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I’ll try to clarify just what decoherence has to do with the emergence of multiple quasiclassical 

dynamical processes. In particular, I’ll try to give an account of the the significance of 

decoherence for the dynamical evolution of systems, and of what decoherence adds to older and 

more elementary arguments for classicality—notably, Ehrenfest’s theorem. I’ll be pretty light on 

mathematical detail in the talk (the details are filled out more in my contribution to the reader), 

and I’ll confine my attention to the interpretation of unitary quantum mechanics without hidden 

variables—to Everett’s approach to quantum mechanics, in effect.  
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The form of a philosophical theory, often enough, is: Let’s try looking
over here.

(Fodor 1985, p. 31)

1 Introduction: taking physics seriously

NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from
Earth.1 We have never been there, and (although I would love to be wrong
about this) we will never go there; all we will ever know about NGC 1300 is
what we can see of it from sixty-five million light years away, and what we can
infer from our best physics.

Fortunately, “what we can infer from our best physics” is actually quite a
lot. To take a particular example: our best theory of galaxies tells us that that
hazy glow is actually made up of the light of hundreds of billions of stars; our
best theories of planetary formation tell us that a sizable fraction of those stars

1Source: http://leda.univ-lyon1.fr/. This photo taken from http://hubblesite.org/

gallery/album/galaxy/pr2005001a/. [NB: issue of getting credit here.]

Figure 1: The spiral galaxy NGC 1300
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have planets circling them, and our best theories of planetology tells us that
some of those planets have atmospheres with such-and-such properties. And
because I think that those “best theories” are actually pretty good theories, I
regard those inferences as fairly reliable. That is: I think there actually are
atmospheres on the surfaces of some of the planets in NGC 1300, with pretty
much the properties that our theories ascribe to them. That is: I think that
those atmospheres exist. I think that they are real. I believe in them. And I do
so despite the fact that, at sixty-five million light years’ distance, the chance of
directly observing those atmospheres is nil.

I present this example for two reasons. The first is to try to demystify —
deflate, if you will — the superficially “philosophical” — even “metaphysical”
— talk that inevitably comes up in discussions of “the ontology of the Everett
interpretation”. Talk of “existence” and “reality” can sound too abstract to
be relevant to physics (talk of “belief” starts to sound downright theological!)
but in fact, when I say that “I believe such-and-such is real” I intend to mean
no more than that it is on a par, evidentially speaking, with the planetary
atmospheres of distant galaxies.

The other reason for this example brings me to the main claim of this paper.
For the form of reasoning used above goes something like this: we have good
grounds to take such-and-such physical theory seriously; such-and-such physical
theory, taken literally, makes such-and-such ontological claim; therefore, such-
and-such ontological claim is to be taken seriously.2

Now, if the mark of a serious scientific theory is its breadth of application,
its explanatory power, its quantitative accuracy, and its ability to make novel
predictions, then it is hard to think of a theory more “worth taking seriously”
than quantum mechanics. So it seems entirely apposite to ask what ontological
claims quantum mechanics makes, if taken literally, and to take those claims
seriously in turn.

And quantum mechanics, taken literally, claims that we are living in a multi-
verse: that the world we observe around us is only one of countless quasi-classical
universes (“branches”) all coexisting. In general, the other branches are no more
observable than the atmospheres of NGC 1300’s planets, but the theory claims
that they exist, and so if the theory is worth taking seriously, we should take
the branches seriously too. To belabour the point:

According to our best current physics, branches are real.

Everett was the first to recognise this, but for much of the ensuing fifty years
it was overlooked: Everett’s claim to be “interpreting” existing quantum me-
chanics, and de Witt’s claim that “the quantum formalism is capable of yielding
its own interpretation” were regarded as too simplistic, and much discussion on
the Everett interpretation (even that produced by advocates such as Deutsch

2Philosophers of science will recognise that, for reasons of space, and to avoid getting
bogged down, I gloss over some subtle issues in the philosophy of science; the interested
reader is invited to consult, e. g. , Newton-Smith (1981), Psillos (1999), or Ladyman and Ross
(2007) for more on this topic.
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(1985)) took as read that the “preferred basis problem” — the question of how
the “branches” were to be defined — could be solved only by adding something
additional to the theory. Sometimes that “something” was additional physics,
adding a multiplicity of worlds to the unitarily-evolving quantum state (Deutsch
(1985, Bell (1981, Barrett (1999)). Sometimes it was a purpose-built theory of
consciousness: the so-called “many-minds theories” (Lockwood (1989, Albert
and Loewer (1988)). But whatever the details, the end result was a replace-
ment of quantum mechanics by a new theory, and furthermore a new theory
constructed specifically to solve the quantum measurement problem. No won-
der interest in such theories was limited: if the measurement problem really does
force us to change physics, hidden-variables theories like the de Broglie-Bohm
theory3 or dynamical-collapse theories like the GRW theory4 seem to offer less
extravagantly science-fictional options.

It now seems to be widely recognised that if Everett’s idea really is worth
taking seriously, it must be taken on Everett’s own terms: as an understanding of
what (unitary) quantum mechanics already claims, not as a proposal for how to
amend it. There is precedent for this: mathematically complex and conceptually
subtle theories do not always wear their ontological claims on their sleeves.
In general relativity, it took decades fully to understand that the existence of
gravity waves and black holes really is a claim of the theory rather than some
sort of mathematical artifact.

Likewise in quantum physics, it has taken the rise of decoherence theory to
illuuminate the structure of quantum physics in a way which makes the reality
of the branches apparent. But twenty years of decoherence theory, together with
the philosophical recognition that to be a “world” is not necessarily to be part of
a theory’s fundamental mathematical framework, now allow us to resolve — or,
if you like, to dissolve — the preferred basis problem in a perfectly satisfactory
way, as I shall attempt to show in the remainder of the paper.

2 Emergence and Structure

It is not difficult to see why Everett and de Witt’s literalism seemed unviable for
so long. The axioms of unitary quantum mechanics say nothing of “worlds” or
“branches”: they speak only of a unitarily-evolving quantum state, and however
suggestive it may be to write that state as a superposition of (what appear to
be) classically definite states, we are not justified in speaking of those states
as “worlds” unless they are somehow added into the formalism of quantum
mechanics. As Adrian Kent put it in his influential (1990) critique of Many-
Worlds interpretations:

. . . one can perhaps intuitively view the corresponding components
[of the wave function] as describing a pair of independent worlds. But
this intuitive interpretation goes beyond what the axioms justify: the

3SeeCushing, Fine, and Goldstein (1996) and references therein for more information.
4See Bassi and Ghirardi (2003) and references therein for more information.
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axioms say nothing about the existence of multiple physical worlds
corresponding to wave function components.

And so it appears that the Everettian has a dilemma: either the axioms of
the theory must be modified to include explicit mention of “multiple physical
worlds”, or the existence of these multiple worlds must be some kind of illu-
sion. But the dilemma is false. It is simply untrue that any entity not directly
represented in the basic axioms of our theory is an illusion. Rather, science
is replete with perfectly respectable entities which are nowhere to be found in
the underlying microphysics. Douglas Hofstader and Daniel Dennett make this
point very clearly:

Our world is filled with things that are neither mysterious and
ghostly nor simply constructed out of the building blocks of physics.
Do you believe in voices? How about haircuts? Are there such
things? What are they? What, in the language of the physiicist,
is a hole - not an exotic black hole, but just a hole in a piece of
cheese, for instance? Is it a physical thing? What is a symphony?
Where in space and time does “The Star-Spangled Banner” exist?
Is it nothing but some ink trails in the Library of Congress? Destroy
that paper and the anthem would still exist. Latin still exists but
it is no longer a living language. The language of the cavepeople
of France no longer exists at all. The game of bridge is less than
a hundred years old. What sort of a thing is it? It is not animal,
vegetable, or mineral.

These things are not physical objects with mass, or a chemical com-
position, but they are not purely abstract objects either - objects
like the number pi, which is immutable and cannot be located in
space and time. These things have birthplaces and histories. They
can change, and things can happen to them. They can move about -
much the way a species, a disease, or an epidemic can. We must not
suppose that science teaches us that every thing anyone would want
to take seriously is identifiable as a collection of particles moving
about in space and time. Hofstadter and Dennett (1981, pp. 6–7)

The generic philosophy-of-science term for entities such as these is emergent :
they are not directly definable in the language of microphysics (try defining a
haircut within the Standard Model!) but that does not mean that they are
somehow independent of that underlying microphysics. To look in more detail
at a particularly vivid example,5 consider Figure 2.6 Tigers are (I take it!)
unquestionably real, objective physical objects, but the Standard model con-
tains quarks, electrons and the like, but no tigers. Instead, tigers should be
understood as patterns, or structures, within the states of that microphysical
theory.

5I first presented this example in Wallace (2003).
6Photograph @ Philip Wallace, 2007. Reproduced with permission.
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Figure 2: An object not among the basic posits of the Standard Model

To see how this works in practice, consider how we could go about studying,
say, tiger hunting patterns. In principle — and only in principle — the most
reliable way to make predictions about these would be in terms of atoms and
electrons, applying molecular dynamics directly to the swirl of molecules which
make up, say, the Kanha National Park (one of the sadly diminishing places
where Bengal tigers can be found). In practice, however (even ignoring the
measurement problem itself!) this is clearly insane: no remotely imaginable
computer would be able to solve the 1035 or so simultaneous dynamical equations
which would be needed to predict what the tigers would do.

Actually, the problem is even worse than this. For in a sense, we do have
a computer capable of telling us how the positions and momentums of all the
molecules in the Kanha National Park change over time. It is called the Kanha
National Park. (And it runs in real time!) Even if, per impossibile, we managed
to build a computer simulation of the Park accurate down to the last electron,
it would tell us no more than what the Park itself tells us. It would provide
no explanation of any of its complexity. (It would, of course, be a superb
vindication of our extant microphysics.)

If we want to understand the complex phenomena of the Park, and not
just reproduce them, a more effective strategy can be found by studying the
structures observable at the multi-trillion-molecule level of description of this
‘swirl of molecules’. At this level, we will observe robust — though not 100%
reliable — regularities, which will give us an alternative description of the tiger
in a language of cell membranes, organelles, and internal fluids. The principles
by which these interact will be derivable from the underlying microphysics, and
will involve various assumptions and approximations; hence very occasionally
they will be found to fail. Nonetheless, this slight riskiness in our description
is overwhelmingly worthwhile given the enormous gain in usefulness of this new
description: the language of cell biology is both explanatorily far more powerful,
and practically far more useful, than the language of physics for describing tiger
behaviour.

Nonetheless it is still ludicrously hard work to study tigers in this way. To
reach a really practical level of description, we again look for patterns and
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regularities, this time in the behaviour of the cells that make up individual
tigers (and other living creatures which interact with them). In doing so we will
reach yet another language, that of zoology and evolutionary adaptationism,
which describes the system in terms of tigers, deer, grass, camouflage and so on.
This language is, of course, the norm in studying tiger hunting patterns, and
another (in practice very modest) increase in the riskiness of our description is
happily accepted in exchange for another phenomenal rise in explanatory power
and practical utility.

The moral of the story is: there are structural facts about many microphys-
ical systems which, although perfectly real and objective (try telling a deer that
a nearby tiger is not objectively real) simply cannot be seen if we persist in
describing those systems in purely microphysical language. Talk of zoology is
of course grounded in cell biology, and cell biology in molecular physics, but
the entities of zoology cannot be discarded in favour of the austere ontology
of molecular physics alone. Rather, those entities are structures instantiated
within the molecular physics, and the task of almost all science is to study
structures of this kind.

Of which kind? (After all, “structure” and “pattern” are very broad terms:
almost any arrangement of atoms might be regarded as some sort of pattern.)
The tiger example suggests the following answer, which I have previously Wal-
lace (2003, p.93) called “Dennett’s criterion” in recognition of the very similar
view proposed by Daniel Dennett (Dennett 1991):

Dennett’s criterion: A macro-object is a pattern, and the ex-
istence of a pattern as a real thing depends on the usefulness —
in particular, the explanatory power and predictive reliability — of
theories which admit that pattern in their ontology.

Dennett’s own favourite example is worth describing briefly in order to show
the ubiquity of this way of thinking: if I have a computer running a chess
program, I can in principle predict its next move from analysing the electrical
flow through its circuitry, but I have no chance of doing this in practice, and
anyway it will give me virtually no understanding of that move. I can achieve
a vastly more effective method of predictions if I know the program and am
prepared to take the (very small) risk that it is being correctly implemented
by the computer, but even this method will be practically very difficult to use.
One more vast improvement can be gained if I don’t concern myself with the
details of the program, but simply assume that whatever they are, they cause
the computer to play good chess. Thus I move successively from a language of
electrons and silicon chips, through one of program steps, to one of intentions,
beliefs, plans and so forth — each time trading a small increase in risk for an
enormous increase in predictive and explanatory power.7

7It is, of course, highly contentious to suppose that a chess-playing computer really believes,
plans etc. Dennett himself would embrace such claims (see Dennett (1987) for an extensive
discussion), but for the purposes of this section there is no need to resolve the issue: the
computer can be taken only to ‘pseudo-plan’, ‘pseudo-believe’ and so on, without reducing
the explanatory importance of a description in such terms.
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Nor is this account restricted to the relation between physics and the rest
of science: rather, it is ubiquitous within physics itself. Statistical mechanics
provides perhaps the most important example of this: the temperature of bulk
matter is an emergent property, salient because of its explanatory role in the
behaviour of that matter. (It is a common error in textbooks to suppose that
statistical-mechanical methods are used only because in practice we cannot cal-
culate what each atom is doing separately: even if we could do so, we would be
missing important, objective properties of the system in question if we abstained
from statistical-mechanical talk.) But it is somewhat unusual because (unlike
the case of the tiger) the principles underlying statistical-mechanical claims are
(relatively!) straightforwardly derivable from the underlying physics.

For an example from physics which is closer to the cases already discussed,
consider the case of quasi-particles in solid-state physics. As is well known,
vibrations in a (quantum-mechanical) crystal, although they can in principle
be described entirely in terms of the individual crystal atoms and their quan-
tum entanglement with one another, are in practice overwhelmingly simpler to
describe in terms of ‘phonons’ — collective excitations of the crystal which be-
have like ‘real’ particles in most respects. And furthermore, this sort of thing
is completely ubiquitous in solid-state physics, with different sorts of excitation
described in terms of different sorts of “quasi-particle” — crystal vibrations are
described in terms of phonons; waves in the magnetisation direction of a fer-
romagnet are described in terms of magnons, collective waves in a plasma are
described in terms of plasmons, etc.

Are quasi-particles real? They can be created and annihilated; they can
be scattered off one another; they can be detected (by, for instance, scattering
them off “real” particles like neutrons); sometimes we can even measure their
time of flight; they play a crucial part in solid-state explanations. We have no
more evidence than this that “real” particles exist, and so it seems absurd to
deny that quasi-particles exist — and yet, they consist only of a certain pattern
within the constituents of the solid-state system in question.

When exactly are quasi-particles present? The question has no precise an-
swer. It is essential in a quasi-particle formulation of a solid-state problem
that the quasi-particles decay only slowly relative to other relevant timescales
(such as their time of flight) and when this criterion (and similar ones) are met
then quasi-particles are definitely present. When the decay rate is much too
high, the quasi-particles decay too rapidly to behave in any ‘particulate’ way,
and the description becomes useless explanatorily; hence, we conclude that no
quasi-particles are present. It is clearly a mistake to ask exactly when the decay
time is short enough (2.54 × the interaction time?) for quasi-particles not to
be present, but the somewhat blurred boundary between states where quasi-
particles exist and states when they don’t should not undermine the status of
quasi-particles as real, any more than the absence of a precise boundary to a
mountain undermines the existence of mountains.

One more point about emergence will be relevant in what follows. In a cer-
tain sense emergence is a bottom-up process: knowledge of all the microphysical
facts about the tiger and its environment suffices to derive all the tiger-level facts
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(in principle, and given infinite computing power). But in another sense it is
a top-down process: no algorithmic process, applied to a complex system, will
tell us what higher-level phenomena to look for in that system. What makes it
true that (say) a given lump of organic matter has intentions and desires is not
something derivable algorithmically from that lump’s microscopic constituents;
it is the fact that, when it occurs to us to try interpreting its behaviour in terms
of beliefs and desires, that strategy turns out to be highly effective.

3 Decoherence and quasiclassicality

We now return to quantum mechanics, and to the topic of decoherence. In this
section I will briefly review decoherence theory, in a relatively simple context
(that of non-relativistic particle mechanics) and in the environment-induced
framework advocated by, e. g. , Joos, Zeh, Kiefer, Giulini, Kubsch, and Stame-
tescu (2003) and Zurek (1991, 2003). (An alternative formalism — the “deco-
herent histories” framework advocated by, e. g. , Gell-Mann and Hartle (1990)
and Halliwell (1998) — is presented in the Introduction to this volume and in
Halliwell’s contribution to this volume.)

The basic setup is probably familiar to most readers. We assume that the
Hilbert space H of the system we are interested in is factorised into “system”
and “environment” subsystems, with Hilbert spaces HS and HE respectively —

H = HS ⊗HE . (1)

Here, the “environment” might be a genuinely external environment (such as
the atmosphere or the cosmic microwave background); equally, it might be an
“internal environment”, such as the microscopic degrees of freedom of a fluid.
For decoherence to occur, there needs to be some basis {|α〉} of HS such that
the dynamics of the system-environment interaction give us

|α〉⊗|ψ〉 −→ |α〉⊗|ψ;α〉 (2)

and
〈ψ;α|ψ;β〉 ' δ(α− β). (3)

on timescales much shorter than those on which the system itself evolves. (Here
I use α as a “schematic label”. In the case of a discrete basis δ(α − β) is
a simple Kronecker delta; in the case of a continuous basis, such as a basis of
wavepacket states, then (3) should be read as requiring 〈α|β〉 ' 0 unless α ' β.)
In other words, the environment effectively “measures” the state of the system
and records it. (The orthogonality requirement can be glossed as “record states
are distinguishable”, or as “record states are dynamically sufficiently different”,
or as “record states can themselves be measured”; all, mathematically, trans-
late into a requirement of orthogonality). Furthermore, we require that this
measurement happens quickly: quickly, that is, relative to other relevant dy-
namical timescales for the system. (I use “decoherence timescale” to refer to
the characteristic timescale on which the environment measures the system.)
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Decoherence has a number of well-known consequences. Probably the best-
known is diagonalisation of the system’s density operator. Of course, any den-
sity operator is diagonal in some basis, but decoherence guarantees that the
system density operator will rapidly become diagonal in the {|α〉} basis, inde-
pendently of its initial state: any initially non-diagonalised state will rapidly
have its non-diagonal elements decay away.

Diagonalisation is a synchronic result: a constraint on the system at all
times (or at least, on all time-intervals of order the decoherence timescale).
But the more important consequence of decoherence is diachronic, unfolding
over a period of time much longer than the decoherence timescale. Namely:
because the environment is constantly measuring the system in the {|α〉} basis,
any interference between distinct terms in this basis will be washed away. This
means that, in the presence of decoherence, the system’s dynamics is quasi-
classical in an important sense. Specifically: if we want to know the expectation
value of any measurement on the system at some future time, it suffices to know
what it would be were the system prepared in each particular |α〉 at the present
time (that is, to start the system in the state |α〉⊗|ψ〉 (for some environment
state |ψ〉 whose exact form is irrelevant within broad parameters) and evolve
it forwards to the future time), and then take a weighted sum of the resultant
values. Mathematically speaking, this is equivalent to treating the system as
though it were in some definite but unknown |α〉.

Put mathematically: suppose that the superoperator R governs the evolu-
tion of density operators over some given time interval, so that if the system
intially has density operator ρ then it has density operator R(ρ) after that time
interval. Then in the presence of decoherence,

R(ρ) =
∫

dα 〈α| ρ |α〉R(|α〉 〈α|). (4)

(Again: this integral is meant schematically, and should be read as a sum or an
integral as appropriate.)

And of course, quasi-classicality is rather special. The reason, in general,
that the quantum state cannot straightforwardly be regarded as a probabilistic
description of a determinate underlying reality is precisely that interference ef-
fects prevent the dynamics being quasi-classical. In the presence of decoherence,
however, those interference effects are washed away.

4 The significance of decoherence

It might then be thought — perhaps, at one point, it was thought — that de-
coherence alone suffices to solve the measurement problem. For if decoherence
picks out a certain basis for a system, and furthermore has the consequence that
the dynamics of that system are quasi-classical, then — it might seem — we can
with impunity treat the system not just as quasi -classical but straightforwardly
as classical. In effect, this would be to use decoherence to give a precise and
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observer-independent definition of the collapse of the wavefunction: the quan-
tum state evolves unitarily as long as superpositions which are not decohered
from one another do not occur; when such superpositions do occur, the quan-
tum state collapses instantaneously into one of them. To make this completely
precise would require us to discretize the dynamics so that the system evolves in
discrete time steps rather than continuously The decoherent-histories formalism
mentioned earlier is a rather more natural mathematical arena to describe this
than the continuous formalism I developed in section 3, but the result is the
same in any case: decoherence allows us to extract from the unitary dynam-
ics a space of histories (strings of projectors onto decoherence-preferred states)
and to assign probabilities to each history in a consistent way (i. e. , without
interference effects causing the probability calculus to be violated.

From a conceptual point of view there is something a bit odd about this
strategy. Decoherence is a dynamical process by which two components of
a complex entity (the quantum state) come to evolve independently of one
another, and it occurs due to rather high-level, emergent consequences of the
particular dynamics and initial state of our Universe. Using this rather complex
high-level process as a criterion to define a new fundamental law of physics is, at
best, an exotic variation of normal scientific practice. (To take a philosophical
analogy, it would be as if psychologists constructed a complex theory of the
brain, complete with a physical analysis of memory, perception, reasoning and
the like — and then decreed that, as a new fundamental law of physics (and not
a mere definition), a system was conscious if and only if it had those physical
features.8)

Even aside from such conceptual worries, however, a pure-decoherence so-
lution to the measurement problem turns out to be impossible on technical
grounds: the decoherence criterion is both too strong, and too weak, to pick out
an appropriate set of classical histories from the unitary quantum dynamics.

That decoherence is too strong a condition should be clear from the language
of section 3. Everything there was approximate, effective, for-all-practical-
purposes: decoherence occurs on short timescales (not instantaneously); it causes
interference effects to become negligible (not zero); it approximately diagonalises
the density operator (not exactly); it approximately selects a preferred basis (not
precisely). And while approximate results are fine for calculational shortcuts or
for emergent phenomena, they are most unwelcome when we are trying to de-
fine new fundamental laws of physics. (Put another way, a theory cannot be
99.99804% conceptually coherent.)

That it is too weak is more subtle, but ultimately even more problematic.
There are simply far too many bases picked out by decoherence — in the lan-
guage of section 3 there are far too many system-environment splits which give
rise to an approximately decoherent basis for the system; in the language of
decoherent histories, there are far too many choices of history that lead to
consistent classical probabilities. Worse, there are good reasons (cf Dowker and

8As it happens, this is not a straw man: David Chalmers has proposed something rather
similar. See Chalmers (1996) for an exposition, and Dennett (2001) for some sharp criticism.
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Kent (1996))to think that many, many of these histories are wildly non-classical.
What can be done? Well, if we turn away from the abstract presentation

of decoherence theory, and look at the concrete models (mathematical models
and computer simulations) to which decoherence has been applied, and if, in
those models, we make the sort of system/environment split that fits our natural
notion of environment (so that we take the environment, as suggested previously,
to be — say — the microwave background radiation, or the residual degrees of
freedom of a fluid once its bulk degrees of freedom have been factored out), then
we find two things.

Firstly: The basis picked out by decoherence is approximately a coherent-
state basis: that is, it is a basis of wave-packets approximately localised in both
position and momentum. And secondly: The dynamics is quasi-classical not
just in the rather abstract, bloodless sense used in section 3, but in the sense
that the behaviour of those wave-packets approximates the behaviour predicted
by classical mechanics.

In more detail: let |q, p〉 denote a state of the system localised around
phase-space point (q, p). Then decoherence ensures that the state of the sys-
tem+environment at any time t can be written as

|Ψ〉 =
∫

dq dpαq, p; t |q, p〉⊗|ε(q, p)〉 (5)

with 〈ε(q, p)|ε(q′, p′)〉 = 0 unless q ' q′ and p ' p′. The conventional (i. e. ,
textbook) interpretation of quantum mechanics tells us that |α(q, p)|2 is the
probability density for finding the system in the vicinity of phase-space point
(q, p).9 Then in the presence of decoherence, |α|2(q, p) evolves, to a good ap-
proximation, like a classical probability density on phase space: it evolves,
approximately, under the Poisson equations

d
dt

(
|α(q, p)|2

)
' ∂H

∂q

∂|α(q, p)|2

∂p
− ∂H

∂p

∂|α(q, p)|2

∂q
(6)

where H(q, p) is the Hamiltonian.
On the assumption that the system is classically non-chaotic (chaotic systems

add a few subtleties), this is equivalent to the claim that each individual wave-
packet follows a classical trajectory on phase space. Structurally speaking, the
dynamical behaviour of each wave-packet is the same as the behaviour of a
macroscopic classical system. And if there are multiple wave-packets, the system
is dynamically isomorphic to a collection of independent classical systems.

(Caveat : this does not mean that the wave-packets are actually evolving
on phase space. If phase space is understood as the position-momentum space
of a collection of classical point particles, then of course the wave-packets are

9At a technical level, this requires the use of phase-space POVMs (i. e. , positive opera-
tor valued measures, a generalisation of the standard projection-valued measures; see, e. g. ,
Nielsen and Chuang (2000) for details): for instance, the continuous family {N |q, p〉 〈q, p|} is
an appropriate POVM for suitably-chosen normalisation constant N . Of course, this or any
phase-space POVM can only be defined for measurements of accuracy ≤ h̄.
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not evolving on phase space. They are evolving on a space isomorphic to phase
space. Henceforth when I speak of phase space, I mean this space, not the “real”
phase space.)

So: if we pick a particular choice of system-environment split, we find a
“strong” form of quasi-classical behaviour: we find that the system is isomorphic
to a collection of dynamically independent simulacra of a classical system. We
did not find this isomorphism by some formal algorithm; we found it by making
a fairly unprincipled choice of system-environment split and then noticing that
that split led to interesting behaviour. The interesting behaviour is no less real
for all that.

We can now see that all three of the objections at the start of this section
point at the same — fairly obvious — fact: decoherence is an emergent process
occurring within an already-stated microphysics: unitary quantum mechanics.
It is not a mechanism to define a part of that microphysics. If we think of
quasiclassical histories as emergent in this way, then

• The “conceptual mystery” dissolves: we are not using decoherence to
define a dynamical collapse law, we are just using it as a (somewhat
pragmatic) criterion for when quantum systems display quasiclassical be-
haviour.

• There is nothing problematic about the approximateness of the decoher-
ence process: as we saw in section 2, this is absolutely standard features
of emergence.

• Similarly, the fact that we had no algorithmic process to tell us in a
bottom-up way what system-environment splits would lead to the discov-
ery of interesting structure is just a special case of section 2’s observation
that emergence is in general a somewhat top-down process.

Each decoherent history is an emergent structure within the underlying quantum
state, on a par with tigers, tables, and the other emergent objects of section 2
— that is, on a par with practically all of the objects of science, and no less real
for it.

But the price we pay for this account is that, if the fundamental dynam-
ics are unitary, at the fundamental level there is no collapse of the quantum
state. There is just a dynamical process — decoherence — whereby certain
components of that state become dynamically autonomous of one another. Put
another way: if each decoherent history is an emergent structure within the un-
derlying microphysics, and if the underlying microphysics doesn’t do anything
to prioritise one history over another (which it doesn’t) then all the histories
exist. That is: a unitary quantum theory with emergent, decoherence-defined
quasi-classical histories is a many-worlds theory.

5 Simulation or reality?

At this point, a skeptic might object:
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All you have shown is that certain features of the unitarily-evolving
quantum state are isomorphic to a classical world. If that’s true,
the most it shows that the quantum state is running a simulation of
the classical world. But I didn’t want to recover a simulation of the
world. I wanted to recover the world.

I rather hope that this objection is a straw man: as I attempted to illus-
trate in section 2, this kind of structural story about higher-level ontology (the
classical world is a structure instantiated in the quantum state) is totally ubiq-
uitous in science. But it seems to be a common enough thought (at least in
philosophical circles) to be worth engaging with in more detail.

Note firstly that the very assumption that a certain entity which is struc-
turally like our world is not our world is manifestly question-begging. How do
we know that space is three-dimensional? We look around us. How do we know
that we are seeing something fundamental rather than emergent? We don’t;
all of our observations (pace Maudlin, this volume) are structural observations,
and only the sort of aprioristic knowledge now fundamentally discredited in
philosophy could tell us more.

Furthermore, physics itself has always been totally relaxed about this sort
of possibility. A few examples will suffice:

• Solid matter — described so well, and in such accord with our obser-
vations, in the language of continua — long ago turned out to be only
emergently continuous, only emergently solid.

• Just as solid state physics deals with emergent quasi-particles, so — ac-
cording to modern “particle physics” — elementary particles themselves
turn out to be emergent from an underlying quantum field. Indeed, the
“correct” — that is, most explanatorily and predictively useful — way of
dividing up the world into particles of different types turns out to depend
on the energy scales at which we are working.10

• The idea that particles should be emergent from some field theory is
scarcely new: in the 19th century there was much exploration of the idea
that particles were topological structures within some classical continuum
(cf Epple (1998)), and later, Wheeler (1962) proposed that matter was
actually just a structural property of a very complex underlying space-
time. Neither proposal eventually worked out, but for technical reasons:
the proposals themselves were seen as perfectly reasonable.

• The various proposals to quantize gravity have always been perfectly
happy with the idea that space itself would turn out to be emergent.

10The best known example of this phenomenon occurs in quantum chromodynamics: treat-
ing the quark field in terms of approximately-free quarks works well at very high energies, but
at lower energies the appropriate particle states are hadrons and mesons; see, e. g. , Cheng
and Li (1984) and references therein for details. For a more mathematically tractable example
(in which even the correct choice of whether particles are fermionic or bosonic is energy-level-
dependent), see chapter 5 of Coleman (1985), esp. pp. 246–253.
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From Borel dust to non-commutative geometry to spin foam, program af-
ter program has been happy to explore the possibility that spacetime is
only emergently a four-dimensional continuum.11

• String theory, currently the leading contender for a quantum theory of
gravity, regards spacetime as fundamentally high-dimensional and only
emergently four-dimensional, and the recent development of the theory
makes the nature of that emergence more and more indirect (it has been
suggested, for instance, that the “extra” dimensions may be several cen-
timetres across12). The criterion for emergence, here as elsewhere, are
dynamical: if the functional integrals that define the cross-sections have
the approximate functional form of functional integrals of fields on four-
dimensional space, that is regarded as sufficient to establish emergence.

Leaving aside these sorts of naturalistic13 considerations, we might ask: what
distinguishes a simulation of a thing from the thing itself? It seems to me that
there are two relevant distinctions:

Dependency: Tigers don’t interact with simulations of tigers; they interact with the
computers that run those simulations. The simulations are instantiated
in “real” things, and depend on them to remain in existence.

Parochialism: Real things have to be made of a certain sort of stuff, and/or come about
in a certain sort of way. Remarkably tiger-like organisms in distant galax-
ies are not tigers; synthetic sparkling wine, however much it tastes like
champagne, is not champagne unless its origins and makeup fit certain
criteria.

Now, these considerations are themselves problematic. (Is a simulation of a
person themselves a person? — see (Hofstadter 1981) for more thoughts on
these matters). But, as I hope is obvious, both considerations are question-
begging in the context of the Everett interpretation: only if we begin with the
assumption that our world is instantiated in a certain way can we argue that
Everettian branches are instantiated in a relevantly different way.

6 How many worlds?

We are now in a position to answer one of the most commonly asked ques-
tions about the Everett interpretation,14 namely: how much branching actually
happens? As we have seen, branching is caused by any process which magnifies
microscopic superpositions up to the level where decoherence kicks in, and there
are basically three such processes:

11For the concept of Borel dust, see Misner, Thorne, and Wheeler (1973, p.1205); for refer-
ences on non-commutative geometry, see http://www.alainconnes.org/en/downloads.php; for
references on spin foam, see Rovelli (2004).

12For a brief introduction to this proposal, see Dine (2007, chapter 29).
13I use “naturalism” in Quine’s sense ((Quine 1969)): a naturalistic philosophy is one which

regards our best science as the only good guide to our best epistemology,
14Other than “and you believe this stuff?!”, that is.
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1. Deliberate human experiments: Schrödinger’s cat, the two-slit experiment,
Geiger counters, and the like.

2. “Natural quantum measurements”, such as occur when radiation causes
cell mutation.

3. Classically chaotic processes, which cause small variations in initial condi-
tions to grow exponentially, and so which cause quantum states which are
initially spread over small regions in phase space to spread over macro-
scopically large ones. (See Zurek and Paz (1994) for more details; I give
a conceptually oriented introduction in Wallace (2001).)

The first is a relatively recent and rare phenomenon, but the other two are ubiq-
uitous. Chaos, in particular, is everywhere, and where there is chaos, there is
branching (the weather, for instance, is chaotic, so there will be different weather
in different branches). Furthermore, there is no sense in which these phenom-
ena lead to a naturally discrete branching process. Quantum chaos gives rise to
macroscopic superpositions, and so to decoherence and to the emergence of a
branching structure, but that structure has no natural “grain”. To be sure, by
choosing a certain discretisation of (phase-)space and time, a discrete branching
structure will emerge, but a finer or coarser choice would also give branching.
And there is no “finest” choice of branching structure: as we fine-grain our
decoherent history space, we will eventually reach a point where interference
between branches ceases to be negligible, but there is no precise point where
this occurs. As such, the question “how many branches are there?” does not,
ultimately, make sense.

This may seem paradoxical — certainly, it is not the picture of “parallel
universes” one obtains from science fiction. But as we have seen in this chapter,
it is commonplace in emergence for there to be some indeterminacy (recall: when
exactly are quasi-particles of a certain kind present?) And nothing prevents us
from making statements like:

Tomorrow, the branches in which it is sunny will have combined
weight 0.7

— the combined weight of all branches having a certain macroscopic property is
very (albeit not precisely) well-defined. It is only if we ask: ”how many branches
are there in which it is sunny”, that we end up asking a question which has no
answer.

This bears repeating, as it is central to some of the arguments about prob-
ability in the Everett interpretation:

Decoherence causes the Universe to develop an emergent branching
structure. The existence of this branching is a robust (albeit emer-
gent) feature of reality; so is the mod-squared amplitude for any
macroscopically described history. But there is no non-arbitrary de-
composition of macroscopically-described histories into “finest grained”
histories, and no non-arbitrary way of counting those histories.
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(Or, put another way: asking how many worlds there are is like asking how
many experiences you had yesterday, or how many regrets a repentant criminal
has had. It makes perfect sense to say that you had many experiences or that he
had many regrets; it makes perfect sense to list the most important categories
of either; but it is a non-question to ask how many.)

If this picture of the world seems unintuitive, a metaphor may help.

1. Firstly, imagine a world consisting of a very thin, infinitely long and wide,
slab of matter, in which various complex internal processes are occurring
— up to and including the presence of intelligent life, if you like. In
particular one might imagine various forces acting in the plane of the
slab, between one part and another.

2. Now, imagine stacking many thousands of these slabs one atop the other,
but without allowing them to interact at all. If this is a “many-worlds
theory”, it is a many-worlds theory only in the sense of the philosopher
David Lewis (Lewis 1986): none of the worlds are dynamically in contact,
and no (putative) inhabitant of any world can gain empirical evidence
about any other.

3. Now introduce a weak force normal to the plane of the slabs — a force with
an effective range of 2-3 slabs, perhaps, and a force which is usually very
small compared to the intra-slab force. Then other slabs will be detectable
from within a slab but will not normally have much effect on events within
a slab. If this is a many-worlds theory, it is a science-fiction-style many-
worlds theory (or maybe a Phillip Pullman or C.S. Lewis many-worlds
theory15): there are many worlds, but each world has its own distinct
identity.

4. Finally, turn up the interaction sharply: let it have an effective range of
several thousand slabs, and let it be comparable in strength (over that
range) with characteristic short-range interaction strengths within a slab.
Now, dynamical processes will not be confined to a slab but will spread
over hundreds of adjacent slabs; indeed, evolutionary processes will not be
confined to a slab, so living creatures in this universe will exist spread over
many slabs. At this point, the boundary between slabs becomes epiphe-
nomenal. Nonetheless, this theory is stratified in an important sense:
dynamics still occurs predominantly along the horizontal axis and events
hundreds of thousands of slabs away from a given slab are dynamically
irrelevant to that slab.16 One might well, in studying such a system, di-
vide it into layers thick relative to the range of the inter-slab force — and
emergent dynamical processes in those layers would be no less real just
because the exact choice of layering is arbitrary.

15See, for instance, Pullman’s Northern Lights or Lewis’s The Magician’s Nephew.
16Obviously there would be ways of constructing the dynamics so that this was not the

case: if signals could easily propagate vertically, for instance, the stratification would be lost.
But it’s only a thought experiment, so we can construct the dynamics how we like.
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Ultimately, though, that a theory of the world is “unintuitive” is no argument
against it, provided it can be cleanly described in mathematical language. Our
intuitions about what is “reasonable” or “imaginable” were designed to aid our
ancestors on the savannahs of Africa, and the Universe is not obliged to conform
to them.

7 Conclusion

The claims of the Everett interpretation are:

• At the most fundamental level, the quantum state is all there is – quantum
mechanics is about the structure and evolution of the quantum state in
the same way that (e.g.) classical field theory is about the structure and
evolution of the fields.

• As such, the “Everett interpretation of quantum mechanics” is just quan-
tum mechanics itself, taken literally (or, as a philosopher of science might
put it, Realist-ically) as a description of the Universe. De Witt has been
widely criticized for his claim that ”the formalism of quantum mechanics
yields its own interpretation” (DeWitt 1970), but there is nothing mys-
terious or Pythagorean about it: every scientific theory yields its own
interpretation, or rather (cf David Deutsch’s contribution to this volume)
the idea that one can divorce a scientific theory from its interpretation is
confused.

• “Worlds” are mutually dynamically isolated structures instantiated within
the quantum state, which are structurally and dynamically “quasiclassi-
cal”.

• The existence of these “worlds” is established by decoherence theory.

No postulates about the worlds have needed to be added: the question of whether
decoherence theory does indeed lead to the emergence of a quasiclassical branch-
ing structure is (at least in principle) settled a priori for any particular quantum
theory once we know the initial state. It is not even a postulate that decoher-
ence is the source of all “worlds”; indeed, certain specialised experiments —
notably, some algorithms on putative quantum computers — would also give
rise to multiple quasiclassical worlds at least locally; cf. Deutsch (1997).17

17Since much hyperbole and controversy surrounds claims about Everett and quantum com-
putation, let me add two deflationary comments:

1. There is no particular reason to assume that all or even most interesting quantum
algorithms operate by any sort of “quantum parallelism” (that is: by doing different
classical calculations in a large number of terms in a superposition and then interfering
them). Indeed, Grover’s algorithm does not seem open to any such analysis. But Shor’s
algorithm, at least, does seem to operate in this way.

2. The correct claim to make about Shor’s algorithm is not (pace (Deutsch 1997)) that the
calculations could not have been done other than by massive parallelism, but simply
that the actual explanation of how they were done — that is, the workings of Shor’s
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I will end this discussion on a lighter note, aimed at a slightly different audi-
ence. I have frequently talked to physicists who accept Everett’s interpretation,
accept (at least when pressed!) that this entails a vast multiplicity of quasi-
classical realities, but reject the “many-worlds” label for the interpretation —
thhey prefer to say that there is only one world but it contains many non- or
hardly-interacting quasiclassical parts.

But, as I hope I have shown, the “many worlds” of Everett’s many-worlds
interpretation are not fundamental additions to the theory. Rather, they are
emergent entities which, according to the theory, are present in large numbers.
In this sense, the Everett interpretation is a “many-worlds theory” in just the
same sense as African zoology is a “many-hippos theory”: that is, there are enti-
ties whose existence is entailed by the theory which deserve the name “worlds”.
So, to Everettians cautious about the “many-worlds” label, I say: come on in,
the water’s lovely.
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Chapter 3

Chaos, decoherence, and

branching

Classicality simply does not follow “as ℎ̄→ 0” in most physically inter-
esting cases. . . The Planck constant is ℎ̄ = 1.05459× 10−27 erg s and —
licentia mathematica to vary it notwithstanding — it is a constant.

Wojciech Zurek and Juan Pablo Paz1

3.1 Emergent quasi-classicality in simple isolated

systems

In chapter 2, we saw how, in outline, the quasi-classical “worlds” of the Everett
interpretation emerge from the underlying quantum mechanics. They do so because

1. Certain quantum-mechanical histories of certain systems instantiate — simu-
late, if you like — a quasi-classical history.

2. Superpositions of those histories then instantiate multiple quasi-classical his-
tories — always assuming that interference between histories can be neglected.

The purpose of this chapter is to go from this rather hand-waving description of
emergence of worlds, to something much more quantitative and precise. We begin by
considering the textbook example of emergent quasi-classicality in quantum physics:
a single, isolated system whose characteristic action is large compared with ℎ̄.

1Zurek and Paz (1995b).
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Consider, therefore, a massive point particle of massm, moving in some potential
V (x). The Hamiltonian of this particle is then

Ĥ =
P̂

2

2m
+ V (X̂). (3.1)

Under what circumstances does this system behave approximately classically? That
is (in the language of chapter 2): under what circumstances does it instantiate a
classical dynamical system? There is a fairly standard answer: it does so when the
state of the system is a wave-packet, reasonably localised in position and momentum,
and when the centre of that wavepacket follows an approximately classical trajectory.
In fact, since we know from Ehrenfest’s theorem2 that the expectation values of P̂
and X̂ evolve in the same way as their classical counterparts, the former condition
— that the wave-packet remains localised — suffices to ensure the latter.

So far, so banal; but let us dwell on it a little longer. What justifies our re-
garding a localised wavepacket following an approximately classical trajectory as an
approximately classical state? Sometimes it can seem that some sort of tacit “hid-
den variable” theory is present: that the state is approximately classical because
the probabilities it predicts for particle location are highly peaked around a certain
classical trajectory. But this will not do, of course (at least, not unless we are actu-
ally trying to develop that hidden-variable theory!) Rather, the real reason that we
can regard the quantum state as approximately classical is that it is dynamically
isomorphic, very nearly, to a system of a classical point particle.

It may help to consider in more detail how that isomorphism works. We could
understand it in the position representation: the trajectory of the centre of a lo-
calised wave-packet defines a line in configuration space, and that line is (very nearly)
a solution to the classical dynamical equations for a mass-m point particle. It is
somewhat more perspicuous when viewed using one of the phase-space POVMs dis-
cussed in chapter 1: a wave-packet defines a small region (of area ∼ ℎ̄3) in phase
space via this method, and because its average phase-space position evolves clas-
sically (by Ehrenfest’s theorem) and its spread around that phase-space position
remains small, the trajectory followed by that small region is itself a solution to the
classical dynamical equations in Hamiltonian form. (I call this “more perspicuous”
because it makes transparent the fact that an instantaneous quantum state suffices
to pick out the corresponding classical trajectory; in the position representation the
needed momentum information is unhelpfully encoded in the phase structure of the
wavepacket.)

2For an account of Ehrenfest’s theorem, see Joos et al (2003, pp. 87–88) or any textbook dis-
cussion, such as Cohen-Tannoudji, Diu, and Laloë (1977, pp. 240–245), Sakurai (1994, pp. 84–87),
or Townsend (1992, pp. 153–156).
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In either case, both rules:

∣ ⟨x∣ ⟩ ∣2 ≃ 0 unless x ≃ q(t)

↔Wave-packet is centred at q(t)

↔ ∣ ⟩ instantiates classical particle with trajectory q(t) (3.2)

and
∣ ⟨ ∣ Π̂(q,p) ∣ ⟩ ≃ 0 unless (x,p0) ≃ (q,p)

↔Wave-packet is centred at (q,p)

↔ ∣ ⟩ instantiates classical particle at phase-space location (q,p)) (3.3)

ultimately pick out the same structure3 in the quantum system. Notice also that we
see again the emptiness of questions like “which is the correct phase-space POVM?
Within broad limits, any such POVM will succeed in picking out the structure we
are interested in (and, outside those broad limits, we simply are not using a POVM
which makes manifest that structure; it’s still there).

To see another important property of this emergent dynamics, let us consider a
particular (overcomplete) basis ∣q,p⟩ of wavepacket states centred at phase-space
point ∣q,p⟩, one of which is the actual wavepacket of the system. To a very good
approximation, then, if the phase-space point (q,p) evolves over time to (q(t),p(t))
then the corresponding quantum state evolves to ∣q(t),p(t)⟩ over the same period.
(Perhaps the wavepacket will spread out a little, so that it is not exactly any single
element of the basis, but (we are assuming that) it remains reasonably localised.)
This is a somewhat remarkable property of the phase-space basis: the dynamics
takes elements of the basis to other elements of the basis. Fairly clearly, this can
only occur exactly for an orthonormal basis in the trivial cases where that basis is
an eigenbasis of the Hamiltonian; in this case, though, the overcompleteness of the
basis (and, in most realistic situations, our willingness to settle for a very high but
not 100% level of precision) allows basis preservation and nontriviality to coexist.

Because of the property of basis preservation, the various classical histories in-
stantiated by different wave-packet states can coexist. To see this, suppose ∣ 1(t)⟩
and ∣ 2(t)⟩ each instantiate some classical history. The structures which make up

3Note for philosophers: I am helping myself here to something that was not actually developed
in chapter 2: namely, an identity criterion for structures. Something like “two structures are the
same when they are instantiated by precisely the same states of the instantiating theory” will
probably do, but in practice I am again happy to fall back on the fact that in practice we have
no trouble working out when two structures are really the same one differently described, and to
leave the task of making this precise to future work in general philosophy of science .
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those classical histories are, as we have seen, structures in the expectation values of
the phase-space POVMs, and so a superposition

∣Ψ(t)⟩ = � ∣ 1(t)⟩+ � ∣ 2(t)⟩ (3.4)

will instantiate both histories simultaneously provided that those structures are not
erased by interference between the terms in the superposition.

The particular expectation values in this case are

⟨Ψ(t)∣ Π̂(q,p) ∣Ψ(t)⟩ = ∣�∣2 ⟨ 1(t)∣ Π̂(q,p) ∣ 1(t)⟩+ ∣�∣
2 ⟨ 2(t)∣ Π̂(q,p) ∣ 2(t)⟩

+2Re
(
�∗� ⟨ 1(t)∣ Π̂(q,p) ∣ 2(t)⟩

)
(3.5)

The first two terms are simply the weighted sum of the two expectation values of the
original structures. The third term — the interference term — will vanish, to a very
good approximation, at all times, because if ∣ 1(t)⟩ and ∣ 2(t)⟩ are instantiating
different quasi-classical histories in the way described above, they will be localised
at different phase-space points at all times (this is basis preservation in action:
a superposition of two orthogonal terms in the basis will forever after remain a
superposition of two orthogonal terms in the basis). So we are just left with the first
two terms, and with the observation that the expectation values of the phase-space
POVMs have the structure of two independent, non-interacting classical worlds.

Notice that it is not merely the linearity of quantum mechanics which allows us
to interpret superpositions as instantiating multiple structures.4 Rather, it is the
disappearence of interference terms between the relevant terms in those superposi-
tions. Basis preservation is a sufficient condition for this to occur; as we will shortly
see, it is not a necessary condition.

So: in this simple model, we seem to have achieved emergent classicality —
and to have achieved it in a way which leads to superpositions representing multiple
quasi-classical worlds. Furthermore, nothing we did really relied on the system being
a single particle: generalising to a system with N degrees of freedom, with some
Hamiltonian like

Ĥ =
∑

i

1

2mi

P̂
2

i + V (Q̂1, . . . Q̂n) (3.6)

is straightforward. (In realistic cases the degrees of freedom will normally be grouped
into triples, of course, given the three-dimensional5 nature of the universe we live

4Notwithstanding the overly simplistic claims of Wallace (2003a).
5A worry: is it really three-dimensional, given that the theory seems to be about the quantum

state and not about entities in space at all? I address this question in chapter 8 of Wallace
(2010c); for now, it suffices to note that the theory is emergently three-dimensional, that the
emergent classical dynamics that it instantiates is on three-dimensional space.
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in). Localised wavepackets of this system will now pick out trajectories in a high-
dimensional space, and these trajectories will instantiate the dynamics of a classical
theory with N degrees of freedom. Superficially, this seems to be everything that
Everett-interpreted quantum mechanics needs.

We shall see shortly that in fact this account has a number of conceptual prob-
lems. However, there is a technical problem that is at least as severe: namely, we
are relying on the assumption that the wave-packets of isolated macroscopic systems
do, indeed, remain in fairly-well-localised states whose trajectories satisfy classical
dynamics. As we shall see, things are not actually that simple.

3.2 Dynamical properties of isolated quantum sys-

tems

In this section I want to investigate how initially-localised quantum states actually
do behave under different Hamiltonians. We can consider this under fairly general
conditions: we will assume that the system has N degrees of freedom and that its
Hamiltonian is of the form of equation 3.6: that is, the sum of a term in Q̂1, . . . Q̂N

and of a quadratic term in each P̂ i. For convenience I will just write (q, p) to encode
the 2N position and momentum coordinates in the system’s phase space.

As we saw in Box 1.1, given a set of coherent (wave-packet) states ∣q, p⟩, each
one representing a Gaussian wavepacket localised around q in position space and
p in momentum space, then the set of (improper) operators ∣q, p⟩ ⟨q, p∣ provides a
satisfactory phase-space POVM for the system. It follows that the function

H (q, p) = ∣ ⟩ ⟨q, p∣ ∣q, p⟩ ⟨ ∣ (3.7)

(known as the Husimi function) expresses the phase-space structure of the quantum
state ∣ ⟩. It can further be shown that, given the Husimi function, the state vector
can be recovered (up to phase).6

Because the Husimi function is somewhat cumbersome to track, however, it will
be useful to set out an alternative way of representing the phase-space structure of
the state: the so-called Wigner function 7

W (q, p) =
1

�N/2

∫
dy e−y

2/4�2

eipy ⟨q−y/2∣ � ∣q+y/2⟩ , (3.8)

6The Husimi function was first introduced in Husimi (1940); see Hillery et al (1984) for a review
of its properties.

7The Wigner function was first introduced in Wigner (1932) and explored further by Moyal
(1949); see citeNhilleryetal for a review of its properties.
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which is related to the Husimi function by

H(q, p) =
1

�N/2

∫
dq′ dp′ e−(q−q

′)2/�2

e−(p−p
′)2/�2

W (q′, p′). (3.9)

(That is, the Husimi function is obtained from the Wigner function by smearing it
over a small region of phase space.)

It is sometimes said that the Wigner function “is not a probability distribution
because it is not positive definite”. This is misleading at best. It is indeed the
case that the Wigner function is not guaranteed to be nonnegative, but the deeper
reason why it is not a probability distribution is that (at the risk of being repetitive),
if“phase space” means “space representing the positions and momenta of all the
particles”, then there is no phase space in quantum mechanics (except emergently),
and the Husimi function, positive definite though it may be, is no more a probability
distribution on phase space than the Wigner function. The only reason for using
these “phase space” representations of the state at all is that we are interested in the
emergent quasi-classical structures within the state, and these structures are most
perspicuously identifiable in the phase-space representation.

The Wigner function is computationally somewhat more tractable than the
Husimi function (being obtained rather more straightforwardly from the position
representation of the state): its dynamics can be expressed in closed form as

Ẇ = {H,W}MB ≡
2i

ℎ̄
sin

(
ℎ̄

2i
{⋅, ⋅}PB

)
⋅ (H,W ), (3.10)

where {⋅, ⋅}PB is the classical Poisson bracket and {⋅, ⋅}MB is known as the Moyal

bracket (Moyal 1949). Less compactly but more illuminatingly, we can expand (3.10)
as

Ẇ = {H,W}PB +
ℎ̄2

24

∂3V

∂q3
∂3W

∂p3
+O(ℎ̄4). (3.11)

showing that the quantum dynamics is the classical dynamics plus correction terms
in successively higher powers of ℎ̄2. This seems very reassuring: as ℎ̄ → 0, we
revert to classical dynamics. But as Zurek and Paz reminded us in the quotation
at the start of this chapter, this formal mathematical limit is not directly physically
relevant: what matters for emergent classicality is the behaviour of macroscopic
systems for fixed ℎ̄.

The simplest such system is a free particle in one dimension. For this system, the
higher-order terms in the Moyal bracket vanish, and classical dynamics holds exactly.
The spread of a wavepacket in this situation is then a purely classical phenomenon:
if the wavepacket has position spread Δq (and thus momentum spread at least
∼ ℎ̄/Δq), over a time t the part of the packet with momentum p+ ℎ̄/Δq will travel
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a distance ℎ̄t/mΔq further than the part with momentum p, and so the position
spread will increase to Δq + ℎ̄t/mΔq. Over a time t, then, the minimum size that
a packet will obtain is

Δq(t) ∼

√
ℎ̄t

m
. (3.12)

Not only does this decrease to zero as ℎ̄ → 0, it does so satisfactorily fast. An
invisibly small dust mote, for instance (ten microns across, say, with a mass of
∼ 10−12kg) , if evolving freely, could be prepared in a wavepacket state that remained
of width ≤ 1cm for the age of the Universe; a bowling ball with a mass of ∼ 1kg,
could be similarly prepared in a state that remained of width ≤ 10−8m.

No real systems are entirely free, of course; but some real systems (sometimes
called regular) share with free systems the property that phase-space distributions
spread out at a rate linear in time. For these systems, (3.12) will remain a fairly
good approximation for the minimum achievable spread of a classical distribution of
area ∼ ℎ̄. (I continue to work in one dimension for convenience; the generalisation
is straightforward). Furthermore, the classical spread will be a good approximation
to the quantum spread as long as the higher terms in the Moyal bracket are small.
The first such term, evaluated for a wavepacket of initial size Δq, will be of order

ℎ̄2V
′′′

(q)×

(
1

Δp

)3

∼ ℎ̄1/2V
′′′

(q)(Δq)3. (3.13)

Again, this goes to zero as ℎ̄ → 0; again, it does it sufficiently quickly that, for
systems of micron size or above, quantum corrections are utterly negligible.

So: regular, isolated systems do indeed instantiate quasi-classical dynamics if
they are above a certain size. Unfortunately, most Hamiltonians do not give rise to
regular dynamics. Much more commonly, a system is chaotic: phase-space regions
in such systems spread out exponentially, not linearly. (Or, more accurately: they
spread out exponentially in some directions and contract exponentially in others,
so as to conserve phase-space volume.) In such a system, the spread of a classical
packet of initial width Δq (and so of a quantum wavepacket of width Δq, as long
as classical dynamics remains approximately valid for it) will be of the form8

Δq(t) ≃ et/�LΔq (3.14)

where �L is the so-called Lyapunov exponent.9 Since the wavepacket cannot be dra-
matically narrower than (3.12) on pain of being so delocalised in momentum space

8The results in this section are based on results in Berry and Balzas (1979), Zurek and Paz
(1995a) and Zurek and Paz (1994).

9In the classical theory of chaos, a system is chaotic if (roughly) infinitesimally close points in
phase space diverge exponentially in some directions; the Lyapunov exponent is the timescale of
this exponential divergence. See (e. g. ) Cvitanović et al (2009) for a formal definition.
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that it rapidly spreads out anyway, a crude estimate for the minimum achievable
wavepacket spread after time t is

Δq(t) ∼ et/�L

√
ℎ̄t

m
; (3.15)

equivalently, we have

lnΔq(t) ∼
t

�L
+ ln

(
ℎ̄t

m

)
=

t

�L
+ ln

(
ℎ̄�L
m

)
+ ln

(
t

�L

)
(3.16)

or

lnΔq(t) ∼
t

�L
+ ln

(
ℎ̄t

m

)
(3.17)

in the regime where t≫ �L. If the packet becomes so spread that it samples regions
of appreciably different potentials, it certainly will no longer instantiate a classical
trajectory, so a criterion for emergent classicality (at least of the form we have so
far discussed) is that Δq(t) remains below the lengthscale on which this happens.
Writing this lengthscale as L, we find that classicality fails once

t ≥ �L ln
(
Lm

ℎ̄�L

)
. (3.18)

The good news is: t does go to infinity as ℎ̄ → 0. The bad news is: thanks to
the logarithm in (3.18), it does so alarmingly slowly. Suppose that our dust mote
(mass ∼ 10−12 kg) is experiencing chaotic dynamics with a Lyapunov timescale of
∼ 10 seconds in a region where the potential varies on a scale of ∼ 10cm. (These
numbers are off the top of my head; the logarithm means that (3.18) is enormously
insensitive to the details.) Then classicality fails when

t ≥ 10 s× ln 1022. (3.19)

The logarithm of 1022 is about 50, so the system will cease to behave classically
after about 500 seconds. This is uncomfortably short compared with, say, the age of
the Universe. Nor does the problem go away for still larger systems. To borrow an
example from Zurek and Paz (1995a), Saturn’s moon Hyperion tumbles chaotically
in its orbit on a Lyapunov timescale of about 20 days. Hyperion weighs ∼ 1020 kg
and is ∼ 105 m in size, so (if treating it as an isolated system were appropriate) its
wavefunction would become highly nonclassical once

t ≥ 20 days× ln 1064 ∼ 10 yrs. (3.20)
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Since we are discussing a supposed many-worlds theory, one tempting idea is to
say: this spreading out of the quantum state is exactly the branching of worlds that
we were expecting to find. Whether or not this is conceptually appropriate, though
(more on this later), it fails on technical grounds in this case, for presumably a
necessary condition for the idea is that the phase-space distribution defined by the
quantum state — localised or no — continues to follow, approximately, the classical
dynamics. If not, the various parts of the wavefunction cannot suffice to instantiate
dynamically independent worlds. And it turns out that classical dynamics, too,
fail for chaotic systems. For consider the correction term (3.13), the leading-order
correction to the classical dynamics. This term grows as 1/(Δp)3. But — thanks
to the conservation of phase-space volume — generically we would expect Δp to
shrink exponentially as Δq grows. (Chaos generally “fibrillates” systems, turning
compact regions into long, thin ones.) In this case, the correction term will also
grow exponentially, and so on a timescale which increases logarithmically with 1/ℎ̄,
but will in general still be uncomfortably short, we would expect classical dynamics
to fail for the system’s Wigner function.

To conclude: chaotic, isolated, unitarily evolving quantum systems cannot ap-
proximate classical ones on acceptably long timescales.

3.3 The need for decoherence

Leaving aside for the moment the technical problems with chaotic isolated systems,
there remain severe conceptual problems with the naive recovery of quasi-classicality
which was sketched in section 3.1. For a start, notice that we found the emergent
structure in the quantum state not by any principled means, but by our pre-existing
intuitions that those variables which we call “position” and “momentum” would
indeed turn out to function like classical position and momentum. We might worry
that, in fact, this supposed “structure” is an artefact of our choosing those variables,
and that we might have found similar results in any number of alternative ways.

I think that this is more of a “niggling doubt” than it is a real worry. As chapter
2 stressed, emergent properties cannot be deductively found by applying any sort
of algorithm to the instantiating theory (the fact that biology is instantiated by
molecular physics is something we realised after the fact, not something we deduced
from physics). If quasi-classical dynamics are present, then this is a real, objective
fact about the system. Nonetheless, it would be more satisfactory if we were able
to gain a better understanding of why the structures we seek are instantiated in the
phase-space basis.

A much more serious reason to be unsatisfied is that we have assumed, with-



Chapter 3 Chaos, decoherence, and branching 60

out any justification, that the system we are studying — consisting, recall, of the
macroscopic degrees of freedom of some isolated system — can indeed be considered
as isolated. For a system such as a rigid body, we know (from the translational in-
variance of the global Hamiltonian) that the centre-of-mass degrees of freedom are
dynamically independent of the internal degrees of freedom, but we have no reason
to assume that those centre-of-mass degrees of freedom are dynamically isolated
from other systems. And in more general cases we cannot even neglect the internal
degrees of freedom — in a fluid, for instance, the macroscopic coordinates would
normally be taken to be spatial averages of fluid density and momentum over small
regions, but there is no reason at all to suppose that those coordinates are dynami-
cally independent of the remaining coordinates (no reason except, perhaps, classical
intuition — but to invoke that would be to beg the question.) Indeed, even in the
case of the “rigid body” we do not escape such worries — the very claim that the
body is “rigid” cannot be taken as primitive, but must be regarded as something
which ought to be derivable from the underlying physics of its constituents.

A further concern is that, if quantum systems always behave approximately
classically, we would not have needed quantum mechanics! Obviously our theory
must accommodate situations — such as quantum measurements — where classi-
cal mechanics breaks down even at the macroscopic scale. In these situations, we
have as yet no solid reason to expect the “branching” behaviour which the Everett
interpretation claims is the correct description of measurement.

To summarise, the main problems with directly reading off quasi-classical struc-
ture from the dynamics of isolated macroscopic systems are:

1. It is inaccurate, or at least question-begging, to treat the macroscopic degrees
of freedom of a system as dynamically isolated from its residual degrees of
freedom.

2. In chaotic systems, it is simply false that the system has any states which
behave quasi-classically over acceptably long timescales.

3. In situations like quantum measurements where the dynamics are not even ap-
proximately classical, we have no reason to assume that a macroscopic quan-
tum system remains treatable as a collection of non-interacting quasi-classical
systems.

As we will see in the remainder of this chapter, all of these problems are satisfac-
torily solved once decoherence — the interaction of a system’s macroscopic degrees
of freedom with its internal and external environments — is properly allowed for.10

10There is a terminological issue here. Some authors (such as Wojciech Zurek, Erich Joos, and
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Furthermore, this section’s “niggling doubt” is also at least partially assuaged: de-
coherence provides at least a substantial part of the answer to the question of why it
is the quasi-classical degrees of freedom which instantiate the interesting structures
in macroscopic quantum systems.

3.4 Environment-induced decoherence: a simple

model

“Decoherence” is the process by which the environment of a system continually
interacts with, and becomes entangled with, that system. Its most well-known
property is the suppression of coherence in coherent superpositions of states in that
basis — hence the name — but, as we will see, its real significance is much greater.
However, suppression of coherence is a convenient way to begin our investigations.11

Let us begin by considering a simple model: suppose that we have two one-
particle systems, the first much heavier than the other and that the first system is
prepared in a superposition of two localised wavepackets separated from one another
by some distance large compared to the packet width. That is: let the first system
be in state

∣ ⟩ = � ∣ q1⟩+ � ∣ q2⟩ (3.21)

where ∣ qi⟩ is localised around qi, and suppose for simplicity that ∣ ⟩ is stationary
on relevant timescales. And suppose that the Hamiltonian of the system contains
some interaction term

Ĥ int = V (X̂ − x̂) (3.22)

where X̂ and x̂ are the position operator of the first and second particles respectively.

H. Dieter Zeh) use “decoherence” to mean specifically an environment-induced process. Others
(such as Jonathan Halliwell, James Hartle and Murray Gell-Mann) use ‘decoherence’ to mean
any process by which interference between quasi-classical histories is suppressed: to them, then,
the evolution of the isolated regular system in section 3.1 is also decoherent. Halliwell (2010), in
fact, calls this sort of decoherence “conservation-induced decoherence”, and distinguishes it from
“environment-induced decoherence”. In this thesis, I largely follow the former authors’ terminology,
writing just ‘decoherence’ where Halliwell would write “environment-induced decoherence”; I do,
however, follow standard terminology in referring to a history space (as discussed in section 3.8
and subsequently) as decoherent in the event that its decoherence functional vanishes.

11Here and subsequently I draw extensively on the discussions of decoherence by Zurek (1991,
1998, 2003), Joos et al (2003) and Schlosshauer (2007), and while my models and analyses are in
many cases not explicitly lifted from any single source, I claim no particular originality for any of
them.
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If one of � or � is zero, then to a very good approximation this problem reduces
to a standard piece of scattering theory: the second particle is scattering off a
scattering centre at x = qi, and (again, to a very good approximation) the first
particle does not change at all. (See box 3.4 for a proof of this.)

So the dynamics is
∣ qi⟩⊗∣�0⟩ −→ ∣ qi⟩⊗

∣∣∣�+
i

〉
(3.31)

where
∣∣∣�+

i

〉
is some post-scattering state: for instance, if ∣ 0⟩ was a plane wave

or nearly so, then
∣∣∣�+

i

〉
will be a superposition of a plane wave with an outgoing

spherical wave centred on qi. By the linearity of the Schrödinger equation, then, the
general evolution has the form

∣ ⟩⊗∣�0⟩ −→ � ∣ q1⟩⊗
∣∣∣�+

1

〉
+ � ∣ q2⟩⊗

∣∣∣�+
2

〉
. (3.32)

That is: in the case where the first particle is in a superposition, but not in the
case where it is not, the scattering interaction causes the two particles to become
entangled. We might even say (though nothing hangs on this way of talking) that
the second particle has measured the position of the first.

The level of entanglement can be quantified by considering the density operator
for the first particle in the ∣ qi⟩ basis. If we idealise it as having exactly two possible
position states, ∣ q1⟩ and ∣ q1⟩, then tracing over equation 3.32 tells us that the first
particle’s density operator evolves like

�0 = ∣�∣
2 ∣ q1⟩ ⟨ q1 ∣+ ∣�∣

2 ∣ q2⟩ ⟨ q2 ∣+ �∗� ∣ q2⟩ ⟨ q1 ∣+ �∗� ∣ q1⟩ ⟨ q2 ∣

=⇒ �+ = ∣�∣2 ∣ q1⟩ ⟨ q1 ∣+∣�∣
2 ∣ q2⟩ ⟨ q2 ∣+�

∗�
〈
�+
1 ∣�

+
2

〉
∣ q2⟩ ⟨ q1 ∣+�

∗�
〈
�+
2 ∣�

+
1

〉
∣ q1⟩ ⟨ q2 ∣

(3.33)
or, in matrix form,

�0 =

(
∣�∣2 ��∗

�∗� ∣�∣2

)
−→ �+ =

⎛
⎝ ∣�∣2 ��∗

〈
�+
2 ∣�

+
1

〉

�∗�
〈
�+
1 ∣�

+
2

〉
∣�∣2

⎞
⎠ . (3.34)

The off-diagonal terms provide a measure of the coherence between the two possible
positions of the first particle: when they have magnitude equal to ∣�∗�∣, the first
particle is in a pure state and so not at all entangled with the second particle; if they
are equal to zero, then the entanglement is maximal (and, if we apply the quantum
measurement algorithm, the first particle’s state cannot be empirically distinguished
from a probabilistic mixture of the two positions.)

Hence, if the scattering is very weak, or if the wavelength of the incoming particle
is large compared with q2 − q1, then

〈
�+
2 ∣�

+
1

〉
≃ 1, and the systems become only
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Box 3.1: Scattering of light particles off heavy ones

If two interacting particles have position operators X̂1 and X̂2 and Hamiltonian

Ĥ =
1

2m1

P̂
2

1 +
1

2m2

P̂
2

2 + V (X̂2 − X̂1), (3.23)

we define the centre-of-mass coordinates by

R̂ =
m1

M
X̂1 +

m2

M
X̂2; r̂ = X̂2 − X̂1 (3.24)

where M = m1 +m2 is the total mass of the system, and the conjugate momenta
by

P̂ = P̂ 1 + P̂ 2; p̂ = �

(
P̂ 2

m2

−
P̂ 1

m1

)
(3.25)

where � = m1m2/(m1 + m2) is the reduced mass. It is then easy to verify that
[r, P ] = [R, p] = 0 and [r, p] = [R,P ] = iℎ̄, and that the Hamiltonian can be
rewritten as

Ĥ =
1

2M
P̂

2
+

1

2�
p̂2 + V (r̂); (3.26)

in other words, the system is mathematically equivalent to the tensor product of a
free particle with mass M and a particle with mass � interacting with a scattering
centre at the origin.
We now shift to the position basis. If Ψ(x1, x2; t) is the system’s wavefunction, we
will suppose that at time 0 it is factorised:

Ψ(x1, x2; 0) =  (x1)�(x2); (3.27)

in the centre-of-mass coordinates, then, this is

Ψ(R, r; 0) =  (R−m2r/M)�(R +m1r/M). (3.28)

We now assume that M ≫ m. Then to a very good approximation, m2/M = 0,
m1/M and we have

Ψ(R, r; 0) ≃  (R)�(R + r). (3.29)

If we further assume that  is tightly localised around R = q then we can approxi-
mate this as

Ψ(R, r; 0) ≃  (R)�(q + r) : (3.30)

that is, the wavefunction factorises. Since there is no interaction between q and R,
this remains the case over time: � evolves as if scattering from a centre at r = −q,
and  remains stationary (and, inter alia, justifies our continuing to assume it to be
tightly peaked around R = q). Reversing the coordinate transformation at the end
of the interaction process gives us our result.
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slightly entangled. At the other extreme, if ∣ ⟩ is highly localised, incident on q1,

and strongly scattered, then
〈
�+
2 ∣�

+
1

〉
≃ 0, and entanglement is almost maximal.

So: prepare a heavy particle in a macroscopic superposition and expose it to
a scattering environment, and that environment will become entangled with the
particle, causing the coherence between the terms in the superposition to decay. If
the environment consists of short-wavelength particles which interact strongly with
the system, the coherence will be completely lost after a single scattering event.
Even if the environment is not so constituted, sufficiently many scattering events
will still suffice to remove the coherence: it can be shown (Joos et al 2003, pp. 64–67)
that the rate is approximately

⟨q1∣ �(t) ∣q2⟩ = ⟨q1∣ �(0) ∣q2⟩ exp [−Λt(q1 − q2)] (3.35)

where
Λ ∼ k2F�, (3.36)

where k is the wavenumber, F the incoming particle flux, and � is the interaction
cross-section.

In fact, it is by now well known that in realistic situations, coherence is lost very,
very quickly. For a one-micron dust particle, the value of Λ due to the atmosphere
is 1036; the value due to sunlight is 1021; even the value due to the cosmic back-
ground radiation is 106. The rates for larger objects are correspondingly more rapid:
Schroödinger’s cat, for instance, would endure in a coherent macroscopic superpo-
sition for only ∼ 10−35 seconds before the microwave background radiation — let
alone the atmosphere — sufficed to destroy the coherence. (Of course, absent some
non-unitary dynamical process of a kind for which we have no evidence, the cat-
plus-environment system remains in a superposition of live-cat and dead-cat states.
Decoherence, alone, does not solve the measurement problem.)

Furthermore, although these examples all involve an external environment, there
is no need to make this restriction. There is, in fact, every reason to think that the
microscopic degrees of freedom of even an isolated system suffice to destroy coherence
between macroscopic superpositions of that systems macroscopic degrees of free-
dom.12The upshot, in either case, is that for systems above quite small lengthscales,
coherent superpositions of states with macroscopically distinct positions rapidly be-
come entangled with their environment. Conversely, though, if a macroscopic system

12For a concrete model, consider a solid-state system — a crystal, say — which is approximately
but not exactly harmonic. The macroscopic degrees of freedom of the system correspond to the
long-wavelength phonons; these will be decohered by scattering off the short-wavelength phonons
in qualitatively the same way that massive particles are decohered by scattering off light particles.
(Systems like this will also, in general, behave quasi-classically even absent the anharmonic terms,
for the reasons explained in sections 3.1–3.2: they are regular. See Halliwell (1998, 2010) for a
detailed analysis.)
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is prepared in a state highly localised in spatial position, very little entanglement
will occur.

3.5 Environment-induced decoherence: further de-

tails

So far we have been ignoring the dynamics of the system itself. Qualitatively,
though, it is easy to see — at least, for regular systems — how this dynamics will
proceed. Systems prepared in superpositions of macroscopically different positions
will decohere on timescales much more swift than their characteristic dynamical
timescales. Systems prepared in superpositions of macroscopically different mo-

mentums will quickly evolve into states with macroscopically different positions,
and these too will swiftly decohere. But if the system is prepared in a state which
is approximately localised in both position and momentum, then this state will un-
dergo very little decoherence, and will simply be able to evolve under the system’s
own Hamiltonian. Since we already know that that evolution takes localised states
to localised states — again, for regular systems — then this evolution will continue
to be unaffected by decoherence.

Purely phenomenologically it is fairly straightforward to write down dynamical
equations for the density operator of a decohering system: the exponential decay in
equation (3.35), in particular, is generated by the equation13

�̇ = −Λ[X, [X, �]], (3.37)

which suggests the equation

�̇ = −i[H, �]− Λ[X, [X, �]]. (3.38)

A microphysical derivation of such an equation would require a specific model for
the environment, and a number of such models have been analysed. One of the
most well-studied is the Caldeira-Leggett model14 in which a particle interacts lin-
early with an environment of harmonic oscillators; under appropriate simplifying
conditions15, this model yields an equation of the form

�̇ = −i[Ĥ +
1

2
mΩ2X̂

2
, �]− �kBTΛ[X̂, [X̂, �]]− i

�

2m
[X̂, {P̂ , �}] (3.39)

13For further discussion of this expression see Joos et al (2003, pp. 64-75) and references therein.
14The Caldeira-Leggett model was first analysed in Caldeira and Leggett (1983); see Schlosshauer

(2007, pp. 71–74) for a discussion.
15The “appropriate simplifying conditions” are a nice example of the way theoretical physics

works in practice. One of the assumptions is that the system’s internal dynamics are harmonic —
that is, that the internal potential is quadratic — and this is clearly much too strong to rigorously
justify applying the Caldeira-Leggett equation to, e. g. , chaotic systems. On the other hand, any
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Equations derived from different environments have the same general form, consist-
ing of:

1. The system’s unitary dynamics (which, generically, will turn superpositions in
momentum into superpositions in position via wave-packet spreading)

2. A decoherence term which suppresses superpositions in the position basis

3. A dissipation term (the last term in the Caldeira-Leggett equation) corre-
sponding to classical friction

4. A renormalisation term (the term proportional to Ω2 in the Caldeira-Leggett
equation).

In situations of the sort discussed earlier — a macroscopic system interacting rel-
atively weakly with a microscopic environment — the dissipation and renormalisa-
tion terms are negligible compared with the other two terms, and the decoherence
term suppresses macroscopic superpositions very quickly relative to the dynamical
timescale of the unitary term.

In the Wigner-function representation, and ignoring renormalisation and dissi-
pation, the Caldeira-Leggett equation (and, as noted, most realistic equations for
decoherent systems) takes the form [p. 304](Zurek and Paz 1995a)

Ẇ = {H,W}MB + Λ
∂2W

∂p2
. (3.40)

It can readily be seen that the decoherence term is a diffusion term, which will
cause W to spread out as long as it is sufficiently localised in momentum. For
regular systems, this term will normally be negligible for quasi-classical states: the
spread of such states in momentum space is such that the diffusion term is almost
irrelevant.

Things are interestingly different for chaotic systems. Recall that for such sys-
tems, the fact that the system begins in a phase-space-localised state is insufficient
to ensure that it remains in such a state. Instead, a state initially localised will

potential is approximately quadratic as long as we remain confined to a sufficiently small region
of it. So, provided we are entitled to assume that the system is never in a coherent superposition
which is large compared with the lengthscales on which the potential deviates from quadradicity, we
can derive the equation on the basis of a quadratic potential. And what justifies this assumption?
Earlier, qualitative arguments, of the form described above. The self-consistency of the whole
thing can be seen when it is noted that Caldeira-Leggett dynamics do indeed suppress coherent
superpositions on the required lengthscale. Philosophers of science take note: theoretical physics
does this sort of thing all the time, and naturalistically inclined philosophers should be fine with
this.
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begin to spread out — and, as soon as it starts to spread out, the diffusion term will
come into play (i. e. , the state will start to become entangled with its environment),
so that the pure delocalised state becomes replaced by a mixed state which is an
incoherent superposition of localised states. Each of these states will spread out
under the chaotic dynamics, and so will be decohered in their turn . . . and so on.
At any given time, the density operator of the system will be a weighted sum of
localised states, and because of the constant decoherence, each such state will evolve
independently of all the others, even though it is constantly splitting into multiple
states. So in the case of chaos, “worlds” — that is, emergent quasi-classical systems
— are constantly splitting from one another.

Notice that the irreversibility induced by decoherence is of a very different char-
acter from that which would be induced by the dissipative term: there is no energy
loss, no deviation from isolated classical dynamics on long lengthscales, and the
process can occur — and occur extremely quickly — in cases where dissipation
is negligible. (Consider Jupiter, for instance: the interstellar medium decoheres
Jupiter essentially instantly, but friction between the medium and Jupiter is dy-
namically utterly irrelevant.) Nonetheless, decoherence is an irreversible process,
and so the usual questions arise as to how this is compatible with an underlying
reversible dynamics. I address this question in chapter 9 of Wallace (2010c); see
Schlosshauer (2007, pp9̇3–95) for more on the contrast between decoherence and
dissipation.

3.6 Decoherent histories

Let us take stock. In section 3.3 I identified three problems with extracting quasi-
classical behaviour from macroscopic quantum systems: (i) what justifies our treat-
ing the macroscopic degrees of freedom as dynamically isolated from the remainder
of the system; (ii) why chaotic systems behave quasi-classically given that in isola-
tion they evolve into non-quasi-classical states; (iii) why even when the dynamics
of a system is not even approximately classical — such as in the case of quantum
measurement — macroscopic systems still seem to stay in quasi-classical states

We can now see that decoherence provides an answer to all three worries. Firstly,
it explains why, for the macroscopic degrees of freedom of regular systems, we are
justified in ignoring the effects of the environment: the main effect of the environ-
ment is to measure the system in the position basis, and this has no effect on the
system if it is already in a reasonably localised state.

Secondly, it explains how chaotic systems nonetheless evolve in a classical way,
at least at the coarse-grained level: decoherence constantly transforms delocalised
states into mixtures of localised states, and so prevents the system ever ending up
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in a state so delocalised that the dynamics ceases to be approximately classical.
And as for non-classical events like quantum measurement: whatever state they

put a system into, if that system’s macroscopic degrees of freedom are not fairly
localised in position then it will very rapidly become decohered: as such, it will
evolve as a collection of non-interacting systems each of which is itself fairly localised
in position.

Furthermore, decoherence at least helps to explain why it seems to be only phase-
space local states which can instantiate emergent structure. For suppose some state
like

� ∣q1, p1⟩+ � ∣q2, p2⟩ (3.41)

is supposed to instantiate a state of some emergent theory. Decoherence will wipe
away any information contained in the relative phases: the system will almost im-
mediately move into the mixed state

∣�∣2 ∣q1, p1⟩ ⟨q1, p1∣+ ∣�∣
2 ∣q2, p2⟩ ⟨q2, p2∣ (3.42)

which is simply a weighted sum of two independently evolving quasi-classical states.
So the complete dynamical story of the system is known once we know its quasi-
classical dynamics and the relative weights of the quasi-classical histories.

However, our analysis so far — which has been concentrated on the evolution
of the system’s density operator, and has invariably traced away the environment
— makes it somewhat difficult to appreciate how exactly it is that the quantum
state has the structure of a collection of quasi-classical branching worlds. We may
have established that the density operator of such systems is diagonalised in a quasi-
classical basis, but it is not immediately obvious how to read the branching structure
off from this observation.

An example may help to see the difficulty — and to see how to surmount it. The
orbit of the Earth around the Sun is chaotic: over timescales of a few million years it
is impossible (using classical physics) to predict where in its orbit the planet may be
found.16 The earth is also (obviously!) very strongly decohered by its environment.
The general considerations of section 3.5 tell us that the system’s density operator
will evolve, over the same timescales, to be a uniform mixture of states localised at
all locations in the orbit, and will thereafter remain in that state indefinitely. That
is: if ∣�⟩ is a state of the Earth localised at a particular angular coordinate �, after a
few million years the Earth (or at least, its centre-of-mass degrees of freedom) will
have state

�(t) =
∫ 2�

0
d� ∣�⟩ ⟨�∣ . (3.43)

16This example is discussed in detail in Zurek and Paz (1995a).
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This stationary state does not look much like what the Everett interpretation pre-
dicts: a set of histories of the Earth’s orbital position, each one evolving quasi-
classically. Nor does it seem to match our own observations of the Earth as in
motion.

However, this is an illusion caused by our failure to look at the overall state of
the Earth-plus-environment system. The actual structure of the this state would be
best written as

∣Ψ(t)⟩ =
∫
D�Λ[�] ∣�(t)⟩⊗∣[�]⟩ , (3.44)

where the integral is over all histories �(�) of the angular coordinate of the Earth,
and where states ∣[�]⟩, ∣[�′]⟩ of the environment are orthogonal if �(�) and �′(�)
differ significantly for any significant period of time. Each ∣[�]⟩, in other words,
encodes a different history of the Earth’s location, and this is as we should expect:
the position of the Earth at any time leaves an irreversible record in the pattern of
light, gravitational waves, and neutrinos radiating outwards from the Solar system
at that time. So despite the apparent stationarity of (3.43), actually the system
is a superposition of quasi-classical states, each of which is evolving approximately
classically but which is branching into multiple approximately-classical states on a
long timescale.

For the rest of this chapter, I wish to explore the structure of the quantum state
from this more “historical” perspective. I will begin by getting a little more precise
about what it is to say that a system’s state is “branching”.

3.7 Analysing branching structure

What would it mean to say that a quantum state “has a branching structure”?
Firstly, clearly that branching structure would have to be defined by the state to-

gether with other dynamical structures in the theory: a state, interpreted as a mere
vector in a featureless Hilbert space, has no structure at all. Relative to a basis,
on the other hand, it is comparatively clear to understand how a state could be
branching: if the state evolves from a basis vector to a superposition of such basis
vectors, and if each of those evolves into a superposition of different basis vectors so
that no two such superpositions interfere with one another — then we would have
branching (relative to that basis, at any rate).

To get rather more precise about this, suppose we have a physical system repre-
sented by some Hilbert space ℋ, evolving unitarily under some dynamics Û(t, t0).
Instead of restricting ourselves to a basis, we will consider a PVM P̂ 1, . . . P̂ n (that
is, a family of disjoint projectors whose sum is the identity but which need not be
all of dimension one). At any given time (t), and for an initial state ∣ ⟩ (at time
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t0), the weight of projector P̂j is

Wj(t) = ∥P̂j Û(t, t0) ∣ ⟩ ∥
2 ≡ ⟨ ∣ Û

†
(t, t0)P̂j Û(t, t0) ∣ ⟩ , (3.45)

and the transition weight between P̂ j at time t and P̂ j′ at time t′ is

T (j, t; j′, t′) =
∥P̂j′Û(t

′, t)P̂jÛ(t, t0) ∣ ⟩ ∥
2

∥P̂jÛ(t, t0) ∣ ⟩ ∥2

=
⟨ ∣ Û

†
(t, t0)P̂jÛ

†
(t′, t)P̂j′Û(t

′, t)P̂jÛ(t, t0) ∣ ⟩

⟨ ∣ Û
†
(t, t0)P̂jÛ(t, t0) ∣ ⟩

. (3.46)

For convenience, define T (j, t; j′, t′) = 0 whenever Wj(t) = 0 (the above definition
leaves it undefined).

When quantum mechanics is interpreted instrumentally, of course, the transi-
tion weights are supposed to be conditional probabilities and the absolute weights
are supposed to be unconditional probabilities; in quantum mechanics interpreted
realistically, though, they are just objective properties of the quantum-mechanical
Universe.

As we have noted, “branching” (relative to a given basis) is just the absence
of interference. This in turn occurs (between times t and t′) when at most one
component of the quantum state (in that basis) at time t contributes to the weight
of any given component at time t′. In terms of transition weights, this is just
to require that no two transition weights of transitions into a given projector are
nonzero — that is, to require that

T (j1, t; j
′, t′) ∕= 0, T (j2, t; j

′, t′) ∕= 0 =⇒ j1 = j2. (3.47)

(To visualise this, think of “weight” as a fluid, redistributing itself across the pro-
jectors over time. (3.47) guarantees that each projector receives weight from exactly
one previous projector. Less picturesquely, if (3.47) holds then there is a unique way
to connect projectors at later times to projectors at earlier times: each projector’s
weight may determine the weight of many future projectors but its own weight is
determined by exactly one past projector at any given past time.)

The importance of decoherence is: when it occurs, quantum-mechanical systems
(approximately) develop a particularly natural branching structure. For decoherence
is a process which constantly, and (on sub-Poincaré-recurrent timescales) irreversibly
entangles the environment with the system so as to suppress interference between
terms of the decoherence-preferred basis. (We might say that the environment
constantly measures the system and records the result). If we idealise the dynamics
as discrete, then at each branching event, the environment permanently records the
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pre-branching state, so that at each time the universal state is a superposition of
states each of which encodes a complete record of where “its weight” comes from.

Even if the dynamics is not itself discrete, a branching structure is still readily
discernible in decohering systems. In the case of phase-space decoherence, in par-
ticular, we can in full generality write the total state of the system and environment
at a given time as

∣Ψ⟩ =
∫

dp0 dq0 �(p0, q0) ∣p0, q0⟩⊗∣�(p0, q0)⟩ (3.48)

Because of decoherence, whatever initial state the system is prepared in, the to-
tal state will quickly evolve to one where ⟨�(p0, q0)∣�(p

′
0, q

′
0)⟩ ≃ 0 for sufficiently

separated q′, p′ and q, p.
After some further time Δt, the state

∣p0, q0⟩⊗∣�(p0, q0)⟩ (3.49)

will evolve to a state of form

∣ (p0, q0)⟩ =
∫
dp 1dq 1�1(p1, q1; p0, q0) ∣p1, q1⟩⊗∣�(p1, q1, p0, q0)⟩ . (3.50)

Again, decoherence ensures that ⟨�(p1, q1, p0, q0)∣�(p
′
1, q

′
1, p0, q0)⟩ ≃ 0 for sufficiently

separated q′1, p
′
1 and q1, p1. But we would also expect, in general, to find that if

⟨�(p0, q0)∣�(p
′
0, q

′
0)⟩ ≃ 0, then ⟨�(p1, q1, p0, q0)∣�(p

′
1, q

′
1, p

′
0, q

′
0)⟩ ≃ 0 irrespective of the

values of p1, q1, p
′
1, q

′
1. For the information about the system recorded in the original

decoherence process will be distributed very widely across the environment (think
of our original example of decoherence by particle scattering: the initial particles
that caused the decoherence are now a distance ∼ vΔt from the system). The total
state at after time Δt is then

∣Ψ(Δt)⟩ ≡ Û(Δt) ∣Ψ⟩

=
∫ ∫

dp0 dq0 dp1 dq1 �1(p1, q1; p0, q0)�(p0, q0) ∣p0, q0⟩⊗∣�(p1, q1, p0, q0)⟩ (3.51)

Iterating, then (and writing p, q to symbolise the N -tuples p0, . . . pN , q0, . . . qN),
after a time NΔt the system will have state

∣Ψ(NΔt)⟩ ≡ Û(NΔt) ∣Ψ⟩ =
∫
⋅ ⋅ ⋅

∫
dp dqCN(p,q) ∣pN , qN⟩⊗∣�N(p,q)⟩ , (3.52)

where ⟨�N(p,q)∣�N(p
′,q′)⟩ ≃ 0 if any of the (qi, pi) are sufficiently separated from

the (q′i, p
′
i). (For the example described by (3.35), for instance, this amounts to
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requiring that the position-space width of the cell is much larger than (Λ(ti+1 −
ti)
−1/2.)Each dynamical step can be represented by

Û(Δt) ∣pN , qN⟩⊗∣�N(p,q)⟩

=
∫

dpN+1dq N+1BN(qN+1, pN+1;q,p) ∣pN+1, qN+1⟩⊗∣�N+1(p⊕ pN+1,q⊕ qN+1)⟩ (3.53)

where q⊗q is the sequence obtained by appending q to the sequence q (and similarly
for p⊗ p).

Informally, it should be clear that a state whose dynamics take this form will
have a branching structure relative to the basis of ∣p,q⟩ states at each time-step.
To make this more rigorous, though, let us choose a partition Σi of phase space, and
define the operators

Π̂
N

i =
∫

Σi0

⋅ ⋅ ⋅
∫

Σin

dq dp 1̂⊗ ∣�N(p,q)⟩ ⟨�N(p,q)∣ . (3.54)

If the cells of the partition are chosen to be sufficiently large (in the case described
by (3.35), for instance, if they have spatial width ≫ (ΛΔt)−1/2 and an appropriate
momentum-space width) then these operators will approximately define a PVM:

Π̂
N

i Π̂
N

j ≃ �i,jΠ̂
N

i . (3.55)

Moreover, we have

Π̂
N

i Û(NΔt) ∣Ψ⟩ =
∫

Σi0

⋅ ⋅ ⋅
∫

ΣiN

dp dqCN(p,q) ∣pN , qN⟩⊗∣�N(p,q)⟩ (3.56)

and from this and (3.53) it can readily be seen that

Π̂
N+1

i′ Û(Δt)Π̂
N

i Û(NΔt) ∣Ψ⟩ ≃ 0 unless i is the initial segment of i′. (3.57)

That is: the structure of the quantum state relative to the family of PVMs {Π̂
N

i }
(for each N) is branching.

Notice that although we have imposed a discrete structure on the system so
as to make precise the claim that it branches, there is no intrinsic discreteness in
the branching process. Less rigorously, but perhaps more perspicuously, we might
rewrite (3.52) as

∣Ψ(t))⟩ =
∫
D[q(�)] Ct[q(�)] ∣p(t), q(t)⟩⊗∣�[q(�)]⟩ (3.58)

where the integral ranges over all classical trajectories defined up to time t and
where ⟨�[q(�)]∣�[q′(�)]⟩ ≃ 0 if the trajectories q(�) and q′(�) are sufficiently different
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for sufficiently long (if they differ by≫ Λ�t)−1/2 over a period of ∼ �t in the case of
(3.35), for instance). In this formalism, the state has branching structure because
∣p(t), q(t)⟩⊗∣�[q(�)]⟩ evolves over time Δt to

∫
D[q′(�)] Bt,t+Δt[q

′(�)] ∣p(t), q(t)⟩⊗∣�[q(�)⊕ q′(�)]⟩ (3.59)

where the integral ranges over classical trajectories defined between times t and
t + Δt, and where q(�) ⊕ q′(�) is the trajectory given by q(�) up till � = t and by
q′(�) thereafter.

3.8 The decoherent-histories framework

To talk more generally about the relation between branching and decoherence, and
to help the reader to connect my discussion to the literature, it will be useful to
develop a more sophisticated mathematical description of branching. We will con-
sider a discrete set of times t0, . . . tn, and will generalise our earlier description by
allowing the PVMs used to define branching to vary from time to time; we will also
(purely for mathematical convenience) switch to the Heisenberg picture. Then the
spaces on which the branching structure is defined is just a time-indexed family of

PVMs P̂
i

j (with the superscript indicating that the operator is a member of the
time-ti PVM and the subscript indexing it within that PVM), and the transition
weights are given by

T (j, ti; j
′; ti′) =

⟨ ∣ P̂
i

jP̂
i′

j′P̂
i

j ∣ ⟩

⟨ ∣ P̂
i

j ∣ ⟩
. (3.60)

The branching criterion can then be succinctly expressed as: if P̂
i′

j′P̂
i

j1
∣ ⟩ and P̂

i′

j′P̂
i

j2

are both non-zero, then j1 = j2.
It is again useful to define a history as a sequence of projectors, one from each

of the time-indexed PVMs: I call the set of such histories generated from some such
sequence of PVMs a history space. Since a sequence of projectors can also be viewed
as a function from histories to projectors, given a history � I write �̂(m) for the
projector associated with time index m; each �̂(m) is specified uniquely by giving
its index number in the time-tm PVM, and I write this index number as �m, so that

�̂(m) = P̂
m

�m
. (3.61)

I call a history realised if T (�m, tm;�m+1, tm+1) ∕= 0 for all m ≤ n. The branching
criterion then guarantees that if two realised histories coincide at some time (that is,
assign the same projector to that time) then they coincide at all earlier times, and
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we will say that any set of histories with this property has a branching structure.
Given two history spaces {P i}, {Qi}, {Qi} is a coarse-graining of {P i} if every
projector in Qi is a sum of projectors in P i.

Following Gell-Mann and Hartle (1990), we can define the history operator Ĉ�

of the history � by
Ĉ� = �̂(n) ⋅ ⋅ ⋅ �̂(0), (3.62)

and the decoherence functional, a complex function on pairs of histories, by

D(�, �) = ⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ . (3.63)

A history space is said to satisfy the decoherence condition or to be decoherent17 if
the decoherence functional between any two incompatible histories is zero. (Hence,
implicitly a history space is only decoherent relative to a choice of state vector.)

The significance of all this formalism is summarised in the following theorem
(first stated by Griffiths (1993), so far as I know).

Branching-Decoherence Theorem: If P = {P̂
i

j} is a history space
and ∣ ⟩ is a quantum state, then

(i) If ∣ ⟩ has branching structure (relative to P) and � is a history
then Ĉ� ∣ ⟩ ∕= 0 iff � is realised (with respect to ∣ ⟩.

(ii) If the set Hist of all histories� such that Ĉ� ∣ ⟩ ∕= 0 has branching
structure (that is, if no two histories in Hist agree on their nth
index but not on all previous indices), then ∣ ⟩ also has branching
structure (relative to P), and the realised histories in that branching
structure are just the histories in Hist.

(iii) If ∣ ⟩ has branching structure (relative to P), P satisfies the deco-
herence condition.

(iv) If P satisfies the decoherence condition, it is a coarse-graining of
a (decoherent) history space relative to which ∣ ⟩ has branching
structure.

The proof of the Branching-Decoherence Theorem is straightforward but tedious
and is relegated to Appendix A; however, the basic ideas behind it are easy to un-
derstand. The first two parts is just an iteration of the branching condition to apply

17Sometimes this condition is calledmedium decoherence, following Gell-Mann and Hartle (1990)
and in contrast to weak decoherence, defined in the next section.
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to sequences of more than two projectors, and the third part follows straightfor-
wardly from the first two. The key to understanding the fourth part is to notice
that it implies that the states

∣�⟩ = Ĉ� ∣ ⟩ (3.64)

are orthonormal. These states can be thought of as “record states”, each recording
the structure of an entire branch. The state of the system at a given time, then,
is a superposition of all these histories, and the subsequent evolution of the system
will not erase these histories; hence, the terms in the superposition cannot interfere
with one another, and so the state has a branching structure.

3.9 Decoherence, records, and consistency

From the Everettian perspective, the decoherence functional is a purely technical
tool: its significance comes from the Branching-Decoherence theorem, which tells us
that the vanishing of the decoherence function between any two distinct histories is a
necessary and sufficient condition for a history space to have a branching structure.
An alternative perspective, however — developed by Robert Griffiths (1984, 1996,
2002), Roland Omnés (1988, 1992, 1994), and (from a rather different viewpoint)
by Murray Gell-Mann and James Hartle (1990, 1993, 2007) — was historically
important and remains frequently discussed in the literature, and is the subject
of this section. For clarity, I follow Griffiths in calling this approach a consistent

histories approach, though actual terminology has been somewhat varied.
This framework starts with the idea that quantum mechanics ought somehow

to be interpreted as a stochastic theory. Doing this consistently would require
the theory to specify a space of histories and some probability measure over those
histories. Within quantum mechanics, the obvious mathematical representation of a
history is that of the previous section: a string of time-indexed projectors (note that
for the moment I do not assume that a history is part of some previously specified
history space) . And the obvious probability to assign to a history � is

Pr(�) = ∥�̂n ⋅ ⋅ ⋅ �̂1 ∣ ⟩ ∥
2 (3.65)

(that is, start with the quantum state, sequentially project it out by the projectors,
and take the mod-squared amplitude of the resulting state — in the Schrödinger
picture it would also be necessary to evolve the state unitarily between sequential
projections). Using the history operator Ĉ� and decoheence functional D(�, �)
defined in the previous section, we can write this succinctly as

Pr(�) = ⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ = D(�, �). (3.66)
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The problem, of course, is the same problem that besets all attempts to interpret
quantum mechanics probabilistically: interference. In this case, the mathematical
representation of interference is as a failure of the probability calculus. Suppose, for
instance, that � and � are histories with �̂(k) = �̂(k) for all time indexes k except
some m, and that �̂(m) and �̂(m) are orthogonal. If  is defined by

̂(k) = �̂(k) = �̂(k) (k ∕= m)

̂(m) = �̂(m) + �̂(m) (3.67)

then the probability calculus would require that Pr() = Pr(�) + Pr(�). But this,
of course, is generally not the case.

In the consistent-histories approach, this is solved by restricting the set of allowed
histories. The starting point here is the history space of section 3.8, which was
defined (recall) as the set of histories generated from a particular time-indexed
family of PVMs. To allow for histories which are sums of other histories (as in the
above case), we now permit histories which assign to a time ti a sum of projectors
(rather than just a single projector) in the time-ti PVM. A history which assigns
only one projector in the appropriate PVM to each time is called atomic. (In fact,
once we generalise history spaces in this way, the notion of atomic histories becomes
dispensible, as I explain in box 3.2, but for expository purposes it is convenient to
retain them.)

Given histories � and �, I call � a subhistory of � iff �̂(k ⊂ �̂(k)18 for all k.
And Dec(�), the decomposition of �, is then the set of all atomic histories that are
subhistories of �: in effect (if a stochastic interpretation is required) the various
elements of the decomposition of � are the various ways of filling in the details of a
system’s history which � itself leaves unspecified.

A succinct way of writing the condition required by the probability calculus is
then that for any history �,

Pr(�) =
∑

�i∈Dec(�)

Pr(�i), (3.68)

or in terms of the history formalism,

⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ =
∑

�i∈Dec(�)

⟨ ∣ Ĉ
†

�i
Ĉ�i

∣ ⟩ . (3.69)

We can say that a history space is consistent if this condition holds; it follows that
in general, consistency is relative to the quantum state.

18Recall that given projectors P , Q, then P ⊂ Q iff the range of P is a subspace of the range of
Q.
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Box 3.2: Atomless history spaces

Given a Hilbert space, a Boolean algebra of projectors on that Hilbert space is just
a set of projectors which contains the identity and is closed under taking countable
sums and complements; such an algebra is atomic if there is a countable set of
projectors such that all elements of the algebra are sums of elements of the set. I
specify a history algebra {S i} by assigning to each time index ti a Boolean algebra
S i of projectors; the histories in that algebra are sequences of such projectors, and
I call the history atomic iff all its Boolean algebras are atomic.The history operator
and the decoherence functional can be defined as before; the probability of history
� is by definition D(�, �).
Two histories �, � are overlapping if for each k, �̂(k)�̂(k) ∕= 0. Given a history � in
{S i}, a decomposition of � is a set of histories specified by giving, for each k, a set

of mutually orthogonal projectors P̂
k

i ∈ S
k whose sum is �(k); the histories in the

refinement are exactly those histories constructed from projectors in this set.
A history space continues to be specified by a time-indexed sequence of sets of
projectors; each history space determines an atomic history algebra in the obvious
way, and conversely a history space is contained within a history algebra if all its
histories are histories in the algebra. Given a history algebra, and two history spaces
contained within it, the first is a refinement of the second iff each projector in each
time-tk projector set in the second space is the sum of projectors in the time-tk
projector set in the first space. (It follows that a history algebra is atomic iff it
contains some history space with no proper refinements.)
We can then make the following definitions. Given a history algebra, then with
respect to some state ∣ ⟩:

∙ the algebra is branching if it contains some history space relative to which ∣ ⟩
has branching structure.

∙ the algebra satisfies decoherence iff D(�, �) vanishes whenever �, � are non-
overlapping, and weak decoherence if the real part of D(�, �) vanishes for
non-overlapping �, �.

∙ the algebra is consistent iff for any history �, and any decomposition of that
history, the probability of � is the sum of the probabilities of the histories in
its decomposition.

It then follows that:

1. A history algebra is decoherent iff it is branching (atomless version of the
Branching-Decoherence Theorem)

2. A history algebra is weakly decoherent iff it is consistent

The former is proved in appendix A; the latter is proved by the method used in
section 3.9.
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Now, since
Ĉ� =

∑

�i∈Dec(�)

Ĉ�i
(3.70)

we can rewrite the left hand side of (3.69) as

⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ =
∑

�i,�j∈Dec(�)

⟨ ∣ Ĉ
†

�j
Ĉ�i

∣ ⟩ =
∑

�i,�j∈Dec(�)

D(�i, �j) (3.71)

and the right hand side as ∑

�i∈Dec(�)

D(�i, �i). (3.72)

It follows that any history space which is decoherent — that is, which satisfies
D(�, �) = 0 for � ∕= � — is also consistent. Because D(�, �) = D(�, �)∗, a slightly
weaker condition — that the real part of D(�, �) vanishes for � ∕= �, suffices to guar-
antee that a history space is consistent; for this reason, Griffiths calls this condition
consistency ; Gell-Mann and Hartle call it weak decoherence. However, weak decoher-
ence does not seem to have any dynamical significance (in the way that decoherence
proper has been shown to have) and composite systems satisfying weak but not
full decoherence have been shown to have various unsatisfactory properties (Diósi
2004). By the branching-decoherence theorem, it follows that any branching his-
tory space is consistent and that physically interesting consistent history spaces are
coarse-grainings of branching history spaces.

Originally, it was possible to suppose that consistency, or decoherence, or some
reasonable strengthening of these conditions, would suffice to pick out a unique his-
tory space; the measurement problem would thereby have been solved and quantum
mechanics could have been interpreted as a stochastic theory. Unfortunately for
the consistent-histories program, this turns out not to be the case: Fay Dowker
and Adrian Kent demonstrated convincingly (Dowker and Kent 1996; Kent 1996)
that an enormous number of consistent history spaces and that many of them are
pathologically unlike the observed macroworld.

The responses19 of Griffiths, Omnes, and Gell-Mann and Hartle to this problem
differ interestingly. Griffiths and Omnes attempt to hold on to the idea of quantum
mechanics as a stochastic theory of a single quasi-classical world, and in doing so
end up advocating interpretations of quantum mechanics that offer “vestiges of
reality” as I put it in section 1.6, but fall short of conventional scientific realism.
Griffiths (2002), for instance, tries to regard different history spaces as different
ways of describing the same underlying reality. But while in classical mechanics

19I do not want to make any historical claim here as to the influence or otherwise of Dowker and
Kent’s work on proponents of consistent-histories approaches: my account is intended to capture
the logic of the situation, rather than its chronology.
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such multiple descriptions can always be understood as coarse-grainings of a single
exhaustive description (a principle which Griffiths dubs the principle of unicity),
this fails in the consistent-histories setting:

The principle of unicity does not hold: there is not a unique exhaustive
description of a physical system or a physical process. Instead, reality is
such that it can be described in various alternative, incompatible ways,
using descriptions which cannot be combined or compared.

Approaches of this kind, of course, fall outside the scope of this thesis.
Gell-Mann and Hartle, on the other hand, rule out pathological history spaces

by requiring histories to be “quasi-classical”, which they define (consistently with
my usage in this chapter) as histories

such that the individual histories obey, with high probability, effective
classical equations of motion interrupted continually by small fluctua-
tions and occasionally by large ones.

This is not the kind of criterion which can be formalised as a new law of physics:
it is a criterion for emergent structure of very much the same kind as I discussed
in chapter 2. Gell-Mann and Hartle’s exploration of consistent histories, in other
words, can be understood as an exploration of those emergent structures which exist
within the unitarily evolving state: that is, it can be understood as an exploration
of Everettian quantum mechanics. (And indeed, this is how Hartle, at least, does
understand it; see Hartle (2010)).

3.10 How many worlds?

We are finally in a position to answer one of the most commonly asked questions
about the Everett interpretation,20 namely: how much branching actually happens?
As we have seen, branching is caused by any process which magnifies microscopic
superpositions up to the level where decoherence kicks in, and there are basically
three such processes:

1. Deliberate human experiments: Schrödinger’s cat, the two-slit experiment,
Geiger counters, and the like.

2. “Natural quantum measurements”, such as occur when radiation causes cell
mutation.

20Other than “and you believe this stuff?!”, that is.
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Box 3.3: A metaphor for indefinite branch number

1. Firstly, imagine a world consisting of a very thin, infinitely long and wide,
slab of matter, in which various complex internal processes are occurring —
up to and including the presence of intelligent life, if you like. In particular
one might imagine various forces acting in the plane of the slab, between one
part and another.

2. Now, imagine stacking many thousands of these slabs one atop the other, but
without allowing them to interact at all. If this is a “many-worlds theory”, it is
a many-worlds theory only in the sense of the philosopher David Lewis (Lewis
1986a): none of the worlds are dynamically in contact, and no (putative)
inhabitant of any world can gain empirical evidence about any other.

3. Now introduce a weak force normal to the plane of the slabs — a force with
an effective range of 2-3 slabs, perhaps, and a force which is usually very small
compared to the intra-slab force. Then other slabs will be detectable from
within a slab but will not normally have much effect on events within a slab.
If this is a many-worlds theory, it is a science-fiction-style many-worlds theory
(or maybe a Phillip Pullman or C.S. Lewis many-worlds theory): there are
many worlds, but each world has its own distinct identity.

4. Finally, turn up the interaction sharply: let it have an effective range of several
thousand slabs, and let it be comparable in strength (over that range) with
characteristic short-range interaction strengths within a slab. Now, dynami-
cal processes will not be confined to a slab but will spread over hundreds of
adjacent slabs; indeed, evolutionary processes will not be confined to a slab,
so living creatures in this universe will exist spread over many slabs. At this
point, the boundary between slabs becomes epiphenomenal. Nonetheless, this
theory is stratified in an important sense: dynamics still occurs predominantly
along the horizontal axis and events hundreds of thousands of slabs away from
a given slab are dynamically irrelevant to that slab.a One might well, in
studying such a system, divide it into layers thick relative to the range of the
inter-slab force — and emergent dynamical processes in those layers would be
no less real just because the exact choice of layering is arbitrary.

aObviously there would be ways of constructing the dynamics so that this was not the case: if
signals could easily propagate vertically, for instance, the stratification would be lost. But it’s only
a thought experiment, so we can construct the dynamics how we like.
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3. Classically chaotic processes.

The first is a relatively recent and rare phenomenon, but the other two are ubiq-
uitous. Chaos, in particular, is everywhere, and where there is chaos, there is
branching (the weather, for instance, is chaotic, so there will be different weather in
different branches). Furthermore, there is no sense in which these phenomena lead
to a naturally discrete branching process: as we have seen in studying quantum
chaos, while a branching structure can be discerned in such systems it has no natu-
ral “grain”. To be sure, by choosing a certain discretisation of (configuration-))space
and time, a discrete branching structure will emerge, but a finer or coarser choice
would also give branching. And there is no “finest” choice of branching structure:
as we fine-grain our decoherent history space, we will eventually reach a point where
interference between branches ceases to be negligible, but there is no precise point
where this occurs. As such, the question “how many branches are there?” does not,
ultimately, make sense.

This may seem paradoxical — certainly, it is not the picture of “parallel uni-
verses” one obtains from science fiction. But as we have seen in chapter 2, it is
commonplace in emergence for there to be some indeterminacy (recall: when ex-

actly are quasi-particles of a certain kind present?) And nothing prevents us from
making statements like:

Tomorrow, the branches in which it is sunny will have combined weight
0.7

— the combined weight of all branches having a certain macroscopic property is
very (albeit not precisely) well-defined. It is only if we ask: ”how many branches
are there in which it is sunny”, that we end up asking a question which has no
answer.

This bears repeating, as it will be central to some of the arguments of Part II:

Decoherence causes the Universe to develop an emergent branching struc-
ture. The existence of this branching is a robust (albeit emergent) fea-
ture of reality; so is the mod-squared amplitude for any macroscopi-

cally described history. But there is no non-arbitrary decomposition of
macroscopically-described histories into “finest grained” histories, and
no non-arbitrary way of counting those histories.

(Or, put another way: asking how many worlds there are is like asking how many
experiences you had yesterday, or how many regrets a repentant criminal has had.
It makes perfect sense to say that you had many experiences or that he had many
regrets; it makes perfect sense to list the most important categories of either; but it
is a non-question to ask how many.)
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If this picture of the world seems unintuitive, the metaphor in box 3.10 may
help. Ultimately, though, that a theory of the world is “unintuitive” is no argument
against it, provided it can be cleanly described in mathematical language.

CHAPTER 3: If we apply to quantum mechanics the same principles we apply
right across science, we find that a multiplicity of quasi-classical worlds are emergent
from the underlying quantum physics. These worlds are structures instantiated
within the quantum state, but they are no less real for all that.

CHAPTER 4: Quantum mechanics is a probabilistic theory; how is this compat-
ible with the Everett interpretation’s deterministic dynamics?



 


