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Abstract 

A central assumption of the conventional “Copenhagen” interpretation of quantum measurement is 
the “collapse” of the wavefunction, which is not predicted by the time-dependent Schrődinger 
equation.   Alternative interpretations (notably “many worlds”) have been developed that claim to 
avoid this. I aim to develop an essentially simple, but I believe novel, argument to show that the 
quantum measurement process requires that some aspect of the measurement must be distinct from 
the quantum system being studied, so that no description in terms of the whole process in terms of 
Schrődinger evolution only is possible .   

I intend to initiate a discussion on the nature of quantum measurement.    I shall develop an 
essentially simple, but I believe novel, argument showing that the measuring apparatus and 
observer must be in some way distinct from the quantum system being studied.  This is set out 
briefly in the following notes; accompanying papers develop the argument further and include 
further criticisms of attempts to reconcile the predictions of the TDSE and the assignment of 
probabilities to branches.  

Consider an archetypical quantum measurement with two possible outcomes, such as the 
measurement of the spin component of a spin-half particle in a Stern-Gerlach experiment.  Before 
the measurement, the wavefunction has the form 

[cos| sin|>]|k0> 

where | and |> are eigenstates of the spin components parallel to the measurement direction of 

the apparatus; the angle between the incident spin and the measurement axis is 2k0> describes a 
spatial wave packet travelling towards  the measuring apparatus.   After the measurement, the TDSE 
predicts that the state evolves to 

cos|k1> sin|>|k2> 

where |k1> and |k2> describe wave packets travelling away from the apparatus, in the directions k1 
and k2  We assume that the size of the wavepacket is assumed to be much greater than the 
wavelength of the wave (so that spreading can be ignored) and significantly smaller than the 
dimensions of the experiment.  
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The measurement postulate (also known as the Born rule) states that after the completion of a 

measurement, the outcome will be |k1> with probability cos2
 or |k2> with probability 

sin2
The inconsistency between this and the predictions of the TDSE constitutes the quantum 

measurement problem. 

Discussions of the measurement problem often stress the importance of the actual measurement 
process whereby the outcome is recorded on an apparatus whose final states, along with those of 
the associated environment, can be represented by, say, |A1> and |A2>, so that the TDSE prediction 
for the whole set up becomes 

cos|k1>|A1> sin|>|k2>|A2> 

with a corresponding density operator given by 

cos2
|<||k1>|k1||A1>< A1|+ sin2

|<||k2>|k2||A2>< A2| 

+ 2cos sin|<||k1>|k2||A1>< A2| 

This is an entangled state of the system and the apparatus.  However, to demonstrate this, say by 
constructing an interference experiment, is impossible in practice because of decoherence. For all 
practical purposes at least, we can assume that “collapse” has occurred into one or other of the 
component states of the supervision.  The “holy grail” of quantum measurement theory is to provide 
a consistent self-contained interpretation whereby this random collapse and the relative 
probabilities of the possible outcomes is a natural part of our theoretical description rather than 
something that has to be added “by hand”. 

Let us consider the role of the amplitudes cosand sinwhich determine the probabilities, a little 
more carefully.  We first note that under the given conditions illustrated in the figure, the outgoing 

states are spatially separated so the product |k1>|k2| vanishes along with the product terms in the 
density operator which are therefore equal to zero.  This happens without the need to invoke 
environmental decoherence. In contrast, if an interference experiment is carried out, the two 
components of the superposition are brought together and the measurement probabilities are 
determined by the modulus squared of the wavefunction with the interference pattern being 
generated by these off-diagonal terms and decoherence is essential if these are to be ignored.   The 
role of decoherence is therefore quite incidental if no interference because the output states are 
always spatially separated, but is crucial in ensuring that the off-diagonal terms of the (now partially 
traced) density operator are zero in situations where interference patterns would otherwise be 
formed.   Once the density operator contains only diagonal terms, their magnitudes can be 
interpreted as the probabilities of obtaining the corresponding results and these agree with the Born 
rule and experiment.   However, this implies an additional assumption that the system has 
collapsed” into one or other of the outcome states.  This statistical collapse cannot be a direct 
consequence of the linear TDSE. 

We further note that, if the output states remain spatially separated, the form of the state vectors 

|k1>|A1>  and |>|k2>|A2>  are independent of .  The question arises as to how the probabilities 
of the measurement results, which are recorded by the apparatus (possibly including an observer) 

and therefore embedded in |A1>   and |A2> can be affected by the value of If there is only the 
TDSE, there would appear to be no means whereby an observer interacting with such an experiment 

could ever gain any knowledge of  by simply observing the measurement outcomes.  This is the 
central point of my argument, which is probably more clearly illustrated if we consider an ensemble 



consisting of a large number (N) of identical measurements.  The initial state is assumed to be the 
same in each case.  There are then 2N possible outcomes and in NCM of these, M positive and N – M 
negative spins are detected.  The Born rule states that the most probable outcome is when M/N = 

cos2
.  For large N, results different from this are very unlikely, so an observer can reliably deduce 

the value of by obtaining M from such an observation, without directly observing how the 
experiment is set up.  However, this directly contradicts the earlier result where it was shown that 

the state of the apparatus, including the observer is the same, whatever the value of 

One possible counter to this argument is that, if all branches resulting from decoherence exist and 
the observers associated with them know about the Born rule, then they can each make a prediction 

of the value of  based on the Born rule.  Some observers’ predictions will be correct and others (in 

general the great majority) will be wrong: which is which depends on the value of  but the 

observer's  experience is the same, whatever the value of and they can only obtain this by a direct 

observation.   It would then be irrational of them to expect that they could deduce a value of  from 
their observations and they could not logically believe in the Born rule. 

These arguments are consistent with the standard view of quantum measurement as an operation 
that is performed from “outside” the system, which has always been the conventional 
“Copenhagen” interpretation of quantum measurement.   However, I believe that they are 
incompatible with alternative interpretations – in particular “many-worlds” theories – where 
everything is described by the TDSE, and measurement becomes a choice between co-existing 
“branches” that are defined by the experimental set-up and the action of decoherence and 
interaction with the environment.  The implications of these ideas to other approaches to the 
quantum measurement problem will be discussed in my presentation and will hopefully form a part 
of our discussions. 

 



Red Hats and Ancillae 
 

1. The Everett interpretation claims that all the observed features of quantum measurement 

are contained in the Schrődinger equation applied to the wavefunction, extended (by 

implication at least) to include some aspects of quantum field theory. 

   

2. The metaphysical implications associated with the many-world features of the Everett 

approach are radical in the extreme, but this is not a sufficient reason to reject the 

interpretation.  However, the onus should be on its supporters  to show that observed 

behaviour does supervene on the Schrodinger equation and that any additional assumptions 

made are consistent with it. 

 

3. The Copenhagen interpretation is widely considered unsatisfactory for several reasons, but 

its predictions agree with experiment and can be used as a yardstick for assessing the 

validity of alternatives.  In particular, if we consider the standard Stern-Gerlach (SG) 

measurement of the spin of a spin-half particle, we expect the outcome to be in one or 

other channel with probabilities defined by the Born rule.  Whatever these probabilities 

“really” are, they are confirmed or otherwise by observations of outcome frequencies.  The 

quantum field point mentioned above is covered in the SG context by assuming that the 

system is in a superposition of two Foch states, each of which corresponds to a particle 

emerging through one of the possible output channels. 

 

4. The first challenge to the Everett interpretation is the preferred basis problem: why do the 

detected states correspond to one or other of the output channels and not a linear 

combination of them.  I assume that this has been resolved by the work surrounding 

decoherence, where the system can be shown to be extremely well approximated by a 

density matrix (DM) that is diagonal in a representation defined by the two output states.  

We  note two points in passing: (i) Ignoring very small, (or even zero) elements of the DM is 

an assumption that assigns some significance of the wavefunction amplitude, which also 

enters the Born rule; (ii) DM diagonalisation is initially achieved  when the wave packets 

associated with the two Foch states emerging from SG magnet are spatially separated and 

these states are chosen as a basis of the representation of Hilbert space: provided detection 

takes place without allowing the states to interfere, decoherence acts to confirm this initial 

diagonalisation and ensures that it is effectively permanent. 

 

5. The remaining challenge is to show that Born-rule probabilities also supervene from the 

Schrodinger equation.  This result is often thought to contradict “common sense” and a 

more intuitive expectation appears to be that, when a system including a detector (and 

possibly an observer) branches, there would seem to be no reason for preferring any one 

outcome over another, and therefore  every branch should be equally probable.  This of 

course is inconsistent with the Born rule and with experiment which has motivated a search 

for arguments that would go beyond common sense and reconcile the assignment of Born 

probabilities with the existence of multiple branches.    



 

6. The first point to be addressed is how branches are to be defined and counted.  Leaving 

aside the actual quantum context for the moment, consider the following example, which is 

based on one originally proposed by David Wallace 

 

Suppose I am part of a system that splits into two branches (A and B) at some time t1, 

following which the observer in branch A is given a red hat to wear. At time t2, A 

splits into two branches A1 and A2 while B remains unsplit. What initial probability 

should I assign before the first split occurs to having a hat after both splits have been 

completed? Between t1 and t2 there will be two branches, in one of which I get the 

hat; so the branch-counting rule says that the probability of getting it is 1/2. 

However, after t2 there will be three branches, in two of which I get the hat; so the 

branch-counting rule says that the probability of getting it is 2/3. Which is right, or 

does the probability change with time?   In fact, standard probability theory implies 

that if the probability equals 1/2 between t1 and t2, it will continue to have this value 

after t2.  

 

We may be led to conclude from this example, that estimating probabilities on the 

basis of the number of branches created is likely to lead to ambiguities in the values 

of the defined probabilities.   However, we should note that it is relevant to situation 

where there are two successive branching events and we are considering the 

probability as estimated at time t0 where the first branching takes place.  Unsurprisingly, 

branching that occurs after I have recorded a result (obtained a red hat) is irrelevant to the 

calculation of this probability, which depends only on the number of branches at the first 

node.  I also note in passing that the same result would hold if red hats were awarded after 

rather than before the second bifurcation, provided this occurred in both the resulting 

branches.   

 

7.  Suppose now that, instead of successive bifurcations there was trifurcation from a single 

node into three branches, in two of which I am given a red hat.  The branch-counting 

probability of getting a red hat would now be 2/3.  (This begs the question of what 

determines the size of the node and whether there are situations where this is ambiguous, 

but there are many classical cases, such as throwing a fair die, where more than two 

outcomes follow a single event).  We see that, although the triplet of final states is the same 

after both processes, the branch-counting probabilities are different, depending on whether 

the history of the process was a trifurcation or two successive bifurcations. 

 

8. I develop this point further by returning to the original example with the addition of a 

second observer (Alice) who interacts with the system.  If this happens after the first and 

before the second, branching (i.e. for t1 < t < t2) and if she has equal expectation of ending 

up in one or other of the two branches,  I should expect the likelihood of her seeing me with 

a red hat to be ½.  However, if she interacts with the system after the second branching 

(t > t2) and now has equal expectation of emerging in one of the three branches, her 



probability of seeing me with a red hat will be increased to 2/3, which is the same as we 

would expect in the case of three branches emerging from a single node.  We appear to 

have a potential paradox: I know that the probability of my obtaining a red hat is 1/2, but I 

also believe that the probability of Alice seeing me with a red hat is 2/3. 

 

Let us compare the above with what we should expect in a  “collapse” context where there 

is only one outcome at each branch point.  We shall assume equal likelihoods of possible 

outcomes at any branching.  For example:  at t1 I either emerge in branch A and then acquire 

a red hat or I emerge in branch B with no hat; while at t2 I proceed along with my hat to 

either A1 or A2.  Given this my red-hat prediction before t1 will be 1/2 as before and we now 

consider what Alice will experience in this case.  She can see one of three things: either I am 

in branch B with no hat on or I am in one of the other two branches wearing a hat.  

Moreover, if she repeats the observation many times, she can deduce (by Baysian updating 

or otherwise) that the probabilities of my being found in B (without a hat) or in one of the A 

branches (with a hat) are equal, so she can conclude that my red-hat probability is 1/2, 

agreeing with my original estimate.   

 

9. The source of the apparent inconsistencies in the splitting scenario arises from the fact that 

splitting implies the simultaneous creation of several possible outcomes, while the 

probability calculus applies to mutually exclusive events.   Effectively, treat the second 

branching event is one in which I, along with my hat, am cloned into two copies of myself.  

This increases the likelihood that the Alice will see me with my red hat and the probability 

calculus cannot be applied to this situation unless it is modified to take this cloning into 

account.   The situation is very similar to the following.   Suppose I take two coins and place 

them on the table one showing heads and one showing tails; if Alice picks one of them at 

random she can expect to see heads or tails with equal probability.  Suppose I now replace 

the coin showing heads with ten more coins, each of which also has heads up.  Alice will now 

have a ten-to-one probability of seeing heads rather than tails. 

 

10.  I now consider how the cloning model would apply if the pattern of splitting were more 

complex.  There might be a huge number of branches at any one time and this number 

might also be subject to wild, unpredictable fluctuations.  Decoherence is generally believed 

to produce such a scenario.  The first point is that, the complexity of the pattern of 

branching subsequent to an observation can have no effect on the prior estimates of the 

probabilities of the outcomes of that observation.  Secondly, if an observation is made after 

complex branching has occurred, the observer will be unable to predict probabilities 

because she does not know the instantaneous number of branches.  However, this does not 

ipso facto imply that there is no fact of the matter concerning the number of branches at 

that point.    If the observation is repeated, the number of branches will be different on each 

occasion, leading to an apparently chaotic, unpredictable pattern of events.    

  

11.  I now turn to the quantum measurement problem in the light of the above.  Consider the 

archetypical example of a spin-half particle initially in a state |z,k0> passing through a SG 

magnet, this will produce the output state  

    cos| k1> + sin|,k2>      (1) 



where  and  are the spin eigenstates corresponding to the orientation of the SG magnet 

which is at an angle /2 to z; ko, k1 and k2 represent the directions of motion of the wave 

packets associated with the spins.  Now suppose that the state |,k2> is further split by a 

partial reflector into states defined by k21 and k22.  The total state vector is now a sum of 

three spatially separated terms: 

                                    cos | k1>  +  sin cos | k21>  +  sin sin | k22>   (2) 

 

12. Some special values of  and  are of interest.  First, suppose that 

cos =  sin = cos = sin = 2-1/2.  Expressions (1) and (2) are then 

                                  2-1/2| k1> + 2-1/2|,k2>      (3) 

                            2-1/2 | k1>  +  ½| k21>  +  ½| k22>      (4) 

respectively.  Now consider the case where cos = 3-1/2, sin = (2/3)1/2 and cos = sin = 2-1/2.  

Expressions (1) and (2) are then 

                                 (1/3)1/2 | k1> + (2/3)1/2 |,k2>     (5) 

                             (1/3)1/2  [| k1>  +  | k21>  +  | k22> ]     (6) 

That is, all three have the same amplitude in the final state. 

 

13. If we apply the Born rule to (3) and (4), the probabilities of the system being in the states 

|> and  |> are  ½,  and ½  in both cases, which are the same as the probabilities in the 

original example discussed above, provided we identify obtaining a red hat with the act of 

detecting the spin state to be |>.  Moreover, if we apply the Born rule to (5) and (6), we 

find that each output channel has the same probability and that the total probability of 

being in state |> is 2/3, which is the same as predicted in the case of a single node with 

three outputs, discussed in paragraph 8.  

 

14. In a “collapse” scenario, where only one output survives every splitting event, the Born 

probabilities follow all the normal rules of probability, including the updating rule, but I 

contend that this should require justification if Everett branching  occurs.   I now wish to re-

examine the DSW proof of the Born rule to identify what assumptions are made or implied 

in the cases where collapse or branching is assumed.   

 

15. The first step in the proof is the case where there are two outputs with the same amplitude.  

Symmetry is taken to imply that the two outcomes should have equal probability and I 

accept that this follows in both the collapse and the branching case. 

 

16. The second step is to extend the above result to the case of more than two outputs where 

the amplitudes are again the same.  If these are from a single node, symmetry arguments 

similar to those used in the previous case, imply that each branch will have equal 

probability.  If the multiple branches result from more than one branching event, the 

symmetry may appear to be broken (c.f. the red hat example) and the result is then less 

obvious.  To consider this further, I return to the example of the state set out in (4), which 

was created by two bifurcations.  A similar state would also result from a single equal-

amplitude trifurcation, but the histories of the process are not the same and their 

symmetries differ (see diagram).  It is an assumption that the resulting probabilities must be 



the same in both cases. 

 

 

17.  If we do assume that the probabilities are the same in the two set-ups and the updating rule 
holds, we obtain the Born rule for the unequal probabilities of the two branches following 
the first bifurcation.  This is essentially the DSW proof of the Born rule with the second 
bifurcation playing the role of the ancilla. 
 

18. A further often unstated assumption underlies all attempts to reconcile probabilities with 
Everett.  This is that it is actually possible to make sense of probabilities in this context.  
Once one assumes ab initio that a probabilistic model must supervene on the Schrődinger 
equation, that the probabilities must be a function only of the final state and that the 
standard updating rule must apply, everything else follows.  But all these assumptions 
require justification: if supervenience holds, they need to be shown to be consistent with the 
Schrődinger equation and, ideally, we should be able to see how they emerge from it.  

 

19. I now restate the argument in my paper that there is an actual inconsistency between the 
Born rule and the Everettian assumption that everything supervenes on Schrődinger.  I 
consider the case where a significantly large number (N) of two-state systems have been 
measured using a SG apparatus or its equivalence.  Assuming no collapse, branching occurs 
to produce one branch associated with each of the 2N permutations of the final states of the 
N particles.   The number of branches where M particles have been observed to have spin 

state |> equals NCM
   and if this is combined with the Born-rule weights, the outcomes 

where M/N equals the Born probability are much more likely than the others when N and  M 
are >> 1.   

 
20. Given this, we consider a scenario where an observer (Alice again) has no prior information 

about the setting of the SG apparatus, but does know the value of N.  After she observes M 
positive outcomes, she can deduce the likely setting of the apparatus from M/N using the 
Born rule.  Moreover, if her state is completely described by the Schrődinger equation, all 
her properties, including this newly acquired knowledge, must be included in the part of the 
wavefunction  associated with the branch she is in.   The key point is that this is inconsistent 
with the linearity of the Schrődinger equation which requires that the form of the 
wavefunction associated with a branch is independent of the expansion coefficients that 
enter the Born rule. 
 

21. A counter-argument to the above is to note that there are branches corresponding to every 

value of M, each containing a copy of Alice, who may attempt to use the Born rule to deduce 

the SG orientation.  Some of these deductions will be right, but others (in general many 

more) will be wrong and they can only tell whether they are right or wrong by making a 

direct observation of the actual SG setting.  Alice’s “state of expectation” resulting from the 

observations would then be the same whatever the actual setting of the SG apparatus. 

However, the logical consequence of this is that if Alice understands these arguments, she 

should not expect to be able to acquire knowledge of the SG settings from her observation 

of the outputs and that her experience cannot be a function of the Born weights.  She should 

therefore conclude that any probabilities or betting preferences she forms cannot be 

influenced by the Born weights and that the Born rule cannot apply.  But of course, Alice’s 

experience is the same as ours and is strongly governed by the Born rule.  
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1. Introduction

The conventional (‘‘Copenhagen’’) interpretation of quantum
mechanics states that the result of a measurement is one (and
only one) of the eigenvalues belonging to the operator represent-
ing the measurement and that, following the measurement, the
wavefunction ‘‘collapses’’ to become the corresponding eigenfunc-
tion (ignoring the possibility of degeneracy). According to the
‘‘Born rule’’, the probability of any particular outcome is propor-
tional to the squared modulus of the scalar product of this
eigenfunction with the pre-measurement wavefunction. This
analysis underlies many of the predictions of quantum mechanics
that have been invariably confirmed by experiment. An alternative
approach to quantum measurement is the Everett interpretation
(also known as the ‘‘relative states’’ or the ‘‘many worlds’’
interpretation) which was proposed by Everett III (1957). The
essence of this approach is that it assumes no collapse of the
wavefunction associated with a measurement: instead, the time
development of the state is everywhere governed by the time-
dependent Schrödinger equation. After a ‘‘measurement-like’’
event, this results in a splitting of the wavefunction into a number
of branches, which are then incapable of reuniting or commu-
nicating with each other in any way. This splitting occurs even
when a human observer is part of the measurement chain: the
resulting branches then each contain a copy of the observer, who
is completely unaware of the existence of the others.

Since its inception, the Everett interpretation has been subject
to considerable criticism—e.g. Kent (1990) and Squires
(1990)—which has three main strands (or branches [sic]). First,
there is its metaphysical extravagance. The continual evolution of
the universe into a ‘‘multiverse’’ containing an immense number
of branches would mean that the universe we observe should be
accompanied by an immense number of parallel universes, which
we do not observe and have no awareness of—surely such a
postulate must be a gross breach of the principle of Occam’s
razor! Everett himself was aware of this criticism and, in a
footnote to his original paper, he compares the conceptual
difficulties of accepting his interpretation with those encountered
by Copernicus when the latter proposed the (in his time
revolutionary) idea that the earth moves around the sun.
However, the reason that arguments based on Occam’s razor have
not led to the universal rejection of Everett’s ideas has less to do
with the strength or otherwise of the Copernican analogy and is
more a result of the fact that the branching of the universe into
the multiverse is claimed to be a direct consequence of the time-
dependent Schrödinger equation: no additional postulate, such as
the collapse of the wavefunction, is required to explain the
phenomenon of quantum measurement and the extravagance
with universes may therefore be considered a price worth paying
for the economy in postulates.

The second strand in the criticism of Everett is known as the
‘‘preferred basis’’ problem. This is because there is an apparent
ambiguity in the way the branches are defined. Thus, if the
wavefunction of a system has the form c ¼ Ac1 þ Bc2, then
Everett suggests that a measurement should lead to two sets of
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branches, one associated with each of the states represented by c1

and c2. However, the original state could just as well be written as
c ¼ Cf1 þ Df2 where f1 ¼ 2�1=2

ðc1 þ c2Þ, f2 ¼ 2�1=2
ðc1 � c2Þ,

C ¼ 2�1=2
ðAþ BÞ and D ¼ 2�1=2

ðA� BÞ, so why should the branches
not be just as well defined by f1 and f2—or indeed any other
orthogonal pair of linear combinations of c1 and c2? This
problem has been largely resolved by the appreciation of the
importance of the effect of the environment on a quantum system
and the associated ‘‘decoherence’’—Zurek (2007) and Wallace
(2002, 2003a). A quantum measurement is inevitably accompa-
nied by complex, chaotic processes which act to pick out the
particular basis defined by the eigenstates of the measurement
operator. This basis is then the one ‘‘preferred’’ by the Everett
interpretation and this supervenes on the Schrödinger wavefunc-
tion. This result is now generally accepted, although Baker (2006)
argued that its derivation uses the Born rule so that there is a
danger of circularity if it is then assumed as part of its proof.

The third criticism leveled at Everett is the problem of
probabilities. The conventional (Copenhagen) interpretation
states that, if the wavefunction before a measurement is
c ¼ Ac1 þ Bc2, and if c1 and c2 are eigenstates of the measure-
ment operator with eigenvalues q1 and q2, respectively, then the
outcome will be either q1 with probability jA2j or q2 with
probability jB2j, where these probabilities reflect the frequencies
of the corresponding outcomes after a large number of similar
measurements. However, according to the Everett approach there
is no ‘‘either–or’’ because both outcomes are manifest, albeit in
different branches. Instead of a disjunction to which we can apply
standard probability theory, we have a conjunction, where it is
hard to see how probabilities can make any sense—Squires (1990),
Graham (1973), and Lewis (2004). There have been several
attempts to resolve this conundrum and to show how probability
(or something else that is in practice equivalent to it) can be used
in an Everettian context. David Wallace has proposed a principle
that he calls ‘‘subjective uncertainty’’ in which he claims that a
rational observer should expect to emerge in one branch after a
measurement, even though she is also reproduced in the other
branches—Wallace (2003b, 2007). Greaves (2004) has criticized
this approach and suggested an alternative in which we have to
take into account the observer’s ‘‘descendants’’ in all the branches,
but we should ‘‘care’’ more about some than others; the extent to
which we should care is quantified by a ‘‘caring measure’’ that is
proportional to the corresponding Born-rule weight. Both these
approaches are designed to explain why some branches appear to
be favored over others, but both attempt to do this without
altering Everett’s main principle that the quantum state evolves
under the influence of the time-dependent Schrödinger equation
with nothing else added, so that the Born rule supervenes on this.
An alternative approach, which I shall not discuss any further in
this paper, is to maintain most of the fundamental ideas of the
Everettian interpretation, but add a further layer of ‘‘reality’’ to
justify the use of probabilities; an example of this can be found in
Lockwood (1989).

Interest in the Everett interpretation has been on the increase
recently—particularly during 2007, which was the 50th anniver-
sary of the publication of Everett’s original paper (Everett III,
1957). Much of the renewed interest has developed from the work
by Deutsch (1999) some eight years earlier, which was then
developed by Wallace (2003b, 2007) and Saunders (2004). This
program (which I refer to below by the initials DSW) aims to
derive the Born rule from minimal postulates that are claimed to
be consistent with the Everett interpretation, as well as with other
approaches to the measurement problem. In fact, Deutsch (1999)
made little reference to the Everett interpretation in his derivation
of the Born rule, and Saunders (2004) emphasized and believed
that his derivation is independent of any assumptions about the

measurement process. However, Wallace (2007) assumed the
Everett interpretation and claimed that his derivation shows the
Born rule to be completely consistent with it. Gill (2005)
examined Deutsch’s derivation and sought to clarify the assump-
tions underlying it, again without referring to the Everett
interpretation as such. A similar approach, but using slightly
different assumptions, has been developed by Zurek (2007) and is
set out in a recent review paper.

The present paper aims to show that some of the postulates
underlying the above derivations arguments do not follow
naturally from the Everett interpretation and may well not be
consistent with it.

2. The DSW proof of the Born rule

This section sets out the DSW derivation of the Born rule by
applying it to a particular example. The argument is deliberately
kept as simple as possible and more general treatments can be
found in the cited references. Consider the case of a spin-half
particle, initially in an eigenstate of an operator representing a
component of spin in a direction in the xz plane at an angle y to
the z axis, passing along the y axis through a Stern–Gerlach
apparatus oriented to measure a spin component in the z

direction.
Standard quantum mechanics tells us that the initial state ay

can be written as a linear combination of the eigenstates of Ŝz:a
with eigenvalue þ1 (in units of ‘ =2) and b with eigenvalue �1.
We have

ay ¼ caþ sb ð1Þ

where c ¼ cosðy=2Þ and s ¼ sinðy=2Þ. Particles emerge from the
two channels of the Stern–Gerlach apparatus, with the upper and
lower channels indicating Sz ¼ þ1 and �1, respectively, and are
then detected. After they have entered the detectors, but before
any collapse1 associated with the measurement, the total
wavefunction of the system is

c ¼ cawþ þ sbw� ð2Þ

where wþ (w�) is the wavefunction representing the detectors,
including their environment, when a particle is detected in the
positive (negative) channel. According to the Copenhagen inter-
pretation, the corresponding probabilities for a positive or a
negative outcome are given by the Born rule as c2 and s2,
respectively. From the Everettian point of view, on the other hand,
there is no collapse and the system is always in a state of the form
c. However, because of the effects of the environment and
decoherence, phase coherence between the two terms on the
right-hand side of (2) is lost, so they can never in practice
interfere. The wavefunction has therefore evolved into two
‘‘branches’’ which then develop independently.

The principle of the DSW approach is to describe the process
being studied as a game, or series of games, where we receive
rewards, or pay penalties (i.e. receive negative rewards) depend-
ing on the outcomes. The derivation proposed by Zurek (2007) is
quite similar to this, although it does not use game theory.

Imagine a game where the player receives a reward depending
on the outcome of the experiment. Assume that the value of y is
under our control and that, whenever the experimenter observes a

1 At a number of points in this paper, I compare the predictions of the Everett

model with those produced by the ‘‘Copenhagen interpretation’’, by which I mean

a model in which the wavefunction collapses into one of the eigenstates of the

measurement operator. This is assumed to occur early enough in the process for

the outcomes to be the same as would be observed if particles were to emerge

randomly from one or other output channel, with the relative probabilities of the

two outcomes determined by the Born rule.
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particle emerging from the positive or negative channel of the
Stern–Gerlach apparatus, she receives a reward equal to xþ or x�,
respectively; these values can be chosen arbitrarily by the
experimenter. In the special cases where y ¼ 0 or p, the initial
spin state is an eigenstate of Ŝz with eigenvalues þ1 and �1,
respectively. The particle then definitely emerges from the
corresponding channel of the Stern–Gerlach apparatus and the
corresponding reward is paid.

In the general case, we define the ‘‘value’’—VðyÞ—of the game
as the minimum payment a rational player would accept not to
play the game, and look for an expression for VðyÞ of the form

VðyÞ ¼ wþðyÞxþ þw�ðyÞx� ð3Þ

where the ws are non-negative real numbers that we call
‘‘weights’’ and which are normalized so that their total is unity.
We shall find that

wþðyÞ ¼ c2 and w�ðyÞ ¼ s2 ð4Þ

which are the probabilities predicted by the Born rule for this
setup.

First consider the effect on the wavefunction of rotating the SG
magnet through 1803 about the y axis. It follows from the
symmetry of the Stern–Gerlach apparatus that spins that were
previously directed into the upper channel will now be detected in
the lower channel and vice versa. Thus

Vðyþ pÞ ¼ wþðyþ pÞxþ þw�ðyþ pÞx� ¼ w�ðyÞxþ þwþðyÞx� ð5Þ

From standard quantum mechanics, the effect of this rotation on
wavefunction (2) is to transform it to

c ¼ �sawþ þ cbw� ð6Þ

We now proceed by considering a series of particular values of y.
Case 1: The first case is where y ¼ 0 so that the initial state, ay,

is identical with a. As noted above, this state is unaffected by the
measurement and the particle is always detected in the positive
channel. Thus Vð0Þ ¼ xþ, wþð0Þ ¼ 1 and w�ð0Þ ¼ 0. Similarly,
VðpÞ ¼ x�, wþðpÞ ¼ 0 and w�ðpÞ ¼ 1.

Case 2: In the second case, y ¼ p=2 so that c is as in (2), but
with c ¼ s ¼ 2�1=2. Now consider the effect of rotating the
Stern–Gerlach apparatus through an angle p. Using (5) and (6),
we get the following expressions for V and c:

Vð3p=2Þ ¼ w�ðp=2Þxþ þwþðp=2Þx� ð7Þ

c ¼ 2�1=2
½�awþ þ bw�� ð8Þ

The only change in the wavefunction is the change of sign in the
term involving a. DSW point out that this sign, in common with
any other phase factor, should not affect the value, because it can
be removed by performing a unitary transformation on this part of
the wavefunction only—e.g. by a rotation of the spin through 2p
or by introducing an additional path length equal to half a
wavelength. Moreover, Zurek (2007) showed that one of the
effects of the interaction of the system with the environment is to
remove any physical significance from these phase factors. It
follows that the value should not be affected by the rotation so
that Vð3p=2Þ ¼ Vðp=2Þ, which leads directly to

wþðp=2Þ ¼ w�ðp=2Þ ¼ 1=2 and Vðp=2Þ ¼ ðxþ þ x�Þ=2 ð9Þ

This result (which might be thought to be an inevitable
consequence of symmetry) is considered by DSW to be the key
point of the proof. We should note that, although it agrees with
the Born rule, it would also be consistent with any alternative
weighting scheme that predicted equal weights in this symmetric
situation: in particular it is consistent with a model in which the
weights were assumed to be independent of y.

We now extend the result to the case where the number of
output channels is M instead of two and the wavefunction is the
sum of M terms, each of which corresponds to a different
eigenstate of the measurement operator. In the case where the
coefficients of this expansion are all equal, any action that has
the effect of exchanging any two output channels (which are
numbered 1 and 2) must leave the wavefunction unchanged apart
from irrelevant changes in phase. The value is then also un-
changed, but the roles of w1 and w2 are reversed. Hence

w1x1 þw2x2 ¼ w1x2 þw2x1 ð10Þ

where xi is the reward associated with the ith output channel. It
follows that w1 ¼ w2; consideration of other permutations
immediately extends this result to all i and we have wi ¼ N�1.

Case 3: In the third case, y ¼ p=3 so that cosðy=2Þ ¼ O3=2 and
sinðy=2Þ ¼ 1=2. We now assume that the system is modified so
that, after emerging from the Stern–Gerlach magnet and before
being detected, the outgoing particles interact with a separate
quantum system that can exist in one of, or a linear combination
of, four eigenstates fi. Following Zurek (2007), this is referred to
as an ‘‘ancilla’’ from now on. The ancilla is designed so that, if
y ¼ 0 so that all spins emerge from the positive channel, the
ancilla is placed in the state 3�1=2P

i¼1;3 fi; while, if y ¼ p and all
spins are negative, its state becomes f4. From linear superposition
it follows that if the original spin is in a state of form (2) with
y ¼ p=3, the total wavefunction of the spin plus the ancilla is

C ¼ 3�1=2
½f1 þf2 þ f3�cosðp=6Þaþf4sinðp=6Þb

¼ 1
2½f1aþ f2aþ f3aþf4b� ð11Þ

As the coefficients of each term in the above expansion are equal,
it follows from the earlier discussion of case 2 that all four weights
are equal to 0.25. If we were to measure on the ancilla a quantity
whose eigenstates were one of the functions f1–f4, we should
obtain a result equal to one of the corresponding eigenvalues. If
the result corresponds to one of the first three eigenfunctions, we
can conclude that if, instead, we had measured the spin directly,
we would have got a positive result, while a result corresponding
to f4 indicates a negative spin. As this is the only such state, it
follows that the weight corresponding to a negative spin is
w�ðp=3Þ ¼ 0:25 and therefore, from normalization, that
wþðp=3Þ ¼ 0:75. (The last step, which follows Zurek (2007),
establishes these results without assuming that the weights are
additive.) The value of the game therefore equals 0:75xþ þ 0:25x�.
It can also be shown quite straight forwardly—Zurek (2007)—
that, after a number of repeats of the experiment, the predicted
distribution of the results is as observed experimentally.

Following DSW, the above argument can be extended to the
case of a measurement made in the absence of the ancilla if we
make a further assumption, known as ‘‘measurement neutrality’’.
This states that the outcome of the game is independent of the
details of the measurement process—i.e. the presence or absence
of the ancilla—so that wþðp=3Þ ¼ 0:75 and w�ðp=3Þ ¼ 0:25 in
either case. These quantities are identical to cos2ðy=2Þ and
sin2
ðy=2Þ, respectively, so the derived weights are the same as

those predicted by the Born rule. By choosing an appropriate
ancilla, the above argument can be directly extended to examples
where the ratio of the weights is any rational number, and then to
the general case by assuming that the weights are continuous
functions of y. Hence, the expression for the value is the same as
that predicted by the Born rule:

VðyÞ ¼ c2xþ þ s2x� ð12Þ

Further generalization to experiments with more than two
possible outcomes is reasonably straightforward and does not
introduce any major new principles.
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3. Discussion

There have been a number of criticisms of the DSW proof when
applied to the Everett model in particular—e.g. Baker (2006),
Barnum, Caves, Finkelstein, Fuchs, and Schack (2000), Lewis
(2005, 2007), and Hemmo and Pitowski (2007); some of these
even challenge result (9) for the symmetric case. I shall shortly
develop arguments to show that, although the symmetric results
appear to be consistent with the Everett model, this may not be so
in the asymmetric case.

First consider how the above translates into predictions of
experimental results. The game value is the minimum payment a
rational observer would accept in order not to play the game. This
means that after playing the game a number of times, a rational
observer should expect to receive a set of rewards whose average
is equal to the game value. Thus, if we consider a sequence of N

such observations in which nþ and n�ð¼ N � nþÞ particles are
detected in the positive and negative channels, respectively, the
total reward received will be nþxþ þ n�x�, and this should
equal Nðwþxþ þw�x�Þ implying that wþ ¼ nþ=N and
w� ¼ n�=N. This, of course, is just what is observed in a typical
experiment provided N is large enough for statistical fluctuations
to be negligible. It should be noted that frequencies are not

being used to define probabilities, but the derived weights are
used to predict the results of experimental measurement of the
frequencies.

The above results are of course consistent with the standard
Copenhagen interpretation, whose fundamental mantra was set
out by Bohr (1935): ‘‘y there is essentially the question of an
influence on the very conditions which define the possible types
of predictions regarding the future behavior of the system’’. In the
present context, this means that, because an experiment designed
to demonstrate interference would involve a different experi-
mental arrangement, the experiment can be modelled as a
classical stochastic system in which spins emerge from either

the positive or the negative channel of the Stern–Gerlach
apparatus. (It should be noted that this paper does not aim to
justify the Copenhagen interpretation, but employs its results as a
comparator with the Everettian case.)

Why should an Everettian observer have experiences such as
those just described? In the Everett interpretation, the quantum
state evolves deterministically and on first sight, there would
appear to be no room for uncertainty. However, after a splitting
has occurred, observers in different branches have the same
memories of their state before the split, but undergo different
experiences after it. Given this, it may be meaningful for an
experimenter to have an opinion about the likelihood of becoming
a particular one of her successors. This introduces a form of
subjective uncertainty, and Wallace (2007) claimed that this plays
a role in the Everett interpretation that is equivalent to that played
by objective stochastic uncertainty in the Copenhagen case.
However, we should note that such subjective uncertainty can
only come into play at the point where the experimenter becomes
aware of an experimental result, in contrast to the Copenhagen
model where the splitting is assumed to occur as the particles
emerge from the Stern–Gerlach magnet. I shall shortly proceed to
compare and contrast the Copenhagen and Everettian interpreta-
tions of the different experiments discussed above. To help focus
the discussion, I shall initially assume that in such experiments
each particular result is associated with only one branch of the
final wavefunction. This assumption has been strongly criticized
by DSW and others and I shall return to the question of how it
affects our conclusions at a later stage. I now analyze our earlier
arguments step by step.

Case 1: Copenhagen: As the initial spin state is in an eigenstate
of Sz, the result is completely determined. The probability of the

result equalling the corresponding eigenvalue is 1 and the
probability of the alternative is zero.

Case 1: Everett: There is only one branch and this contains the
only copy of the observer who invariably records the appropriate
eigenvalue.

There is therefore no difference between the observers’
experiences in case 1 under the Copenhagen and Everettian
interpretations.

Case 2: Copenhagen: The probabilities of positive and negative
results are both 0.5. After a large number of repeats of the
experiment, the experimenter will have recorded approximately
equal numbers of positive and negative results, so her average
reward will be ðx1 þ x2Þ=2, which is the same as the game value.

Case 2: Everett: The observer will split into two copies each
time a spin is observed and the weights of the two branches are
equal for the reasons discussed earlier. After a large number (N) of
repeats of the experiment the vast majority of observers will have
recorded close to N=2 positive and N=2 negative results and their
average rewards will both equal the game value.

There is therefore no difference between the predictions of the
Copenhagen and Everettian interpretations in case 2.

Case 3: Copenhagen: As emphasized above, this assumes that
the experiment is a stochastic process in which a particle emerges
from either the positive or the negative channel and the relative
probabilities of the outcomes are equal to the Born weights. In the
presence of the ancilla, a particle is detected in one (and only one)
of the equally weighted states f1 to f4, and all four outcomes
have equal probability. To have been observed in any of the first
three states, the spin must have emerged from the Stern–Gerlach
experiment through the positive channel, while if the final result
corresponded to f4, it must have come through the negative
channel. It follows directly that if the ancilla were absent, three
times as many spins would be detected as positive than as
negative. Thus, the principle of measurement neutrality, assumed
in stage 3 of the earlier derivation, follows naturally from the
assumptions underlying the Copenhagen interpretation.

Case 3: Everett: We first consider the situation where an ancilla
is present so that the state is described by (11); there are therefore
four equally weighted branches, one corresponding to each of the
fi. The observer splits into four equally weighted copies and
should expect her descendants to record an equal number of each
of the four possible results and therefore conclude that there are
three times as many positive as negative spins. However, in the
absence of an ancilla, there are only two branches and the
observer is split into two copies each time a result is obtained. To
show that a typical Everettian observer should record results that
are consistent with the Born weights, we again have to apply the
principle of measurement neutrality. We saw above that this is a
natural, if not inevitable, consequence of the Copenhagen
interpretation, but we shall now demonstrate that this is not
the case in an Everettian context.

Under the Copenhagen interpretation, particles are assumed to
emerge from either the positive or the negative channel and then
into one, and only one, of the states fi. This is not true in the case
of the Everett interpretation, where the system evolves determi-
nistically and the state is described by a linear combination of the
wavefunctions associated with a particle being present in each
channel. Apparent stochasticity, or subjective uncertainty, only
enters the situation at the point where the experimenter observes
the result and splits into a number of descendants—two in the
absence of the ancilla and four if it is present. There is no
requirement for the frequencies to be the same in both cases—i.e.
no a priori reason to apply the principle of measurement
neutrality. In the language of decision theory, the values of the
two games are not necessarily the same, so a decision on whether
or not to accept a payoff may depend on whether the game is
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being played with or without an ancilla. Indeed, as in the absence
of an ancilla there are only two branches, we might expect each
observer’s experience to be the same as in case 2, with equal
numbers of positive and negative results and an equal reward for
each outcome—i.e. the statistical outcomes would be indepen-
dent of the weights. I shall argue later that this is a natural
consequence of the Everettian interpretation, but at present
simply emphasize that the principle of measurement neutrality
is a self-evident consequence of the assumptions underlying the
Copenhagen interpretation, but constitutes a major additional
postulate in the context of Everett.

I further illustrate this last point by considering a simple
classical example that consists of a box with two exit ports from
each of which a series of balls emerges as in Fig. 1. The apparatus
can be operated in one of two modes that we denote as ‘‘C’’ and
‘‘E’’. In the C mode, balls emerge one at a time from one of two
output ports and, on average, three times as many come out of the
upper port as from the lower. An experimenter observes the balls
as they emerge and confirms this relative likelihood. Still in the C
mode, the experiment is modified so that when a ball emerges
from the upper port, it passes into a second, ‘‘ancillary’’ box and
then emerges at random through one of three output channels
before being detected. The experimenter now detects a ball either
in one of these three channels or emerging from the lower port.
Clearly the first of these results is three times as likely as the
second, so the observed frequencies are independent of the
presence or absence of the second box. Thus the equivalent of
measurement neutrality holds in this case.

Now consider the game in the E mode, which is also illustrated
in Fig. 1. In this case two balls emerge from the box simulta-
neously: a black ball from the upper port and a white ball from the
lower. The two balls fall into a receptacle (not shown in the figure)
and an experimenter draws one at random; after repeating the
experiment a number of times she sees equal numbers of black
and white balls. The experiment is now modified so that the black
balls are directed into an ancillary box which now contains a
device that releases three identical black balls, one through each
of the three output ports, whenever one enters. These three balls
along with the white one now fall into the receptacle and the
observer again draws one at random; she now sees a black ball
three times as often as a white ball. Thus, the relative likelihood of
a black or a white ball depends on the presence or absence of the
second box, and we can conclude that measurement neutrality is
not necessarily preserved when the game is played in the E mode.

A more whimsical analogy follows the precedent set by
Schrödinger’s cat by using animals to illustrate our point. First
consider Copenhagen rabbits. These come in two colors—black
and white; they are all female and capable of giving birth to one
(and only one) baby rabbit which is always of the same color as its
mother. Let us suppose we have four Copenhagen rabbits, three
black and one white in a hat and suppose that one, of them,
chosen at random, is pregnant. We first play the game of ‘‘pick out
the pregnant rabbit’’ by putting our hand in the hat, identifying

and then pulling out the pregnant rabbit. We are paid different
rewards (xb and xwÞ depending on whether the extracted rabbit is
black or white. After playing the game a number of times, we find
that we have pulled out three times as many black rabbits as
white, so that the game value is ð3xb þ xwÞ=4. The second game is
one where we wait until the pregnant rabbit has given birth and
then pull out and identify the color of the baby. Clearly the results
and the value are the same as in the first game.

Now consider Everettian rabbits, which are also either black or
white. In contrast to the Copenhagen rabbits, they are capable of
carrying and giving birth to more than one offspring. Suppose we
have two pregnant Everettian rabbits: a white rabbit that is
pregnant with a single offspring and a black rabbit that is
expecting triplets. If we draw one of the two pregnant rabbits
from the hat at random, the game value will be ðxb þ xwÞ=2.
However, if, instead, we wait until after the rabbits have given
birth and then draw out one of the offsprings at random, the game
value will now be ð3xb þ xwÞ=4. Thus Copenhagen rabbits preserve
measurement neutrality, but Everettian rabbits do not.

Given the assumptions underlying the Copenhagen interpreta-
tion, the first game in the C mode and the game with the
Copenhagen rabbits form close parallels with the quantum
example discussed earlier. Similarly, the first game in the E mode
and the game with Everettian rabbits are closely parallel to the
quantum case, provided we accept that random selection at the
point where the observer becomes aware of the result is
equivalent to subjective uncertainty in the quantum case.

In both these examples as well as in the quantum case, I have
shown that measurement neutrality is not a necessary conse-
quence of the principles underlying the Everett interpretation.
However, in all the cases where it need not apply, the symmetry is
broken in the sense that the weights associated with the different
outcomes are not equal. It follows that measurement neutrality
(or, indeed, some other quite different principle) could be restored
in the classical examples by making additional assumptions: for
example, it could be arranged that the ball emerging from the
upper channel in the E game is heavier than that coming out of the
lower, and that it is three times easier to find and extract a more
massive ball when making the selection; similarly, it might be
three times easier to catch a rabbit carrying triplets than one
pregnant with a single offspring. However, such ad hoc rules
would have to be built into the physics of the setup when it was
designed and constructed. In the quantum case under the Everett
interpretation, measurement neutrality therefore has to be an
additional assumption, rather than following directly from the
structure of the theory as in the Copenhagen case. Gill (2005)
showed that measurement neutrality is equivalent to assuming
that the measures of probability are invariant under functional
transformations—i.e. the probability of obtaining a particular
result when measuring a variable is the same as that pertaining
when a function of the variable is measured. He considers that
functional invariance in the case of one-to-one transformations
is ‘‘more or less definitional’’, but is much less obvious in the

Fig. 1. In the C mode a ball is emitted from the first box through either the upper or the lower port and detected either before or after entering the second box; the figure

shows one possible outcome. In the E mode, balls emerge from both ports and one of them is detected either before or after the second box, which releases three balls every

time one enters.
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many-to-one case, which is required for situations such as
case 3. Gill’s discussion relates to probabilities as conventionally
defined and his paper makes no reference to the Everett
interpretation. I believe that the above argument shows that
many-to-one transformations are also ‘‘more or less definitional’’
under the Copenhagen interpretation, but not in the Everettian
context.

Measurement neutrality and an associated principle that he
calls ‘‘equivalence’’ have been argued for by Wallace in a number
of papers—Wallace (2002, 2003a, 2003b, 2007). He considers
games in which the measurement result is erased after it triggers
an associated reward and before the experimenter has recorded
the outcome. In the symmetric (y ¼ p=2) case, the final states are
independent of the pattern of rewards, which reinforces the
arguments leading to (9). However, this is not an issue in the
present discussion, which challenges the assumption of measure-
ment neutrality only in the asymmetric case. Another point
emphasized by Wallace (2007) is that the boundary between what
is usually taken as preparation and what is part of the ‘‘actual’’
measurement is essentially arbitrary, particularly in the context of
the Everett interpretation. However, the observation and record-
ing of the result by a conscious observer is part of the
measurement proper, and it is only at this point that subjective
uncertainty or the relevance of a caring measure is introduced
into the Everettian treatment of the Born rule.

Up to this point I have argued that the assumptions underlying
the derivation of the Born rule, in particular measurement
neutrality, are not necessary in an Everettian context, though
they may be treated as added postulates. I now intend to go
further and argue that there is an inconsistency between the
assumptions underlying the Everett interpretation and the Born
rule—or, indeed any rule that relates the likelihood of a
measurement outcome to the amplitudes (c and s in the above
example) associated with the branching of the wavefunction in a
non-trivial way. I shall continue to use the example of the
measurement of the spin component of a spin-half particle as a
focus of the discussion.

The scenario I now discuss is one where an observer (‘‘Bob’’)
records the number of positive spins (M) in a set of measurements
of the state of N identically prepared spins that have passed
through a Stern–Gerlach apparatus. We consider the particular
case where Bob does not know the value of y before he makes any

measurements; that is, he has not seen the apparatus or been told
how the magnet is oriented, which means that his initial state is
represented by a wavefunction which is independent of y.
However, if Bob knows the Born rule, he can estimate the value
of y as 2cos�1ðM=NÞ1=2 and his confidence in this value will be the
greater, the larger are M and N. As a result of this experience, Bob’s
state has been changed from one of ignorance to one where he has
some knowledge of y. This change must therefore have been
reflected in Bob’s quantum state, causing a modification to his
wavefunction, which now depends on y. To further emphasize this
point, suppose that the value of y can be changed without Bob’s
direct knowledge by another experimenter (‘‘Alice’’) who has
control of the Stern–Gerlach apparatus. If she does this and the
experiment is repeated a number of times at the new setting, Bob
will find that his expectations have been consistently wrong. He
may initially attribute this to statistical fluctuation, but eventually
he will amend his state of expectation to bring it into line with his
experience. Indeed, Bob may know that Alice is able to do this, in
which case he will be more likely to amend his state of
expectation at an earlier stage. Alice could then send signals to
Bob by transmitting sets of N particles using the same value of y
for each set, but changing it between sets. If the Born rule applies,
Bob can deduce the values of y that Alice has used from the
relative numbers of positive and negative results, so Alice has

again caused changes in Bob’s state of expectation and therefore
of his wavefunction.

It is one of the principles of the Everett interpretation that,
once branching has occurred and the possibility of interference
between branches has been eliminated, the wavefunction asso-
ciated with a branch describes the ‘‘relative state’’ of the system
contained in that branch, which cannot be influenced by the state
of any other branch. Moreover, the form of the relative state
functions, which represent the whole branch including the
version of Bob associated with it, are the same whatever the
values of the expansion coefficients c and s. This implies that
the properties of a system represented by such a relative state are
not affected by the measuring process. Thus, although these
constants enter the expressions, they do so only as expansion
coefficients, which have no effect on the wavefunctions of the
relative states associated with the component branches. In
particular, the observer’s state of knowledge of the value of y
cannot be altered as a result of this process. This is in direct
contradiction to the conclusion reached above, assuming that the
Born rule holds. There is therefore an inconsistency between the
principles underlying the Everett interpretation and the appear-
ance of a correlation between the apparatus setting and the
relative frequencies of the possible outcomes, such as is implied
by the Born rule.

To develop this point further, consider the state of the whole
system after N particles have passed through the apparatus, so
that, according to the Everett interpretation, the wavefunction
contains 2N branches that correspond to all possible sequences of
the results of the measurements performed so far. That is, using
(2),
Y

i¼1;N

ayðiÞw0�!
X

Psi

cmsN�mCðs1; s2; . . . ; sNÞ ð13Þ

where ayðiÞ is the initial state of spin i and w0 refers to the initial
state of the detecting apparatus, including the observer Bob,
which is independent of y, given the assumptions set out earlier.
Each parameter si has two values, þ and �; Cðs1; s2; . . . ; sNÞ

represents the state of the whole system (i.e. spins, measuring
apparatus and Bob) after the results si have been recorded in a
measurements on spin i for all i from 1 to N; m equals the number
of positive spins in this set;

P
Psi

implies a summation over all 2N

permutations of si. Each term in the summation refers to a
separate branch in the Everett interpretation.

It follows from (13) that the number of branches in which m

positive results have been recorded is N!=m!ðN �mÞ! and the Born
weight associated with this whole subset equals c2ms2ðN�mÞ. Under
the Copenhagen interpretation, the probability of observing m

positive results is the product of these two quantities: this has a
maximum value when m ¼ M ¼ Nc2 (¼ 3N=4, if y ¼ p=3 as in
case 3) and a standard deviation of jcsjN1=2 (¼ ON=4). Suppose
now that the Everett assumptions hold so that there has been no
collapse. After the measurement, wavefunction (13) will consist of
a linear combination of branches, each of which contains a version
of Bob who has recorded a value for m. If N is large, the vast
majority of observers will observe approximately equal numbers
of positive and negative results and a small minority will observe
results in the vicinity of the ratio predicted by the Born rule.
Repeating the experiment with a different value of y does not
change the number of observers recording any particular result,
so, if this were all there were to it, Bob’s experience would not
correlate with the apparatus setting and he would be unable to
deduce a reliable value of y from his observations. However, the
Everett interpretation only works if this is not all there is to it.
Because of subjective uncertainty, an observer’s successors in
branches that have a high Born-rule weight are somehow favored
over the others. How this can work is at the heart of the
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difficulties many critics have with the Everett interpretation, but
let us leave this on one side. The fact that these successors are so
preferred means that they can with confidence deduce the value
of y from their observations of M and N. Acquiring this
information must therefore have altered their reduced state, in
contradiction to the Everettian assumptions set out above.

Several points should be noted about the above. First, the
contradiction does not arise in the Copenhagen interpretation
because, as noted earlier, this assumes that stochasticity arises at
the point where the spin emerges from the Stern–Gerlach magnet.
The information as to which branch is occupied by the spin is
additional to that contained in the wavefunction and is obtained
by Bob through the collapse process. Hence, no contradiction
arises when this is used by the experimenter to guide his
expectations about subsequent measurements.

Second, it should be emphasized that the argument applies
only to information about the apparatus setting that is obtained
by Bob as a result of the measurement process. He could of course
have been told in advance how the apparatus was set up so, in this
case, w0 would already be a function of y. The latter argument
could probably be extended to show that he should not be able to
obtain further information about y by the measurement process,
but I believe it clarifies the discussion if we focus on the case
where Bob has no prior knowledge of y: to demonstrate
inconsistency, it is only necessary to establish a contradiction in
at least one particular case.

Third, although I have focussed on the Born rule, the above
arguments would apply equally well to any model in which the
outcome frequencies were assumed to depend systematically on
the expansion coefficients. This is of rather marginal interest given
that the Born rule is the one that is established by experiment.

If we accept the above, it follows that the only way probability
should be able to enter the Everett interpretation is if all branches
are assigned equal weight. Might it nevertheless be possible to
reconcile this conclusion with experiment? Up to now, we have
assumed one branch per outcome, without attempting to justify
this. We now turn to the question of ‘‘branch counting’’, which
means considering the number of branches associated with any
given measurement outcome. If we accept the argument that the
expansion coefficients play no role in determining the outcome
likelihood in an Everettian context, then an experimenter’s
expectation of a particular outcome should be proportional to
the number of branches associated with it. Such an assumption is
similar to that made in statistical thermodynamics, where the
ergodic hypothesis states that the result of averaging over an
ensemble of systems is the same as the time average for a single
system. When applied to the symmetric case, this is an essential
part of the arguments leading to (9) and (10). However, branch
counting has been strongly criticized by DSW on a number of
grounds. Wallace (2007) considered a scenario in which extra
branching is introduced into one (say the plus) channel by
associating with it a device that displays one of, say, a million
random numbers. He argued that this must be irrelevant to an
experimenter who sees only the measurement result and is
indifferent to the outcome of the randomizing apparatus. This is
because ‘‘if we divide one outcome into equally valued sub-
outcomes, that division is not decision-theoretically relevant’’.
However, this argument does not fully take into account the
Everettian context. Referring again to the classical game discussed
earlier and illustrated in Fig. 1, we can consider the additional
branching on the right of both setups as due to the presence of a
randomizer with three possible outputs. In the case of the C game,
these are indeed irrelevant to the expectation of the player,
because a ball emerges from only one of the three channels and
must therefore have passed through the upper channel at the
previous stage. However, in the case of the E game, the chances of

observing a black ball are enhanced (tripled) by the splitting and
this would have to be taken into account by any rational player,
even if the only result she sees is the color of the ball. Similarly, if
we introduce a random number machine as Wallace suggests,
then its state will be a linear combination of its million possible
outcomes and all these will be associated with a positive value of
spin. Given that there is only one branch associated with the
alternative outcome, we could well expect the subjective like-
lihood of a positive result to be one million times greater than that
for a negative outcome.

A second argument deployed to criticize branch counting is
based on the fact that the interaction of a quantum system with
its environment leads to an immensely complex branching
structure. Indeed it is claimed by DSW that the number of
branches is not only very large (possibly infinite), but is also
subject to very large and rapid fluctuations before, during and
after the observation of a result; which may mean that it is not
meaningful to talk about even the approximate number of
branches that exist at any time. This is adduced as a reason why
a rational player should ignore the complexity of the branching
structure and instead expect to observe results consistent with
the Born rule. However, if the likelihood of observing a particular
result is proportional to the number of associated branches, the
complexity introduced by decoherence should actually result in
the outcome of a measurement being completely unpredictable.
The situation is similar to chaos in classical mechanics or to
turbulence in hydrodynamics, whose onset certainly does not lead
to increased predictability. In the arguments above, we assumed
that each outcome was associated with a single branch, so what
would be the likely consequences of a complex branch structure
in an Everettian context? First, there may well be situations in
which we could expect the number of branches associated with
different outcomes to be equal, at least when averaged over a
number of measurements, and in this case our earlier discussion
would not be affected. However, we might be able to devise a
situation (e.g. one in which a detector was placed in the positive
output channel only) where the numbers of branches in the two
channels would be expected to differ greatly. We should then
expect to detect a larger number of (say) positive than negative
results. This would be true even if the Stern–Gerlach apparatus
were oriented symmetrically—i.e. with y ¼ p=2, so the symmetry
on which we based some of our earlier arguments would not hold.
The complexity and fluctuations of the branch structure in the
Everett case would render even the statistical results of a
quantum measurement unpredictable. Such a situation is some-
times described as being ‘‘incoherent’’ and it has been argued that
this would mean that the universe would be nothing like the one
we experience. However, the obvious conclusion to draw from this
is that the Everett assumptions are falsified, rather than that the
Everett model is correct and the arguments based on it that lead
to this incoherence must be wrong.

It might be thought that branch counting could restore the
Born rule if the number of branches associated with a particular
outcome were proportional to the Born weight. However, not only
is there no obvious mechanism to achieve this, but it is also
inconsistent with the Everett model for the same reasons as were
set out earlier. The quantum description of the branch structure is
contained within C in (13) and therefore cannot depend on the
expansion coefficients for the reasons argued above.

4. Conclusions

I have argued that attempts to prove the Born rule make
assumptions that are essentially self-evident in the context of the
Copenhagen interpretation, but not with the Everett model of
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measurement. I have further argued that probabilities which are
functions of the expansion coefficients are not consistent with the
Everett interpretation, because these quantities are not then
accessible to an observer in the reduced state associated with a
branch. An alternative scheme that could be consistent with
Everett is one where each branch has the same probability and the
probability of a given outcome depends on the number of
branches associated with it. However, this also cannot be made
consistent with the Born rule and it leads to predictions of chaotic,
unpredictable behavior, in contrast to the relatively well-ordered
behavior, invariably demonstrated in experiments. I conclude that
the Born rule is a vitally important principle in determining
quantum behavior, but that it depends on wavefunction collapse,
or something very like it, that does not supervene upon the time-
dependent Schrödinger equation. It would be possible to retain
the many-worlds ontology of the Everett model while allowing
information to be transferred through the measurement, but the
state evolution would no longer be governed by the Schrödinger
equation alone and the economy of postulates would no longer
obviously outweigh the metaphysical extravagance associated
with the Everett picture.

The debate between the different interpretations of quantum
mechanics has often been metaphysical in the sense that they
often make the same predictions and cannot therefore be
distinguished experimentally. The present paper has argued that
this is not so in the case of the Everett interpretation, which
predicts results different from those that follow from the
Copenhagen interpretation, which in turn are supported by
experiment. If this is accepted, the Everett model will have been
falsified and the search for a consensual resolution of the
quantum measurement problem will have to be focussed else-
where.
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