + A8A†"

to each copy of !, we can guarantee that ! is diagonal in the
+A0 ,A1, basis, i.e.,

! = D!!" = !1 − 3"#A0$'A0# + 3#A1$'A1# .

Since A!C1, the dephasing transformation can be realized
by operations from Oideal. Thus our initial state is

!in = !!15 = 2
u!F2

15
3#u#!1 − 3"15−#u##Au$'Au# , !28"

where #Au$= #Au0$ ! ¯ ! #Au15$.
According to the remark following the formulation of

Lemma 2, we can measure the syndrome !; ,8" of the code
CSS!#z ,L2 ;A ,L1" by operations from Oideal only. Let us fol-
low this scheme, omitting the very last step. So, we begin
with the state !in, measure ;, compute w=w!;", apply
A!w"†, and measure 8. We consider the distillation attempt
successful if 8=0. The measured value of ; is not important
at this stage. In fact, for any ;!L2

* the unnormalized post-
measurement state is

!s =*A!w"†!inA!w"* =*!in* .

In this equation * is the projector onto the code subspace
H!0,0"=G!0,0", i.e., *=*z*A for

*z =
1

#L2#
2

v!L2
#z!v", *A =

1
#L1#

2
u!L1

A!u" . !29"

Let us compute the state !s=*!in*. Since

A!u"#Aw$ = !− 1"!u,w"#Aw$, #z!v"#Aw$ = #Aw+v$ ,

one can easily see that *A#Aw$= #Aw$ if w!L1
", otherwise

*A#Aw$=0. On the other hand, *z#Aw$ does not vanish and
depends only on the coset of L2 that contains w. There are
only two such cosets in L1

" !because L1
"=L2# %1&, see

Lemma 1", and the corresponding projected states are

#A0
L$ = )#L2#*z#A0¯0$ =

1
)#L2#

2
v!L2

#Av$ ,

#A1
L$ = )#L2#*z#A1¯1$ =

1
)#L2#

2
v!L2

#Av+%1&$ . !30"

The states #A0,1
L $ form an orthonormal basis of the code sub-

space. The projections of #Aw$ for w!L1
" onto the code sub-

space are given by these formulas:

*#Aw$ =
1

)#L2#
#A0

L$ if w ! L2,

*#Aw$ =
1

)#L2#
#A1

L$ if w ! L2 + %1& .

Now the unnormalized final state !s=*!in* can be ex-
panded as

!s
1

#L2#
2

v!L2
!1 − 3"15−#v#3#v##A0

L$'A0
L#

9+
1

#L2#
2

v!L2
315−#v#!1 − 3"#v##A1

L$'A1
L# .

The distillation succeeds with probability

ps = #L2#Tr !s = 2
v!L1

"

315−#v#!1 − 3"#v#.

!The factor #L2# reflects the number of possible values of ;,
which all give rise to the same state !s."
To complete the distillation procedure, we need to apply a

decoding transformation that would map the two-
dimensional subspace H!0,0"" !C2"!15 onto the Hilbert
space of one qubit. Recall that H!0,0"=G!0,0" is the code
subspace of the stabilizer code CSS!#z ,L2 ;#x ,L1". Its logi-
cal Pauli operators can be chosen as

X̂ = !#x"!15, Ŷ = !#y"!15, Ẑ = − !#z"!15.

It is easy to see that X̂ , Ŷ , Ẑ obey the correct algebraic rela-
tions and preserve the code subspace. The decoding can be
realized as a Clifford operator V!C15 that maps X̂ , Ŷ , Ẑ to
the Pauli operators #x ,#y ,#z acting on the first qubit. !The
remaining 14 qubits become unentangled with the first one,
so we can safely disregard them." Let us show that the logi-
cal state #A0

L$ is transformed into #A0$ !up to some phase". For
this, it suffices to check that 'A0

L#X̂#A0
L$= 'A0##x#A0$,

'A0
L#Ŷ#A0

L$= 'A0##y#A0$, and 'A0
L#Ẑ#A0

L$= 'A0##z#A0$. Verifying
these identities becomes a straightforward task if we repre-
sent #A0

L$ in the standard basis:

#A0
L$ = #L2#1/22−15/2 2

u!L2
"

ei!,/4"#u##u$

= 2−5/2 2
u!L1

!#u$ + e−i!,/4"#u + %1&$" .

To summarize, the distillation subroutine consists of the

following steps.
!1" Measure eigenvalues of the Pauli operators #z!%xj&",

#z!%xjxk&" !for j ,k=1,2,3,4". The outcomes determine the #z

syndrome, ;!L2
*.

!2" Find w=w!;"!F2
15 such that !w ,v"=;!v" for any v

!L2.
!3" Apply the correcting operator A!w"†.
!4" Measure eigenvalues of the operators #x!%xj&". The

outcomes determine the A syndrome, 8!L1
*.

!5" Declare failure if 8!0, otherwise proceed to the next
step.

!6" Apply the decoding transformation, which takes the
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code subspace to the Hilbert space of one qubit.

The subroutine succeeds with probability

ps = 2
v!L1

"

315−#v#!1 − 3"#v#. !31"

In the case of success, it produces the normalized output
state

!out = !1 − 3out"#A0$'A0# + 3out#A1$'A1# !32"

characterized by the error probability

3out = ps
−1 2

v!L2
315−#v#!1 − 3"#v#. !33"

The sums in Eqs. !31" and !33" are special forms of so-
called weight enumerators. The weight enumerator of a sub-
space L#F2

n is a homogeneous polynomial of degree n in
two variables, namely

WL!x,y" = 2
u!L

xn−#u#y#u#.

In this notation,

ps =WL1
"!3,1 − 3", 3out =

WL2!3,1 − 3"

WL1
"!3,1 − 3"

.

The MacWilliams identity %30& relates the weight enumerator
of L to that of L":

WL!x,y" =
1

#L"#
WL"!x + y,x − y" .

Applying this identity and taking into account that L2
"=L1

# %1& and that #u#50!mod 2" for any u!L1 !see Lemma 1",
we get

ps =
1
16
WL1!1,1 − 23", 3out =

1
2-1 − WL1!1 − 23,1"

WL1!1,1 − 23". .
!34"

The weight enumerator of the subspace L1 is particularly
simple:

WL1!x,y" = x15 + 15x7y8.

Substituting this expression into Eq. !34", we arrive at the
following formulas:

ps =
1 + 15!1 − 23"8

16
, !35"

3out =
1 − 15!1 − 23"7 + 15!1 − 23"8 − !1 − 23"15

2%1 + 15!1 − 23"8&
. !36"

The function 3out!3" is plotted in Fig. 3. Solving the equation
3out!3"=3 numerically, we find the threshold error probabil-
ity:

30 / 0.141. !37"

Let us examine the asymptotic properties of this scheme.
For small 3 the distillation subroutine succeeds with prob-
ability close to 1, therefore the yield is close to 1/15. The
output error probability is

3out / 3533. !38"

Now suppose that the subroutine is applied recursively. From
n copies of the state ! with a given 3, we distill one copy of
the magic state #A0$ with the final error probability

3out!n,3" /
1

)35!)353"3
k
, 15k / n ,

where k is the number of recursion levels !here we neglect
the fluctuations in the number of successful distillation at-
tempts". Solving these equation, we obtain the relation

3out!n,3" 1 !)353"n
7
, 7 = 1/log315/ 0.4. !39"

It characterizes the efficiency of the distillation scheme.

VII. CONCLUSIONAND SOME OPEN PROBLEMS

We have studied a simplified model of fault-tolerant quan-
tum computation in which operations from the Clifford
group are realized exactly, whereas decoherence occurs only
during the preparation of nontrivial ancillary states. The
model is fully characterized by a one-qubit density matrix !
describing these states. It is shown that a good strategy for
simulating universal quantum computation in this model is
“magic states distillation.” By constructing two particular
distillation schemes we find a threshold polarization of !
above which the simulation is possible.
The most exciting open problem is to understand the com-

putational power of the model in the region of parameters
16 #!x#+ #!y#+ #!z#$3/)7 !which corresponds to FT

*6FT!!"
$FT, see Sec. I". In this region, the distillation scheme based
on the five-quit code does not work, while the Gottesman-
Knill theorem does not yet allow the classical simulation.
One possibility is that a transition from classical to universal
quantum behavior occurs on the octahedron boundary, #!x#
+ #!y#+ #!z#=1.

FIG. 3. The final error probability 3out!3" for the H-type states
distillation.
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To prove the existence of such a transition, one it suffices
to construct a T-type states distillation scheme having the
threshold fidelity FT

*. A systematic way of constructing such
schemes is to replace the five-qubit by a GF!4"-linear stabi-
lizer code. A nice property of these codes is that the bitwise
application of the operator T preserves the code subspace and
acts on the encoded qubit as T, see Ref. %31& for more details.
One can check that the error-correcting effect described in
Sec. V takes place for an arbitrary GF!4"-linear stabilizer
code, provided that the number of qubits is n=6k−1 for any
integer k. Unfortunately, numerical simulations we per-
formed for some codes with n=11 and n=17 indicate that
the threshold fidelity increases as the number of qubits in-
creases. So it may well be the case that the five-qubit code is
the best GF!4"-linear code as far as the distillation is con-
cerned.
From the experimental point of view, an exciting open

problem is to design a physical system in which reliable
storage of quantum information and its processing by Clif-
ford group operations is possible. Since our simulation
scheme tolerates strong decoherence on the ancilla prepara-
tion stage, such a system would be a good candidate for a
practical quantum computer.
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APPENDIX

The purpose of this section is to prove Eq. !15". Let us
introduce this notation:

#T̂0$ = #T00000$ and #T̂1$ = #T11111$ .

Consider the set S+!5""S!5" consisting of all possible tensor
products of the Pauli operators #x ,#y ,#z on five qubits

!clearly, #S+!5"#=45= #S!5"# /2 since elements of S!5" may
have a plus or minus sign". For each g!S+!5" let #g#
! %0,5& be the number of qubits on which g acts nontrivially
!e.g., ##x ! #x ! #y ! I! I#=3". We have

#T̂0$'T̂0# =
1
25 2

g!S+!5"
- 1)3.#g#

g .

Now let us expand the formula !13" for the projector *.
Denote by G"P!5" the Abelian group generated by the sta-
bilizers S1 ,S2 ,S3 ,S4. It consists of 16 elements. Repeatedly
conjugating the stabilizer S1 by the operator T̂=T!5, we get
three elements of G:

S1 = #x
! #z

! #z
! #x

! I ,

S1S3S4 = #z
! #y

! #y
! #z

! I ,

S3S4 = #y
! #x

! #x
! #y

! I .

Due to the cyclic symmetry mentioned in Sec. V, the 15
cyclic permutations of these elements also belong to G; to-
gether with the identity operator they exhaust the group G.
Thus G"S+!5", and we have

* =
1
16 2

h!G
h .

Taking into account that Tr!gh"=25"g,h for any g ,h!S+!5",
we get

'T̂0#*#T̂0$ =
1
29 2

h!G
2

g!S+!5"
3−#g#/2Tr!gh" =

1
16 2

g!G
3−#g#/2 =

1
6
.

Similar calculations show that 'T̂1#*#T̂1$=
1
6 .
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We study how much noise can be tolerated by a universal gate set before it loses its quantum-

computational power. Specifically we look at circuits with perfect stabilizer operations in addition to

imperfect nonstabilizer gates. We prove that for all unitary single-qubit gates there exists a tight

depolarizing noise threshold that determines whether the gate enables universal quantum computation

or if the gate can be simulated by a mixture of Clifford gates. This exact threshold is determined by the

Clifford polytope spanned by the 24 single-qubit Clifford gates. The result is in contrast to the situation

wherein nonstabilizer qubit states are used; the thresholds in that case are not currently known to be tight.

DOI: 10.1103/PhysRevLett.103.170504 PACS numbers: 03.67.Lx, 03.67.Pp

Introduction.—Away to study the resources needed for
universal quantum computation (UQC) is to analyze the
transition from a system that can provide UQC to one that
is classically efficiently simulable. A particularly useful
example of a classically simulable system is given by the
stabilizer operations, which are made by a combination of
preparation of j0i states, unitary Clifford gates, measure-
ments in the fj0i; j1ig basis, and classical control deter-
mined by the measurement outcomes. The Gottesman-
Knill theorem tells us that stabilizer operations can be
efficiently simulated classically (see, for example, [1],
Theorem 10.7), while it also known that the addition of
any other one-qubit gate outside the Clifford group will
enable the system to perform UQC. This fact provides us
with a framework for testing tolerance to noise—one can
examine how noisy this additional non-Clifford gate can be
before it becomes classically simulable itself. If the non-
Clifford operation has become a probabilistic combination
of Clifford gates due to the noise, then we know that we are
unequivocally in the classical computational regime. The
noise rate where the extra gate becomes simulable (where
it enters the ‘‘Clifford polytope’’ [2]) is thus an upper
bound for fault tolerance. If the converse is true—i.e., if
any operation outside the Clifford polytope enables UQC,
then the threshold is tight. In this Letter we show that for
single-qubit gates undergoing depolarizing such a tight
noise threshold does indeed apply. We will do so by
proving that any depolarized gate that lies outside the
Clifford polytope of single-qubit operations, in combina-
tion with noiseless stabilizing operations, allows for UQC.
This result should be contrasted to the situation for non-
stabilizer qubit states where the thresholds in that case are
not currently known to be tight. In fact, a recent result by
Campbell and Browne [3] states that achieving tight
thresholds for all nonstabilizer qubit states is impossible
if the number of copies of the resource state must be finite.

We will consistently assume that Clifford gates can be
implemented perfectly, motivated by the fact that these
gates can be implemented fault tolerantly by applying
them transversally and to encoded states [4–7]. The fault-
tolerant implementation of Clifford gates naturally carries
with it a threshold of its own, independent of the kind we
discuss in this Letter. The current model is particularly
relevant to the so-called Pfaffian quantum Hall state in
topological quantum computation [8,9], the two-qubit
Clifford group (but only the Clifford group) can be imple-
mented using braiding making these operations naturally
fault tolerant. The additional resource required to perform
UQC will likely be highly noisy, and so we can see the
parallels with our model.
We will begin by listing a couple of previously known

results in this area. Next, we will discuss the connection
between the geometry of the Clifford polytope and stabil-
izer measurements, and show that tightness of a magic-
state distillation procedure for single-qubit states automati-
cally ensures tight thresholds for non-Clifford gates under-
going any kind of unital noise. Finally, we show that
currently known magic-state distillation techniques are
sufficient to prove tight thresholds for a non-Clifford gate
undergoing depolarizing noise.
Previously known results.—The idea of using perfect

stabilizer operations in conjunction with imperfect non-
stabilizer states to perform UQC originates with Knill [7].
Shortly after, Bravyi and Kitaev [10] showed that most
nonstabilizer qubit states (when sufficiently many copies
are available) can be purified (‘‘distilled’’), using only
stabilizer operations, towards a pure nonstabilizer state (a
‘‘magic state’’). Since a universal gate set can be created
from perfect stabilizer operations and a supply of magic
states [10], we see that allowing access to a supply of
appropriate (possibly impure) nonstabilizer qubit ancillas
promotes the power of stabilizer operations from classi-
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cally simulable to UQC. The conditions on the ancillary
qubits to enable UQC is that they are sufficiently close to
being one of the 20 so-called magic states that lie on the
surface of the Bloch sphere. The two classes of magic state
(see Fig. 1) are the jHi type and jTi type, where all jHi
type states can be derived by applying a Clifford operation
to some canonical representative jHi ¼ ðj0i þ ei�=4j1iÞ=ffiffiffi
2

p
, and similarly for jTi-type states like jTi¼ cosð#Þj0iþ

ei�=4 sinð#Þj1i, where cosð2#Þ ¼ 1=
ffiffiffi
3

p
. The routines used

in [10] were unable to distill qubit states just outside the
edges and faces of the octahedron of Fig. 1. Reichardt [11]
subsequently proposed an improved routine that closed the
gap in the jHi direction (along the edges of the octahe-
dron). Virmani et al. [12] suggested using the convex hull
of Clifford operations in order to find gates’ robustness to
various types of noise. In particular, they considered gates
that are diagonal in the computational basis. Plenio and
Virmani [13] subsequently extended this idea by analyzing
cases where noise was allowed to affect the stabilizer op-
erations too. Buhrman et al. [2] used a similar idea (that
noise causes non-Clifford gates to eventually become able
to be implemented via Clifford gates only) to find the non-
Clifford gate that is most resistant to depolarizing noise—a
�=8 rotation about the Z axis (or the same gate modulo
some Clifford operation). Reichardt [14] showed that this
particular gate enabled UQC right up to its threshold noise
rate (about 45%), as well as considering in detail the pro-
cess of reducing multiqubit states to single-qubit states us-
ing postselected stabilizer operations. Our current result
here generalizes this tightness result to all possible single-
qubit gates.

Preliminaries and notation.—Let us parameterize an
arbitrary single-qubit SU(2) gate as follows

Uð�; �; �Þ ¼ ei� cosð�Þ �ei� sinð�Þ
e�i� sinð�Þ e�i� cosð�Þ

� �
: (1)

The representation of this rotation in SO(3) is denoted by

Rð�; �; �Þ. Implementing a rotation R while suffering de-
polarizing noise (with noise rate p), means that this noisy
operation is represented by the rescaling M ¼ ð1� pÞR, a
fact that we will need later.
Often we will apply the unitary Uð�; �; �Þ to one half of

an entangled Bell pair, j�i ¼ 1ffiffi
2

p ðj00i þ j11iÞ, yielding
� ¼ ðI �UÞj�ih�jðI �UÞy: (2)

If we use the two-qubit Pauli operators as a basis for the
density matrix � then we can find the 16 real coefficients
cij ¼ Trð�ð�i � �jÞÞ so that

� ¼ 1

4

X
cijð�i � �jÞ; i; j 2 fI; X; Y; Zg: (3)

Since we have applied a local unitary to a maximally
entangled state, the coefficients (cIX, cIY , cIZ, cXI, cYI,
cZI) are always zero. Comparing the 9 coefficients
fcXX; cXY; . . . ; cZZg one can see that these are the same as
the entries of the SO(3) matrix Rð�; �; �Þ. More precisely,

Rð�; �; �Þ ¼
cXX �cYX cZX
cXY �cYY cZY
cXZ �cYZ cZZ

0
@

1
A; (4)

where the cij are obviously also functions of (�, �, �).

If we represent the 24 single-qubit Clifford operations as
SO(3) matrices, then they are simply signed permutation
matrices with unit determinant (they are a matrix repre-
sentation of the elements of the chiral octahedral symmetry
group or, equivalently, the symmetry group S4). We label
these operationsCi and so the convex hull of the Ci (the so-
called Clifford polytope) is given by

P ¼
�X24

i¼1

piCi

�������� with pi�0 and
X24

i¼1

pi¼1

�
: (5)

Geometrically, the Clifford polytope is a closed polyhe-
dron in R9 that has 24 vertices (each vertex representing
one of the Ci). This polytope can also be defined by the
bounding inequalities of its 120 facets. The concise de-
scription of these facets used by Buhrman et al. [2] is given
by the set

F ¼ fCiFCjji; j 2 f1; . . . ; 24g; F 2 fA; AT; Bgg; (6)

where

A ¼
1 0 0
1 0 0
1 0 0

0
@

1
A and B ¼

0 1 0
1 0 �1
1 0 1

0
@

1
A: (7)

At times we will have reason to refer to different subsets of
the set of facets F so we use the obvious notation F ¼
F A [F AT [F B. It is useful to note that all the facets
derived from A comprise a single column with �1 entries
and zeros elsewhere, and similarly for the row facets
derived from AT; hence, jF Aj ¼ jF AT j ¼ 3� 23 ¼ 24.
There are jF Bj ¼ 72 ‘‘B-type’’ facets, which can be con-
structed as follows: (i) Pick one position in a 3� 3 matrix
F, e.g., row i and column j and put �1 there (9� 2 ¼ 18

FIG. 1 (color online). Magic states and the octahedron: Some
of the single-qubit magic states: jHi type states are designated
with black arrows, jTi type states with white arrows. The
octahedron defined by jxj þ jyj þ jzj � 1 depicts the single-
qubit states that can be created by stabilizer operations.
Reichardt [11] showed that distillation techniques work right
up to the edges of the octahedron (i.e., tight in the jHi direction).
Current distillation techniques are unable to distill states just
outside the faces of the octahedron (i.e., not tight in the jTi
direction).
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choices), (ii) Fill the remaining entries not in row i or
column j with �1 such that detðFÞ ¼ �2 (4 choices).

To determine whether or not an operationM is inside the
Clifford polytope P we take the elementwise inner product
(or Frobenius inner product) betweenM and the facets F 2
F of the polytope

M � F ¼ X3

i;j¼1

Mi;jFi;j ¼ TrðMTFÞ: (8)

Using the above notation, a 3� 3 matrix M is inside the
polytope P if and only if for all F 2 F we haveM �F�1.

Interpreting the facets of the Clifford polytope.—Our
proof will involve applying some non-Clifford gate to
one half of a Bell Pair [as in Eq. (2)] and then postselecting
on the outcomes of various stabilizer measurements. After
some further stabilizer operations, this measurement ulti-
mately has the effect of taking our two-qubit state � to a
single-qubit state �0 (times some stabilizer state that we do
not care about), which we then distill using magic-state
distillation (see [14] for a more general discussion of these
kinds of techniques). For example, performing a YX mea-
surement on � and postselecting on a ‘‘þ1’’ outcome (i.e.,
projecting with � ¼ 1

2 ðIIþ YXÞ) leads to a single-qubit

state �0 with a Bloch vector given by

~rð�0Þ ¼
�
0;
cXZ � cZY
cII þ cYX

;� cXY þ cZZ
cII þ cYX

�
: (9)

The form of this vector means that it lies in the YZ plane
(see Fig. 1), where we know that distillation techniques
work right up to the edge jyj þ jzj ¼ 1 of the octahedron.
We can check if ~r is outside the octahedron by simply
comparing the L1 norm of ~r with 1. Rearranged, the
condition k~rk1 > 1 for being outside the octahedron is

jcXZ � cZYj þ j � ðcXY þ cZZÞj> jcII þ cYXj: (10)

Given the correspondence between the coefficients cij and

the elements of R [see Eq. (4)] we can rewrite the above
condition (dropping the absolute value operators) as a facet
inequality

R � F > 1 where F ¼
0 1 0
�1 0 �1
1 0 �1

0
@

1
A: (11)

This facet is a legitimate ‘‘B-type’’ facet and a little
thought shows that, had we applied the single-qubit Pauli
operations [as SO(3) rotations] X, Y or Z to ~rð�0Þ above, we
would arrive at three other ‘‘B-type’’ facets

0 1 0
1 0 1
�1 0 1

0
@

1
A;

0 1 0
1 0 �1
1 0 1

0
@

1
A;

0 1 0
�1 0 1
�1 0 �1

0
@

1
A; (12)

respectively. Note that all four facet inequalities combined
could be simplified to the form Eq. (10) above. We omit the
details, but it is straightforward to show that all 72
‘‘B-type’’ facets correspond to postselecting on some
(weight two) Pauli operator, and possibly performing a
single-qubit Pauli rotation on the resulting �0.

It is somewhat more straightforward to see the geomet-

rical interpretation of the ‘‘AðTÞ-type’’ facets. For example,
the canonical A given in Eq. (7), merely returns the sum of
the elements of the Bloch vector ~r, arising from a rotation
applied to the X ‘‘þ1’’ eigenstate.

R � A ¼ X3

i¼1

ri where ~r ¼ R
1
0
0

0
@

1
A: (13)

In general, an operationM having an inner product greater
than one with some ‘‘A-type’’ facet simply means that M,
applied to some initial vector corresponding to a stabilizer
state, brings that vector to a final position outside the
octahedron.
The preceding discussion shows us that if magic-state

distillation were possible everywhere outside the octahe-
dron, then every unital operation outside the Clifford poly-
tope would be distillable—either straightforwardly or by
using postselection, depending on which facet it violated.
Using current (not tight) distillation routines however, we
would be unable to deal with some operations violating an
‘‘A-type’’ facet by a fairly small amount. In the next
section we show that, for depolarizing noise, any noisy
rotation violating an ‘‘A-type’’ facet also violates a
‘‘B-type’’ facet. Since ‘‘B-type’’ facets correspond to jHi
state distillation, the results we obtain are tight.
Tight threshold for depolarizing noise.—The claim we

shall prove is that, anytime a matrix M ¼ ð1� pÞR, rep-
resenting a depolarized rotation, is outside some ‘‘A-type’’
facet then there exists a ‘‘B-type’’ facet that M also lies
outside. In fact, we will prove the slightly stronger state-
ment that for all R 2 SOð3Þ
8A2F A [F AT ; 9B2F B such that R � ðB�AÞ � 0:

(14)

To simplify the proof we will repeatedly make use of the
symmetries of the problem [see Eq. (6)]. We will pick a
canonical ‘‘A-type’’ facet and assume that this gives the
largest inner product with R of all the F 2 F A. If there was
a larger inner product with some F 2 F AT , then we could
just relabel RT as R. We can assume that the facet with ones
in the first column [the A in Eq. (7)] gives the biggest inner
product since Tr½RTðCiACjÞ� ¼ TrðCjR

TCiAÞ ¼
Tr½ðCkRClÞTA�, which shows that the inner product of R
with a different F 2 F A is the same as the inner product
between a different (but related via Clifford operations)
rotation and the canonical ‘‘A-type’’ facet.
The proof will hinge on an entry of R, outside of the first

column, being larger than the rest of the elements outside
the first column. As such, let us define 12 matrices closely
related to A and call them A0

i

A0
1¼

1 �1 0
1 0 0
1 0 0

0
@

1
A A0

2¼
1 1 0
1 0 0
1 0 0

0
@

1
A ��� A0

12¼
1 0 0
1 0 0
1 0 1

0
@

1
A

(15)
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such that the index i of the largest inner product R � A0
i tells

us the sign and location of the largest magnitude element
outside the first column. Once again, symmetry allows us
to assume that A0

1 yields the largest inner product because
the rest of the A0

i can be derived from A0
1 via Clifford

rotations

fA0
ig¼

8<
:

0 0 1
1 0 0
0 1 0

0
@

1
A

j

A0
1

1 0 0
0 0 1
0 �1 0

0
@

1
A

k��������
j2f1;2;3g
k2f1;2;3;4g

9=
;:

(16)

For a matrix R to be an SO(3) rotation there are con-
straints on the signs of the elements Ri;j; i.e., there are eight

choices for the first column, 6 choices for the second
column and 2 for the third. Given that A is the maximum
facet for R, we have fixed the signs positively in the first
column, reducing the number of types of rotation to 6�
2 ¼ 12. Since A0

1 gives the maximum inner product with R
of all A0

i we have that R1;2 < 0, which reduces the number

of rotation types further to 3� 2 ¼ 6. It can be shown that
R1;2 having larger magnitude than the rest of the elements

Ri;jði 2 f1; 2; 3g; j 2 f2; 3gÞ restricts the type of rotation

further to one the following four types

R 2
8<
:

þ � þ
þ þ �
þ þ þ

0
@

1
A;

þ � �
þ þ �
þ þ þ

0
@

1
A;

þ � �
þ þ �
þ � þ

0
@

1
A;

þ � þ
þ � �
þ þ þ

0
@

1
A
9=
;: (17)

This should not be surprising if one considers that R1;2 ¼
�ðR2;1R3;3 � R2;3R3;1Þ because of the structure of SO(3)
matrices, and the sign patterns listed above ensure jR1;2j is
as large as possible.

We claim that the B 2 F B of Eq. (9) will suffice to
prove the desired inequality R � ðB� AÞ � 0, which reads
in matrix form

þ � �
þ � �
þ � þ

0
@

1
A

�1 1 0
0 0 �1
0 0 1

0
@

1
A � 0: (18)

Using the relevant entries of R we define a pair of 2 vectors
~u and ~v as ~u ¼ ðR1;1; R1;2Þ, ~v ¼ ðR2;3; R3;3Þ so that we can

rewrite the above inequality Eq. (17) as

k ~vk1 � k ~uk1 � 0: (19)

The L2 normalization of all the rows and columns of the
rotation matrix R means that ~u and ~v have the same L2

norm. With reference to Fig. 2, it should be clear that
because ~u has an L1 norm at least as big as that of ~v
(because jR1;2j � jR2;3j; jR3;3j), it holds that the L1 norm of

~v is automatically at least as large as the L1 norm of ~u, as
desired.

Summary.—We showed that for any unitary one-qubit
gate undergoing depolarizing noise with rate p it holds that

if its SO(3) representation M ¼ ð1� pÞR lies outside the
Clifford polytope P , then it must be the case that there is a
facet B 2 F B such thatM � B> 1. In turn, this means that
if this noisy gate is applied to a Bell pair j�i ¼ 1ffiffi

2
p ðj00i þ

j11iÞ and an appropriate stabilizer measurement is per-
formed, then, conditionally on the outcome of the mea-
surement, one obtains a state that can be transformed using
Clifford gates into a single-qubit state with jyj þ jzj> 1 in
the Bloch ball representation. By the result of Reichardt
[11] such states enable stabilizing operations to perform
universal quantum computation.
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We present a scheme of quantum computation that consists entirely of one-qubit measurements on a
particular class of entangled states, the cluster states. The measurements are used to imprint a quantum
logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus
one-way quantum computers and the measurements form the program.

DOI: 10.1103/PhysRevLett.86.5188 PACS numbers: 03.67.Lx, 03.65.Ud

A quantum computer promises efficient processing of
certain computational tasks that are intractable with clas-
sical computer technology [1]. While basic principles of a
quantum computer have been demonstrated in the labora-
tory [2], scalability of these systems to a large number of
qubits [3], essential for practical applications such as the
Shor algorithm, represents a formidable challenge. Most
of the current experiments are designed to implement se-
quences of highly controlled interactions between selected
particles (qubits), thereby following models of a quan-
tum computer as a (sequential) network of quantum logic
gates [4,5].

Here we propose a different model of a scalable quan-
tum computer. In our model, the entire resource for the
quantum computation is provided initially in the form of
a specific entangled state (a so-called cluster state [6]) of
a large number of qubits. Information is then written onto
the cluster, processed, and read out from the cluster by
one-particle measurements only. The entangled state of
the cluster thereby serves as a universal “substrate” for any
quantum computation. Cluster states can be created effi-
ciently in any system with a quantum Ising-type interaction
(at very low temperatures) between two-state particles in
a lattice configuration.

We consider two- and three-dimensional arrays of
qubits that interact via an Ising-type next-neighbor in-
teraction [6] described by a Hamiltonian Hint ! g!t" 3
P

#a,a0$
11s

!a"
z

2
12s

!a0"
z

2 % 2 1
4g!t"

P
#a,a0$ s!a"

z s!a0"
z [7] whose

strength g!t" can be controlled externally. A possible
realization of such a system is discussed below. A qubit at
site a can be in two states j0$a & j0$z,a or j1$a & j1$z,a,
the eigenstates of the Pauli phase flip operator s!a"

z
's!a"

z ji$a ! !21"iji$a(. These two states form the compu-
tational basis. Each qubit can equally be in an arbitrary
superposition state aj0$ 1 bj1$, jaj2 1 jbj2 ! 1. For
our purpose, we initially prepare all qubits in the su-
perposition j1$ ! !j0$ 1 j1$")

p
2, an eigenstate of the

Pauli spin flip operator sx 'sxj6$ ! 6j6$(. Hint is
then switched on for an appropriately chosen finite time
interval T , where

RT
0 dt g!t" ! p, by which a unitary

transformation S is realized. Since Hint acts uniformly on
the lattice, entire clusters of neighboring particles become
entangled in one single step. The quantum state jF$C ,

the state of a cluster !C " of neighboring qubits, which is
thereby created provides in advance all entanglement that
is involved in the subsequent quantum computation. It has
been shown [6] that the cluster state jF$C is characterized
by a set of eigenvalue equations

s!a"
x

O

a0[ngbh!a"
s!a0"

z jF$C ! 6jF$C , (1)

where ngbh!a" specifies the sites of all qubits that inter-
act with the qubit at site a [ C . The eigenvalues are de-
termined by the distribution of the qubits on the lattice.
The equations (1) are central for the proposed computation
scheme. As an example, a measurement on an individual
qubit of a cluster has a random outcome. On the other
hand, Eqs. (1) imply that any two qubits at sites a, a0 [ C
can be projected into a Bell state by measuring a subset of
the other qubits in the cluster. This property will be used to
define quantum channels that allow us to propagate quan-
tum information through a cluster.

We show that a cluster state jF$C can be used as a sub-
strate on which any quantum circuit can be imprinted by
one-qubit measurements. In Fig. 1 this scheme is illus-
trated. For simplicity, we assume that in a certain region
of the lattice each site is occupied by a qubit. This re-
quirement is not essential as will be explained below [see
(d)]. In the first step of the computation, a subset of
qubits is measured in the basis of sz which effectively
removes them. In Fig. 1 these qubits are denoted by “ Ø.”

quantum gate

information flow

FIG. 1. Quantum computation by measuring two-state parti-
cles on a lattice. Before the measurements the qubits are in the
cluster state jF$C of (1). Circles Ø symbolize measurements of
sz , vertical arrows are measurements of sx , while tilted arrows
refer to measurements in the x-y plane.
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The state jF$C is thereby projected into a tensor prod-
uct jm$CnN ≠ jF̃$N consisting of the state jm$CnN of
all measured particles (subset CnN ) on one side and an
entangled state jF̃$N of yet unmeasured particles (subset
N , C ), on the other side. These unmeasured particles
define a “network” N corresponding to the shaded struc-
ture in Fig. 1. The state jF̃$N of the network is related
to a cluster state jF$N on N by a local unitary transfor-
mation which depends on the set of measurement results
m. More specifically, jF̃$N satisfies Eqs. (1)—with C
replaced by the subcluster N —except for a possible dif-
ference in the sign factors, which are determined by the
measurement results m.

To process quantum information with this network, it
suffices to measure its particles in a certain order and in a
certain basis. Quantum information is thereby propagated
horizontally through the cluster by measuring the qubits
on the wire while qubits on vertical connections are used
to realize two-bit quantum gates. The basis in which a
certain qubit is measured depends in general on the results
of preceding measurements. The processing is finished
once all qubits except the last one on each wire have been
measured. At this point, the results of previous measure-
ments determine in which basis these “output” qubits need
to be measured for the final readout. We note that, in the
entire process, only one-qubit measurements are required.
The amount of entanglement therefore decreases with ev-
ery measurement [8] and all entanglement involved in the
process is provided by the initial resource, the cluster state.
This is different from the scheme of Ref. [11], which uses
Bell measurements (capable of producing entanglement)
to realize quantum gates.

In the following, we show that any quantum logic circuit
can be implemented on a cluster state. The purpose of this
is twofold. First, it serves as an illustration of how to im-
plement a particular quantum circuit in practice. Second,
in showing that any quantum circuit can be implemented
on a sufficiently large cluster we demonstrate the univer-
sality of the proposed scheme. For pedagogical reasons we
first explain a scheme with one essential modification with
respect to the proposed scheme: before the entanglement
operation S, certain qubits are selected as input qubits and
the input information is written onto them, while the re-
maining qubits are prepared in j1$. This step weakens the
scheme since it affects the character of the cluster state as
a genuine resource. It can, however, be avoided [see (e)].
Points (a) to (c) are concerned with the basic elements of a
quantum circuit, quantum gates, and wires, point (d) with
the composition of gates to circuits.

(a) Information propagation in a wire for qubits. A qubit
can be teleported from one site of a cluster to any other
site. In particular, consider a chain of an odd number of
qubits 1 to n prepared in the state jcin$1 ≠ j1$2 ≠ · · · ≠
j1$n and subsequently entangled by S. The state that was
originally encoded in qubit 1, jcin$, is now delocalized
and can be transferred to site n by performing sx mea-

surements (basis *j1$j ! j0$x,j , j2$j ! j1$x,j+) at qubit
sites j ! 1, . . . , n 2 1 with measurement outcomes sj [
*0, 1+. The resulting state is js1$x,1 ≠ · · · ≠ jsn21$x,n21 ≠
jcout$n. The output state jcout$ is related to the input state
jcin$ by a unitary transformation US [ *1, sx , sz , sxsz+
which depends on the outcomes of the sx measurements
at sites 1 to n 2 1. A similar argument can be given for an
even number of qubits. The effect of US can be accounted
for at the end of a computation as shown below [see (d)].
It is noteworthy that not all classical information gained
by the sx measurements needs to be stored to identify the
transformation US. Instead, US is determined by the val-
ues of only two classical bits which are updated with every
measurement.

(b) An arbitrary rotation UR [ SU!2" can be achieved
in a chain of five qubits. Consider a rotation in its
Euler representation UR!j, h, z " ! Ux!z "Uz!h"Ux!j",
where Ux!a" ! exp!2ia sx

2 ",Uz!a" ! exp!2ia sz

2 ". Ini-
tially, the first qubit is in some state jcin$, which
is to be rotated, and the other qubits are in j1$;
i.e., their common state reads jC$1,...,5 ! jcin$1 ≠
j1$2 ≠ j1$3 ≠ j1$4 ≠ j1$5. After the five qubits are
entangled by S they are in the state SjC$1,...,5 !
1)2jcin$1j0$2j2$3j0$4j2$5 2 1)2jcin$1j0$2j1$3j1$4j1$5 2
1)2jc!

in$1j1$2j1$3j0$4j2$5 1 1)2jc!
in$1j1$2j2$3j1$4j1$5,

where jc!
in$ ! sz jcin$. Now, the state jcin$ can be rotated

by measuring qubits 1 to 4, while it is teleported to site 5 at
the same time. The qubits 1, . . . , 4 are measured in appro-

priately chosen bases Bj!aj" ! * j0$j1eiaj j1$jp
2 , j0$j2eiaj j1$jp

2 +
whereby the measurement outcomes sj [ *0, 1+ for j !
1, . . . , 4 are obtained. Here, sj ! 0 means that qubit j is
projected into the first state of Bj!aj". The resulting
state is js1$a1,1 ≠ js2$a2,2 ≠ js3$a3,3 ≠ js4$a4,4 ≠ jcout$5
with jcout$ ! Ujcin$. For the choice a1 ! 0 (measur-
ing sx of qubit 1) the rotation U has the form U !
ss21s4

x ss11s3
z UR'!21"s111a2, !21"s2a3, !21"s11s3a4(. In

summary, the procedure to implement an arbitrary
rotation UR!j, h, z ", specified by its Euler angles
j, h, z is (i) measure qubit 1 in B1!0"; (ii) measure
qubit 2 in B2!!!!21"s111j"""; (iii) measure qubit 3 in
B3!!!!21"s2h"""; (iv) measure qubit 4 in B4!!!!21"s11s3z """.
In this way the rotation U 0

R is realized: U 0
R!j, h, z " !

ss21s4
x ss11s3

z UR!j, h, z ". The extra rotation US !
ss21s4

x ss11s3
z can be accounted for at the end of the com-

putation, as is described below in (d).
(c) To perform the gate CNOT!c, tin ! tout" !

j0$cc#0j ≠ 1!tin!tout" 1 j1$cc#1j ≠ s
!tin!tout"
x between a con-

trol qubit c and a target qubit t, four qubits, arranged
as depicted Fig. 2a, are required. During the action
of the gate, the target qubit t is transferred from tin
to tout. The following procedure has to be imple-
mented. Let qubit 4 be the control qubit. First, the state
ji1$z,1 ≠ ji4$z,4 ≠ j1$2 ≠ j1$3 is prepared and then the
entanglement operation S is performed. Second, sx of
qubits 1 and 2 is measured. The measurement results
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(a)
1 2 3

4

target in target out

control

target in target out

control in control out

(b)

FIG. 2. Realization of a CNOT gate by one-particle measure-
ments. See text.

sj [ *0, 1+ correspond to projections of the qubits j into
jsj$x,j , j ! 1, 2. The quantum state created by this proce-
dure is js1$x,1 ≠ js2$x,2 ≠ U

!34"
S ji4$z,4 ≠ ji1 1 i4 mod2$z,3,

where U
!34"
S ! s!3"s111

z s!3"s2

x s!4"s1

z . The input state is thus
acted upon by the CNOT and successive sx and sz rota-
tions U

!34"
S , depending on the measurement results s1, s2.

These unwanted extra rotations can again be accounted
for as described in (d). For practical purposes it is more
convenient if the control qubit is, as the target qubit,
transferred to another site during the action of the gate.
When a CNOT is combined with other gates to form a
quantum circuit it will be used in the form shown in
Fig. 2b.

To explain the working principle of the CNOT gate we,
for simplicity, refer to the minimal implementation with
four qubits. The minimal CNOT can be viewed as a wire
from qubit 1 to qubit 3 with an additional qubit, No. 4,
attached. From the eigenvalue equations (1) it can now be
derived that, if qubit 4 is in an eigenstate ji4$z,4 of sz , then
the value of i4 [ *0, 1+ determines whether a unit wire or
a spin flip sx (modulo the same correction U

!3"
S for both

values of i4) is being implemented. In other words, once
sx of qubits 1 and 2 have been measured, the value i4 of
qubit 4 controls whether the target qubit is flipped or not.

(d) Quantum circuits. The gates described — the CNOT
and arbitrary one-qubit rotations — form a universal set
[5]. In the implementation of a quantum circuit on a clus-
ter state the site of every output qubit of a gate overlaps
with the site of an input qubit of a subsequent gate. Be-
cause of this, the entire entanglement operation can be
performed at the beginning. To see this, compare the
following two strategies. Given a quantum circuit im-
plemented on a network N of qubits which is divided
into two consecutive circuits, circuit 1 is implemented on
network N1 and circuit 2 is implemented on network
N2, and N ! N1 < N2. There is an overlap O !
N1 > N2 which contains the sites of the output qubits
of circuit 1 (these are identical to the sites of the input
qubits of circuit 2). The sites of the readout qubits form a
set R , N2. Strategy (i) consists of the following steps:
(1) write input and entangle all qubits on N ; (2) mea-
sure qubits [ N nR to implement the circuit. Strategy
(ii) consists of (1) write input and entangle the qubits on
N1, (2) measure the qubits in N1nO . This implements
the circuit on N1 and writes the intermediate output to

O ; (3) entangle the qubits on N2; (4) measure all qubits
in N2nR. Steps 3 and 4 implement the circuit 2 on N2.
The measurements on N1nO commute with the entangle-
ment operation restricted to N2, since they act on differ-
ent subsets of particles. Therefore the two strategies are
mathematically equivalent and yield the same results. It
is therefore consistent to entangle in a single step at the
beginning and perform all measurements afterwards.

Two further points should be addressed in connection
with circuits. First, the randomness of the measurement
results does not jeopardize the function of the circuit.
Depending on the measurement results, extra rotations
sx and sz act on the output qubit of every implemented
gate. By use of the relations UR!j, h, z "ss

zss0
x !

ss
zss0

x UR!!!!21"sj, !21"s0h, !21"sz """, and CNOT!c, t"s!t"st

z

s!c"sc

z s!t"s
0
t

x s!c"s
0
c

x ! s!t"st

z s!c"sc1st

z s!t"s
0
c1s0t

x s!c"s
0
c

x CNOT!c, t",
these extra rotations can be pulled through the network to
act upon the output state. There they can be accounted
for by adjusting the measurement basis for the final
readout. The above relations imply that for a rotation
UR!j, h, z "—different from the CNOT gate— the accu-
mulated extra rotations US at the input side of UR need to
be determined before the measurement bases that realize
UR can be specified. This introduces a partial temporal
ordering of the measurements on the whole cluster.
Second, quantum circuits can also be implemented on
irregular clusters. In that case, qubits may be missing
which are required for the standard implementation of the
circuit. This can be compensated by a large flexibility in
shape of the gates and wires. The components can be bent
and stretched to fit to the cluster structure as long as the
topology of the circuit implementation does not change.
Irregular clusters are found in lattices with a finite site
occupation probability 0 , p , 1. In such a situation,
the possibility of universal quantum computation is
closely linked to the phenomenon of percolation. For p
above a certain critical value pc, which depends on the
dimension of the lattice, an infinitely extended cluster
exists that may be used as the carrier of the quantum
circuit. In two dimensions, for example, exactly one
such cluster C exists. Suppose this cluster is divided
into two subclusters C1 and C2 by a one-dimensional cut
O ! C1 > C2. It can be shown, e.g., by using Russo’s
formula [12] from percolation theory that, for any cut O ,
jO j ! `. Therefore there is no upper bound, in principle,
to the “capacity” of the cluster, i.e., to the number of
qubits that can be processed across such a cut.

(e) Full scheme. It is important to note that the step
of writing the input information onto the qubits before
the cluster is entangled was introduced only for peda-
gogical reasons. For illustration of this point consider
a chain of five qubits in the state Sj1$1 ≠ j1$2 ≠ · · · ≠
j1$5. Clearly, there is no local information on any of the
qubits. However, by measuring qubits 1 to 4 along suitable
directions, qubit 5 can be projected into any desired state
(modulo US). What is used here is the knowledge that the
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resource has been prepared with qubit 1 in the state j1$1
before the entanglement operation. By the four measure-
ments, this qubit is then rotated as described in (b). In
order to use qubit 5 for further processing, the five-qubit
chain considered here should, of course, be part of a larger
cluster such that particle 5 is still entangled with the re-
maining network, after particles 1 to 4 have been mea-
sured. The method of preparing the input state remains the
same, in this case, as explained in (d). In a similar man-
ner any desired input state can be prepared if the rotations
are replaced by a circuit preceding the proper circuit for
computation. In summary, no input information needs to
be written to the qubits before they are entangled. Cluster
states are thus a genuine resource for quantum computa-
tion via measurements only.

For a cluster of a given finite size, the number of compu-
tational steps may be too large to fit on the cluster. In this
case, the computation can be split into consecutive parts,
for each of which there is sufficient space on the cluster.
The modified procedure consists then of repeatedly (re)en-
tangling the cluster and imprinting the actual part of the
circuit —by measuring all of the lattice qubits except
the ones carrying the intermediate quantum output — until
the whole calculation is performed. This procedure has
also the virtue that qubits involved in the later part of a
calculation need not be protected from decoherence for a
long time while the calculation is still being performed at
a remote place of the cluster. Standard error-correction
techniques [13,14] may then be used on each part of the
circuit to stabilize the computation against decoherence.

A possible implementation of such a quantum computer
uses neutral atoms stored in periodic micropotentials
[15–18] where Ising-type interactions can be realized
by controlled collisions between atoms in neighboring
potential wells [16,18]. This system combines small
decoherence rates with a high scalability. The question
of scalability is linked to the percolation phenomenon,
as mentioned earlier. For a site occupation probability
above the percolation threshold, there exists a cluster
which is bounded in size only by the trap dimensions.
For optical lattices in three dimensions, single-atom site
occupation with a filling factor of 0.44 has been reported
[19] which is significantly above the percolation threshold
of 0.31 [20]. As in other proposed implementations for
quantum computing, the addressability of single qubits
in the lattice is, however, still a problem. (For recent
progress, see Ref. [21]). Recently, it has also been shown
that implementations based on arrays of capacitively cou-
pled quantum dots may be used to realize an Ising-type
interaction [22].

In conclusion, we have described a new scheme of
quantum computation that consists entirely of one-qubit
measurements on a particular class of entangled states,
the cluster states. The measurements are used to imprint a
quantum circuit on the state, thereby destroying its entan-
glement at the same time. Cluster states are thus one-way
quantum computers and the measurements form the
program.
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Quantum computation and quantum-state
engineering driven by dissipation
Frank Verstraete1*, Michael M.Wolf2 and J. Ignacio Cirac3*
The strongest adversary in quantum information science is
decoherence, which arises owing to the coupling of a system
with its environment1. The induced dissipation tends to destroy
and wash out the interesting quantum effects that give rise
to the power of quantum computation2, cryptography2 and
simulation3. Whereas such a statement is true for many
forms of dissipation, we show here that dissipation can also
have exactly the opposite effect: it can be a fully fledged
resource for universal quantum computation without any
coherent dynamics needed to complement it. The coupling to
the environment drives the system to a steady state where
the outcome of the computation is encoded. In a similar
vein, we show that dissipation can be used to engineer a
large variety of strongly correlated states in steady state,
including all stabilizer codes, matrix product states4, and their
generalization to higher dimensions5.

The situation we have in mind is shown in Fig. 1. A quantum
system composed of N particles (such as qubits) is organized in
space according to a particular geometry (in the figure, a one-
dimensional lattice). Neighbouring systems are coupled to some
local environments, which are dissipative in nature and tend to
drive the system to a steady state. Our idea is to engineer those
couplings, so that the environments drive the system to a desired
final state. The coupling to the environmentwill be static, so that the
desired state is obtained after some time without having to actively
control the system. Note that the role of the environments is to
dissipate (or, more precisely, evacuate) the entropy of the system,
and by choosing the couplings appropriately we can use this effect
to drive our system.

We will show first how to design the interactions with
the environment to implement universal quantum computation.
This new method, which we refer to as dissipative quantum
computation (DQC), defies some of the standard criteria for
quantum computation because it requires neither state preparation,
nor unitary dynamics6. However, it is nevertheless as powerful as
standard quantum computation. Thenwewill show that dissipation
can be engineered7 to prepare ground states of frustration-free
Hamiltonians. Those include matrix product states4,8,9 (MPSs) and
projected entangled pair states5,9 (PEPSs), such as graph states10
and Kitaev11 and Levin–Wen12 topological codes. Both DQC and
dissipative state engineering (DSE) are robust in the sense that,
given the dissipative nature of the process, the system is driven
towards its steady state independent of the initial state and hence
of eventual perturbations along the way.

Here, we will concentrate first on DQC, showing how given
any quantum circuit one can construct a locally acting master
equation for which the steady state is unique, encodes the outcome
of the circuit and is reached in polynomial time (with respect to
the one corresponding to the circuit). Then we will show how

1Fakultät für Physik, Universität Wien, 1090Wien, Austria, 2Niels Bohr Institute, 2100 Copenhagen, Denmark, 3Max-Planck-Institut für Quantenoptik,
85748 Garching, Germany. *e-mail: fverstraete@gmail.com; ignacio.cirac@mpq.mpg.de.

to construct dissipative processes that drive the system to the
ground state of any frustration-free Hamiltonian. In the Methods
section, we will prove that MPS (ref. 9) and certain kinds of
PEPS (ref. 9) can be efficiently prepared using this method, and
in Supplementary Information we will give details of the proofs.
In this letter we will not consider specific physical set-ups where
our ideas can be implemented. Nevertheless, the Methods section
will provide a universal way of engineering the master equations
required for DQC and DSE, which can be easily adapted to current
experiments13 based on, for example, atoms in optical lattices14
or trapped ions15. Thus, we expect that our predictions may be
experimentally tested in the near future.

Let us start with DQC by considering N qubits in a line and a
quantum circuit specified by a sequence of nearest-neighbour qubit
operations {Ut }Tt=1. We define |ψt 〉 :=UtUt−1 ...U1|0〉1⊗ ...|0〉N, so
that |ψT 〉 is the final state after the computation. Our goal is to find
amaster equation ρ̇ = L(ρ)with a Liouvillian in Lindblad form16

L(ρ)=
∑

k

LkρL†
k − 1

2
{
L†
kLk,ρ

}
+ (1)

where the Lk acts locally and has a steady state, ρ0: (1) that is unique;
(2) that can be reached in a time poly(T ); (3) such that ψT can be
extracted from it in a time poly(T ). As in Feynman’s construction
of a quantum simulator3, we consider another auxiliary register
with states {|t 〉}Tt=0, which will represent the time. We choose
the Lindblad operators

Li = |0〉i〈1|⊗ |0〉t 〈0|

Lt =Ut ⊗ |t +1〉〈t |+U †
t ⊗ |t 〉〈t +1|

where i= 1,...,N and t = 0,...,T . It is clear that the L terms act
locally except for the interaction with the extra register, which can
be made local as well. Furthermore,

ρ0 = 1
T +1

∑

t

|ψt 〉〈ψt |⊗ |t 〉〈t |

is a steady state, that is, L(ρ0)=0.Given such a state, the result of the
actual quantum computation can be read out with probability 1/T
by measuring the time register. In Supplementary Information, we
show that ρ0 is the unique steady state and that the Liouvillian has
a spectral gap #=π2/(2T +3)2. This means indeed that the steady
state will be reached in polynomial time in T . Note that this gap is
independent ofN as well as of the actual quantum computation that
is carried out (that is, independent of the Ut ). It is also shown that
the same gap is retained if the clock register is encoded in the unary
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Figure 1 | Schematic representation of the set-up.We consider a collection of N quantum particles, locally coupled to a set of environments. The
couplings are engineered in such a way that the system reaches the desired state in the long-time limit.

way proposed by Kitaev and co-workers17, making the Lindblad
operators strictly local. A sketch of the proof is as follows. First, we
do a similarity transformation on L that replaces all gatesUi with the
identity gates, showing that its spectrum is independent of the actual
quantum computation. Second, another similarity transformation
is done thatmakes L Hermitian and block-diagonal. Each block can
then be diagonalized exactly leading to the claimed gap.

In some sense, the present formalism can be seen as a robust
way of doing adiabatic quantum computation18 (errors do not
accumulate and the path does not have to be engineered carefully)
and implementing quantum randomwalks19, and itmight therefore
be easier to tackle interesting open questions, such as the quantum
probabilistically-checkable-proofs theorem, in this setting20. In
addition, it seems that the dissipativeway of preparing ground states
is more natural than to use adiabatic time evolution, as nature itself
prepares them by cooling.

Let us now turn to DSE and consider again a quantum system
with N particles on a lattice in any dimension. We are interested in
ground statesΨ , of Hamiltonians

H =
∑

λ

Hλ

that are frustration-free, meaning that Ψ minimizes the energy of
eachHλ individually, and local in the sense thatHλ acts non-trivially
only on a small set λ ⊂ {1, ... ,N } of sites (for example, nearest
neighbours). We can assume the terms Hλ to be projectors and
we will denote the orthogonal projectors by Pλ = 1−Hλ. States Ψ
of the considered form are, for example, all PEPS (including MPS
and stabilizer states21).

We will consider discrete time evolution generated by a trace-
preserving completely positive map instead of a master equation.
These two approaches are basically equivalent22 as every local
completely positivemap T can be associated with a local Liouvillian
through L(ρ)=N [T (ρ)−ρ], which leads to the same fixed points
and spectrum.We choose completely positivemaps of the form

T (ρ)=
∑

λ

pλ

[

PλρPλ + 1
m

m∑

i=1

Uλ,iHλρHλU †
λ,i

]

(2)

where the pλ terms are probabilities and Uλ,1,...,Uλ,m is a set of
unitaries acting non-trivially only within region λ. They effectively
rotate part of the high-energy space (with support of Hλ) to the
zero-energy space, so that tr[T (ρ)Ψ ] ≥ tr[ρΨ ] increases. As for
Liouvillians (1), we could similarly take Lλ,i = UiHλ, or the ones
associated with the completely positive map.

We show now that for every frustration-free Hamiltonian,
the completely positive map in equation (2) converges to the
ground-state space if we choose the unitaries Uλ,i to be completely
depolarizing, that is, T (ρ) ∝ ∑

λ PλρPλ + 1λ ⊗ trλ[Hλρ]/tr[1λ].
For ease of notation, we will explain the proof for the case of a

one-dimensional ring with nearest-neighbour interactions labelled
by the first site λ = 1,...,N . Assume ρ is such that its expectation
value with respect to the projector Ψ onto the ground-state space
ofH is non-increasing under applications of T , that is, in particular
tr[ρΨ ]= tr[T N (ρ)Ψ ]. Expressing this in the Heisenberg picture in
which T ∗(Ψ)=Ψ +∑

λHλtrλ(Ψ)/(d2N ), we get

tr[ρΨ ] ≥ tr[ρΨ ]+ 1
(d2N )N

tr

[

ρ
N∑

µ=1

N∏

λ=1

(
Hλ+µtrλ+µ

)
(Ψ)

]

≥ tr[ρΨ ]+ νN

(d2N )N
tr[ρH ]

where the first inequality comes from discarding (positive) terms in
the sum and the second one is due to bounding all partial traces
of Hλ from below by the respective smallest eigenvalue ν. Note
that the latter is strictly positive unless H has a product state as
the ground state (in which case the statement becomes trivial).
Hence, we must have tr[ρH ] = 0; that is, ρ is a ground state of H .
It is easily seen that the same argument applies for more general
interactions on arbitrary lattices.

Once we have shown that the steady state after the application
of the completely positive map lies within the desired subspace
(the ground-state space of the frustration-free Hamiltonian), the
next question to be addressed is how efficient the process is. This
depends on the spectral gap, δ, of the completely positive map (or,
equivalently, of the corresponding Liouvillian), as the time to reach
the steady state, τ = O(1/δ). Thus, the above procedure will be
efficient as long as the gap vanishes only polynomially with the
number of systems, N . Similarly to what occurs with many-body
Hamiltonians, the determination of such a gap is, in general, very
complicated. For a wide range of interesting models, however, it
can be proved that this gap scales favourably. This is the case for
all MPS as well as for a rich subfamily of PEPS that includes all
stabilizer states (such as Kitaev’s toric code11 and the Levin–Wen
states12). In the Methods section, we characterize such a subfamily
of states, and in Supplementary Information we give the technical
proofs of our statements. Here, we will qualitatively explain how
our method works efficiently for some families of states. For that
we note that the action of the completely positive map (2) can
be interpreted as randomly choosing a region λ (according to pλ,
which we may set equal to 1/N ), then measuring Pλ and applying
a correction according to the unitaries if the outcome was negative.
We denote by Rn the set of regions λ where ϕ satisfies the condition
Hλ|ϕ〉 = 0. If we measure now in one of those regions, we will
obviously obtain a positive result, and thus Rn will remain the
same. If we measure in another region, we may have a positive or
negative result, something that may change the set Rn. By imposing
certain conditions on the operators Hλ and Uλ,i, we can make sure
that in each step Rn cannot be reduced and that the probability of
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being enlarged is non-vanishing. This automatically ensures that
the τ scales only polynomially with the number of systems. In
one dimension, however, one can get rid of all those restrictions
and show that any MPS can be prepared in a time that also scales
favourably with N . The fact that all MPS states can be prepared
with our method, together with the results reported in refs 23, 24,
automatically implies the existence of phase transitions driven by
dissipation in the following sense. By changing the parameters of
the operators Hλ appearing in the completely positive map (2), we
change the steady state of that map. It is possible to choose models
for which that state changes abruptly at some particular value of
that parameter in such a way that the correlation length diverges
and an order parameter appears (an example can be found in the
Supplementary Information).

We have investigated the computational power of purely
dissipative processes, and proved that it is equivalent to that of
the quantum circuit model of quantum computation. We have
also shown that dissipative dynamics can be used to create ground
states (such as MPS or PEPS) of frustration-free Hamiltonians of
strongly correlated quantum spin systems. We believe that these
newmethods can be experimentally tested using atoms or ions with
current set-ups (see theMethods section).

Let us stress that we have been concerned here with a proof-
of-principle demonstration that dissipation provides us with an
alternative way of carrying out quantum computations or state
engineering. We believe, however, that much more efficient and
practical schemes can be developed and adapted to specific
implementations. We also think that these results open up
some interesting questions that deserve further investigation: for
example, how the use of fault-tolerant computations can make
our scheme more robust, or how one can design translationally
invariant completely positive maps that prepare MPS more
efficiently, or the importance and generality of the set of commuting
Hamiltonians (see the Methods section), which is intimately
connected to the fixed points of the renormalization group
transformations on PEPS (as it happens with MPS; ref. 25).
Furthermore, themodel of DQCmight well lead to the construction
of new quantum algorithms, as, for example, quantum random
walks can more easily be formulated within this context. Finally,
other ideas related to this work can be easily addressed using the
methods introduced; for example, thermal states of commuting
Hamiltonians can be engineered using DSE because the Metropolis
way of sampling over classical spin configurations can be adopted
to the case of commuting operators. Similar techniques could be
applied to free fermionic and bosonic systems, and, more generally,
it should be possible to devise DSE schemes converging to the
ground or thermal states of frustrated Hamiltonians by combining
unitary and dissipative dynamics.

Note added. Concurrently with the submission of this paper,
refs 26 and 27 appeared in which a similar quantum-reservoir
engineering was used to prepare many-body states and non-
equilibrium quantum phases.

Methods
Engineering dissipation. Here we show how to engineer the local dissipation that
gives rise to the master equations (1) and completely positive maps (2). They are
composed of local terms, involving few particles (typically two), so that we just have
to show how to implement those. To simplify the exposition, we will treat those
particles as a single one and assume that one has full control over its dynamics (for
example, one can apply arbitrary gates).

Let us start with the completely positive maps. It is clear that by applying a
quantum gate to the particle and a ‘fresh’ ancilla and then tracing the ancilla one
can generate any physical action (that is, completely positive map) on the system.
Furthermore, by repeating the same process with short time intervals one can
subject the system to an arbitrary time-independent master equation. This last
process may not be efficient. An alternative way works as follows. Let us assume
that the ancilla is a qubit interacting with a reservoir such that it fulfils a master

equation with Liouville operator La =
√

Γσ−, where σ− = |0〉〈1|. Now, we couple
the ancilla to the system with a Hamiltonian H = *(σ−L† +σ

†
−L). In the limit

Γ * *, one can adiabatically eliminate the level |1〉 of the ancilla28 by applying
second-order perturbation theory to the Liouvillian (albeit for non-Hermitian
operators). In this way we obtain an effective master equation for ρ describing
the system alone, with Liouville operator */

√
ΓL. By using several ancillas

with Hamiltonians H = *(σ−Li +σ
†
−L

†
i ) and following the same procedure we

obtain the desired master equation. Although we have not specified here a physical
system, one could use atoms. In that case, the ancilla could be an atom itself with
|0〉 and |1〉 an electronic ground and excited level, respectively, so that spontaneous
emission gives rise to the dissipation. The coupling to the system (other atoms)
could be achieved using standard ideas used in the implementation of quantum
computation using those systems13.

Efficient state preparation. We have shown that it is possible to engineer
dissipative processes that prepare ground states of frustration-free Hamiltonians in
steady state. In the proof, the time for this preparation scales as NN , which may be
an issue for experiments with large number of particles. Here we give much more
efficientmethods for certain classes of frustration-freeHamiltonians.

We consider first frustration-free Hamiltonians for which [Hλ,Hµ] = 0 and
show that, under certain conditions, the corresponding ground states can be
prepared in a time that scales only polynomially with the number of particles. The
corresponding set of ground states contains important families, such as stabilizer
states (for example, cluster states and topological codes), or certain kinds of PEPS,
namely, those that have (commuting) parent Hamiltonians with the injectivity
condition (as defined in refs 8, 29). Note that there was no known way of efficient
preparation for the latter.

Loosely speaking, we will consider two classes of Hamiltonians.
(1) Hamiltonians for which all excitations can be locally annihilated. In this case the
time of convergence scales as τ = O(logN ). (2) Interactions where excitations have
to bemoved along the lattice before they can annihilate and τ = O(N logN ).

To see how the first case can occur notice that, when iterating T , the
correction on λ does not change the outcome of previous measurements on
neighbouring regions because

∀λ ,= λ′: [Uλ,i,Hλ′ ] = 0 (3)

In fact, this can always be achieved by regrouping the regions into larger ones
having an interior I (λ)⊂ λ on which only Hλ acts non-trivially and letting the
Uλ,i solely act on I (λ). Denote by q the largest probability for obtaining twice a
negative measurement outcome on the same region λ. The energy tr[HT M (ρ)]
afterM applications of T decreases then as N (1− (1−q)/N )M such that it takes
O((N logN )/(1−q)) steps to converge to a ground state. The relaxation time of the
corresponding Liouvillian is thus τ = O(logN 1/1−q). Clearly, this is a reasonable
bound only if q<1, a condition possibly incompatible with equation (3).

Note that for all stabilizer states we can achieve q= 0, because there exists
always a local unitary (acting on a single qubit) so that HλUλHλ = 0. A class of
stabilizer states where this is compatible with equation (3) are the so-called graph
states10. In this case, λ labels (with some abuse of notation) a vertex of a graph and
Hλ = (1−σ (λ)

x
∏

(λ,µ)∈E σ (µ)
z )/2, where σ (λ) is a Pauli operator acting on site λ and

E is the set of edges of the graph. Obviously, Uλ = σ (λ)
z does the job. In this special

case, we can get even faster convergence when using the Liouvillian

L(ρ)=
(∑

λ

UλHλρHλU
†
λ

)
− 1

2

{
H ,ρ

}

+

The corresponding relaxation time can be determined exactly by realizing
that the spectrum of L equals that of −(H ⊗1+1⊗H )/2 so that τ = 1 (see
Supplementary Information).

For the second type of commuting Hamiltonians, equation (3) and q< 1 are
incompatible. However, we can still prove fast convergence by relaxing equation (3)
such that within each region λ the Uλ acts on a site closest to a predetermined
site (say the origin) on the lattice and thus commutes with all terms Hλ that are
further away (see Supplementary Information for details). In this way excitations
are moved over the lattice before they can annihilate. As this requires extra time
proportional to the system’s size, we get τ = O(N logN ).

We turn now to another family of ground states of frustration-free
Hamiltonians, namely MPS (ref. 9). For the sake of clearness, we will consider
here translationally invariant Hamiltonians, although the analysis can be
straightforwardly extended to systems without that symmetry. We will specify a
completely positive map to prepare states of the form

|Ψ 〉 =
d∑

i=1

tr(Ai1 ...AiN )|i1 ...iN〉

where the A terms are D×Dmatrices. We assume the injectivity property29, which
implies that Ψ is the unique ground state of a nearest-neighbour frustration-free
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‘parent’ Hamiltonian that has a gap. Denoting by ρ the reduced density operator
corresponding to particles k and k + 1, Hk and Pk = 1−Hk will denote the
projectors onto its kernel and range, respectively. Note that tr(Pk)=D2. We
take N = 2n for simplicity, but this is clearly not necessary. We construct the
channel T in several steps. We first define a channel acting on two neighbouring
particles k,k+1, as follows

Rr,c (X) := PkXPk + Pk

D2
tr(HkX)

Here, k = 2r−1(2c −1), where r = 1,...,n and c = 1,...,2n−r . The action of these
maps has a tree structure, where the index r indicates the row in the tree, whereas c
does it for the column. Now we define recursively,

Sr,c := (1−εr )
2

(Sr−1,2c + Sr−1,2c+1)+εr Rr,c

Here, r = 2,...,n, c = 1,...,2n−r , S1,c := R1,c and εr+1 = 1/Mr , whereM =CN 2

and C * 1 (see Supplementary Information). Note that Sr,1 acts on the first 2r
particles, Sr,2 on the next 2r and so on.We finally define

T := (1−εn+1)Sn,1 +εn+1Rn,2 (4)

In the Supplementary Information, we show that this map achieves the fixed point
(up to an exponentially small error in C) in a time O(N log2(N )). The intuition
behind the completely positive map (4) is that the channels S1,c , which are the ones
that most often applied, project the state of every second nearest neighbour onto
the right subspace. Then S2,c do the same with half of the pairs that have not been
projected. Then S3,c does the same on half of the rest, and so on.
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