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Since the inception of quantum mechanics entanglement has been acknowledged, as Schrödinger 

had put it, as “not one, but The” characteristic feature of the theory that sets it apart from 

classical physics. Decoherence, on the other hand, was recognized only recently as the “new 

orthodoxy”, crucial to the consistency of quantum theory with our everyday notions of the 

classical world. In this short introduction I shall present the basic concepts underlying this “new 

orthodoxy”, and place these in the broader context of the philosophy of physics, touching upon 

topics such as (1) the methodological role of decoherence in the philosophy of quantum theory, 

(2) the conceptual and historical relation between the foundations of statistical mechanics and 

decoherence, and (3) the impact of decoherence on quantum information theory, especially on 

the question of the feasibility of large-scale and computationally superior quantum information 

processing devices. Finally, I shall also try to raise some doubts about the claim that decoherence 

plays a role in the so-called “emergence of the classical world”.   
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The Role of Decoherence in Quantum
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Interference phenomena are a well-known and crucial feature of quantum mechanics, the
two-slit experiment providing a standard example. There are situations, however, in which
interference effects are (artificially or spontaneously) suppressed. We shall need to make
precise what this means, but the theory of decoherence is the study of (spontaneous)
interactions between a system and its environment that lead to such suppression of
interference. This study includes detailed modelling of system-environment interactions,
derivation of equations (‘master equations’) for the (reduced) state of the system,
discussion of time-scales etc. A discussion of the concept of suppression of interference
and a simplified survey of the theory is given in Section 2, emphasising features that will
be relevant to the following discussion (and restricted to standard non-relativistic particle
quantum mechanics.[1] A partially overlapping field is that of decoherent histories, which
proceeds from an abstract definition of loss of interference, but which we shall not be
considering in any detail.

Decoherence is relevant (or is claimed to be relevant) to a variety of questions ranging
from the measurement problem to the arrow of time, and in particular to the question of
whether and how the ‘classical world’ may emerge from quantum mechanics. This entry
mainly deals with the role of decoherence in relation to the main problems and approaches
in the foundations of quantum mechanics. Section 3 analyses the claim that decoherence
solves the measurement problem, as well as the broadening of the problem through the
inclusion of environmental interactions, the idea of emergence of classicality, and the
motivation for discussing decoherence together with approaches to the foundations of
quantum mechanics. Section 4 then reviews the relation of decoherence with some of the
main foundational approaches. Finally, in Section 5 we mention suggested applications that
would push the role of decoherence even further.

Suppression of interference has of course featured in many papers since the beginning of
quantum mechanics, such as Mott's (1929) analysis of alpha-particle tracks. The modern
beginnings of decoherence as a subject in its own right are arguably the papers by H. D.
Zeh of the early 1970s (Zeh 1970; 1973). Very well known are also the papers by W. Zurek
from the early 1980s (Zurek 1981; 1982). Some of these earlier examples of decoherence



(e.g., suppression of interference between left-handed and right-handed states of a
molecule) are mathematically more accessible than more recent ones. A concise and
readable introduction to the theory is provided by Zurek in Physics Today (1991). This
article was followed by publication of several letters with Zurek's replies (1993), which
highlight controversial issues. More recent surveys are Zeh 1995, which devotes much
space to the interpretation of decoherence, and Zurek 2003. The textbook on decoherence
by Giulini et al. (1996) and the very recent book by Schlosshauer (2007) are also highly
recommended.[2]

2. Basics of Decoherence
2.1 Interference and suppression of interference

The two-slit experiment is a paradigm example of an interference experiment. One
repeatedly sends electrons or other particles through a screen with two narrow slits, the
electrons impinge upon a second screen, and we ask for the probability distribution of
detections over the surface of the screen. In order to calculate this, one cannot just take the
probabilities of passage through the slits, multiply with the probabilities of detection at the
screen conditional on passage through either slit, and sum over the contributions of the two
slits.[3] There is an additional so-called interference term in the correct expression for the
probability, and this term depends on both wave components that pass through the slits.

Thus, the experiment shows that the correct description of the electron in terms of quantum
wave functions is indeed one in which the wave passes through both slits. The quantum
state of the electron is not given by a wave that passes through the upper slit or a wave that
passes through the lower slit, not even with a probabilistic measure of ignorance.

There are, however, situations in which this interference term is not observed, i.e., in which
the classical probability formula applies. This happens for instance when we perform a
detection at the slits, whether or not we believe that measurements are related to a ‘true’
collapse of the wave function (i.e., that only one of the components survives the
measurement and proceeds to hit the screen). The disappearence of the interference term,
however, can happen also spontaneously, even when no ‘true collapse’ is presumed to
happen, namely if some other systems (say, sufficiently many stray cosmic particles
scattering off the electron) suitably interact with the wave between the slits and the screen.
In this case, the interference term is not observed, because the electron has become
entangled with the stray particles (see the entry on quantum entanglement and
information).[4] The phase relation between the two components which is responsible for
interference is well-defined only at the level of the larger system composed of electron and
stray particles, and can produce interference only in a suitable experiment including the
larger system. Probabilities for results of measurements are calculated as if the wave
function had collapsed to one or the other of its two components, but the phase relations
have merely been distributed over a larger system.

It is this phenomenon of suppression of interference through suitable interaction with the
environment that we refer to by ‘suppression of interference’, and that is studied in the



theory of decoherence.[5] For completeness, we mention the overlapping but distinct
concept of decoherent (or consistent) histories. Decoherence in the sense of this abstract
formalism is defined simply by the condition that (quantum) probabilities for wave
components at a later time may be calculated from those for wave components at an earlier
time and the (quantum) conditional probabilities, according to the standard classical
formula, i.e., as if the wave had collapsed. There is some controversy, which we leave
aside, as to claims surrounding the status of this formalism as a foundational approach in
its own right. Without these claims, the formalism is interpretationally neutral and can be
useful in describing situations of suppression of interference. Indeed, the abstract definition
has the merit of bringing out two conceptual points that are crucial to the idea of
decoherence and that will be emphasised in the following: that wave components can be
reidentified over time, and that if we do so, we can formally identify ‘trajectories’ for the
system.[6]

2.2 Features of decoherence

The theory of decoherence (sometimes also referred to as ‘dynamical’ decoherence) studies
concrete spontaneous interactions that lead to suppression of interference.

Several features of interest arise in models of such interactions (although by no means are
all such features common to all models):

Suppression of interference can be an extremely fast process, depending on the
system and the environment considered.[7]

The environment will tend to couple to and suppress interference between a preferred
set of states, be it a discrete set (left- and right- handed states in models of chiral
molecules) or some continuous set (‘coherent’ states of a harmonic oscillator).
These preferred states can be characterised in terms of their ‘robustness’ or ‘stability’
with respect to the interaction with the environment. Roughly speaking, while the
system gets entangled with the environment, the states between which interference is
suppressed are the ones that get least entangled with the environment themselves
under further interaction. This point leads us to various further (interconnected)
aspects of decoherence.
First of all, an intuitive picture of the interaction between system and environment
can be provided by the analogy with a measurement interaction (see the entries on
quantum mechanics and measurement in quantum theory): the environment is
‘monitoring’ the system, it is spontaneously ‘performing a measurement’ (more
precisely letting the system undergo an interaction as in a measurement) of the
preferred states. The analogy to the standard idealised quantum measurements will be
very close in the case of, say, the chiral molecule. In the case, say, of the coherent
states of the harmonic oscillator, one should think instead of approximate
measurements of position (or in fact of approximate joint measurements of position
and momentum, since information about the time of flight is also recorded in the
environment).
Secondly, the robustness of the preferred states is related to the fact that information



about them is stored in a redundant way in the environment (say, because the
Schrödinger cat has interacted with so many stray particles — photons, air
molecules, dust). This can later be accessed by an observer without further disturbing
the system (we measure — however that may be interpreted — whether the cat is
alive or dead by intercepting on our retina a small fraction of the light that has
interacted with the cat).
Thirdly, one often says in this context that decoherence induces ‘effective
superselection rules’. The concept of a (strict) superselection rule is something that
requires a generalisation of the formalism of quantum mechanics, and means that
there are some observables — called ‘classical’ in technical terminology — that
commute with all observables (for a review, see Wightman 1995). Intuitively, these
observables are infinitely robust, since no possible interaction can disturb them (at
least as long as the interaction Hamiltonian is considered to be an observable). By an
effective superselection rule one means that, roughly analogously, certain
observables (e.g., chirality) will not be disturbed by the interactions that actually take
place. (See also the comments on the charge superselection rule in Section 5 below.)
Fourthly and perhaps most importantly, robustness has to do with the possibility or
reidentifying a component of the wave over time, and thus talking about trajectories,
whether spatial or not (the component of the electron's wave that goes through the
upper slit hits the screen at a particular place with a certain probability; the
left-handed component of the state of a chiral molecule at some time t evolves into
the left-handed component of the perhaps slightly altered state of the molecule at
some later time t′). Notice that in many of the early papers on decoherence the
emphasis is on the preferred states themselves, or on how the (reduced) state of the
system evolves: notably on how the state of the system becomes approximately
diagonal in the basis defined by the preferred states. This emphasis on (so to speak)
kinematical aspects must not mislead one: the dynamical aspects of reidentification
over time and trajectory formation are just as important if not the most important for
the concept of decoherence and its understanding.
In the case of decoherence interactions of the form of approximate joint position and
momentum measurements, the preferred states are obviously Schrödinger waves
localised (narrow) in both position and momentum (essentially the ‘coherent states’
of the system). Indeed, they can be very narrow. A speck of dust of radius a = 10-5cm
floating in the air will have interference suppressed between (position) components
with a width (‘coherence length’) of 10-13cm.[8]

In this case, the trajectories at the level of the components (the trajectories of the
preferred states) will approximate surprisingly well the corresponding classical
(Newtonian) trajectories. Intuitively, one can explain this by noting that if the
preferred states, which are ‘wave packets’ that are both narrow in position and
remaining narrow (because narrow in momentum), tend to get entangled least with
the environment, they will tend to follow more or less undistrubed the Schrödinger
equation. But in fact, narrow wave packets will follow approximately Newtonian
trajectories (if the external potentials in which they move are uniform enough along
the width of the packets: results of this kind are known as ‘Ehrenfest theorems’.)
Thus, the resulting ‘histories’ will be close to Newtonian ones (on the relevant



scales).[9] The most intuitive physical example for this are the observed trajectories
of alpha particles in a bubble chamber, which are indeed extremely close to
Newtonian ones, except for additional tiny ‘kinks’.[10]

None of these features are claimed to obtain in all cases of interaction with some
environment. It is a matter of detailed physical investigation to assess which systems
exhibit which features, and how general the lessons are that we might learn from studying
specific models. In particular one should beware of common overgeneralisations. For
instance, decoherence does not affect only and all ‘macroscopic systems’. True,
middle-sized objects, say, on the Earth's surface will be very effectively decohered by the
air in the atmosphere, and this is an excellent example of decoherence at work. On the
other hand, there are also very good examples of decoherence-like interactions affecting
microscopic systems, such as in the interaction of alpha particles with the gas in a bubble
chamber. And further, there are arguably macroscopic systems for which interference
effects are not suppressed. For instance, it has been shown to be possible to sufficiently
shield SQUIDS (a type of superconducting devices) from decoherence for the purpose of
observing superpositions of different macroscopic currents — contrary to what one had
expected (see e.g., Leggett 1984; and esp. 2002, Section 5.4). Anglin, Paz and Zurek
(1997) examine some less well-behaved models of decoherence and provide a useful
corrective as to the limits of decoherence.

3. Conceptual Appraisal
3.1 Solving the measurement problem?

The fact that interference is typically very well suppressed between localised states of
macroscopic objects suggests that it is relevant to why macroscopic objects in fact appear
to us to be in localised states. A stronger claim is that decoherence is not only relevant to
this question but by itself already provides the complete answer. In the special case of
measuring apparatus, it would explain why we never observe an apparatus pointing, say, to
two different results, i.e., decoherence would provide a solution to the measurement
problem. As pointed out by many authors, however (recently e.g., Adler 2003; Zeh 1995,
pp. 14-15), this claim is not tenable.

The measurement problem, in a nutshell, runs as follows. Quantum mechanical systems are
described by wave-like mathematical objects (vectors) of which sums (superpositions) can
be formed (see the entry on quantum mechanics). Time evolution (the Schrödinger
equation) preserves such sums. Thus, if a quantum mechanical system (say, an electron) is
described by a superposition of two given states, say, spin in x-direction equal +1/2 and
spin in x-direction equal -1/2, and we let it interact with a measuring apparatus that couples
to these states, the final quantum state of the composite will be a sum of two components,
one in which the apparatus has coupled to (has registered) x-spin = +1/2, and one in which
the apparatus has coupled to (has registered) x-spin = -1/2. The problem is that while we
may accept the idea of microscopic systems being described by such sums, we cannot even
begin to imagine what it would mean for the (composite of electron and) apparatus to be so



described.

Now, what happens if we include decoherence in the description? Decoherence tells us,
among other things, that there are plenty of interactions in which differently localised
states of macroscopic systems couple to different states of their environment. In particular,
the differently localised states of the macroscopic system could be the states of the pointer
of the apparatus registering the different x-spin values of the electron. By the same
argument as above, the composite of electron, apparatus and environment will be a sum of
a state corresponding to the environment coupling to the apparatus coupling in turn to the
value +1/2 for the spin, and of a state corresponding to the environment coupling to the
apparatus coupling in turn to the value -1/2 for the spin. So again we cannot imagine what
it would mean for the composite system to be described by such a sum.

We are left with the following choice whether or not we include decoherence: either the
composite system is not described by such a sum, because the Schrödinger equation
actually breaks down and needs to be modified, or it is, but then we need to understand
what that means, and this requires giving an appropriate interpretation of quantum
mechanics. Thus, decoherence as such does not provide a solution to the measurement
problem, at least not unless it is combined with an appropriate interpretation of the wave
function. And indeed, as we shall see, some of the main workers in the field such as Zeh
(2000) and Zurek (1998) suggest that decoherence is most naturally understood in terms of
Everett-like interpretations (see below Section 4.3, and the entries on Everett's
relative-state interpretation and on the many-worlds interpretation).

Unfortunately, naive claims of the kind above are still somewhat part of the ‘folklore’ of
decoherence, and deservedly attract the wrath of physicists (e.g., Pearle 1997) and
philosophers (e.g., Bub 1999, Chap. 8) alike. (To be fair, this ‘folk’ position has the merit
of attempting to subject measurement interactions to further physical analysis, without
assuming that measurements are a fundamental building block of the theory.)

3.2 Compounding the measurement problem

Decoherence is clearly neither a dynamical evolution contradicting the Schrödinger
equation, nor a new interpretation of the wave function. As we shall discuss, however, it
does both reveal important dynamical effects within the Schrödinger evolution, and may be
suggestive of possible interpretations of the wave function.

As such it has other things to offer to the philosophy of quantum mechanics. At first,
however, it seems that discussion of environmental interactions even exacerbates the
problems. Intuitively, if the environment is carrying out, without our intervention, lots of
approximate position measurements, then the measurement problem ought to apply more
widely, also to these spontaneously occurring measurements.

Indeed, while it is well-known that localised states of macroscopic objects spread very
slowly under the free Schrödinger evolution (i.e., if there are no interactions), the situation
turns out to be different if they are in interaction with the environment. Although the



different components that couple to the environment will be individually incredibly
localised, collectively they can have a spread that is many orders of magnitude larger. That
is, the state of the object and the environment could be a superposition of zillions of very
well localised terms, each with slightly different positions, and which are collectively
spread over a macroscopic distance, even in the case of everyday objects.[11]

Given that everyday macroscopic objects are particularly subject to decoherence
interactions, this raises the question of whether quantum mechanics can account for the
appearance of the everyday world even beyond the measurement problem in the strict
sense. To put it crudely: if everything is in interaction with everything else, everything is
entangled with everything else, and that is a worse problem than the entanglement of
measuring apparatuses with the measured probes. And indeed, discussing the measurement
problem without taking decoherence (fully) into account may not be enough, as we shall
illustrate by the case of some versions of the modal interpretation in Section 4.4.

3.3 Emergence of classicality

What suggests that decoherence may be relevant to the issue of the classical appearance of
the everyday world is that at the level of components the quantum description of
decoherence phenomena can display tantalisingly classical aspects. The question is then
whether, if viewed in the context of any of the main foundational approaches to quantum
mechanics, these classical aspects can be taken to explain corresponding classical aspects
of the phenomena. The answer, perhaps unsurprisingly, turns out to depend on the chosen
approach, and in the next section we shall discuss in turn the relation between decoherence
and several of the the main approaches to the foundations of quantum mechanics.

Even more generally, one could ask whether the results of decoherence could thus be used
to explain the emergence of the entire classicality of the everyday world, i.e., to explain
both kinematical features such as macroscopic localisation and dynamical features such as
approximately Newtonian or Brownian trajectories, whenever they happen to be
phenomenologically adequate descriptions. As we have mentioned, there are cases in
which a classical description is not a good description of a phenomenon, even if the
phenomenon involves macroscopic systems. There are also cases, notably quantum
measurements, in which the classical aspects of the everyday world are only kinematical
(definiteness of pointer readings), while the dynamics is highly non-classical
(indeterministic response of the apparatus). In a sense, the everyday world is the world of
classical concepts as presupposed by Bohr (see the entry on the Copenhagen interpretation)
in order to describe in the first place the ‘quantum phenomena’, which themselves would
thus become a consequence of decoherence (Zeh 1995, p. 33; see also Bacciagaluppi 2002,
Section 6.2). The question of explaining the classicality of the everyday world becomes the
question of whether one can derive from within quantum mechanics the conditions
necessary to discover and practise quantum mechanics itself, and thus, in Shimony's
(1989) words, closing the circle.

In this generality the question is clearly too hard to answer, depending as it does on how far
the physical programme of decoherence (Zeh 1995, p. 9) can be successfully developed.



We shall thus postpone the (partly speculative) discussion of how far the programme of
decoherence might go until Section 5.

4. Decoherence and Approaches to Quantum Mechanics
There is a wide range of approaches to the foundations of quantum mechanics. The term
‘approach’ here is more appropriate than the term ‘interpretation’, because several of these
approaches are in fact modifications of the theory, or at least introduce some prominent
new theoretical aspects. A convenient way of classifying these approaches is in terms of
their strategies for dealing with the measurement problem.

Some approaches, so-called collapse approaches, seek to modify the Schrödinger equation,
so that superpositions of different ‘everyday’ states do not arise or are very unstable. Such
approaches may have intuitively little to do with decoherence since they seek to suppress
precisely those superpositions that are created by decoherence. Nevertheless their relation
to decoherence is interesting. Among collapse approaches, we shall discuss (in Section 4.1)
von Neumann's collapse postulate and theories of spontaneous localisation (see the entry
on collapse theories).

Other approaches, known as ‘hidden variables’ approaches, seek to explain quantum
phenomena as equilibrium statistical effects arising from a theory at a deeper level, rather
strongly in analogy with attempts at understanding thermodynamics in terms of statistical
mechanics (see the entry on philosophy of statistical mechanics). Of these, the most
developed are the so-called pilot-wave theories, in particular the theory by de Broglie and
Bohm (see the entry on Bohmian mechanics), whose relation to decoherence we discuss in
Section 4.2.

Finally, there are approaches that seek to solve the measurement problem strictly by
providing an appropriate interpretation of the theory. Slightly tongue in cheek, one can
group together under this heading approaches as diverse as Everett interpretations (see the
entries on Everett's relative-state interpretation and on the many-worlds interpretation),
modal interpretations and Bohr's Copenhagen interpretation (Sections 4.3, 4.4 and 4.5,
respectively).

We shall be analysing these approaches specifically in their relation to decoherence. For
further details and more general assessment or criticism we direct the reader to the relevant
entries.

4.1 Collapse approaches

4.1.1 Von Neumann

It is notorious that von Neumann (1932) proposed that the observer's consciousness is
somehow related to what he called Process I, otherwise known as the collapse postulate or
the projection postulate, which in his book is treated on a par with the Schrödinger
equation (his Process II). There is some ambiguity in how to interpret von Neumann. He



may have been advocating some sort of special access to our own consciousness that
makes it appear to us that the wave function has collapsed, thus justifying a
phenomenological reading of Process I. Alternatively, he may have proposed that
consciousness plays some causal role in precipitating the collapse, in which case Process I
is a physical process fully on a par with Process II.[12]

In either case, von Neumann's interpretation relies on the insensitivity of the final
predictions (for what we consciously record) to exactly where and when Process I is used
in modelling the evolution of the quantum system. This is often referred to as the
movability of the von Neumann cut between the subject and the object, or some similar
phrase. Collapse could occur when a particle impinges on a screen, or when the screen
blackens, or when an automatic printout of the result is made, or in our retina, or along the
optic nerve, or when ultimately consciousness is involved. Before and after the collapse,
the Schrödinger equation would describe the evolution of the system.

Von Neumann shows that all of these models are equivalent, as far as the final predictions
are concerned, so that he can indeed maintain that collapse is related to consciousness,
while in practice applying the projection postulate at a much earlier (and more practical)
stage in the description. What allows von Neumann to derive this result, however, is the
assumption of absence of interference between different components of the wave function.
Indeed, if interference were otherwise present, the timing of the collapse would influence
the final statistics, just as it would in the case of the two-slit experiment (collapse behind
the slits or at the screen). Thus, although von Neumann's is (at least on some readings) a
true collapse approach, its reliance on decoherence is in fact crucial.

4.1.2 Spontaneous collapse theories

The best known theory of spontaneous collapse is the so-called GRW theory (Ghirardi
Rimini & Weber 1986), in which a material particle spontaneously undergoes localisation
in the sense that at random times it experiences a collapse of the form used to describe
approximate position measurements.[13] In the original model, the collapse occurs
independently for each particle (a large number of particles thus ‘triggering’ collapse much
more frequently); in later models the frequency for each particle is weighted by its mass,
and the overall frequency for collapse is thus tied to mass density.[14]

Thus, formally, the effect of spontaneous collapse is the same as in some of the models of
decoherence, at least for one particle.[15] Two crucial differences on the other hand are that
we have ‘true’ collapse instead of suppression of interference (see above Section 2), and
that spontaneous collapse occurs without there being any interaction between the system
and anything else, while in the case of decoherence suppression of interference obviously
arises through interaction with the environment.

Can decoherence be put to use in GRW? The situation may be a bit complex when the
decoherence interaction does not approximately privilege position (e.g., currents in a
SQUID instead), because collapse and decoherence might actually ‘pull’ in different
directions.[16] But in those cases in which the main decoherence interaction also takes the



form of approximate position measurements, the answer boils down to a quantitative
comparison. If collapse happens faster than decoherence, then the superposition of
components relevant to decoherence will not have time to arise, and insofar as the collapse
theory is successful in recovering classical phenomena, decoherence plays no role in this
recovery. Instead, if decoherence takes place faster than collapse, then (as in von
Neumann's case) the collapse mechanism can find ‘ready-made’ structures onto which to
truly collapse the wave function. This is indeed borne out by detailed comparison
(Tegmark 1993, esp. Table 2). Thus, it seems that decoherence does play a role also in
spontaneous collapse theories.

A related point is whether decoherence has implications for the experimental testability of
spontaneous collapse theories. Indeed, provided decoherence can be put to use also in
no-collapse approaches such as pilot-wave or Everett (possibilities that we discuss in the
next sub-sections), then in all cases in which decoherence is faster than collapse, what
might be interpreted as evidence for collapse could be reinterpreted as ‘mere’ suppression
of interference (think of definite measurement outcomes!), and only cases in which the
collapse theory predicts collapse but the system is shielded from decoherence (or perhaps
in which the two pull in different directions) could be used to test collapse theories
experimentally.

One particularly bad scenario for experimental testability is related to the speculation (in
the context of the ‘mass density’ version) that the cause of spontaneous collapse may be
connected with gravitation. Tegmark 1993 (Table 2) quotes some admittedly uncertain
estimates for the suppression of interference due to a putative quantum gravity, but they are
quantitatively very close to the rate of destruction of interference due to the GRW collapse
(at least outside of the microscopic domain). Similar conclusions are arrived at by Kay
(1998). If there is indeed such a quantitative similarity between these possible effects, then
it would become extremely difficult to distinguish between the two (with the above
proviso). In the presence of gravitation, any positive effect could be interpreted as support
for either collapse or decoherence. And in those cases in which the system is effectively
shielded from decoherence (say, if the experiment is performed in free fall), if the collapse
mechanics is indeed triggered by gravitational effects, then no collapse might be expected
either. The relation between decoherence and spontaneous collapse theories is thus indeed
far from straightforward.

4.2 Pilot-wave theories

Pilot-wave theories are no-collapse formulations of quantum mechanics that assign to the
wave function the role of determining the evolution of (‘piloting’, ‘guiding’) the variables
characterising the system, say particle configurations, as in de Broglie's (1928) and Bohm's
(1952) theory, or fermion number density, as in Bell's (1987, Chap. 19) ‘beable’ quantum
field theory, or again field confugurations, as in Valentini's proposals for pilot-wave
quantum field theories (Valentini, in preparation; see also Valentini 1996).

De Broglie's idea had been to modify classical Hamiltonian mechanics in such a way as to
make it analogous to classical wave optics, by substituting for Hamilton and Jacobi's action



function the phase S of a physical wave. Such a ‘wave mechanics’ of course yields
non-classical motions, but in order to understand how de Broglie's dynamics relates to
typical quantum phenomena, we must include Bohm's (1952, Part II) analysis of the
appearance of collapse. In the case of measurements, Bohm argued that the wave function
evolves into a superposition of components that are and remain separated in the total
configuration space of measured system and apparatus, so that the total configuration is
‘trapped’ inside a single component of the wave function, which will guide its further
evolution, as if the wave had collapsed (‘effective’ wave function). This analysis allows
one to recover qualitatively the measurement collapse and by extension typical quantum
features such as the uncertainty principle and the perfect correlations in an EPR experiment
(we are ignoring here the well developed quantitative aspects of the theory).

A natural idea is now that this analysis should be extended from the case of measurements
induced by an apparatus to that of the ‘spontaneous measurements’ performed by the
environment in the theory of decoherence, thus applying the same strategy for recovering
both quantum and classical phenomena. The resulting picture is one in which de
Broglie-Bohm theory, in cases of decoherence, would describe the motion of particles that
are trapped inside one of the extremely well localised components selected by the
decoherence interaction. Thus, de Broglie-Bohm trajectories will partake of the classical
motions on the level defined by decoherence (the width of the components). This use of
decoherence would arguably resolve the puzzles discussed e.g., by Holland (1996) with
regard to the possibility of a ‘classical limit’ of de Broglie's theory. One baffling problem is
for instance that possible trajectories in de Broglie-Bohm theory differing in their initial
conditions cannot cross, because the wave guides the particles by way of a first-order
equation, while Newton's equations are second-order, as well-known, and possible
trajectories do cross. However, the non-interfering components produced by decoherence
can indeed cross, and so will the trajectories of particles trapped inside them.

The above picture is natural, but it is not obvious. De Broglie-Bohm theory and
decoherence contemplate two a priori distinct mechanisms connected to apparent collapse:
respectively, separation of components in configuration space and suppression of
interference. While the former obviously implies the latter, it is equally obvious that
decoherence need not imply separation in configuration space. One can expect, however,
that decoherence interactions of the form of approximate position measurements will.

If the main instances of decoherence are indeed coextensive with instances of separation in
configuration, de Broglie-Bohm theory can thus use the results of decoherence relating to
the formation of classical structures, while providing an interpretation of quantum
mechanics that explains why these structures are indeed observationally relevant. The
question that arises for de Broglie-Bohm theory is then the extension of the well-known
question of whether all apparent measurement collapses can be associated with separation
in configuration (by arguing that at some stage all measurement results are recorded in
macroscopically different configurations) to the question of whether all appearance of
classicality can be associated with separation in configuration space.[17]

A discussion of the role of decoherence in pilot-wave theory in the form suggested above is



still largely outstanding. An informal discussion is given in Bohm and Hiley (1993, Chap.
8), partial results are given by Appleby (1999), and a different approach is suggested by
Allori (2001; see also Allori & Zanghì 2001). Appleby discusses trajectories in a model of
decoherence and obtains approximately classical trajectories, but under a special
assumption.[18] Allori investigates in the first place the ‘short wavelength’ limit of de
Broglie-Bohm theory (suggested by the analogy to the geometric limit in wave optics). The
role of decoherence in her analysis is crucial but limited to maintaining the classical
behaviour obtained under the appropriate short wavelength conditions, because the
behaviour would otherwise break down after a certain time.

4.3 Everett interpretations

Everett interpretations are very diverse, and possibly only share the core intuition that a
single wave function of the universe should be interpreted in terms of a multiplicity of
‘realities’ at some level or other. This multiplicity, however understood, is formally
associated with components of the wave function in some decomposition.[19]

Various Everett interpretations, roughly speaking, differ as to how to identify the relevant
components of the universal wave function, and how to justify such an identification (the
so-called problem of the ‘preferred basis’ — although this may be a misnomer), and differ
as to how to interpret the resulting multiplicity (various ‘many-worlds’ or various ‘many-
minds’ interpretations), in particular with regard to the interpretation of the (emerging?)
probabilities at the level of the components (problem of the ‘meaning of probabilities’).

The last problem is perhaps the most hotly debated aspect of Everett. Clearly, decoherence
enables reidentification over time of both observers and of results of repeated measurement
and thus definition of empirical frequencies. In recent years progress has been made
especially along the lines of interpreting the probabilities in decision-theoretic terms for a
‘splitting’ agent (see in particular Wallace 2003b, and its longer preprint, Wallace
2002).[20]

The most useful application of decoherence to Everett, however, seems to be in the context
of the problem of the preferred basis. Decoherence seems to yield a (maybe partial)
solution to the problem, in that it naturally identifies a class of ‘preferred’ states (not
necessarily an orthonormal basis!), and even allows to reidentify them over time, so that
one can identify ‘worlds’ with the trajectories defined by decoherence (or more abstractly
with decoherent histories).[21] If part of the aim of Everett is to interpret quantum
mechanics without introducing extra structure, in particular without postulating the
existence of some preferred basis, then one will try to identify structure that is already
present in the wave function at the level of components (see e.g., Wallace, 2003a). In this
sense, decoherence is an ideal candidate for identifying the relevant components.

A justification for this identification can then be variously given by suggesting that a
‘world’ should be a temporally extended structure and thus reidentification over time will
be a necessary condition for identifying worlds, or similarly by suggesting that in order for
observers to evolve there must be stable records of past events (Saunders 1993, and the



unpublished Gell-Mann & Hartle 1994 (see the Other Internet Resources section below), or
that observers must be able to access robust states, preferably through the existence of
redundant information in the environment (Zurek's ‘existential interpretation’, 1998).

In alternative to some global notion of ‘world’, one can look at the components of the
(mixed) state of a (local) system, either from the point of view that the different
components defined by decoherence will separately affect (different components of the
state of) another system, or from the point of view that they will separately underlie the
conscious experience (if any) of the system. The former sits well with Everett's (1957)
original notion of relative state, and with the relational interpretation of Everett preferred
by Saunders (e.g., 1993) and, it would seem, Zurek (1998). The latter leads directly to the
idea of many-minds interpretations (see the entry on Everett's relative-state interpretation
and the website on ‘A Many-Minds Interpretation of Quantum Theory’ referenced in the
Other Internet Resources). If one assumes that mentality can be associated only with
certain decohering structures of great complexity, this might have the advantage of further
reducing the remaining ambiguity about the preferred ‘basis’.

The idea of many minds was suggested early on by Zeh (2000; also 1995, p. 24). As Zeh
puts it, von Neumann's motivation for introducing collapse was to save what he called
psycho-physical parallelism (arguably supervenience of the mental on the physical: only
one mental state is experienced, so there should be only one corresponding component in
the physical state). In a decohering no-collapse universe one can instead introduce a new
psycho-physical parallelism, in which individual minds supervene on each non-interfering
component in the physical state. Zeh indeed suggests that, given decoherence, this is the
most natural interpretation of quantum mechanics.[22]

4.4 Modal interpretations

Modal interpretations originated with Van Fraassen (1973, 1991) as pure reinterpretations
of quantum mechanics (other later versions coming to resemble more hidden variables
theories). Van Fraassen's basic intuition was that the quantum state of a system should be
understood as describing a collection of possibilities, represented by components in the
(mixed) quantum state. His proposal considers only decompositions at single instants, and
is agnostic about reidentification over time. Thus, it can directly exploit only the fact that
decoherence produces descriptions in terms of classical-like states, which will count as
possibilities in Van Fraassen's interpretation. This ensures ‘empirical adequacy’ of the
quantum description (a crucial concept in Van Fraassen's philosophy of science). The
dynamical aspects of decoherence can be exploited indirectly, in that single-time
components will exhibit records of the past, which ensure adequacy with respect to
observations, but about whose veridicity Van Fraassen remains agnostic.

A different strand of modal interpretations is loosely associated with the (distinct) views of
Kochen (1985), Healey (1989) and Dieks and Vermaas (e.g., 1998). We focus on the last of
these to fix the ideas. Van Fraassen's possible decompositions are restricted to one singled
out by a mathematical criterion (related to the so-called biorthogonal decomposition
theorem), and a dynamical picture is explicitly sought (and was later developed). In the



case of an ideal (non-approximate) quantum measurement, this special decomposition
coincides with that defined by the eigenstates of the measured observable and the
corresponding pointer states, and the interpretation thus appears to solve the measurement
problem (in the strict sense).

At least in Dieks's original intentions, however, the approach was meant to provide an
attractive interpretation of quantum mechanics also in the case of decoherence interactions,
since at least in simple models of decoherence the same kind of decomposition singles out
more or less also those states between which interference is suppressed (with a proviso
about very degenerate states).

However, this approach fails badly when applied to other models of decoherence, e.g., that
in Joos and Zeh (1985, Section III.2). Indeed, it appears that in general the components
singled out by this version of the modal interpretation are given by delocalised states, as
opposed to the components arising naturally in the theory of decoherence (Bacciagaluppi
2000; Donald 1998). Notice that van Fraassen's original interpretatioin is untouched by this
problem, and so are possibly some more recent modal or modal-like interpretations by
Spekkens and Sipe (2001), Bene and Dieks (2002) and Berkovitz and Hemmo (in
preparation).

Finally, some of the views espoused in the decoherent histories literature could be
considered as cognate to Van Fraassen's views, identifying possibilities, however, at the
level of possible courses of world history. Such ‘possible worlds’ would be those temporal
sequences of (quantum) propositions that satisfy the decoherence condition and in this
sense support a description in terms of a probabilistic evolution. This view would be using
decoherence as an essential ingredient, and in fact may turn out to be the most fruitful way
yet of implementing modal ideas; a discussion in these terms still needs to be carried out in
detail, but see Hemmo (1996).

4.5 Bohr's Copenhagen interpretation

It appears that Bohr held more or less the following view. Everyday concepts, in fact the
concepts of classical physics, are indispensable to the description of any physical
phenomena (in a way — and terminology — much reminiscent of Kant's transcendental
arguments). However, experimental evidence from atomic phenomena shows that classical
concepts have fundamental limitations in their applicability: they can only give partial
(complementary) pictures of physical objects. While these limitations are quantitatively
negligible for most purposes in dealing with macroscopic objects, they apply also at that
level (as shown by Bohr's willingness to apply the uncertainty relations to parts of the
experimental apparatus in the Einstein-Bohr debates), and they are of paramount
importance when dealing with microscopic objects. Indeed, they shape the characteristic
features of quantum phenomena, e.g., indeterminism. The quantum state is not an
‘intuitive’ (anschaulich, also translated as ‘visualisable’) representation of a quantum
object, but only a ‘symbolic’ representation, a shorthand for the quantum phenomena
constituted by applying the various complementary classical pictures.



While it is difficult to pinpoint exactly what Bohr's views were (the concept and even the
term ‘Copenhagen interpretation’ appear to be a later construct; see Howard 2003), it is
clear that according to Bohr, classical concepts are autonomous from, and indeed
conceptually prior to, quantum theory. If we understand the theory of decoherence as
pointing to how classical concepts might in fact emerge from quantum mechanics, this
seems to undermine Bohr's basic position. Of course it would be a mistake to say that
decoherence (a part of quantum theory) contradicts the Copenhagen approach (an
interpretation of quantum theory). However, decoherence does suggest that one might want
to adopt alternative interpretations, in which it is the quantum concepts that are prior to the
classical ones, or, more precisely, the classical concepts at the everyday level emerge from
quantum mechanics (irrespectively of whether there are even more fundamental concepts,
as in pilot-wave theories). In this sense, if the programme of decoherence is successful as
sketched in Section 3.3, it will indeed be a blow to Bohr's interpretation coming from
quantum physics itself.

On the other hand, Bohr's intuition that quantum mechanics as practised requires a classical
domain would in fact be confirmed by decoherence, if it turns out that decoherence is
indeed the basis for the phenomenology of quantum mechanics, as the Everettian and
possibly the Bohmian analysis suggest. As a matter of fact, Zurek (2003) locates his
existential interpretation half-way between Bohr and Everett. It is perhaps a gentle irony
that in the wake of decoherence, the foundations of quantum mechanics might end up
re-evaluating this part of Bohr's thinking.

5. Scope of Decoherence
We have already mentioned in Section 2.2 that some care has to be taken lest one
overgeneralise conclusions based on examining only well-behaved models of decoherence.
On the other hand, in order to assess the programme of explaining the emergence of
classicality using decoherence (together with appropriate foundational approaches), one
has to probe how far the applications of decoherence can be pushed. In this final section,
we survey some of the further applications that have been proposed for decoherence,
beyond the easier examples we have seen such as chirality or alpha-particle tracks.
Whether decoherence can indeed be successfully applied to all of these fields will be in
part a matter for further assessment, as more detailed models are proposed.

A straightforward application of the techniques allowing one to derive Newtonian
trajectories at the level of components has been employed by Zurek and Paz (1994) to
derive chaotic trajectories in quantum mechanics. The problem with the quantum
description of chaotic behaviour is that prima facie there should be none. Chaos is
characterised roughly as extreme sensitivity in the behaviour of a system on its initial
conditions, where the distance between the trajectories arising from different initial
conditions increases exponentially in time. Since the Schrödinger evolution is unitary, it
preserves all scalar products and all distances between quantum state vectors. Thus, it
would seem, close initial conditions lead to trajectories that are uniformly close throughout
all of time, and no chaotic behaviour is possible (‘problem of quantum chaos’). The crucial



point that enables Zurek and Paz' analysis is that the relevant trajectories in decoherence
theory are at the level of components of the state of the system. Unitarity is preserved
because the vectors in the environment to which these different components are coupled,
are and remain orthogonal: how the components themselves evolve is immaterial. Explicit
modelling yields a picture of quantum chaos in which different trajectories branch (a
feature absent from classical chaos, which is deterministic) and then indeed diverge
exponentially. As with the crossing of trajectories in de Broglie-Bohm theory (Section 4.2),
one has behaviour at the level of components that is qualitatively different from the
behaviour derived from wave functions of an isolated system.

The idea of effective superselection rules was mentioned in Section 2.2. As pointed out by
Giulini, Kiefer and Zeh (1995, see also Giulini et al. 1996, Section 6.4), the justification
for the (strict) superselection rule for charge in quantum field theory can also be phrased in
terms of decoherence. The idea is simple: an electric charge is surrounded by a Coulomb
field (which electrostatically is infinitely extended; the argument can also be carried
through using the retarded field, though). States of different electric charge of a particle are
thus coupled to different, presumably orthogonal, states of its electric field. One can
consider the far-field as an effectively uncontrollable environment that decoheres the
particle (and the near-field), so that superpositions of different charges are indeed never
observed.

Another claim about the significance of decoherence relates to time asymmetry (see e.g.,
the entries on time asymmetry in thermodynamics and philosophy of statistical mechanics),
in particular of whether decoherence can explain the apparent time-directedness in our
(classical) world. The issue is again one of time-directedness at the level of components
emerging from a time-symmetric evolution at the level of the universal wave function
(presumably with special initial conditions). Insofar as (apparent) collapse is indeed a
time-directed process, decoherence will have direct relevance to the emergence of this
‘quantum mechanical arrow of time’ (for a spectrum of discussions, see Zeh 2001, Chap. 4;
Hartle 1998, and references therein; and Bacciagaluppi 2002, Section 6.1). Whether
decoherence is connected to the other familiar arrows of time is a more specific question,
various discussions of which are given, e.g., by Zurek and Paz (1994), Hemmo and
Shenker (2001) and the unpublished Wallace (2001) (see the Other Internet Resources
Section below).

In a recent paper, Zeh (2003) argues from the notion that decoherence can explain
‘quantum phenomena’ such as particle detections that the concept of a particle in quantum
field theory is itself a consequence of decoherence. That is, only fields need to be included
in the fundamental concepts, and ‘particles’ are a derived concept, unlike what is suggested
by the customary introduction of fields through a process of ‘second quantisation’. Thus
decoherence seems to provide a further powerful argument for the conceptual primacy of
fields over particles in the question of the interpretation of quantum field theory.

Finally, it has been suggested that decoherence could be a useful ingredient in a theory of
quantum gravity, for two reasons. First, because a suitable generalisation of decoherence
theory to a full theory of quantum gravity should yield suppression of interference between



different classical spacetimes (Giulini et al. 1996, Section 4.2). Second, it is speculated that
decoherence might solve the so-called problem of time, which arises as a prominent puzzle
in (the ‘canonical’ approach to) quantum gravity. This is the problem that the candidate
fundamental equation (in this approach) — the Wheeler-DeWitt equation — is an analogue
of a time-independent Schrödinger equation, and does not contain time at all. The problem
is thus simply: where does time come from? In the context of decoherence theory, one can
construct toy models in which the analogue of the Wheeler-DeWitt wave function
decomposes into non-interfering components (for a suitable sub-system) each satisfying a
time-dependent Schrödinger equation, so that decoherence appears in fact as the source of
time.[23] An accessible introduction to and philosophical discussion of these models is
given by Ridderbos (1999), with references to the original papers.
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Elements of Environmental Decoherence
∗

Erich Joos

Rosenweg 2, D-22869 Schenefeld, Germany

Abstract

In this contribution I give an introduction to the essential concepts and
mechanisms of decoherence by the environment. The emphasis will be not so
much on technical details but rather on conceptual issues and the impact on
the interpretation problem of quantum theory.

1 What is decoherence?

Decoherence is the irreversible formation of quantum correlations of a system with
its environment. These correlations lead to entirely new properties and behavior
compared to that shown by isolated objects.

Whenever we have a product state of two interacting systems - a very special
state - the unitary evolution according to the Schrödinger equation will lead to
entanglement,

|ϕ〉|Φ〉 t−→
∑

n,m

cnm|ϕn〉|Φm〉

=
∑

n

√

pn(t)|ϕ̃n(t)〉|Φ̃n(t)〉. (1)

The rhs of (1) can no longer be written as a single product in the general case. This
can also be described by using the Schmidt representation, shown in the second line,
where the presence of more than one component is equivalent to the existence of
quantum correlations.

If many degrees of freedom are involved in this process, this entanglement will
become practically irreversible, except for very special situations. Decoherence is
thus a quite normal and, moreover, ubiquitous, quantum mechanical process. His-
torically, the important observation was that this de-separation of quantum states
happens extremely fast for macroscopic objects [17]. The natural environment can-
not simply be ignored or treated as a classical background in this case.

Equation (1) shows that there is an intimate connection to the theory of irre-
versible processes. However, decoherence must not be identified or confused with

∗To be published in the proceedings of the Bielefeld conference on “Decoherence: Theoretical,
Experimental, and Conceptual Problems”, edited by P. Blanchard, D. Giulini, E. Joos, C. Kiefer,
and I.-O. Stamatescu (Springer 1999).
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dissipation: decoherence precedes dissipation by acting on a much faster timescale,
while requiring initial conditions which are essentially the same as those responsible
for the thermodynamic arrow of time [18].

When we consider observations at one of the two systems, we see various conse-
quences of this entanglement. First of all, our considered subsystem will no longer
obey a Schrödinger equation, the local dynamics is in general very complicated, but
can often be approximated by some sort of master equation (The Schmidt decom-
position is directly related to the subsystem density matrices). The most important
effect is the disappearance of phase relations (i.e., interference) between certain sub-
spaces of the Hilbert space of the system. Hence the resulting superselection rules
can be understood as emerging from a dynamical, approximate and time-directed
process. If the coupling to the environment is very strong, the internal dynamics of
the system may become slowed down or even frozen. This is now usually called the
quantum Zeno effect, which apparently does not occur in our macroscopic world.

The details of the dynamics depend on the kind of coupling between the system
we consider and its environment. In many cases – especially in the macroscopic
domain – this coupling leads to an evolution similar to a measurement process.
Therefore it is appropriate to recall the essential elements of the quantum theory of
measurement.

1.1 Dynamical Description of Measurement

The standard description of measurement was laid down by von Neumann already
in 1932 [15]. Consider a set of system states |n〉 which our apparatus is built to
discriminate.

S A-

Original form of the von Neumann measurement model. Information about the state
of the measured system S is transferred to the measuring apparatus A.

For each state |n〉 we have a corresponding pointer state |Φn〉 (more precisely,

for each “quantum number” n there exists a large set of macrostates |Φ(α)
n 〉, α

describing microscopic degrees of freedom). If the measurement is repeatable or
ideal the dynamics of the measurement interaction must look like

|n〉|Φ0〉 t−→ |n〉|Φn(t)〉 . (2)

From linearity we can immediately see what happens for a general initial state of
the measured system,

(

∑

n

cn|n〉
)

|Φ0〉 t−→
∑

n

cn|n〉|Φn(t)〉 . (3)

We do not find a certain measurement result, but a superposition. Through uni-
tary evolution, a correlated (and still pure) state results, which contains all possible

2



results as components. Of course such a superposition must not be interpreted as an
ensemble. The transition from this superposition to a single component – which is
what we observe – constitutes the quantum measurement problem. As long as there
is no collapse we have to deal with the whole superposition – and it is well known
that a superposition has very different properties compared to any of its compo-
nents. Quantum correlations are often misinterpreted as (quantum) noise. This is
wrong, however: Noise would mean that the considered system is in a certain state,
which may be unknown and/or evolve in a complicated way. Such an interpretation
is untenable and contradicts all experiments which show the nonlocal features of
quantum-correlated (entangled) states.

Von Neumann’s treatment, as described so far, is unrealistic since it does not
take into account the essential openness of macroscopic objects. This deficiency can
easily be remedied by extending the above scheme.

1.2 Classical Properties through Decoherence

If one takes into account that the apparatus A is coupled to its environment E,
which also acts like a measurement device, the phase relations are (extremely fast)
further dislocalized into the total system – finally the entire universe, according to

S A- E-

-

-

Realistic extension of the von Neumann measurement model. Information about the state of the

measured system S is transferred to the measuring apparatus A and then very rapidly sent to the

environment E. The back-reaction on the (local) system S+A originates entirely from quantum

nonlocality.

(

∑

n

cn|n〉|Φn〉
)

|E0〉 t−→
∑

n

cn|n〉|Φn〉|En〉. (4)

The behavior of system+apparatus is then described by the density matrix

ρSA ≈
∑

n

|cn|2|n〉〈n| ⊗ |Φn〉〈Φn| if 〈En|Em〉 ≈ δnm (5)

which is identical to that of an ensemble of measurement results |n〉|Φn〉.
Of course, this does not resolve the measurement problem! This density matrix

describes only an “improper” ensemble, i.e., with respect to all possible observations
at S+A it appears that a certain measurement result has been achieved. Again,
classical notions like noise or recoil are not appropriate: A acts dynamically on
E, but the back-action arises entirely from quantum nonlocality (as long as the
measurement is “ideal”, that is, (4) is a good approximation). Nevertheless, the
system S+A acquires classical behavior, since interference terms are absent with
respect to local observations if the above process is irreversible [19, 10].
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Needless to say, the interference terms still exist globally in the total (pure) state,
although they are unobservable at either system alone – a situation which may be
characterized by the statement

The interference terms still exist, but they are not there.[10]

2 Do we need observables?

In most treatments of quantum mechanics the notion of an observable plays a central
role. Do observables represent a fundamental concept or can they be derived? If
we describe a measurement as a certain kind of interaction, then observables should
not be required as an essential ingredient of quantum theory. In a sense this was
also done by von Neumann, but not used later very much because of restrictions
enforced by the Copenhagen school (e.g., the demand to describe a measurement
device in classical terms instead of seeking for a consistent treatment in terms of
wave functions).

Two elements are necessary to derive an observable that discriminates certain
(orthogonal) system states |n〉. First, one needs an appropriate interaction which is
diagonal in the eigenstates of the measured “observable” and is able to “move the
pointer”, so that we have as above

|n〉|Φ0〉 Hint−→ |n〉|Φn〉 . (6)

This can be achieved by Hamiltonians of the form

Hint =
∑

n

|n〉〈n| ⊗ Ân (7)

with appropriate Ân leading to orthogonal pointer states (Note that (6) defines only
the eigenbasis of an observable; the eigenvalues represent merely scale factors and
are therefore of minor importance). The second condition that must be fulfilled is
dynamical stability of pointer states against decoherence, that is, the pointer states
must only be passively recognized by the environment according to,

|Φn〉|E0〉 decoherence−→ |Φn〉|En〉 . (8)

Both conditions must be fulfilled. For example, a measurement device which acts
according to (6) would be totally useless, if it were not stable against decoherence:
Consider a Schrödinger cat state as pointer state! The same basis states |Φn〉 must
be distinguished as dynamically relevant in (6) as well as in (8).∗

∗This explains dynamically why certain observables may “not exist” operationally. For a general
discussion of the relation between quantum states and observables see Sect. 2.2 of [5]. Arguments
along these lines lead to the conclusion that one should not attribute a fundamental status to the
Heisenberg picture – contrary to widespread belief – despite its phenomenological equivalence with
the Schrödinger picture.
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3 Do we need superselection rules?

What is a superselection rule? One way to define a superselection rule is to say,
that certain states |Ψ1〉, |Ψ2〉 are found in nature, but never general superpositions
|Ψ〉 = α|Ψ1〉+β|Ψ2〉. This means that all observations can be described by a density
matrix of the form ρ = p1|Ψ1〉〈Ψ1| + p2|Ψ2〉〈Ψ2| . Clearly such a density matrix is
exactly what is obtained through decoherence in appropriate situations.

3.1 Approximate superselection rules

There are many examples, where it is hard to find certain superpositions in the real
world. The most famous example has been given by Schrödinger: A superposition
of a dead and an alive cat

|Ψ〉 = |dead cat〉 + |alive cat〉 (9)

is never observed, contrary to what should be possible according to the superpo-
sition principle (and, in fact, must necessarily occur according to the Schrödinger
equation). Another drastic situation is given by a state like

|Ψ〉 = |cat〉 + |dog〉 . (10)

Such a superposition looks truly absurd, but only because we never observe states
of this kind! (The obvious objection that one cannot superpose states of “different
systems” seems to be inappropriate. For example, nobody hesitates to superpose
states with different numbers of particles.) A more down-to-earth example is given
by the position of large objects, which are never found in states

|Ψ〉 = |here〉 + |there〉 , (11)

with “here” and “there” macroscopically distinct. Under realistic circumstances such
objects are always well described by a localized density matrix ρ(x, x′) ≈ p(x)δ(x − x′).
A special case of this localization occurs in molecules (except the very small ones),
which show a well-defined spatial structure. The Born-Oppenheimer approximation
is not sufficient to explain this fact.

Quite generally we have an approximate superselection rule whenever we de-
scribe the dynamics of a dynamical variable by some rate equation (that is, without
interference) instead of the Schrödinger equation.

3.2 Exact superselection rules

Strict absence of interference can only be expected for discrete quantities. One
important example is electric charge. Can this be understood via decoherence?
We know from Maxwell’s theory, that every charge carries with itself an associated
electric field, so that a superposition of charges may be written in the form [16]

∑

q

cq|Ψtotal
q 〉 =

∑

q

cq|χbare
q 〉|Ψfield

q 〉

=
∑

q

cq|χlocal
q 〉|Ψfarfield

q 〉 . (12)
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Since we can only observe the local dressed charge, it has to be described by the
density matrix

ρ =
∑

q

|cq|2|χlocal
q 〉〈χlocal

q | (13)

If the far fields are orthogonal (distinguishable), coherence would be absent locally.
So the question arises: Is the Coulomb field only part of the kinematics (implemented
via the Gauss constraint) or does it represent a quantum dynamical degree of freedom
so that we have to consider decoherence via a retarded Coulomb field? For an
attempt to understand part of the Coulomb field as dynamical see [4].

What do experiments tell us? A superposition of the form (11) can be observed
for charged particles (cf. the contribution by Hasselbach[6]). On the other hand,
the classical (retarded) Coulomb field would contain information about the path
of the charged particle, destroying coherence. The situation does not appear very
clear-cut. Hence one essential question remains:

What is the quantum physical role of the Coulomb field?

A similar situation arises in quantum gravity, where we can expect that superposi-
tions of different masses (energies) are decohered by the spatial curvature.

Another important “exact” superselection rule forbids superposing states with
integer and half-integer spin, for example

|Ψ〉 = | spin 1〉 + | spin 1/2〉 , (14)

which would transform under a rotation by 2π into

|Ψ2π〉 = | spin 1〉 − | spin 1/2〉 , (15)

clearly a different state because of the different relative phase. If one demands that
such a rotation should not change anything, such a state must be excluded. This
is one standard argument in favor of the “univalence” superselection rule. On the
other hand, one has observed the sign-change of spin 1/2 particles under a (relative)
rotation by 2π in certain experiments. Hence we are left with two options: Either we
view the group SO(3) as the proper rotation group also in quantum theory. Then
nothing must change if we rotate the system by an angle of 2π. Hence we can
derive this superselection rule from symmetry. But this may merely be a classical
prejudice. The other choice is to use SU(2) instead of SO(3) as rotation group. Then
we are in need of explaining why those strange superpositions never occur. This last
choice amounts to keeping the superposition principle as the fundamental principle
of quantum theory. In more technical terms we should then avoid using groups with
non-unique (“ray” ¶) representations, such as SO(3). In supersymmetric theories,
bosons and fermions are treated on an equal footing, so it would be natural to
superpose their states (what is apparently never done in particle theory).

¶ The widely used argument that physical states are to be represented by rays, not vectors, in
Hilbert space because the phase of a state vector cannot be observed, is misleading. Since relative
phases are certainly relevant, one should prefer a vector as a fundamental physical state concept,
rather than a ray. Rays cannot even be superposed without (implicitly) using vectors.
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In a similar manner one could undermine the well-known argument leading from
the Galilean symmetry of nonrelativistic quantum mechanics to the mass superse-
lection rule. In this case we could maintain the superposition principle and replace
the Galilei group by a larger group. How this can be done is shown by Domenico
Giulini[4].

The final open question for this section then is:

Can all superselection rules be understood as decoherence effects?

4 Examples

4.1 Localization

The by now standard example of decoherence is the localization of macroscopic
objects. Why do macroscopic objects always appear localized in space? Coherence
between macroscopically different positions is destroyed very rapidly because of the
strong influence of scattering processes. The formal description may proceed as
follows. Let |x〉 be the position eigenstate of a macroscopic object, and |χ〉 the state
of the incoming particle. Following the von Neumann scheme (2), the scattering of
such particles off an object located at position x may be written as

|x〉|χ〉 t−→ |x〉|χx〉 = |x〉Sx|χ〉 , (16)

where the scattered state may conveniently be calculated by means of an appropriate
S-matrix. For the more general initial state of a wave packet we have then

∫

d3x ϕ(x)|x〉|χ〉 t−→
∫

d3x ϕ(x)|x〉Sx|χ〉 . (17)

Therefore, the reduced density matrix describing our object changes into

ρ(x, x′) = ϕ(x)ϕ∗(x′)
〈

χ|S†
x′Sx|χ

〉

. (18)

Of course, a single scattering process will usually not resolve a small distance, so in
most cases the matrix element on the right-hand side of (18) will be close to unity.
If we add the contributions of many scattering processes, an exponential damping
of spatial coherence results:

ρ(x, x′, t) = ρ(x, x′, 0) exp
{

−Λt(x− x′)2
}

. (19)

The strength of this effect is described by a single parameter Λ that may be called
“localization rate”. It is given by

Λ =
k2Nvσeff

V
. (20)

Here, k is the wave number of the incoming particles, Nv/V the flux, and σeff is of
the order of the total cross section (for details see [10] or Sect. 3.2.1 and Appendix
1 of [5]). Some values of Λ are given in the table.
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Localization rate Λ in cm−2s−1 for three sizes of “dust particles” and various types
of scattering processes (from [10]). This quantity measures how fast interference
between different positions disappears as a function of distance in the course of
time.

a = 10−3cm a = 10−5cm a = 10−6cm

dust particle dust particle large molecule

Cosmic background radiation 106 10−6 10−12

300 K photons 1019 1012 106

Sunlight (on earth) 1021 1017 1013

Air molecules 1036 1032 1030

Laboratory vacuum 1023 1019 1017

(103 particles/cm3)

Most of the numbers in the table are quite large, showing the extremely strong
coupling of macroscopic objects, such as dust particles, to their natural environ-
ment. Even in intergalactic space, the 3K background radiation cannot simply be
neglected.
Hence the main lesson is:

Macroscopic objects are not even approximately isolated.

A consistent unitary description must therefore include the environment and finally
the whole universe.∗

If we combine this damping of coherence with the “free” Schrödinger dynamics we
arrive at an equation of motion for the density matrix that to a good approximation
simply adds these two contributions,

i
∂ρ

∂t
= [Hinternal, ρ] + i

∂ρ

∂t

∣

∣

∣

∣

scatt.
. (21)

In the position representation this equation reads in one space dimension

i
∂ρ(x, x′, t)

∂t
=

1

2m

(

∂2

∂x′2
− ∂2

∂x2

)

ρ− iΛ(x− x′)2ρ . (22)

Solutions of this equation can easily be found (see, e.g.[5])
∗One of the first stressing the importance of the dynamical coupling of macro-objects to their

environment was Dieter Zeh, who wrote in his 1970 Found. Phys. paper [17]: “Since the interactions
between macroscopic systems are effective even at astronomical distances, the only ‘closed system’
is the universe as a whole. ... It is of course very questionable to describe the universe by a
wavefunction that obeys a Schrödinger equation. Otherwise, however, there is no inconsistency in
measurement, as there is no theory.”

This is now more or less commonplace, but this was not the case some 30 years ago, when he
sent an earlier version of this paper to the journal Il Nuovo Cimento. I quote from the referee’s
reply: “The paper is completely senseless. It is clear that the author has not fully understood the
problem and the previous contributions in this field.” (H.D. Zeh, private communication)
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So far this treatment represents pure decoherence, following directly the von Neu-
mann scheme. If recoil is added as a next step, we arrive at models including friction,
that is, quantum Brownian motion. There are several models for the quantum ana-
logue of Brownian motion, some of which are even older than the first decoherence
studies. Early treatments did not, however, draw a distinction between decoherence
and friction (decoherence alone does not imply friction.). As an example, consider
the equation of motion derived by Caldeira and Leggett [2],

i
∂ρ

∂t
= [H, ρ] +

γ

2
[x, {p, ρ}] − imγkBT [x, [x, ρ]] (23)

which reads for a “free” particle

i
∂ρ(x, x′, t)

∂t
=

[

1

2m

(

∂2

∂x′2
− ∂2

∂x2

)

− iΛ(x− x′)2

+iγ(x− x′)

(

∂

∂x′
− ∂

∂x

)]

ρ(x, x′, t) , (24)

where γ is the damping constant, and here Λ = mγkBT .
If one compares the effectiveness of the two terms representing decoherence and

relaxation, one finds that their ratio is given by

decoherence rate

relaxation rate
= mkBT (δx)2 ∝

(

δx

λth

)2

, (25)

where λth denotes the thermal de Broglie wavelength of the considered object. This
ratio has for a typical macroscopic situation (m = 1g, T = 300K, δx = 1cm) the
enormous value of about 1040! This shows that in these cases decoherence is far

more important than dissipation.
Not only the center-of-mass position of dust particles becomes “classical” via

decoherence. The spatial structure of molecules represents another most important
example. Consider a simple model of a chiral molecule.

Right- and left-handed versions both have a rather well-defined spatial structure,
whereas the ground state is – for symmetry reasons – a superposition of both chiral
states. These chiral configurations are usually separated by a tunneling barrier,
which is so high that under normal circumstances tunneling is very improbable, as
was already shown by Hund in 1929. But this alone does not explain why chiral
(and, indeed, most) molecules are never found in energy eigenstates!

In a simplified model with low-lying nearly-degenerate eigenstates |1〉 and |2〉,
the right- and left-handed configurations may be given by

|L〉 =
1√
2
(|1〉 + |2〉)

|R〉 =
1√
2
(|1〉 − |2〉) . (26)

Because the environment recognizes the spatial structure via scattering processes,
only chiral states are stable against decoherence,
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|R,L〉|Φ0〉 t−→ |R,L〉|ΦR,L〉 . (27)

The dynamical instability of energy (i.e., parity) eigenstates of molecules represents
a typical example of “spontaneous symmetry breaking” induced by decoherence.
Additionally, transitions between spatially oriented states are suppressed by the
quantum Zeno effect, described below.

4.2 Quantum Zeno Effect

The most dramatic consequence of a strong measurement-like interaction of a system
with its environment is the quantum Zeno effect. It has been discovered several times
and is also sometimes called “watchdog effect” or “watched pot behavior”, although
most people now use the term Zeno effect. It is surprising only if one sticks to a
classical picture where observing a system and just verifying its state should have
no influence on it. Such a prejudice is certainly formed by our everyday experience,
where observing things in our surroundings does not change their properties. As is
known since the early times of quantum theory, observation can drastically change
the observed system.

The essence of the Zeno effect can easily be shown as follows. Consider the
“decay” of a system which is initially prepared in the “undecayed” state |u〉. The
probability to find the system undecayed, i.e., in the same state |u〉 at time t is for
small time intervals given by

P (t) = |〈u| exp(−iHt)|u〉|2

= 1 − (∆H)2t2 + O(t4) (28)

with
(∆H)2 = 〈u|H2|u〉 − 〈u|H|u〉2 . (29)

If we consider the case of N measurements in the interval [0, t], the non-decay
probability is given by

PN (t) ≈
[

1 − (∆H)2
(

t

N

)2
]N

> 1 − (∆H)2t2 = P (t) . (30)

This is always larger than the single-measurement probability given by (28). In the
limit of arbitrary dense measurements, the system no longer decays,

PN (t) = 1 − (∆H)2
t2

N
+ . . .

N→∞−→ 1 . (31)

Hence we find that repeated measurements can completely hinder the natural evo-
lution of a quantum system. Such a result is clearly quite distinct from what is
observed for classical systems. Indeed, the paradigmatic example for a classical
stochastic process, exponential decay,

P (t) = exp(−Γt) , (32)
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is not influenced by repeated observations, since for N measurements we simply have

PN (t) =

(

exp

(

−Γ
t

N

))N

= exp(−Γt) . (33)

So far we have treated the measurement process in our discussion of the Zeno
effect in the usual way by assuming a collapse of the system state onto the subspace
corresponding to the measurement result. Such a treatment can be extended by
employing a von Neumann model for the measurement process, e.g., by coupling a
pointer to a two-state system. A simple toy model is given by the Hamiltonian

H = H0 +Hint

= V (|1〉〈2| + |2〉〈1|) + E|2〉〈2| + γp̂(|1〉〈1| − |2〉〈2|) , (34)

where transitions between states |1〉 and |2〉 (induced by the “perturbation” V) are
monitored by a pointer (coupling constant γ). This model already shows all the
typical features mentioned above.

The transition probability starts for small times always quadratically, according
to the general result (28). For times, where the pointer resolves the two states,
a behavior similar to that found for Markow processes appears: The quadratic
time-dependence changes to a linear one. For strong coupling the transitions are
suppressed. This clearly shows the dynamical origin of the Zeno effect.

An extension of the above model allows an analysis of the transition from the
Zeno effect to master behavior (described by transition rates as was first studied in
quantum mechanics by Pauli in 1928). It can be shown that for many (micro-)states
which are not sufficiently resolved by the environment, Fermi’s Golden Rule can
be recovered, with transition rates which are no longer reduced by the Zeno effect.
Nevertheless, interference between macrostates is suppressed very rapidly [7].

4.3 Decoherence of Fields

In QED we find two (related) situations,

• “Measurement” of charges by fields;

• “Measurement” of fields by charges.

In both cases, the entanglement between charge and field states leads to decoherence
as already described above in the discussion of superselection rules, see also [5] and
references therein.

In recent quantum optics experiments it is possible to prepare and study su-
perpositions of different classical field states, quantum-mechanically represented by
coherent states, for example Schrödinger cat states of the form

|Ψ〉 = N(|α〉 + | − α〉) (35)

which can be realized as field states in a cavity. In these experiments (see [1])
decoherence can be turned on gradually by coupling the cavity to a reservoir. Typical
decoherence times are in the range of about 100 µs.
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For true cats the decoherence time is much shorter (in particular, it is very much

shorter than the lifetime of a cat!). This leads to the appearance of quantum jumps,
although all underlying processes are smooth in principle since they are governed by
the Schrödinger equation.

In experimental situations of this kind we find a gradual transition from a su-
perposition of different decay times (seen in “collapse and revival” experiments)
to a local mixture of decay times (leading to “quantum jumps”) according to the
following scheme.

local mixture of differ-
ent decay times

quantum jumps

superposition of differ-
ent decay times

collapse and revivals

theory experiment

⇓ ⇓

4.4 Spacetime and Quantum Gravity

In quantum theories of the gravitational field, no classical spacetime exists at the
most fundamental level. Since it is generally assumed that the gravitational field has
to be quantized, the question again arises how the corresponding classical properties
can be understood.

Genuine quantum effects of gravity are expected to occur for scales of the order of
the Planck length

√

Gh̄/c3. It is therefore often argued that the spacetime structure
at larger scales is automatically classical. However, this Planck scale argument is
as insufficient as the large mass argument in the evolution of free wave packets. As
long as the superposition principle is valid (and even superstring theory leaves this
untouched), superpositions of different metrics should occur at any scale.

The central problem can already be demonstrated in a simple Newtonian model[8].
Consider a cube of length L containing a homogeneous gravitational field with a
quantum state ψ such that at some initial time t = 0

|ψ〉 = c1|g〉 + c2|g′〉 , (36)

where g and g′ correspond to two different field strengths. A particle with mass m
in a state |χ〉, which moves through this volume, “measures” the value of g, since
its trajectory depends on the acceleration g:

|ψ〉|χ(0)〉 → c1|g〉|χg(t)〉 + c2|g′〉|χg′(t)〉 . (37)

This correlation destroys the coherence between g and g′, and the reduced density
matrix can be estimated to assume the following form after many such interactions
are taken into account:

ρ(g, g′, t) = ρ(g, g′, 0) exp
(

−Γt(g − g′)2
)

, (38)
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where

Γ = nL4
(

πm

2kBT

)3/2

for a gas with particle density n and temperature T . For example, air under ordinary
conditions, L = 1 cm, and t = 1 s yields a remaining coherence width of ∆g/g ≈
10−6[8].

Thus, matter does not only tell space to curve but also to behave classically.
This is also true in full quantum gravity.

In a fully quantized theory of gravity, for example in the canonical approach
described by the Wheeler-deWitt equation,

H|Ψ(Φ,(3) G)〉 = 0 , (39)

where Φ describes matter and (3)G is the three-metric, everything is contained in
the “wave function of the universe” Ψ. Here we encounter new problems: There is
neither an external time parameter, nor is there an external observer. How these
problems can be tackled is described in Claus Kiefer’s contribution[12].

5 Lessons

What insights can be drawn from decoherence studies? It should be emphasized that
decoherence derives from a straightforward application of standard quantum theory
to realistic situations. It seems to be a historical accident, that the importance
of the interaction with the natural environment was overlooked for such a long
time. Certainly the still prevailing (partly philosophical) attitudes enforced by the
Copenhagen school played a (negative) role here, for example by outlawing a physical
analysis of the measurement process in quantum-mechanical terms.

Because of the strong coupling of macroscopic objects, a quantum description
of macroscopic objects requires the inclusion of the natural environment. A fully
unitary quantum theory is only consistent if applied to the whole universe. This does
not preclude local phenomenological descriptions. However, their derivation from a
universal quantum theory and the interpretation assigned to such descriptions have
to be analyzed very carefully.

We have seen that typical classical properties, such as localization in space, are
created by the environment in an irreversible process, and are therefore not inherent
attributes of macroscopic objects. The features of the interaction define what is
classical by selecting a certain basis in Hilbert space. Hence superselection sectors
emerge from the dynamics. In all “classical” situations, the relevant decoherence
time is extremely short, so that the smooth Schrödinger dynamics leads to apparent
discontinuities like “events”, “particles” or “quantum jumps”.

There are certain ironies in this situation. Local classical properties find their
explanation in the nonlocal features of quantum states. Usually quantum objects are
considered as fragile and easy to disturb, whereas macroscopic objects are viewed
as the rock-solid building blocks of empirical reality. However, the opposite is true:
macroscopic objects are extremely sensitive and immediately decohered.
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On the practical side, decoherence also has its disadvantages. It makes testing
alternative theories difficult (more on that below), and it represents a major obstacle
for people trying to construct a quantum computer. Building a really big one may
well turn out to be as difficult as detecting other Everett worlds!

5.1 Does decoherence solve the measurement problem?

Clearly not. What decoherence tells us, is that certain objects appear classical when
they are observed. But what is an observation? At some stage, we still have to
apply the usual probability rules of quantum theory. These are hidden in density
matrices, for example.

5.2 Which interpretations make sense?

One could also ask: what interpretations are left from the many that have been pro-
posed during the decades since the invention of quantum theory? I think, we do not
have much of a choice at present∗, if we restrict ourselves to use only wavefunctions
as kinematical concepts (that is, we ignore hidden-variable theories, for example).

There seem to be only the two possibilities either (1) to alter the Schrödinger
equation to get something like a “real collapse” [3, 13], or (2) to keep the theory
unchanged and try to establish some variant of the Everett interpretation. Both
approaches have their pros and cons, some of them are listed in the following table.

Clearly collapse models face the immediate question of how, when and where
a collapse takes place. If a collapse occurs before the information enters the con-
sciousness of an observer, one can maintain some kind of psycho-physical parallelism
by assuming that what is experienced subjectively is parallel to the physical state
of certain objects, e.g., parts of the brain. The last resort is to view consciousness
as causing collapse, an interpretation which can more or less be traced back to von
Neumann. In any case, the collapse happens with a certain probability (and with
respect to a certain basis in Hilbert space) and this element of the theory comprises
an additional axiom.

How would we want to test such theories? One would look for collapse-like devi-
ations from the unitary Schrödinger dynamics. However, similar apparent deviations
are also produced by decoherence, in particular in the relevant meso- and macro-
scopic range. So it is hard to discriminate these true changes to the Schrödinger
equation from the apparent deviations brought about by decoherence[9].

Everett interpretations lead into rather similar problems. Instead of specifying
the collapse one has to define precisely how the wavefunction is to be split up into
branches. Decoherence can help here by selecting certain directions in Hilbert space
as dynamically stable (and others as extremely fragile – branches with macroscopic
objects in nonclassical states immediately decohere), but the location of the observer
in the holistic quantum world is always a decisive ingredient. It must be assumed
that what is subjectively experienced is parallel to certain states (observer states)
in a certain component of the global wave function. The probabilities (frequencies)

∗The following owes much to discussions with Dieter Zeh, who finally convinced me that the
Everett interpretation could perhaps make sense at all.
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collapse models Everett

traditional psycho-physical par-
allelism: What is perceived is
parallel to the observer’s physi-
cal state

new form of psycho-physical par-
allelism: Subjective perception is
parallel to the observer state in a
component of the universal wave
function

probabilities put in by hand probabilities must also be postu-
lated (existing “derivations” are
circular)

problems with relativity peaceful coexistence with relativ-
ity

experimental check: experimental check:
look for collapse-like deviations
from the Schrödinger equation

look for macroscopic superposi-
tions

⇓ ⇓
hard to test because of decoher-
ence

hard to test because of decoher-
ence

we observe in repeated measurements form also an additional axiom §. The peaceful
coexistence with relativity seems not to pose much problems, since no collapse ever
happens and all interactions are local in (high-dimensional) configuration space. But
testing Everett means testing the Schrödinger equation in particular with respect to
macroscopic superpositions, and this again is precluded by decoherence.

So it seems that both alternatives still have conceptual problems and both are
hard to test because of decoherence. We should not be surprised, however, if it
finally turned out that we do not know enough about consciousness and its relation
to the physical world to solve the quantum mystery [14].
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Decoherence is the obverse side of entanglement, the peculiarly quantum nature of correlations 

between systems. By Bell’s theorem, we know that entanglement has a number of non-intuitive 

properties, implying that quantum correlations can in some cases be stronger than classical, and 

in some cases violate transitivity (

! 

A" B , 

! 

B" C , 

! 

C" D but not 

! 

A" D, where 

! 

" is 

implication). If we disregard these correlations, looking at only one of the systems on its own, 

the statistical properties of that system suffer decoherence. Interference terms which would in 

general be present for a quantum system with a variety of possible values for some attribute, are 

not present. 

 

This decoherence has be argued to solve a variety of problems including the measurement 

problem in quantum mechanics. 

 

However it is also true that the presence or absense of decoherence is far more subtle than 

usually described. A system, quantum correlated with an “environment” ( another quantum 

system), can for certain measurements appear to be highly decohered, while  still exhibiting 

interference between the apparently decohered values with suitable, long time, experiments.   



False loss of ohereneW. G. UnruhCIAR Cosmolgy Program, Dept. of PhysisUniversity of B.C.Vanouver, Canada V6T 1Z1email:unruh�physis.ub.aAbstratThe loss of oherene of a quantum system oupled to a heat bath as expressedby the redued density matrix is shown to lead to the miss-haraterizationof some systems as being inoherent when they are not. The spin bosonproblem and the harmoni osillator with massive salar �eld heat baths aregiven as examples of redued inoherent density matries whih neverthelessstill represent perfetly oherent systems.I. MASSIVE FIELD HEAT BATH AND A TWO LEVEL SYSTEMHow does an environment a�et the quantum nature of a system? The standard teh-nique is to look at the redued density matrix, in whih one has traed out the environmentvariables. If this hanges from a pure state to a mixed state ( entropy Tr� ln� not equalto zero) one argues that the system has lost quantum oherene, and quantum interferenee�ets are suppressed . However this riterion is too strong. There are ouplings to theenvironment whih are suh that this redued density matrix has a high entropy, while thesystem alone retains virtually all of its original quantum oherene ertain experiments.The key idea is that the external environment an be di�erent for di�erent states ofthe system. There is a strong orrelation between the system and the environment. Asusual, suh orrelations lead to deoherene in the redued density matrix. However, theenvironment in these ases is atually tied to the system, and is adiabatially dragged alongby the system. Thus although the state of the environment is di�erent for the two states,one an manipulate the system alone so as to ause these apparently inoherent states tointerfere with eah other. One simply auses a suÆiently slow hange in the system so asto drag the environment variables into ommon states so the quantum interferene of thesystem an again manifest itself.An example is if one looks at an eletron with its attahed eletromagneti �eld. Considerthe eletron at two di�erent positions. The stati oulomb �eld of the two harges di�er, andthus the states of the eletromagneti �eld di�er with the eletron in the two positions. Thesedi�erenes an be suÆient to ause the redued eletron wave funtion loose oherene for astate whih is a oherent sum of states loated at these two positions. However, if one ausesthe system to evolve so as to ause the eletron in those two positions to ome together (1



eg, by having a fore �eld suh that the eletron in both positions to be brought togetherat some entral point for example), those two apparently inoherent states will interfere,demonstrating that the loss of oherene was not real.Another example is light propagating through a slab of glass. If one simply looks atthe eletromagneti �eld, and traes out over the states of the atoms in the glass, the lightbeams travelling through two separate regions of the glass will learly deohere{ the redueddensity matrix for the eletromagneti �eld will lose oherene in postition spae{ but thosetwo beams of light will also learly interfer when they exit the glass or even when they arewithin the glass.The above is not to be taken as proof, but as a motivation for the further investigationof the problem. The primary example I will take will be of a spin 12 partile (or other twolevel system). I will also examine a harmoni osillator as the system of interest. In bothases, the heat bath will be a massive one dimensional salar �eld. This heat bath is of thegeneral Caldera Leggett type [1℄( and in fat is entirely equivalent to that model in general).The mass of the salar �eld will be taken to be larger than the inverse time sale of thedynamial behaviour of the system. This is not to be taken as an attempt to model somereal heat bath, but to display the phenomenon in its learest form. Realisti heat baths willin general also have low frequeny exitations whih will introdue other phenomena likedamping and genuine loss of oherene into the problem.II. SPIN-12 SYSTEMLet us take as our �rst example that of a spin-12 system oupled to an external environ-ment. We will take this external environment to be a one dimensional massive salar �eld.The oupling to the spin system will be via purely the 3 omponent of the spin. I will usethe veloity oupling whih I have used elsewhere as a simple example of an environment(whih for a massless �eld is ompletely equivalent to the Caldera Leggett model). TheLagrangian is L = Z 12(( _�(x))2 � (�(x)0)2 +m2�(x)2 + 2� _�(x)h(x)�3)dx (1)whih gives the HamiltonianH = Z 12((�(x)� �h(x)�3)2 + (�(x)0)2 +m2�(x)2)dx (2)h(x) is the interation range funtion, and its Fourier transform is related to the spetralresponse funtion of Leggett and Caldera.This system is easily solvable. I will look at this system in the following way. Startinitially with the �eld in its free (� = 0) vauum state, and the system is in the +1 eigenstateof �1. I will start with the oupling � initially zero and gradually inrease it to some largevalue. I will look at the redued density matrix for the system, and show that it redues onewhih is almost the identity matrix ( the maximally inoherent density matrix) for strongoupling. Now I let � slowly drop to zero again. At the end of the proedure, the state of thesystem will again be found to be in the original eigenstate of �1. The intermediate maximallyinoherent density matrix would seem to imply that the system no longer has any quantum2



oherene. However this lak of oherene is illusionary. Slowly deoupling the system fromthe environment should in the usual ourse simply maintain the inoherene of the systemYet here, as if by magi, an almost ompletely inoherent density matrix magially beomesoherent when the system is deoupled from the environment.In analyzing the system, I will look at the states of the �eld orresponding to the twopossible �3 eigenstates of the system. These two states of the �eld are almost orthogonalfor strong oupling. However they orrespond to �elds tightly bound to the spin system.As the oupling is redued, the two states of the �eld adiabatially ome loser and losertogether until �nally they oinide when � is again zero. The two states of the environmentare now the same, there is no orrelation between the environment and the system, and thesystem regains its oherene.The density matrix for the spin system an always be written as�(t) = 12(1 + ~�(t) � ~�) (3)where ~�(t) = Tr(~��(t)) (4)We have ~�(t) = Tr �~�T [e�i R t0 Hdt℄12(1 + ~�(0) � ~�)R0T [e�i R Hdt℄y� (5)where R0 is the initial density matrix for the �eld (assumed to be the vauum), and T [℄ isthe time ordering operator. (Beause � and thus H is time dependent, the H at di�erenttimes do not ommute. this leads to requirement for the time ordering in the expression. Asusual, the time ordered integral is the way of writing the time ordered produtQn e�iH(tn)dt =e�iH(t)dte�iH(t�dt)dt::::e�iH(0)dt.)Let us �rst alulate �3(t). We have�3(t) = Tr ��3T [e�i R t0 Hdt℄12(1 + ~�(0) � ~�)R0T [e�i R Hdt℄y� (6)= Tr �T [e�i R t0 Hdt℄�3 12(1 + ~�(0) � ~�)R0T [e�i R Hdt℄y� (7)= Tr ��3 12(1 + ~�(0) � ~�)R0� (8)= �3(0) (9)beause �3 ommutes with H(t) for all t. We now de�ne�+ = 12(�1 + i�2) = j+ >< �j; �� = �y+ (10)Using �+�3 = ��+ and �3�+ = �+ we haveTr ��+T [e�i R t0 Hdt℄12(1 + ~�(0) � ~�)R0T [e�i R Hdt℄y�= Tr� �T [e�i R (H0��(t) R �(x)h(x)dx)dt℄y (11)T [e�i R (H0+�(t) R �(x)h(x)dx)dt℄� < �j12(1 + ~�(0) � ~�)j+ >= (�1(0) + i�2(0))J(t) 3



where H0 is the Hamiltonian with � = 0, i.e., the free Hamiltonian for the massless salar�eld andJ(t) = Tr� �T [e�iR (H0��(t) R �(x)h(x)dx)dt℄yT [e�i R (H0+�(t) R �(x)h(x)dx)dt℄R0� (12)Breaking up the time ordered produt in the standard way into a large number of smalltime steps, using the fat that e�i�(t) R h(x)�(x)dx is the displaement operator for the �eldmomentum through a distane of �(t)h(x), and ommuting the free �eld Hamiltonian termsthrough, this an be written asJ(t) = Tr�0�e�i�(0)�(0) t=dtYn=1 he�i(�(tn)��(tn�1)�(tn)iei�(t)�(t)ei�(t)�(t) 1Yn=t=dt hei�(tn��(tn�1))�(tn)i ei�(0)�(0)R01A (13)where tn = ndt and dt is a very small value, �(t) = R h(x)�(t; x)dx and �0(t; x) is the free�eld Heisenberg �eld operator. Using the Campbell-Baker-Hausdor� formula, realizing thatthe ommutators of the �s are -numbers, and notiing that these -numbers anel betweenthe two produts, we �nally getJ(t) = Tr� �e2i(�(t)�(t)��(0)�(0)+R t0 _�(t0)�(t0)dt0)R0� (14)from whih we getln(J(t)) = �2Tr�  R0 ��(t)�(t) � �(0)�(0) + Z t0 _�(t0)�(t0)dt0�2! (15)I will assume that �(0) = 0, and that _�(t) is very small, and that it an be negleted. ( Thenegleted terms are of the formZ Z _�2 < �(t0)�(t") > dt0dt" � _�2t� < �(0)2 >whih for a massive salar �eld has � , the oherene time sale, � 1=m. Thus, as we let _�go to zero these terms go to zero.)We �nally have ln(J(t)) = �2�(t)2 < �(t)2 >= �2�(t)2 Z jĥ(k)j2 1q(k2 +m2)dk (16)Choosing ĥ(k) = e��jkj=2, we �nally getln(J(t)) = �4 Z 10 �(t)2 e��jkjdksqrt(k2 +m2) (17)4



This goes roughly as ln(�m) for small �m, (whih I will assume is true). For � suÆientlysmall, this makes J very small, and the density matrix redues to essentially diagonal form(�z(t) � �y(t) � 0, �z(t) = �z(0).)However it is lear that if �(t) is now lowered slowly to zero, the deoherene fator J goesbak to unity, sine it depends only on �(t). The density matrix now has exatly its initialform again. The loss of oherene at the intermediate times was illusionary. By deouplingthe system from the environment after the oherene had been lost, the oherene is restore.this is in ontrast with the naive expetation in whih the loss of oherene omes aboutbeause of the orrelations between the system and the environment. Deoupling the systemfrom the environment should not in itself destroy that orrelation, and should not reestablishthe oherene.The above approah, while giving the orret results, is not very transparent in explainingwhat is happening. Let us therefor take a di�erent approah. Let us solve the Heisenbergequations of motion for the �eld �(t; x). The equations are ( after eliminating �)�2t �(t; x)� �2x�(t; x) +m2�(t; x) = � _�(t)�3h(x) (18)�(t; x) = _�(t; x) + �(t)h(x)�3 (19)If � is slowly varying in time, we an solve this approximately by�(t; x) = �0(t; x) + _�(t) Z 12me�mjx�x0jh(x0)dx0�3 +  (t; x)�(0)�3 (20)�(t; x) = _�0(t; x) + �(t)h(x)�3 + _ (t; x)�(0)�3 (21)where �0(t; x) and �0(t; x) are free �eld solution to the equations of motion in absene ofthe oupling, with the same initial onditions_�0(0; x) = �(0; x) (22)�0(0; x) = �(0; x) (23), while  is also a solution of the free �eld equations but with initial onditions (0; x) = 0 (24)_ (0; x) = �h(x): (25)If we examine this for the two possible eigenstates of �3, we �nd the two solutions��(t; x) � �0(t; x)� ( _�(t) Z 12me�mjx�x0jh(x0)dx0 +  (t; x)) (26)��(t; x) � _�0(t; x) +O( _�)� (�(t)h(x) + �(0) _ (t; x)) (27)These solutions neglet terms of higher derivatives in �. The state of the �eld is the vauumstate of �0; �0. �� and �� are equal to this initial �eld plus  number �elds. Thus in terms ofthe �� and ��, the state is a oherent state with non-trivial displaement from the vauum.Writing the �elds in terms of their reation and annihilation operators,��(t; x) = Z Ak�(t)eikx + Ayk�e�ikx dkp2�!k (28)��(t; x) = i Z Ak�(t)eikx � Ayk�e�ikxsk2 +m22� dk (29)5



we �nd that we an write Ak� in terms of the initial operators Ak0 asAk�(t) � Ak0e�i!kt � 12 i(�(t)� �(0)e�i!kt)(h(k)=p!k +O( _�(t))) (30)where !k = pk2 +m2. Again I will neglet the terms of order _� in omparison with the �terms. Sine the state is the vauum state with respet to the initial operators Ak0, it will bea oherent state with respet to the operators Ak�, the annihilation operators for the �eldat time t. We thus have two possible oherent states for the �eld, depending on whether thespin is in the upper or lower eigenstate of =sigma3. But these two oherent states will havea small overlap. If Aj� >= �j� > then we havej� >= e�Ay�j�j2=2j0 > (31)Furthermore, if we have two oherent states j� > and j�0 >, then the overlap is given by< �j�0 >=< 0je��A�j�j2=2e�Ay�j�j2=2j0 >= e����(j�j2+j�j2)=2 (32)In our ase, taking the two states j�� >, these orrespond to oherent states with� = ��0 = 12 i(�(t)� �(0)e�i!kt) = 12 i�(t)h(k)=p!k (33)Thus we have< +�; tj��; t >=Yk e��(t)2jh(k)j2=(k2+m2) = e��(t)2 R jh(k)j2!k dk = J(t): (34)Let us assume that we began with the state of the spin as 1p2(j+ > +j� >). The state ofthe system at time t in the Shroedinger representation is 1p2 (j+ > j+� (t) > +j� > j�� >)and the redued density matrix is� = 12(j+ >< +j+ j� >< �j + J�(t)j+ >< �j+ J(t)j� >< +j): (35)The o� diagonal terms of the density matrix are suppressed by the funtion J(t). J(t)however depends only on �(t) and thus , as long as we keep _� small, the loss of oherenerepresented by J an be reversed simply by deoupling the system from the environmentslowly.The apparent deoherene omes about preisely beause the system in either the twoeigenstates of �3 drives the �eld into two di�erent oherent states. For large �, these twostates have small overlap. However, this distortion of the state of the �eld is tied to thesystem. � hanges only loally, and the hanges in the �eld aused by the system do notradiate away. As � slowly hanges, this bound state of the �eld also slowly hanges in onert. However if one examines only the system, one sees a loss of oherene beause the �eldstates have only a small overlap with eah other.The behaviour is very di�erent if the system or the interation hanges rapidly. In thatase the deoherene an beome real. As an example, onsider the above ase in whih �(t)suddenly is redued to zero. In that ase, the �eld is left as a free �eld, but a free �eld whosestate ( the oherent state) depends on the state of the system. In this ase the �eld radiatesaway as real ( not bound) exitations of the salar �eld. The orrelations with the systemare arried away, and even if the oupling were again turned on, the loss of oherene wouldbe permanent. 6



III. OSCILLATORFor the harmoni osillator oupled to a heat bath, the Hamiltonian an be taken asH = 12 Z (�(x)� �(t)q(t)~h(x))2 + (�x�(x))2 +m2�(t; x)2dx+ 12(p2 + 
2q2) (36)Let us assume that m is muh larger than 
 or that the inverse time rate of hange of �.The solution for the �eld is given by�(t; x) � �0(t; x) +  (t; x)�(0)q(0)� _�(t)q(t) Z e�mjx�x0j2m h(x0)dx0 (37)�(t; x) � _�(t; x) + _ (t; x)�(0)q(0)� ��(t)q(t) Z e�mjx�x0j2m h(x0)dx0 + �(t)q(t)h(x) (38)where again �0 is the free �eld operator,  is a free �eld solution with  (0) = 0, _ (0) =�h(x). Retaining terms only of the lowest order in � (t; x) � �0(t; x) (39)�(t; x) � _�(t; x) + �(t)q(t)h(x) (40)The equation of motion for q is _q(t) = p(t) (41)_p(t) = �
2q + �(t) _�(t) (42)where �(t) = R h(x)�(t; x)dx. Substitution in the expression for �, we get�q(t) + 
2q(t) � �_(�0(t)) + �(t) ��(t)q(t) Z Z h(x)h(x0)e�mjx�x0j2m dxdx0 (43)Negleting the derivatives of � (i.e., assuming that � hanges slowly even on the time saleof 1=
), this beomes 1 + �(t)2 Z Z h(x)h(x0)e�mjx�x0j2m dxdx0! �q + 
2q = �t(�(t)�(t)) (44)The interation with the �eld thus renormalizes the mass of the osillator toM = �1 + �(t)2 Z Z h(x)h(x0)�The solution for q is thusq(t) � q(0) os(Z t0 ~
(t)dt) + 1~
 sin(Z t0 ~
(t)dt)p(0) + 1~
 Z t0 sin(Z tt0 ~
(t)dt)�t(�(t0) _�(t)�0(t0)dt0(45)where ~
(t) � 
=qM(t). 7



The important point is that the foring term dependent on �0 is a rapidly osillatingterm of frequeny at least m. Thus if we look for example at < q2 >, the deviation fromthe free evolution of the osillator (with the renormalized mass) is of the order of R sin(~
t�t0) sin(!(t � t") < _�0(t0) _�0(t") > dt0dt". But < _�0(t0) _�0(t") > is a rapidly osillatingfuntion of frequeny at least m, while the rest of the integrand is a slowly varying funtionwith frequeny muh less than m, Thus this integral will be very small ( at least ~
=m buttypially muh smaller than this depending on the time dependene of �). Thus the deviationof q(t) from the free motion will in general be very very small, and I will neglet it.Let us now look at the �eld. The �eld is put into a oherent state whih depends on thevalue of q, beause �(t; x) � _�0(t; x) + �(t)q(t)h(x) ThusAk(t) � a0ke�i!kt + i12 ĥ(k)�(t)q(t)=!k (46)The overlap integral for these oherent states with various values of q isYk < i12 ĥ(k)�(t)q=!kji12 ĥ(k)�(t)q0=!k >= e� 18 R jĥ(k)j2dk(q�q0)2 (47)The density matrix for the Harmoni osillator is thus�(q; q0) = �0(t; q; q0)e� 18 R jĥ(k)j2dk(q�q0)2 (48)where �0 is the density matrix for a free harmoni osillator (with the renormalized mass).Ie, we see a strong loss of oherene of the o� diagonal terms of the density matrix.However this loss of oherene is false. If we take the initial state for example with twopakets widely separated in spae, these two pakets will loose their oherene. However,as time proeeds, the natural evolution of the Harmoni osillator will bring those twopakets together (q � q0 small aross the wave paket). For the free evolution they wouldthen interfere. They still do. The loss of oherene whih was apparent when the twopakets were widely separated disappears, and the two pakets interfere just as if there wereno oupling to the environment. The e�et of the partiular environment used is thus torenormalise the mass, and to make the density matrix appear to loose oherene.IV. SPIN BOSON PROBLEMLet us now ompliate the spin problem in the �rst setion by introduing into the systema free Hamiltonian for the spin as well as the oupling to the environment. Following theexample of the spin boson problem, let me introdue a free Hamiltonian for the spin of theform 12
�1, whose e�et is to rotate the �3 states (or to rotate the vetor ~� in the 2 � 3plane with frequeny 
.The Hamiltonian now isH = 12 �Z (�(t; x)� �(t)h(x)�3)2 + (�x�(x))2 +m2�(t; x)2dx+ 
�1� (49)where again �(t) is a slowly varying funtion of time. We will solve this in the manner ofthe seond part the �rst setion. 8



If we let 
 be zero, then the eigenstates of �z are eigenstates of the Hamiltonian. The�eld Hamiltonian ( for onstant �) is given byH� = 12 Z (� � (��(t)h(x)))2 + (�x�)2dx: (50)De�ning ~� = � � (�h(x)), ~� has the same ommutation relations with � and � as does �.Thus in terms of ~� we just have the Hamiltonian for the free salar �eld. The instantaneousminimum energy state is therefor the ground state energy for the free salar �eld for bothH�. Thus the two states are degenerate in energy. In terms of the operators � and �, theseground states are oherent states with respet to the vauum state of the original unoupled(� = 0) free �eld, with the displaement of eah mode given byakj� >= �i�(t)h(k)p!k j� > (51)or j� >=Yk j � �k > j� >�3 (52)where the j�k > are oherent states for the kth modes with oherene parameter �k =i�(t) h(k)p!k , and the states j� >�3 are the two eigenstates of �3. (In the following I willeliminate the Qk symbol.) The energy to the next exited state in eah ase is just m, themass of the free �eld.We now introdue the 
�x as a perturbation parameter. The two lowest states ( and infat the exited states) are two fold degenerate. Using degenerate perturbation theory to �ndthe new lowest energy eigenstates, we must alulate the overlap integral of the perturbationbetween the original degenerate states and must then diagonalise the resultant matrix tolowest order in 
. The perturbation is 12
�1 . All terms between the same states are zero,beause of the < �j�3�1j� >�3= 0. Thus the only terms that survive for determining thelowest order orretion to the lowest energy eigenvalues are12 < +j
�1j� > = 12 < �j
�1j+ >� (53)= 12
Yk < �kj � �k >= 12
Yk e�2j�kj2 (54)= 12
e�2 R �(t)2jh(k)j2=!kdk = 12
J(t) (55)The eigenstates of energy thus have energy of E(t)� = E0� 12
J(t), and the eigenstates areq12(j+ > �j� >) If epsilon varies slowly enough, the instantaneous energy eigenstates willbe the atual adiabati eigenstates at all times, and the time evolution of the system willjust be in terms of these instantaneous energy eigenstates. Thus the system will evolve asj (t) >= q12e�iE0t �(+ + �)e�i R 12
tJ(t)dt(j+ > +j� >) (56)+ (� � +)e+iR 12
tJ(t)dt(j+ > �j� >)� (57)9



where the + and � are the initial amplitudes for the j+ >�3 and j� >�3 states. Theredued density matrix for the spin system in the �3 basis an now be written as~�(t) = (J(t)�01(t); J(t)�02(t); �03(t)) (58)where ~�0(t) is the density matrix that one would obtain for a free spin half partile movingunder the Hamiltonian J(t)
�1. �01(t) = �1(0)�02(t) = �2(0) os(
 Z J(t0)dt0) + �3(0) sin(
 Z J(t0)dt0) (59)�03(t) = �3(0) os(
 Z J(t0)dt0)� �2(0) sin(
 Z J(t0)dtThus if J(t) is very small (ii.e., � large) , we have a renormalized frequeny for the spinsystem, and the the o� diagonal terms (in the �3 representation) of the density matrix arestrongly suppressed by a fator of J(t). Thus if we begin in an eigenstate of �3 the densitymatrix will begin with the vetor ~� as a unit vetor pointing in the 3 diretion. As timegoes on the 3 omponent gradually dereases to zero, but the 2 omponent inreases onlyto the small value of J(t). The system looks almost like a ompletely inoherent state, withalmost the maximal entropy that the spin system ould have. However as we wait longer,the 3 omponent of the density vetor reappears and grows bak to its full unit value in theopposite diretion, and the entropy drop to zero again. This yle repeats itself endlesslywith the entropy osillating between its minimum and maximum value forever.The deoherene of the density matrix ( the small o� diagonal terms) obviously representa false loss of oherene. It represents a strong orrelation between the system and theenvironment. However the environment is bound to the system, and essentially forms a partof the system itself, at least as long as the system moves slowly. However the redued densitymatrix makes no distintion between whether or not the orrelations between the systemand the environment are in some sense bound to the system, or are orrelations between thesystem and a freely propagating modes of the medium in whih ase the orrelations an beextremely diÆult to reover, and ertainly annot be reovered purely by manipulations ofthe system alone. V. INSTANTANEOUS CHANGEIn the above I have assumed throughout that the system moves slowly with respet tothe exitations of the heat bath. Let us now look at what happens in the spin system if werapidly hange the spin of the system. In partiular I will assume that the system is as insetion 1, a spin oupled only to the massive heat bath via the omponent �3 of the spin.Then at a time t0, I instantly rotate the spin through some angle � about the 1 axis. In thisase we will �nd that the environment annot adjust rapidly enough, and at least a part ofthe loss of oherene beomes real, beomes unreoverable purely through manipulations ofthe spin alone.The Hamiltonian isH = 12 Z �(�(t; x)� �(t)h(x)�3)2 + (�x�(t; x)2 +m2�(t; x)� dx+ �=2Æ(t� t0)�1 (60)10



Until the time t0 �3 is a onstant of the motion, and similarly afterward. Before the timet0, the energy eigenstates state of the system are as in the last setion given byj�; t >= fj+ >�3 j�k(t) > orfj� >�3 j � �k(t) >g (61)An arbitrary state for the spin{environment system is given byj >= +j+ > +�j� > (62)Now, at time t0, the rotation arries this toj�(t0) >= +(os(�=2)j+ >�3 +i sin(�=2)j� >�3 j�k(t) >+ �(os(�=2)j� >�3 +i sin(�=2)j+ >�3)j � �k(t) >= os(�=2) (+j+ > +�j� >) (63)+ i sin(�=2)(+j� >�3 j�k(t) > ��j+ >�3 j � �k(t) >The �rst term is still a simple sum of eigenvetors of the Hamiltonian after the interation.The seond term, however, is not. We thus need to follow the evolution of the two statesj� >�3 j�k(t0) > and j+ >�3 j � �k(t0) >. Sine �3 is a onstant of the motion after theinteration again, the evolution takes plae ompletely in the �eld setor. Let us look at the�rst state �rst. (The evolution of the seond an be derived easily from that for the �rstbeause of the symmetry of the problem.)I will again work in the Heisenberg representation. The �eld obeys_��(t; x) = ��(t; x) + �(t)h(x) (64)_��(t; x) = �2x��(t; x)�m2��(t; x) (65)with solution At the time t0 the �eld is in the oherent state j�k >. This an be representedby taking the �eld operator to be of the form��(t0; x) = �0(t0; x) (66)��(t0; x) = _�0(t0; x) + �(t0)h(x) (67)whee the state j�k > is the vauum state for the free �eld �0.. We an now solve theequations of motion for �� and obtain (again assuming that �(t) is slowly varying)��(t; x) = �0(t; x) + 2 (t; x)�(t0) (68)��(t; x) = _�0(t; x) + 2 (t; x)�(t0)� �(t)h(x) (69)where  (t0; x) = 0 and _ (t0; x) = h(x). Thus again, the �eld is in a oherent state setby both 2�(t0) and �(t)h(x). The �eld  propagates away from the interation regiondetermined by h(x), and I will assume that I am interested in times t a long time after thetime t0. At these times I will assume that R h(x) (t; x)dx = 0. (This overlap dies out as1=pmt. The alulations an be arried out for times nearer t0 as well| the expressionsare just messier and not partiularly informative.)Let me de�ne the new oherent state as j � �k(t) + �k(t) >, where �k is as before and11



�k(t) = 2�(t0)!k ~ (t; k) = 2i�(t0)ei!kt~h(k)=!k (70)(The assumption regarding the overlap of h(x) and  (t) orresponds to the assumption thatR ��k(t)�k(t)dk = 0). Thus the state j� >�3 j�k > evolves to the state j� >�3 j��k+�k(t) >.Similarly, the state j+ >�3 j � �k > evolves to j+ >�3 j�k � �k(t) >.We now alulate the overlaps of the various states of interest.< �kj�k � �k >=< ��kj � �k � �k >= e� R j�kj2dk = J(t0) (71)< ��kj�k � �k >=< �kj � �k � �k >= J(t)J(t0) (72)< ��k + �kj�k � �k >=< ��k � �kj�k + �k >= J(t)J(t0)4 (73)The density matrix beomes �3 = os(�)�03 + sin(�)J(t0)�02 (74)�1 = J(t) �os(�) + J4(t0) sin(�)� �01 (75)�2(t) = J(t) �� sin(�)�03 + (os(�=2)� J4(t0) sin(�))�02� (76)where �03 = 12(j+j2 � j�j2) (77)�01 = Re(+��) (78)�02 = Im(+��) (79)If we now let �(t) go slowly to zero again ( to �nd the `real' loss of oherene), we �nd thatunless �01 = �02 = 0 the system has really lost oherene during the sudden transition. Themaximum real loss of oherene ours if the rotation is a spin ip (� = �) and �03 waszero. In that ase the density vetor dropped to J(t0)4 of its original value. If the densitymatrix was in an eigenstate of �3 on the other hand, the density matrix remained a oherentdensity matrix, but the environment was still exited by the spin.We an use the models of a fast or a slow spin ip interation to disuss the problemof the tunneling time. As Leggett et al argue [3℄, the spin system is a good model for theonsideration of the behaviour of a partile in two wells, with a tunneling barrier betweenthe two wells. One view of the transition from one well to the other is that the partilesits in one well for a long time. Then at some random time it suddenly jumps through thebarrier to the other side. An alternative view would be to see the partile as if it were auid, with a narrow pipe onneting it to the other well- the uid slowly sloshing betweenthe two wells. The former is supported by the fat that if one periodially observes whihof the two wells the partile is in, one sees it staying in one well for a long time, and thenbetween two observations, suddenly �nding it in the other well. This would, if one regardedit as a lassial partile imply that the whole tunneling must have ourred between thetwo observations. It is as if the system were in an eigenstate and at some random timean interation ipped the partile from one well to the other. However, this is not a goodpiture. The environment is ontinually observing the system. It it really moved rapidlyfrom one to the other, the environment would see the rapid hange, and would radiate.Instead, left on its own, the environment in this problem ( with a mass muh greater thanthe frequeny of transition of the system) simply adjust ontinually to the hanges in thesystem. The tunneling thus seems to take plae ontinually and slowly.12



VI. DISCUSSIONThe high frequeny modes of the environment lead to a loss of oherene (deay of the o�-diagonal terms in the density matrix) of the system, but as long as the hanges in the systemare slow enough this deoherene is false{ it does not prevent the quantum interferene ofthe system. The reason is that the hanges in the environment aused by these modes areessentially tied to the system, they are adiabati hanges to the environment whih aneasily be adiabatially reversed. Loosely one an say that oherene is lost by the transferof information (oherene) from the system to the environment. However in order for thisinformation to be truly lost, it must be arried away by the environment, separated from thesystem by some mehanism or another so that it annot ome bak into the system. In theenvironment above, this ours when the information travels o� to in�nity. Thus the loss ofoherene as represented by the redued density matrix is in some sense the maximum lossof oherene of the system. Rapid hanges to the system, or rapid deoupling of the systemfrom the environment, will make this a true deoherene. However, gradual hanges in thesystem or in the oupling to the external world an ause the environment to adiabatiallytrak the system and restore the oherene apparently lost.This is of speial importane to understanding the e�ets of the environmental uto� inmany environments [3℄. For \ohmi" or \superohmi" environments ( where h does not fallo� for large arguments), one has to introdue a uto� into the alulation for the redueddensity matrix. This uto� has always been a bit mysterious, espeially as the loss ofoherene depends sensitively on the value of this uto�. If one imagines the environmentto inlude say the eletromagneti �eld, what is the right value for this uto�? Choosingthe Plank sale seems silly, but what is proper value? The arguments of this paper suggestthat in fat the uto� is unneessary exept in renormalising the dynamis of the system.The behaviour of the environment at frequenies muh higher than the inverse time sale ofthe system leads to a false loss of oherene, a loss of oherene whih does not a�et theatual oherene ( ability to interfere with itself) of the system. Thus the true oherene isindependent of uto�.As far as the system itself is onerned, one should regard it as \dressed" with a polar-ization of the high frequeny omponents of the environment. One should regard not thesystem itself as important for the quantum oherene, but a ombination of variables ofthe system plus the environment.What is diÆult is the dependene of whih the degreesof freedom of the environment are simply dressing and whih are degrees of freedom whihan lead to loss of oherene depends ruially on the motion and the interations of thesystem itself. They are history dependent, not simply state dependent. This make it verydiÆult to simply �nd some transformation whih will express the system plus environmentin terms of variables whih are genuinely independent, in the sense that if the new variableloose oherene, then that loss is real.These observations emphasis the importane of not making too rapid onlusions fromthe deoherene of the system. This is espeially true in osmology, where high frequenymodes of the osmologial system are used to deohere low frequeny quantum modes ofthe universe. Those high frequeny modes are likely to behave adiabatially with respetto the low frequeny behaviour of the universe. Thus although they will lead to a redueddensity matrix for the low frequeny modes whih is apparently inoherent, that inoherene13
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Abstract

The debate about the non-locality of quantum mechanics is old, but still lively. Numerous

people use non-locality as a (bad) shorthand for quantum entanglement. But some have a long

standing commitment to the validity of this characterisation. This paper examines two separate

streams in this debate. The first is the arguments of Stapp, and especially his recent paper where

he simplifies his contractually argument in the Hardy situation to argue for the non-locality of

quantum mechanics. He has maintained his contention that an analysis of a Hardy type correlation

between two spatially separated observers proves that quantum mechanics itself is non-local, with

out any additional assumption of realism or hidden variables.

In the second section I try to carefully examine the Bell argument, in the CHSH variant to see

where the difference between the quantum and classical situations differ.
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Asher Peres was one of the great physicists on the late 20th century, especially in his

intense concern with the fundamental nature of quantum mechanics. His courage in devoting

his life to an area many considered “philosophical” (ie non-physical) paved the way for the

rest of us to reveal our interests and confusions about this area. I am not sure that he would

agree with everything in this paper, but I offer it as a tribute to him.

I. STAPP

Stapp[1] has long maintained the position that quantum mechanics must be considered

to be a non-local theory in its own right. He believes that the the assumption of ”hidden

variables” or local realism in Bell’s argument is unnecessary, and that no local theory or any

form could mimic quantum mechanics. It is not that any hidden variable theory, or locally

realistic theory must be non-local in order to mimic quantum mechanics, as Bell showed. It

is that quantum mechanics itself is non-local.

In much of the popular vocabulary of physicists, his war has been won. Many physicists,

including many of those with an interest in the foundational issues of quantum theory, refer

to quantum mechanics as non-local– using Bell’s arguments as a justification. By this they

usually mean that quantum mechanical entanglement has non-classical features and when

pushed, they will back off and agree that that non-locality is not really what Bell’s arguments

mean. However, they stubbornly insist on using the terminology. (Names or references are

purposely omitted to protect the guilty).

Stapp would however like to put this popular misnaming onto a firm footing. Despite a

large amount of criticism, he still insists that his analysis of a Hardy type experiment shows

that quantum mechanics itself is non-local. Unfortunately, in the face of this criticism, his

claims have become more and more diluted.

He has recently published another paper in the American Journal of Physics [1] with new

arguments on the non-locality of quantum mechanics. The end of the paper states ”This

conclusion represents some sort of failure of the notion that no influence of any kind can act

over a space-like interval”. “Some sort of failure” is so vague that almost anything can be

subsumed under its mantle. Meanwhile “no influence of any kind” is so strong that many

innocuous aspects of both classical and quantum physics can fall under this rubric.

Of course neither quantum mechanics nor classical mechanics has never argued that
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no influence of any kind can act over a space-like interval. The existence of correlations

between widely separated bodies could be taken to imply some sort of action over space-like

intervals. A measurement operation, in which the measuring apparatus is only read when

widely separated from the object could be taken to act over space-like intervals, since the

value of the variable measured on the system in question has changed from unknown to

known when the measuring apparatus is read. This is especially true in quantum mechanics

where one cannot regard the system in question as having a value for the quantity of interest

even in the absence of measurement. Ie, this sentence makes it unclear as to what Stapp

is claiming. With a suitably diluted notion of non-locality, any theory could be said to be

non-local.

The above paragraph may be taken as unfairly using his infelicitous language to erect

and demolish a straw man. Let us therefor look a bit more closely at his argument.

He uses a Hardy-type experiment in his argument. The quantum Hardy-type experiment

has been extensively described and generalised. It is a thought experiment in which two

(spatially separated) physical systems are described by some state which is weakly entangled

between the two systems. The weaker the entanglement, the more striking is the violation

of the classical expectations, although the more rare the conditions under which it applies.

We can consider the two systems to each be a two level system, and the state to be any

state which is not a product state. For any such state, one can find a set of two dynamical

variables for each sub-system, call them L1 and L2 for the one sub-system, and R1 and R2

for the other, with each variable having a pair of eigenvalues, denoted by + and -. These

attributes have the following four properties in the given state.

In all experiments with the system in that given initial state and in which L1 and R1 are

measured, and L1 is found to have value +, then R1 always has value +.

If R1 and L2 are measured, and R1 has value +, then L2 always has value +.

If L2 and R2 are measured, and L2 has value +, then R2 always has value +.

If L1 and R2 are measured, and L1 has value +, then R2 has value - with a probability

which approaches unity as the state approaches a product state. This is clearly in conflict

with the logical chain

L1 = +⇒ R1 = +⇒ L2 = +⇒ R2 = + (1)

which one would naively deduce from the chain of bipartite measurements.
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To make the above more definite, consider the two systems to be two two level systems,

with the usual Pauli matrices . Assume that in the σz basis for each the state of the system

is

|Ψ >= sin(φ)|+ + > +cos(φ)| − − > (2)

Ie, if φ is small, this state is almost a product state. Take L1 to be cos(2µ)σLz+sin(2µ)σLx

where tan(µ) = tan(φ)2, and take R1 to be cos(2φ)σRz + sin(2φ)σRx, Choosing L2 to be

1√
2
(σLz +σLx) and R2 to be sin(2φ)σRz +cos(2φ)σRx, where These operators obey the above

conditions. This choice comes very close to maximizing the probability, cos(2φ)2, that if

L1 and R2 are measured and L1 is +, then R2 is -. For φ << 1, this probability becomes

very close to unity. Note that attribute R2 is almost exactly the negative of R1, and its

+ eigenvector is almost exactly the − eigenvector of R1. Ie, L2 having value + implies

R1 has value + while L1 having value + implies that R2 has value - with high probability.

However, for any value of φ except 0 (no entanglement but the probability of L1=+ is zero)

or π/2 (maximum entanglement) these operators obey the conditions of this generalised

Hardy system.

For any classical system, the first three properties would imply that if L1 has value +

then R2 must have value +. The fourth property contradicts this. Stapp’s argument is that

this chain of reasoning also applies in quantum mechanics. The argument is subtle and uses

the language of counterfactuals.

Counterfactual arguments are tricky (see for example Shimony’s criticism of this paper

by Stapp which is similar to my criticism)[2], and are invariably heavily theory laden. They

are not statements about the world, but rather about one’s theory of the world. This is

especially clear in the example which could be called the argument of Peres’s mother [3].

When young his mother asked herself the counterfactual question of whose child, her

mother’s or her father’s, she would have been if her mother and father had each married

different people. While she ultimately decided the question was meaningless, it is clear that

it would not have been meaningless, and would furthermore have had a definite answer, had

her theory of human essence rested upon matrilinear reincarnation. Furthermore, had she

asked instead whether her father’s or mother’s child would have had her blue eyes, we would

have had no difficulty giving an answer based on our theories of genetic inheritance. Ie, the

meaningfulness and answer to a counterfactual question depends crucially on the theoretical
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context in which it is embedded.

The central point of Stapp’s argument rests on a proposition which he calls SR. This

proposition is (translated to the notation I am using)

If R1 is measured and gives outcome +, then if, instead, R2 had been measured, the

outcome would have been +.

By “instead” he does not mean in some other experiment, but means a counterfactual

replacement of the measurement of R1 by a measurement of R2 in the same experiment

in which R1 was measured. As a counterfactual statement, it can of course never actually

be tested by experiment in the real world. As with all counterfactual statements, it is

a statement made within the context of a theoretical framework. As such one must be

careful to ensure that the replacement makes sense within the context of the theory. Within

quantum theory this becomes especially ticklish, since the attribute R2 does not commute

with R1, and quantum mechanics thus rules out any interpretation of “instead of” which

makes it synonymous with “as well as ”. Ie, the measurement of R1 inherently destroys the

probability structure of the outcomes for R2 and interferes with any measurement of R2.

The first question to ask is whether, within the theoretical context of quantum mechanics,

the statement makes any sense. The statement assumes a number of other postulates–

namely that the state of the system before any measurement is the Hardy state, a state

which explicitly refers to both L and R. One can certainly argue that in fact, as in the case

of Peres’ mother, this statement does not make any sense withing the context of quantum

mechanics. Because attributes do not have values in the absence of measurement, because

the values found in a measurement occur without sufficient cause, are generated out of thin

air by the measurement itself, the question of what quantum mechanics would have to say

about the counterfactual replacement of R1 with R2 is ”nothing” in the absence of any other

conditions. But let us push the analysis a little bit further.

Within quantum mechanics, the validity of this counterfactual replacement hinges on

whether or not L2 was actually measured. If it was measured, then, because of the prior

condition that the state is the Hardy state and the assumption about the measured value

of R1, it is a fact that both R1 and L2 have values +. The validity of the counterfactual

replacement of R1 with R2 giving the value + then rests on the reality of the measurement of

L2. If, on the other hand, L2 was not actually measured, then the validity of the argument

rests on a double counterfactual– namely that if instead of not being measured at all, L2
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had been measured, it would have had value +, and thus on the second counterfactual

substitution of R2 for R1, R2 would have value +. There is no reason to believe that

quantum physics makes any sense at all out of such a double counterfactual substitution.

Stapp argues that if, one had, in the past (but space-like separated from) of the mea-

surement of either R1 or R2 referred to in this statement, L2 had been measured, then this

statement is true. The measurement result of + for the measurement of R1 would ensure

through the correlations inherent in the state that the outcome of the L2 measurement in

the past must have been + as well. But, since that result is surely independent of whether

or not R1 or R2 were measured in the future, it would still have had outcome + if the

experimenter in R had decided to measure R2 instead, and thus, because of the correlations

in the state, R2 would then have had value + as well. Thus, given only the knowledge that

L2 was measured, the statement SR is true. Of course it is true only because of the existence

of the measurement of L2. Without the existence of that measurement, the statement SR

is nonsense (ie, untrue).

However Stapp here uses the fee will of the experimentalist and his notion of locality

to argue that, as a statement about region R, SR must surely be independent of what

experiment was carried out in region L, since, it being space-like separated from R, one can

consider the measurement in region L to occur after that in R. Thus SR should continue to

be true if L2 were replaced with L1, in which case however, the inference of SR does not

follow ( and is in fact negated with high probability if the outcome of the L1 measurement

is +).

However this notion of locality is strange. SR, is not a statement about region R, rather it

is a statement about two different counterfactual worlds, the one in which R1 was measured

and the other where R2 was measured. There seems to me to be no argument from locality

or anything else which could demand that such a counterfactual relationship should be

independent of the actions in region L. The existence of the measurement of L2 plays a

crucial role in the establishment of the truth of SR, and there is no reason why that truth

should be independent of that measurement. IF SR refereed to some actual state of affairs in

a single world (established even by counterfactual reasoning) then such a locality requirement

might be reasonable. But as I have stated, the assumption that SR says something about

the single real world is a form of realism.
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II. VON NEUMAN MEASUREMENT

This Hardy type system can also be used to point out some features and limitations of the

von Neuman description of measurement. In establishing the logical consistency of quan-

tum mechanics and in particular of the measurement hypothesis, von Neuman introduces

a measurement hypothesis. A measurement on a system could be regarded as a primate

operation on that system. Alternatively, one could introduce a measuring apparatus which

was itself a quantum system, and whose interactions with the system were fully governed

by the laws of quantum mechanics. The measurement process on the original system was

now regarded as the establishment of correlations between some dynamic attribute of the

apparatus with the “measured” attribute of the system. The measurement, in the primate

sense, on this pointer attribute of the apparatus, could be used to infer, by means of the

correlations between the two systems, a value for the attribute of the system. He argued

that regarding a measurement on the system either as a primitive, or as being inferred from

a measurement on an apparatus, are consistent, and equivalent.

However, this model demonstrates limitations of this equivalence in some situations. Be-

cause of the correlations inherent in this Hardy state, one can regard the either the system

on the left or on the right as the system of interest and the other to be a measuring appara-

tus. The correlations created by the interaction which placed the system into the partially

entangled state are of the kind discussed by von Neuman. In particular, a measurement, in

the primitive sense, of R1 giving value + is perfectly correlated with L2 having value +. Ie,

a primitive measurement of R1 giving value + is a measurement in the von-Neuman sense

of L2 giving value +. (The primitive measurement of R1 giving any value is not equivalent

to a generic von Neuman measurement of L2, since the correlation is not valid for R1 hav-

ing value -.) Now, the primitive measurement of L2, giving value + can also be regarded

as a measurement in the von Neuman sense of R2 giving value +. But von Neuman also

insisted that there is no difference between a von Neuman and a primitive measurement as

far as the system is concerned. Thus, we can take the primate measurement of R1 with

value + to be equivalent to the measurement of L2 referred to the above, which was also a

measurement of R2 with value +. Ie, by the double application of von Neuman’s argument

the (primitive) measurement of R1 giving value + can apparently also be regarded as a von

Neuman measurement of R2 giving value +.
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One might make two objections. The first is that the measurement of R1 destroys the

probability distribution of R2, leaving R2 with an entirely different probability distribution.

What is R1 then measuring? However, physicists have long engaged in measurements which

destroy the system being measured even more completely. When a photon impinges on a

photographic plate or a CCD, the fact that the photon is completely destroyed in the process

does not change physicists’ notion that the photographic plate has measured the position

of the photon. Yes, it is destroyed, but just before the destruction the photon had that

position.

The second possible objection is that the measurement is very indirect. After all we are

operating through the intermediary of L2. Without L2, the measurement of R1 would not

allow anything to be inferred about the value of R2. But again, this possibility was already

envisioned by von Neuman, who discussed a whole chain of measuring apparatuses. One

could ”measure” the pointer of the apparatus, either as a primitive operation, or by coupling

it again to another super-apparatus, whose pointer we correlated with the pointer of the first

apparatus. This chain could be as long as one wished, as long as one had established the

chain of correlations between the various pointers and the original attribute in the system

to be measured. Ie, there is nothing in the von Neuman equivalence which limits our right

to regard R1 having value + as being a measurement of R2.

Note of course that this is a system to which we cannot apply the arguments of “Wigner’s

Friend”. Ie, a separate attempt to measure R2 either by coupling it to some other apparatus

, or via a primitive measurement will not give the same result as the result inferred from the

measurement of R1. But nowhere in the naive von Neuman analysis is there any requirement

that the “Wigner’s Friend” argument apply.

But, of course, if one does allow the measurement of R1 with value + to be a valid mea-

surement of R2, the plot grows even more convoluted. One could regard the measurement

of L1, giving value +, to be a measurement of R1 (with value +) which is a measurement

of L2 (with value +) which is a measurement of R2 (with value +). Again the fact that L2

is destroyed in the primitive measurement of L1 would seems to be irrelevant.

But this leads to a contradiction. For exactly the same correlated state between the

measuring apparatus L1 and the system attribute R2 allows one to assume that if L1 has

value +, R2 almost certainly has value -. Ie, the equivalence between primitive measurements

and von Neuman causal chain measurements fails spectacularly. At the same time it is not
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clear exactly where it fails.

Ie, it would seem that one needs to restrict the von Neuman measurement chain such that

at each step one can apply a ”Wigner’s Friend” argument to obtain the same outcome for

the measurement as the one inferred from the von Neuman chain. Or equivalently one must

restrict the measurement chain so that at no point can a measuring apparatus be regarded

as measuring itself.

Bell’s theorem and Quantum Systems

Ultimately all arguments for the non-locality of quantum mechanics can be traced back

to Bell’s arguments [4] in establishing his theorem for ”Locally realistic” systems. It seems

to be because of the powerful fascination of realism that the violation Bell’s inequality for

quantum mechanics and for the real physical world is interpreted as a violation of locality.

It is worth looking in more detail at Bell’s argument and at the differences between quantum

and classical systems for each step in the argument. In the following I will use the name

Bell to refer to the Clauser, Horn, Shimony and Holt [5] version of the argument.(See also

Jarret[6] for a discussion of the experiment).

The setup is that we have two attributes L1 and L2 on the left and R1 and R2 on the right.

(these are not the same as the attributes above in the Stapp argument.) Each takes values

of ±1. In the quantum system we will take L1 and L2 to be maximally non-commuting

attributes, and can take them as σ1 and σ2, the two Pauli spin matrices, and R1 and R2 are

also the two sigma matrices for another two level system.The system is set up in a correlated

state, and a sequence of measurements are made on the L and R systems. In particular L1

or L2 is measured on the left and R1 or R2 on the right. In each measurement only one

of the pair are measured. After the measurements have all been made, a set of correlation

functions is measured. Namely

[L1 R1] =
∑

11

L1iR1i/
∑

11

1 (3)

[L1 R2] =
∑

12

L1iR2i/
∑

12

1 (4)

[L2 R1] =
∑

21

L2iR1i/
∑

21

1 (5)

[L2 R2] =
∑

22

L2iR2i/
∑

22

1 (6)

where in each case terms like L1i refer to the value obtained for L1 in the ith trial and the

sum over i is over all instances in which the corresponding attributes were measured. (ie,
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∑

12 is the sum over all instances in which L1 and R2 were measured.)

Now, of course each of these correlation function is taken over disjoint sets. It is never

the case that both R1 and R2 were measured in the same instance, and similarly no case

where L1 and L2 were measured in the same instance.

The critical procedure in Bell’s proof is to argue using local realism, that even though

they were not measured in any instance, all of the operators L1, L2, R1, R2 actually have

values in each of the instances of measurement. Furthermore, he uses locality to argue that

if this is true, then the measured correlation function < La Rb >, with a, b both taking

values 1 and 2 is a good estimator of the (counterfactual) correlator

< La Rb >≈
∑

LajRbj/
∑

j

1 (7)

where this time the sum is taken over all instances in which any measurement was taken. If

we assume that the sets are or roughly equal size, in 1/4 of the values of j, these correspond

to real values for La and Rb and in 3/4 of the cases at least one of them is the value assumed

to exist by counterfactual realism.

Furthermore, locality is used to argue that we can write

[L1 R1] + [L1 R2] + [L2 R1]− [L2 R2] =< L1(R1 +R2) > + < L2(R1−R2) >=< L1(R1 +R2) + L2(R1−R2) >(8)

This is the critical relation. Ie, the whole use of locality and local realism is to argue that

the sum of the correlators is equal to the correlation of the sum of the operators.

What is of course interesting about quantum mechanics is this property comes free. If

we define La and Ra as the quantum operators and the expectation values as the quantum

expectation values, then quantum mechanics gives us, for free, that

[L1 R1] + [L1 R2] + [L2 R1]− [L2 R2] = 〈ψ|L1(R1 + R2)|ψ〉+ 〈ψ|L2(R1−R2)|ψ〉(9)

= 〈ψ|L1(R1 + R2) + L2(R1−R2)|ψ〉 (10)

Since the use of locality in the classical case is solely to demonstrate the truth of something

which quantum mechanics apparently gives us for free, the question now arises as to where

the difference between the quantum and classical resides.

The first instance is when we examine the meaning of these expectation values. In the

classical case, for example < L1(R1 + R2) > is taken to mean something different from

〈ψ|L1(R1 + R2)|(〉ψ). In the classical case, Bell took R1 + R2 in each instance to be the
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sum of the values of R1 and R2 for each particular instance. Since by assumption Ra took

values of±1, R1+R2 has values of±2 or 0. However, a critical feature of quantum mechanics

is that R1+R2 is an operator, and attribute in its own right, and will take values of ±
√

2.

Furthermore, in all situations in which the operators R1 and R2 are measured separately,

or their sum is measured,

|ψ〉M R1〈ψ|+ |ψ〉M R2〈ψ| = |ψ〉M( R1 + R2)〈ψ| (11)

where M is any operator which commutes with Ra. Ie, measured separately or measured

as a sum, these two correlators are identical.

If the classical system is to mimic the quantum system, this must also be true of the

classical system. In general since R1 +R2 has different values than R1 + R2 (namely ±2, 0

instead of ±
√

2 this mimicking is difficult for the classical system to maintain.

Secondly, Bell makes use of another feature. Both of the attributes R1+R2 and R1−R2

are assumed to have possible values of ±2, 0. Furthermore they are perfectly anti-correlated

in that one and only of of the two ever has the value 0 in any one instance of the experiment.

Thus in each element of the sum, either R1 +R2 or R1−R2 is zero. Since. L1 and L2 have

values of ±1 we immediately get Bell’s theorem, namely that

−2 ≤ [L1 R1] + [L1 R2] + [L2 R1]− [L2 R2] ≤ 2 (12)

The quantum violation comes about by noting that we can find a state, |ψ〉such that L1

and (R1+R2) are maximally correlated– ie every-time L1 has value +1, R1+R2 has value

+
√

2 and every time L1 has value -1, R1+R2 has value +
√

2. That same state |ψ〉 can be

chosen so that L2 and R1-R2 are also maximally correlated. This immediately leads to the

quantum correlation

[L1 R1] + [L1 R2] + [L2 R1]− [L2 R2] = 2
√

2 (13)

Where can one locate the difference between the quantum and classical case. A key

location is the assumption that the values of R1 + R2 take values of ±2, 0 rather than the

±
√

2 of the quantum system. Ie, in quantum mechanics the sum of the values is not the

same as the values of the sum. This is clearly crucial in Bell’s argument.

WE can express this in a slightly different way. If we look at the correlation < (R1 +

R2)(R1 − R2) > for the classical system, it is crucial to Bell’s argument that this is zero.
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Quantum mechanically of course, this expression would not necessarily be zero and in fact

in the quantum state under consideration it is non-zero.

The second point, related to the first, is that R1+R2 is anti-correlated with R1-R2 in

that a non-zero value of one is perfectly correlated with a zero value of the other. Clearly

if the values are not 0 and ±2 this correlation between the two makes little sense. Finally,

the perfect correlations between R1+R2 and L1 at the same time as a perfect correlation

between R1-R2 and L2 obtains in the quantum system is also critical to the possibility

of its violating the classical limits. Can a classical system be set up so as to have this

same correlation? The answer is of course yes. We take R1 ± R2 to have values ±
√

2 as

for the quantum system. Set up the four states {+1,+1,+
√

2,+
√

2 , {+1,−1,+
√

2,−
√

2,

{−1,+1,−
√

2,+
√

2, and {−1,−1,−
√

2,−
√

2 where these four values are the classical values

of L1,L2,(R1+R2), and (R1-R2) respectively. The classical state is now defined by taking

each of these states with probability of 1/4. Thus we see that the critical difference between

quantum and classical system is in the fact that the sum of values is not the same as the

values of the sum. Classically, the values of R1+R2 are just the values of R1 added to those

of R2, namely ±2, 0 while quantum mechanically they are just ±
√

2.

We note that the locality has played a weak role. It has acted to allow us to argue that for

the classical system, the correlations behave in just the way we would expect the quantum

system to behave– namely that the sum of the correlators is just the theoretical correlation

of the sum.
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I’ll try to clarify just what decoherence has to do with the emergence of multiple quasiclassical 

dynamical processes. In particular, I’ll try to give an account of the the significance of 

decoherence for the dynamical evolution of systems, and of what decoherence adds to older and 

more elementary arguments for classicality—notably, Ehrenfest’s theorem. I’ll be pretty light on 

mathematical detail in the talk (the details are filled out more in my contribution to the reader), 

and I’ll confine my attention to the interpretation of unitary quantum mechanics without hidden 

variables—to Everett’s approach to quantum mechanics, in effect.  



Decoherence and Ontology

(or: How I learned to stop worrying and love

FAPP)

David Wallace

July 15, 2009

The form of a philosophical theory, often enough, is: Let’s try looking
over here.

(Fodor 1985, p. 31)

1 Introduction: taking physics seriously

NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from
Earth.1 We have never been there, and (although I would love to be wrong
about this) we will never go there; all we will ever know about NGC 1300 is
what we can see of it from sixty-five million light years away, and what we can
infer from our best physics.

Fortunately, “what we can infer from our best physics” is actually quite a
lot. To take a particular example: our best theory of galaxies tells us that that
hazy glow is actually made up of the light of hundreds of billions of stars; our
best theories of planetary formation tell us that a sizable fraction of those stars

1Source: http://leda.univ-lyon1.fr/. This photo taken from http://hubblesite.org/

gallery/album/galaxy/pr2005001a/. [NB: issue of getting credit here.]

Figure 1: The spiral galaxy NGC 1300
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have planets circling them, and our best theories of planetology tells us that
some of those planets have atmospheres with such-and-such properties. And
because I think that those “best theories” are actually pretty good theories, I
regard those inferences as fairly reliable. That is: I think there actually are
atmospheres on the surfaces of some of the planets in NGC 1300, with pretty
much the properties that our theories ascribe to them. That is: I think that
those atmospheres exist. I think that they are real. I believe in them. And I do
so despite the fact that, at sixty-five million light years’ distance, the chance of
directly observing those atmospheres is nil.

I present this example for two reasons. The first is to try to demystify —
deflate, if you will — the superficially “philosophical” — even “metaphysical”
— talk that inevitably comes up in discussions of “the ontology of the Everett
interpretation”. Talk of “existence” and “reality” can sound too abstract to
be relevant to physics (talk of “belief” starts to sound downright theological!)
but in fact, when I say that “I believe such-and-such is real” I intend to mean
no more than that it is on a par, evidentially speaking, with the planetary
atmospheres of distant galaxies.

The other reason for this example brings me to the main claim of this paper.
For the form of reasoning used above goes something like this: we have good
grounds to take such-and-such physical theory seriously; such-and-such physical
theory, taken literally, makes such-and-such ontological claim; therefore, such-
and-such ontological claim is to be taken seriously.2

Now, if the mark of a serious scientific theory is its breadth of application,
its explanatory power, its quantitative accuracy, and its ability to make novel
predictions, then it is hard to think of a theory more “worth taking seriously”
than quantum mechanics. So it seems entirely apposite to ask what ontological
claims quantum mechanics makes, if taken literally, and to take those claims
seriously in turn.

And quantum mechanics, taken literally, claims that we are living in a multi-
verse: that the world we observe around us is only one of countless quasi-classical
universes (“branches”) all coexisting. In general, the other branches are no more
observable than the atmospheres of NGC 1300’s planets, but the theory claims
that they exist, and so if the theory is worth taking seriously, we should take
the branches seriously too. To belabour the point:

According to our best current physics, branches are real.

Everett was the first to recognise this, but for much of the ensuing fifty years
it was overlooked: Everett’s claim to be “interpreting” existing quantum me-
chanics, and de Witt’s claim that “the quantum formalism is capable of yielding
its own interpretation” were regarded as too simplistic, and much discussion on
the Everett interpretation (even that produced by advocates such as Deutsch

2Philosophers of science will recognise that, for reasons of space, and to avoid getting
bogged down, I gloss over some subtle issues in the philosophy of science; the interested
reader is invited to consult, e. g. , Newton-Smith (1981), Psillos (1999), or Ladyman and Ross
(2007) for more on this topic.
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(1985)) took as read that the “preferred basis problem” — the question of how
the “branches” were to be defined — could be solved only by adding something
additional to the theory. Sometimes that “something” was additional physics,
adding a multiplicity of worlds to the unitarily-evolving quantum state (Deutsch
(1985, Bell (1981, Barrett (1999)). Sometimes it was a purpose-built theory of
consciousness: the so-called “many-minds theories” (Lockwood (1989, Albert
and Loewer (1988)). But whatever the details, the end result was a replace-
ment of quantum mechanics by a new theory, and furthermore a new theory
constructed specifically to solve the quantum measurement problem. No won-
der interest in such theories was limited: if the measurement problem really does
force us to change physics, hidden-variables theories like the de Broglie-Bohm
theory3 or dynamical-collapse theories like the GRW theory4 seem to offer less
extravagantly science-fictional options.

It now seems to be widely recognised that if Everett’s idea really is worth
taking seriously, it must be taken on Everett’s own terms: as an understanding of
what (unitary) quantum mechanics already claims, not as a proposal for how to
amend it. There is precedent for this: mathematically complex and conceptually
subtle theories do not always wear their ontological claims on their sleeves.
In general relativity, it took decades fully to understand that the existence of
gravity waves and black holes really is a claim of the theory rather than some
sort of mathematical artifact.

Likewise in quantum physics, it has taken the rise of decoherence theory to
illuuminate the structure of quantum physics in a way which makes the reality
of the branches apparent. But twenty years of decoherence theory, together with
the philosophical recognition that to be a “world” is not necessarily to be part of
a theory’s fundamental mathematical framework, now allow us to resolve — or,
if you like, to dissolve — the preferred basis problem in a perfectly satisfactory
way, as I shall attempt to show in the remainder of the paper.

2 Emergence and Structure

It is not difficult to see why Everett and de Witt’s literalism seemed unviable for
so long. The axioms of unitary quantum mechanics say nothing of “worlds” or
“branches”: they speak only of a unitarily-evolving quantum state, and however
suggestive it may be to write that state as a superposition of (what appear to
be) classically definite states, we are not justified in speaking of those states
as “worlds” unless they are somehow added into the formalism of quantum
mechanics. As Adrian Kent put it in his influential (1990) critique of Many-
Worlds interpretations:

. . . one can perhaps intuitively view the corresponding components
[of the wave function] as describing a pair of independent worlds. But
this intuitive interpretation goes beyond what the axioms justify: the

3SeeCushing, Fine, and Goldstein (1996) and references therein for more information.
4See Bassi and Ghirardi (2003) and references therein for more information.
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axioms say nothing about the existence of multiple physical worlds
corresponding to wave function components.

And so it appears that the Everettian has a dilemma: either the axioms of
the theory must be modified to include explicit mention of “multiple physical
worlds”, or the existence of these multiple worlds must be some kind of illu-
sion. But the dilemma is false. It is simply untrue that any entity not directly
represented in the basic axioms of our theory is an illusion. Rather, science
is replete with perfectly respectable entities which are nowhere to be found in
the underlying microphysics. Douglas Hofstader and Daniel Dennett make this
point very clearly:

Our world is filled with things that are neither mysterious and
ghostly nor simply constructed out of the building blocks of physics.
Do you believe in voices? How about haircuts? Are there such
things? What are they? What, in the language of the physiicist,
is a hole - not an exotic black hole, but just a hole in a piece of
cheese, for instance? Is it a physical thing? What is a symphony?
Where in space and time does “The Star-Spangled Banner” exist?
Is it nothing but some ink trails in the Library of Congress? Destroy
that paper and the anthem would still exist. Latin still exists but
it is no longer a living language. The language of the cavepeople
of France no longer exists at all. The game of bridge is less than
a hundred years old. What sort of a thing is it? It is not animal,
vegetable, or mineral.

These things are not physical objects with mass, or a chemical com-
position, but they are not purely abstract objects either - objects
like the number pi, which is immutable and cannot be located in
space and time. These things have birthplaces and histories. They
can change, and things can happen to them. They can move about -
much the way a species, a disease, or an epidemic can. We must not
suppose that science teaches us that every thing anyone would want
to take seriously is identifiable as a collection of particles moving
about in space and time. Hofstadter and Dennett (1981, pp. 6–7)

The generic philosophy-of-science term for entities such as these is emergent :
they are not directly definable in the language of microphysics (try defining a
haircut within the Standard Model!) but that does not mean that they are
somehow independent of that underlying microphysics. To look in more detail
at a particularly vivid example,5 consider Figure 2.6 Tigers are (I take it!)
unquestionably real, objective physical objects, but the Standard model con-
tains quarks, electrons and the like, but no tigers. Instead, tigers should be
understood as patterns, or structures, within the states of that microphysical
theory.

5I first presented this example in Wallace (2003).
6Photograph @ Philip Wallace, 2007. Reproduced with permission.
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Figure 2: An object not among the basic posits of the Standard Model

To see how this works in practice, consider how we could go about studying,
say, tiger hunting patterns. In principle — and only in principle — the most
reliable way to make predictions about these would be in terms of atoms and
electrons, applying molecular dynamics directly to the swirl of molecules which
make up, say, the Kanha National Park (one of the sadly diminishing places
where Bengal tigers can be found). In practice, however (even ignoring the
measurement problem itself!) this is clearly insane: no remotely imaginable
computer would be able to solve the 1035 or so simultaneous dynamical equations
which would be needed to predict what the tigers would do.

Actually, the problem is even worse than this. For in a sense, we do have
a computer capable of telling us how the positions and momentums of all the
molecules in the Kanha National Park change over time. It is called the Kanha
National Park. (And it runs in real time!) Even if, per impossibile, we managed
to build a computer simulation of the Park accurate down to the last electron,
it would tell us no more than what the Park itself tells us. It would provide
no explanation of any of its complexity. (It would, of course, be a superb
vindication of our extant microphysics.)

If we want to understand the complex phenomena of the Park, and not
just reproduce them, a more effective strategy can be found by studying the
structures observable at the multi-trillion-molecule level of description of this
‘swirl of molecules’. At this level, we will observe robust — though not 100%
reliable — regularities, which will give us an alternative description of the tiger
in a language of cell membranes, organelles, and internal fluids. The principles
by which these interact will be derivable from the underlying microphysics, and
will involve various assumptions and approximations; hence very occasionally
they will be found to fail. Nonetheless, this slight riskiness in our description
is overwhelmingly worthwhile given the enormous gain in usefulness of this new
description: the language of cell biology is both explanatorily far more powerful,
and practically far more useful, than the language of physics for describing tiger
behaviour.

Nonetheless it is still ludicrously hard work to study tigers in this way. To
reach a really practical level of description, we again look for patterns and
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regularities, this time in the behaviour of the cells that make up individual
tigers (and other living creatures which interact with them). In doing so we will
reach yet another language, that of zoology and evolutionary adaptationism,
which describes the system in terms of tigers, deer, grass, camouflage and so on.
This language is, of course, the norm in studying tiger hunting patterns, and
another (in practice very modest) increase in the riskiness of our description is
happily accepted in exchange for another phenomenal rise in explanatory power
and practical utility.

The moral of the story is: there are structural facts about many microphys-
ical systems which, although perfectly real and objective (try telling a deer that
a nearby tiger is not objectively real) simply cannot be seen if we persist in
describing those systems in purely microphysical language. Talk of zoology is
of course grounded in cell biology, and cell biology in molecular physics, but
the entities of zoology cannot be discarded in favour of the austere ontology
of molecular physics alone. Rather, those entities are structures instantiated
within the molecular physics, and the task of almost all science is to study
structures of this kind.

Of which kind? (After all, “structure” and “pattern” are very broad terms:
almost any arrangement of atoms might be regarded as some sort of pattern.)
The tiger example suggests the following answer, which I have previously Wal-
lace (2003, p.93) called “Dennett’s criterion” in recognition of the very similar
view proposed by Daniel Dennett (Dennett 1991):

Dennett’s criterion: A macro-object is a pattern, and the ex-
istence of a pattern as a real thing depends on the usefulness —
in particular, the explanatory power and predictive reliability — of
theories which admit that pattern in their ontology.

Dennett’s own favourite example is worth describing briefly in order to show
the ubiquity of this way of thinking: if I have a computer running a chess
program, I can in principle predict its next move from analysing the electrical
flow through its circuitry, but I have no chance of doing this in practice, and
anyway it will give me virtually no understanding of that move. I can achieve
a vastly more effective method of predictions if I know the program and am
prepared to take the (very small) risk that it is being correctly implemented
by the computer, but even this method will be practically very difficult to use.
One more vast improvement can be gained if I don’t concern myself with the
details of the program, but simply assume that whatever they are, they cause
the computer to play good chess. Thus I move successively from a language of
electrons and silicon chips, through one of program steps, to one of intentions,
beliefs, plans and so forth — each time trading a small increase in risk for an
enormous increase in predictive and explanatory power.7

7It is, of course, highly contentious to suppose that a chess-playing computer really believes,
plans etc. Dennett himself would embrace such claims (see Dennett (1987) for an extensive
discussion), but for the purposes of this section there is no need to resolve the issue: the
computer can be taken only to ‘pseudo-plan’, ‘pseudo-believe’ and so on, without reducing
the explanatory importance of a description in such terms.
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Nor is this account restricted to the relation between physics and the rest
of science: rather, it is ubiquitous within physics itself. Statistical mechanics
provides perhaps the most important example of this: the temperature of bulk
matter is an emergent property, salient because of its explanatory role in the
behaviour of that matter. (It is a common error in textbooks to suppose that
statistical-mechanical methods are used only because in practice we cannot cal-
culate what each atom is doing separately: even if we could do so, we would be
missing important, objective properties of the system in question if we abstained
from statistical-mechanical talk.) But it is somewhat unusual because (unlike
the case of the tiger) the principles underlying statistical-mechanical claims are
(relatively!) straightforwardly derivable from the underlying physics.

For an example from physics which is closer to the cases already discussed,
consider the case of quasi-particles in solid-state physics. As is well known,
vibrations in a (quantum-mechanical) crystal, although they can in principle
be described entirely in terms of the individual crystal atoms and their quan-
tum entanglement with one another, are in practice overwhelmingly simpler to
describe in terms of ‘phonons’ — collective excitations of the crystal which be-
have like ‘real’ particles in most respects. And furthermore, this sort of thing
is completely ubiquitous in solid-state physics, with different sorts of excitation
described in terms of different sorts of “quasi-particle” — crystal vibrations are
described in terms of phonons; waves in the magnetisation direction of a fer-
romagnet are described in terms of magnons, collective waves in a plasma are
described in terms of plasmons, etc.

Are quasi-particles real? They can be created and annihilated; they can
be scattered off one another; they can be detected (by, for instance, scattering
them off “real” particles like neutrons); sometimes we can even measure their
time of flight; they play a crucial part in solid-state explanations. We have no
more evidence than this that “real” particles exist, and so it seems absurd to
deny that quasi-particles exist — and yet, they consist only of a certain pattern
within the constituents of the solid-state system in question.

When exactly are quasi-particles present? The question has no precise an-
swer. It is essential in a quasi-particle formulation of a solid-state problem
that the quasi-particles decay only slowly relative to other relevant timescales
(such as their time of flight) and when this criterion (and similar ones) are met
then quasi-particles are definitely present. When the decay rate is much too
high, the quasi-particles decay too rapidly to behave in any ‘particulate’ way,
and the description becomes useless explanatorily; hence, we conclude that no
quasi-particles are present. It is clearly a mistake to ask exactly when the decay
time is short enough (2.54 × the interaction time?) for quasi-particles not to
be present, but the somewhat blurred boundary between states where quasi-
particles exist and states when they don’t should not undermine the status of
quasi-particles as real, any more than the absence of a precise boundary to a
mountain undermines the existence of mountains.

One more point about emergence will be relevant in what follows. In a cer-
tain sense emergence is a bottom-up process: knowledge of all the microphysical
facts about the tiger and its environment suffices to derive all the tiger-level facts
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(in principle, and given infinite computing power). But in another sense it is
a top-down process: no algorithmic process, applied to a complex system, will
tell us what higher-level phenomena to look for in that system. What makes it
true that (say) a given lump of organic matter has intentions and desires is not
something derivable algorithmically from that lump’s microscopic constituents;
it is the fact that, when it occurs to us to try interpreting its behaviour in terms
of beliefs and desires, that strategy turns out to be highly effective.

3 Decoherence and quasiclassicality

We now return to quantum mechanics, and to the topic of decoherence. In this
section I will briefly review decoherence theory, in a relatively simple context
(that of non-relativistic particle mechanics) and in the environment-induced
framework advocated by, e. g. , Joos, Zeh, Kiefer, Giulini, Kubsch, and Stame-
tescu (2003) and Zurek (1991, 2003). (An alternative formalism — the “deco-
herent histories” framework advocated by, e. g. , Gell-Mann and Hartle (1990)
and Halliwell (1998) — is presented in the Introduction to this volume and in
Halliwell’s contribution to this volume.)

The basic setup is probably familiar to most readers. We assume that the
Hilbert space H of the system we are interested in is factorised into “system”
and “environment” subsystems, with Hilbert spaces HS and HE respectively —

H = HS ⊗HE . (1)

Here, the “environment” might be a genuinely external environment (such as
the atmosphere or the cosmic microwave background); equally, it might be an
“internal environment”, such as the microscopic degrees of freedom of a fluid.
For decoherence to occur, there needs to be some basis {|α〉} of HS such that
the dynamics of the system-environment interaction give us

|α〉⊗|ψ〉 −→ |α〉⊗|ψ;α〉 (2)

and
〈ψ;α|ψ;β〉 ' δ(α− β). (3)

on timescales much shorter than those on which the system itself evolves. (Here
I use α as a “schematic label”. In the case of a discrete basis δ(α − β) is
a simple Kronecker delta; in the case of a continuous basis, such as a basis of
wavepacket states, then (3) should be read as requiring 〈α|β〉 ' 0 unless α ' β.)
In other words, the environment effectively “measures” the state of the system
and records it. (The orthogonality requirement can be glossed as “record states
are distinguishable”, or as “record states are dynamically sufficiently different”,
or as “record states can themselves be measured”; all, mathematically, trans-
late into a requirement of orthogonality). Furthermore, we require that this
measurement happens quickly: quickly, that is, relative to other relevant dy-
namical timescales for the system. (I use “decoherence timescale” to refer to
the characteristic timescale on which the environment measures the system.)
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Decoherence has a number of well-known consequences. Probably the best-
known is diagonalisation of the system’s density operator. Of course, any den-
sity operator is diagonal in some basis, but decoherence guarantees that the
system density operator will rapidly become diagonal in the {|α〉} basis, inde-
pendently of its initial state: any initially non-diagonalised state will rapidly
have its non-diagonal elements decay away.

Diagonalisation is a synchronic result: a constraint on the system at all
times (or at least, on all time-intervals of order the decoherence timescale).
But the more important consequence of decoherence is diachronic, unfolding
over a period of time much longer than the decoherence timescale. Namely:
because the environment is constantly measuring the system in the {|α〉} basis,
any interference between distinct terms in this basis will be washed away. This
means that, in the presence of decoherence, the system’s dynamics is quasi-
classical in an important sense. Specifically: if we want to know the expectation
value of any measurement on the system at some future time, it suffices to know
what it would be were the system prepared in each particular |α〉 at the present
time (that is, to start the system in the state |α〉⊗|ψ〉 (for some environment
state |ψ〉 whose exact form is irrelevant within broad parameters) and evolve
it forwards to the future time), and then take a weighted sum of the resultant
values. Mathematically speaking, this is equivalent to treating the system as
though it were in some definite but unknown |α〉.

Put mathematically: suppose that the superoperator R governs the evolu-
tion of density operators over some given time interval, so that if the system
intially has density operator ρ then it has density operator R(ρ) after that time
interval. Then in the presence of decoherence,

R(ρ) =
∫

dα 〈α| ρ |α〉R(|α〉 〈α|). (4)

(Again: this integral is meant schematically, and should be read as a sum or an
integral as appropriate.)

And of course, quasi-classicality is rather special. The reason, in general,
that the quantum state cannot straightforwardly be regarded as a probabilistic
description of a determinate underlying reality is precisely that interference ef-
fects prevent the dynamics being quasi-classical. In the presence of decoherence,
however, those interference effects are washed away.

4 The significance of decoherence

It might then be thought — perhaps, at one point, it was thought — that de-
coherence alone suffices to solve the measurement problem. For if decoherence
picks out a certain basis for a system, and furthermore has the consequence that
the dynamics of that system are quasi-classical, then — it might seem — we can
with impunity treat the system not just as quasi -classical but straightforwardly
as classical. In effect, this would be to use decoherence to give a precise and
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observer-independent definition of the collapse of the wavefunction: the quan-
tum state evolves unitarily as long as superpositions which are not decohered
from one another do not occur; when such superpositions do occur, the quan-
tum state collapses instantaneously into one of them. To make this completely
precise would require us to discretize the dynamics so that the system evolves in
discrete time steps rather than continuously The decoherent-histories formalism
mentioned earlier is a rather more natural mathematical arena to describe this
than the continuous formalism I developed in section 3, but the result is the
same in any case: decoherence allows us to extract from the unitary dynam-
ics a space of histories (strings of projectors onto decoherence-preferred states)
and to assign probabilities to each history in a consistent way (i. e. , without
interference effects causing the probability calculus to be violated.

From a conceptual point of view there is something a bit odd about this
strategy. Decoherence is a dynamical process by which two components of
a complex entity (the quantum state) come to evolve independently of one
another, and it occurs due to rather high-level, emergent consequences of the
particular dynamics and initial state of our Universe. Using this rather complex
high-level process as a criterion to define a new fundamental law of physics is, at
best, an exotic variation of normal scientific practice. (To take a philosophical
analogy, it would be as if psychologists constructed a complex theory of the
brain, complete with a physical analysis of memory, perception, reasoning and
the like — and then decreed that, as a new fundamental law of physics (and not
a mere definition), a system was conscious if and only if it had those physical
features.8)

Even aside from such conceptual worries, however, a pure-decoherence so-
lution to the measurement problem turns out to be impossible on technical
grounds: the decoherence criterion is both too strong, and too weak, to pick out
an appropriate set of classical histories from the unitary quantum dynamics.

That decoherence is too strong a condition should be clear from the language
of section 3. Everything there was approximate, effective, for-all-practical-
purposes: decoherence occurs on short timescales (not instantaneously); it causes
interference effects to become negligible (not zero); it approximately diagonalises
the density operator (not exactly); it approximately selects a preferred basis (not
precisely). And while approximate results are fine for calculational shortcuts or
for emergent phenomena, they are most unwelcome when we are trying to de-
fine new fundamental laws of physics. (Put another way, a theory cannot be
99.99804% conceptually coherent.)

That it is too weak is more subtle, but ultimately even more problematic.
There are simply far too many bases picked out by decoherence — in the lan-
guage of section 3 there are far too many system-environment splits which give
rise to an approximately decoherent basis for the system; in the language of
decoherent histories, there are far too many choices of history that lead to
consistent classical probabilities. Worse, there are good reasons (cf Dowker and

8As it happens, this is not a straw man: David Chalmers has proposed something rather
similar. See Chalmers (1996) for an exposition, and Dennett (2001) for some sharp criticism.
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Kent (1996))to think that many, many of these histories are wildly non-classical.
What can be done? Well, if we turn away from the abstract presentation

of decoherence theory, and look at the concrete models (mathematical models
and computer simulations) to which decoherence has been applied, and if, in
those models, we make the sort of system/environment split that fits our natural
notion of environment (so that we take the environment, as suggested previously,
to be — say — the microwave background radiation, or the residual degrees of
freedom of a fluid once its bulk degrees of freedom have been factored out), then
we find two things.

Firstly: The basis picked out by decoherence is approximately a coherent-
state basis: that is, it is a basis of wave-packets approximately localised in both
position and momentum. And secondly: The dynamics is quasi-classical not
just in the rather abstract, bloodless sense used in section 3, but in the sense
that the behaviour of those wave-packets approximates the behaviour predicted
by classical mechanics.

In more detail: let |q, p〉 denote a state of the system localised around
phase-space point (q, p). Then decoherence ensures that the state of the sys-
tem+environment at any time t can be written as

|Ψ〉 =
∫

dq dpαq, p; t |q, p〉⊗|ε(q, p)〉 (5)

with 〈ε(q, p)|ε(q′, p′)〉 = 0 unless q ' q′ and p ' p′. The conventional (i. e. ,
textbook) interpretation of quantum mechanics tells us that |α(q, p)|2 is the
probability density for finding the system in the vicinity of phase-space point
(q, p).9 Then in the presence of decoherence, |α|2(q, p) evolves, to a good ap-
proximation, like a classical probability density on phase space: it evolves,
approximately, under the Poisson equations

d
dt

(
|α(q, p)|2

)
' ∂H

∂q

∂|α(q, p)|2

∂p
− ∂H

∂p

∂|α(q, p)|2

∂q
(6)

where H(q, p) is the Hamiltonian.
On the assumption that the system is classically non-chaotic (chaotic systems

add a few subtleties), this is equivalent to the claim that each individual wave-
packet follows a classical trajectory on phase space. Structurally speaking, the
dynamical behaviour of each wave-packet is the same as the behaviour of a
macroscopic classical system. And if there are multiple wave-packets, the system
is dynamically isomorphic to a collection of independent classical systems.

(Caveat : this does not mean that the wave-packets are actually evolving
on phase space. If phase space is understood as the position-momentum space
of a collection of classical point particles, then of course the wave-packets are

9At a technical level, this requires the use of phase-space POVMs (i. e. , positive opera-
tor valued measures, a generalisation of the standard projection-valued measures; see, e. g. ,
Nielsen and Chuang (2000) for details): for instance, the continuous family {N |q, p〉 〈q, p|} is
an appropriate POVM for suitably-chosen normalisation constant N . Of course, this or any
phase-space POVM can only be defined for measurements of accuracy ≤ h̄.

11



not evolving on phase space. They are evolving on a space isomorphic to phase
space. Henceforth when I speak of phase space, I mean this space, not the “real”
phase space.)

So: if we pick a particular choice of system-environment split, we find a
“strong” form of quasi-classical behaviour: we find that the system is isomorphic
to a collection of dynamically independent simulacra of a classical system. We
did not find this isomorphism by some formal algorithm; we found it by making
a fairly unprincipled choice of system-environment split and then noticing that
that split led to interesting behaviour. The interesting behaviour is no less real
for all that.

We can now see that all three of the objections at the start of this section
point at the same — fairly obvious — fact: decoherence is an emergent process
occurring within an already-stated microphysics: unitary quantum mechanics.
It is not a mechanism to define a part of that microphysics. If we think of
quasiclassical histories as emergent in this way, then

• The “conceptual mystery” dissolves: we are not using decoherence to
define a dynamical collapse law, we are just using it as a (somewhat
pragmatic) criterion for when quantum systems display quasiclassical be-
haviour.

• There is nothing problematic about the approximateness of the decoher-
ence process: as we saw in section 2, this is absolutely standard features
of emergence.

• Similarly, the fact that we had no algorithmic process to tell us in a
bottom-up way what system-environment splits would lead to the discov-
ery of interesting structure is just a special case of section 2’s observation
that emergence is in general a somewhat top-down process.

Each decoherent history is an emergent structure within the underlying quantum
state, on a par with tigers, tables, and the other emergent objects of section 2
— that is, on a par with practically all of the objects of science, and no less real
for it.

But the price we pay for this account is that, if the fundamental dynam-
ics are unitary, at the fundamental level there is no collapse of the quantum
state. There is just a dynamical process — decoherence — whereby certain
components of that state become dynamically autonomous of one another. Put
another way: if each decoherent history is an emergent structure within the un-
derlying microphysics, and if the underlying microphysics doesn’t do anything
to prioritise one history over another (which it doesn’t) then all the histories
exist. That is: a unitary quantum theory with emergent, decoherence-defined
quasi-classical histories is a many-worlds theory.

5 Simulation or reality?

At this point, a skeptic might object:
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All you have shown is that certain features of the unitarily-evolving
quantum state are isomorphic to a classical world. If that’s true,
the most it shows that the quantum state is running a simulation of
the classical world. But I didn’t want to recover a simulation of the
world. I wanted to recover the world.

I rather hope that this objection is a straw man: as I attempted to illus-
trate in section 2, this kind of structural story about higher-level ontology (the
classical world is a structure instantiated in the quantum state) is totally ubiq-
uitous in science. But it seems to be a common enough thought (at least in
philosophical circles) to be worth engaging with in more detail.

Note firstly that the very assumption that a certain entity which is struc-
turally like our world is not our world is manifestly question-begging. How do
we know that space is three-dimensional? We look around us. How do we know
that we are seeing something fundamental rather than emergent? We don’t;
all of our observations (pace Maudlin, this volume) are structural observations,
and only the sort of aprioristic knowledge now fundamentally discredited in
philosophy could tell us more.

Furthermore, physics itself has always been totally relaxed about this sort
of possibility. A few examples will suffice:

• Solid matter — described so well, and in such accord with our obser-
vations, in the language of continua — long ago turned out to be only
emergently continuous, only emergently solid.

• Just as solid state physics deals with emergent quasi-particles, so — ac-
cording to modern “particle physics” — elementary particles themselves
turn out to be emergent from an underlying quantum field. Indeed, the
“correct” — that is, most explanatorily and predictively useful — way of
dividing up the world into particles of different types turns out to depend
on the energy scales at which we are working.10

• The idea that particles should be emergent from some field theory is
scarcely new: in the 19th century there was much exploration of the idea
that particles were topological structures within some classical continuum
(cf Epple (1998)), and later, Wheeler (1962) proposed that matter was
actually just a structural property of a very complex underlying space-
time. Neither proposal eventually worked out, but for technical reasons:
the proposals themselves were seen as perfectly reasonable.

• The various proposals to quantize gravity have always been perfectly
happy with the idea that space itself would turn out to be emergent.

10The best known example of this phenomenon occurs in quantum chromodynamics: treat-
ing the quark field in terms of approximately-free quarks works well at very high energies, but
at lower energies the appropriate particle states are hadrons and mesons; see, e. g. , Cheng
and Li (1984) and references therein for details. For a more mathematically tractable example
(in which even the correct choice of whether particles are fermionic or bosonic is energy-level-
dependent), see chapter 5 of Coleman (1985), esp. pp. 246–253.
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From Borel dust to non-commutative geometry to spin foam, program af-
ter program has been happy to explore the possibility that spacetime is
only emergently a four-dimensional continuum.11

• String theory, currently the leading contender for a quantum theory of
gravity, regards spacetime as fundamentally high-dimensional and only
emergently four-dimensional, and the recent development of the theory
makes the nature of that emergence more and more indirect (it has been
suggested, for instance, that the “extra” dimensions may be several cen-
timetres across12). The criterion for emergence, here as elsewhere, are
dynamical: if the functional integrals that define the cross-sections have
the approximate functional form of functional integrals of fields on four-
dimensional space, that is regarded as sufficient to establish emergence.

Leaving aside these sorts of naturalistic13 considerations, we might ask: what
distinguishes a simulation of a thing from the thing itself? It seems to me that
there are two relevant distinctions:

Dependency: Tigers don’t interact with simulations of tigers; they interact with the
computers that run those simulations. The simulations are instantiated
in “real” things, and depend on them to remain in existence.

Parochialism: Real things have to be made of a certain sort of stuff, and/or come about
in a certain sort of way. Remarkably tiger-like organisms in distant galax-
ies are not tigers; synthetic sparkling wine, however much it tastes like
champagne, is not champagne unless its origins and makeup fit certain
criteria.

Now, these considerations are themselves problematic. (Is a simulation of a
person themselves a person? — see (Hofstadter 1981) for more thoughts on
these matters). But, as I hope is obvious, both considerations are question-
begging in the context of the Everett interpretation: only if we begin with the
assumption that our world is instantiated in a certain way can we argue that
Everettian branches are instantiated in a relevantly different way.

6 How many worlds?

We are now in a position to answer one of the most commonly asked ques-
tions about the Everett interpretation,14 namely: how much branching actually
happens? As we have seen, branching is caused by any process which magnifies
microscopic superpositions up to the level where decoherence kicks in, and there
are basically three such processes:

11For the concept of Borel dust, see Misner, Thorne, and Wheeler (1973, p.1205); for refer-
ences on non-commutative geometry, see http://www.alainconnes.org/en/downloads.php; for
references on spin foam, see Rovelli (2004).

12For a brief introduction to this proposal, see Dine (2007, chapter 29).
13I use “naturalism” in Quine’s sense ((Quine 1969)): a naturalistic philosophy is one which

regards our best science as the only good guide to our best epistemology,
14Other than “and you believe this stuff?!”, that is.
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1. Deliberate human experiments: Schrödinger’s cat, the two-slit experiment,
Geiger counters, and the like.

2. “Natural quantum measurements”, such as occur when radiation causes
cell mutation.

3. Classically chaotic processes, which cause small variations in initial condi-
tions to grow exponentially, and so which cause quantum states which are
initially spread over small regions in phase space to spread over macro-
scopically large ones. (See Zurek and Paz (1994) for more details; I give
a conceptually oriented introduction in Wallace (2001).)

The first is a relatively recent and rare phenomenon, but the other two are ubiq-
uitous. Chaos, in particular, is everywhere, and where there is chaos, there is
branching (the weather, for instance, is chaotic, so there will be different weather
in different branches). Furthermore, there is no sense in which these phenom-
ena lead to a naturally discrete branching process. Quantum chaos gives rise to
macroscopic superpositions, and so to decoherence and to the emergence of a
branching structure, but that structure has no natural “grain”. To be sure, by
choosing a certain discretisation of (phase-)space and time, a discrete branching
structure will emerge, but a finer or coarser choice would also give branching.
And there is no “finest” choice of branching structure: as we fine-grain our
decoherent history space, we will eventually reach a point where interference
between branches ceases to be negligible, but there is no precise point where
this occurs. As such, the question “how many branches are there?” does not,
ultimately, make sense.

This may seem paradoxical — certainly, it is not the picture of “parallel
universes” one obtains from science fiction. But as we have seen in this chapter,
it is commonplace in emergence for there to be some indeterminacy (recall: when
exactly are quasi-particles of a certain kind present?) And nothing prevents us
from making statements like:

Tomorrow, the branches in which it is sunny will have combined
weight 0.7

— the combined weight of all branches having a certain macroscopic property is
very (albeit not precisely) well-defined. It is only if we ask: ”how many branches
are there in which it is sunny”, that we end up asking a question which has no
answer.

This bears repeating, as it is central to some of the arguments about prob-
ability in the Everett interpretation:

Decoherence causes the Universe to develop an emergent branching
structure. The existence of this branching is a robust (albeit emer-
gent) feature of reality; so is the mod-squared amplitude for any
macroscopically described history. But there is no non-arbitrary de-
composition of macroscopically-described histories into “finest grained”
histories, and no non-arbitrary way of counting those histories.
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(Or, put another way: asking how many worlds there are is like asking how
many experiences you had yesterday, or how many regrets a repentant criminal
has had. It makes perfect sense to say that you had many experiences or that he
had many regrets; it makes perfect sense to list the most important categories
of either; but it is a non-question to ask how many.)

If this picture of the world seems unintuitive, a metaphor may help.

1. Firstly, imagine a world consisting of a very thin, infinitely long and wide,
slab of matter, in which various complex internal processes are occurring
— up to and including the presence of intelligent life, if you like. In
particular one might imagine various forces acting in the plane of the
slab, between one part and another.

2. Now, imagine stacking many thousands of these slabs one atop the other,
but without allowing them to interact at all. If this is a “many-worlds
theory”, it is a many-worlds theory only in the sense of the philosopher
David Lewis (Lewis 1986): none of the worlds are dynamically in contact,
and no (putative) inhabitant of any world can gain empirical evidence
about any other.

3. Now introduce a weak force normal to the plane of the slabs — a force with
an effective range of 2-3 slabs, perhaps, and a force which is usually very
small compared to the intra-slab force. Then other slabs will be detectable
from within a slab but will not normally have much effect on events within
a slab. If this is a many-worlds theory, it is a science-fiction-style many-
worlds theory (or maybe a Phillip Pullman or C.S. Lewis many-worlds
theory15): there are many worlds, but each world has its own distinct
identity.

4. Finally, turn up the interaction sharply: let it have an effective range of
several thousand slabs, and let it be comparable in strength (over that
range) with characteristic short-range interaction strengths within a slab.
Now, dynamical processes will not be confined to a slab but will spread
over hundreds of adjacent slabs; indeed, evolutionary processes will not be
confined to a slab, so living creatures in this universe will exist spread over
many slabs. At this point, the boundary between slabs becomes epiphe-
nomenal. Nonetheless, this theory is stratified in an important sense:
dynamics still occurs predominantly along the horizontal axis and events
hundreds of thousands of slabs away from a given slab are dynamically
irrelevant to that slab.16 One might well, in studying such a system, di-
vide it into layers thick relative to the range of the inter-slab force — and
emergent dynamical processes in those layers would be no less real just
because the exact choice of layering is arbitrary.

15See, for instance, Pullman’s Northern Lights or Lewis’s The Magician’s Nephew.
16Obviously there would be ways of constructing the dynamics so that this was not the

case: if signals could easily propagate vertically, for instance, the stratification would be lost.
But it’s only a thought experiment, so we can construct the dynamics how we like.
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Ultimately, though, that a theory of the world is “unintuitive” is no argument
against it, provided it can be cleanly described in mathematical language. Our
intuitions about what is “reasonable” or “imaginable” were designed to aid our
ancestors on the savannahs of Africa, and the Universe is not obliged to conform
to them.

7 Conclusion

The claims of the Everett interpretation are:

• At the most fundamental level, the quantum state is all there is – quantum
mechanics is about the structure and evolution of the quantum state in
the same way that (e.g.) classical field theory is about the structure and
evolution of the fields.

• As such, the “Everett interpretation of quantum mechanics” is just quan-
tum mechanics itself, taken literally (or, as a philosopher of science might
put it, Realist-ically) as a description of the Universe. De Witt has been
widely criticized for his claim that ”the formalism of quantum mechanics
yields its own interpretation” (DeWitt 1970), but there is nothing mys-
terious or Pythagorean about it: every scientific theory yields its own
interpretation, or rather (cf David Deutsch’s contribution to this volume)
the idea that one can divorce a scientific theory from its interpretation is
confused.

• “Worlds” are mutually dynamically isolated structures instantiated within
the quantum state, which are structurally and dynamically “quasiclassi-
cal”.

• The existence of these “worlds” is established by decoherence theory.

No postulates about the worlds have needed to be added: the question of whether
decoherence theory does indeed lead to the emergence of a quasiclassical branch-
ing structure is (at least in principle) settled a priori for any particular quantum
theory once we know the initial state. It is not even a postulate that decoher-
ence is the source of all “worlds”; indeed, certain specialised experiments —
notably, some algorithms on putative quantum computers — would also give
rise to multiple quasiclassical worlds at least locally; cf. Deutsch (1997).17

17Since much hyperbole and controversy surrounds claims about Everett and quantum com-
putation, let me add two deflationary comments:

1. There is no particular reason to assume that all or even most interesting quantum
algorithms operate by any sort of “quantum parallelism” (that is: by doing different
classical calculations in a large number of terms in a superposition and then interfering
them). Indeed, Grover’s algorithm does not seem open to any such analysis. But Shor’s
algorithm, at least, does seem to operate in this way.

2. The correct claim to make about Shor’s algorithm is not (pace (Deutsch 1997)) that the
calculations could not have been done other than by massive parallelism, but simply
that the actual explanation of how they were done — that is, the workings of Shor’s
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I will end this discussion on a lighter note, aimed at a slightly different audi-
ence. I have frequently talked to physicists who accept Everett’s interpretation,
accept (at least when pressed!) that this entails a vast multiplicity of quasi-
classical realities, but reject the “many-worlds” label for the interpretation —
thhey prefer to say that there is only one world but it contains many non- or
hardly-interacting quasiclassical parts.

But, as I hope I have shown, the “many worlds” of Everett’s many-worlds
interpretation are not fundamental additions to the theory. Rather, they are
emergent entities which, according to the theory, are present in large numbers.
In this sense, the Everett interpretation is a “many-worlds theory” in just the
same sense as African zoology is a “many-hippos theory”: that is, there are enti-
ties whose existence is entailed by the theory which deserve the name “worlds”.
So, to Everettians cautious about the “many-worlds” label, I say: come on in,
the water’s lovely.
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Chapter 3

Chaos, decoherence, and

branching

Classicality simply does not follow “as ℎ̄→ 0” in most physically inter-
esting cases. . . The Planck constant is ℎ̄ = 1.05459× 10−27 erg s and —
licentia mathematica to vary it notwithstanding — it is a constant.

Wojciech Zurek and Juan Pablo Paz1

3.1 Emergent quasi-classicality in simple isolated

systems

In chapter 2, we saw how, in outline, the quasi-classical “worlds” of the Everett
interpretation emerge from the underlying quantum mechanics. They do so because

1. Certain quantum-mechanical histories of certain systems instantiate — simu-
late, if you like — a quasi-classical history.

2. Superpositions of those histories then instantiate multiple quasi-classical his-
tories — always assuming that interference between histories can be neglected.

The purpose of this chapter is to go from this rather hand-waving description of
emergence of worlds, to something much more quantitative and precise. We begin by
considering the textbook example of emergent quasi-classicality in quantum physics:
a single, isolated system whose characteristic action is large compared with ℎ̄.

1Zurek and Paz (1995b).
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Consider, therefore, a massive point particle of massm, moving in some potential
V (x). The Hamiltonian of this particle is then

Ĥ =
P̂

2

2m
+ V (X̂). (3.1)

Under what circumstances does this system behave approximately classically? That
is (in the language of chapter 2): under what circumstances does it instantiate a
classical dynamical system? There is a fairly standard answer: it does so when the
state of the system is a wave-packet, reasonably localised in position and momentum,
and when the centre of that wavepacket follows an approximately classical trajectory.
In fact, since we know from Ehrenfest’s theorem2 that the expectation values of P̂
and X̂ evolve in the same way as their classical counterparts, the former condition
— that the wave-packet remains localised — suffices to ensure the latter.

So far, so banal; but let us dwell on it a little longer. What justifies our re-
garding a localised wavepacket following an approximately classical trajectory as an
approximately classical state? Sometimes it can seem that some sort of tacit “hid-
den variable” theory is present: that the state is approximately classical because
the probabilities it predicts for particle location are highly peaked around a certain
classical trajectory. But this will not do, of course (at least, not unless we are actu-
ally trying to develop that hidden-variable theory!) Rather, the real reason that we
can regard the quantum state as approximately classical is that it is dynamically
isomorphic, very nearly, to a system of a classical point particle.

It may help to consider in more detail how that isomorphism works. We could
understand it in the position representation: the trajectory of the centre of a lo-
calised wave-packet defines a line in configuration space, and that line is (very nearly)
a solution to the classical dynamical equations for a mass-m point particle. It is
somewhat more perspicuous when viewed using one of the phase-space POVMs dis-
cussed in chapter 1: a wave-packet defines a small region (of area ∼ ℎ̄3) in phase
space via this method, and because its average phase-space position evolves clas-
sically (by Ehrenfest’s theorem) and its spread around that phase-space position
remains small, the trajectory followed by that small region is itself a solution to the
classical dynamical equations in Hamiltonian form. (I call this “more perspicuous”
because it makes transparent the fact that an instantaneous quantum state suffices
to pick out the corresponding classical trajectory; in the position representation the
needed momentum information is unhelpfully encoded in the phase structure of the
wavepacket.)

2For an account of Ehrenfest’s theorem, see Joos et al (2003, pp. 87–88) or any textbook dis-
cussion, such as Cohen-Tannoudji, Diu, and Laloë (1977, pp. 240–245), Sakurai (1994, pp. 84–87),
or Townsend (1992, pp. 153–156).
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In either case, both rules:

∣ ⟨x∣ ⟩ ∣2 ≃ 0 unless x ≃ q(t)

↔Wave-packet is centred at q(t)

↔ ∣ ⟩ instantiates classical particle with trajectory q(t) (3.2)

and
∣ ⟨ ∣ Π̂(q,p) ∣ ⟩ ≃ 0 unless (x,p0) ≃ (q,p)

↔Wave-packet is centred at (q,p)

↔ ∣ ⟩ instantiates classical particle at phase-space location (q,p)) (3.3)

ultimately pick out the same structure3 in the quantum system. Notice also that we
see again the emptiness of questions like “which is the correct phase-space POVM?
Within broad limits, any such POVM will succeed in picking out the structure we
are interested in (and, outside those broad limits, we simply are not using a POVM
which makes manifest that structure; it’s still there).

To see another important property of this emergent dynamics, let us consider a
particular (overcomplete) basis ∣q,p⟩ of wavepacket states centred at phase-space
point ∣q,p⟩, one of which is the actual wavepacket of the system. To a very good
approximation, then, if the phase-space point (q,p) evolves over time to (q(t),p(t))
then the corresponding quantum state evolves to ∣q(t),p(t)⟩ over the same period.
(Perhaps the wavepacket will spread out a little, so that it is not exactly any single
element of the basis, but (we are assuming that) it remains reasonably localised.)
This is a somewhat remarkable property of the phase-space basis: the dynamics
takes elements of the basis to other elements of the basis. Fairly clearly, this can
only occur exactly for an orthonormal basis in the trivial cases where that basis is
an eigenbasis of the Hamiltonian; in this case, though, the overcompleteness of the
basis (and, in most realistic situations, our willingness to settle for a very high but
not 100% level of precision) allows basis preservation and nontriviality to coexist.

Because of the property of basis preservation, the various classical histories in-
stantiated by different wave-packet states can coexist. To see this, suppose ∣ 1(t)⟩
and ∣ 2(t)⟩ each instantiate some classical history. The structures which make up

3Note for philosophers: I am helping myself here to something that was not actually developed
in chapter 2: namely, an identity criterion for structures. Something like “two structures are the
same when they are instantiated by precisely the same states of the instantiating theory” will
probably do, but in practice I am again happy to fall back on the fact that in practice we have
no trouble working out when two structures are really the same one differently described, and to
leave the task of making this precise to future work in general philosophy of science .
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those classical histories are, as we have seen, structures in the expectation values of
the phase-space POVMs, and so a superposition

∣Ψ(t)⟩ = � ∣ 1(t)⟩+ � ∣ 2(t)⟩ (3.4)

will instantiate both histories simultaneously provided that those structures are not
erased by interference between the terms in the superposition.

The particular expectation values in this case are

⟨Ψ(t)∣ Π̂(q,p) ∣Ψ(t)⟩ = ∣�∣2 ⟨ 1(t)∣ Π̂(q,p) ∣ 1(t)⟩+ ∣�∣
2 ⟨ 2(t)∣ Π̂(q,p) ∣ 2(t)⟩

+2Re
(
�∗� ⟨ 1(t)∣ Π̂(q,p) ∣ 2(t)⟩

)
(3.5)

The first two terms are simply the weighted sum of the two expectation values of the
original structures. The third term — the interference term — will vanish, to a very
good approximation, at all times, because if ∣ 1(t)⟩ and ∣ 2(t)⟩ are instantiating
different quasi-classical histories in the way described above, they will be localised
at different phase-space points at all times (this is basis preservation in action:
a superposition of two orthogonal terms in the basis will forever after remain a
superposition of two orthogonal terms in the basis). So we are just left with the first
two terms, and with the observation that the expectation values of the phase-space
POVMs have the structure of two independent, non-interacting classical worlds.

Notice that it is not merely the linearity of quantum mechanics which allows us
to interpret superpositions as instantiating multiple structures.4 Rather, it is the
disappearence of interference terms between the relevant terms in those superposi-
tions. Basis preservation is a sufficient condition for this to occur; as we will shortly
see, it is not a necessary condition.

So: in this simple model, we seem to have achieved emergent classicality —
and to have achieved it in a way which leads to superpositions representing multiple
quasi-classical worlds. Furthermore, nothing we did really relied on the system being
a single particle: generalising to a system with N degrees of freedom, with some
Hamiltonian like

Ĥ =
∑

i

1

2mi

P̂
2

i + V (Q̂1, . . . Q̂n) (3.6)

is straightforward. (In realistic cases the degrees of freedom will normally be grouped
into triples, of course, given the three-dimensional5 nature of the universe we live

4Notwithstanding the overly simplistic claims of Wallace (2003a).
5A worry: is it really three-dimensional, given that the theory seems to be about the quantum

state and not about entities in space at all? I address this question in chapter 8 of Wallace
(2010c); for now, it suffices to note that the theory is emergently three-dimensional, that the
emergent classical dynamics that it instantiates is on three-dimensional space.
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in). Localised wavepackets of this system will now pick out trajectories in a high-
dimensional space, and these trajectories will instantiate the dynamics of a classical
theory with N degrees of freedom. Superficially, this seems to be everything that
Everett-interpreted quantum mechanics needs.

We shall see shortly that in fact this account has a number of conceptual prob-
lems. However, there is a technical problem that is at least as severe: namely, we
are relying on the assumption that the wave-packets of isolated macroscopic systems
do, indeed, remain in fairly-well-localised states whose trajectories satisfy classical
dynamics. As we shall see, things are not actually that simple.

3.2 Dynamical properties of isolated quantum sys-

tems

In this section I want to investigate how initially-localised quantum states actually
do behave under different Hamiltonians. We can consider this under fairly general
conditions: we will assume that the system has N degrees of freedom and that its
Hamiltonian is of the form of equation 3.6: that is, the sum of a term in Q̂1, . . . Q̂N

and of a quadratic term in each P̂ i. For convenience I will just write (q, p) to encode
the 2N position and momentum coordinates in the system’s phase space.

As we saw in Box 1.1, given a set of coherent (wave-packet) states ∣q, p⟩, each
one representing a Gaussian wavepacket localised around q in position space and
p in momentum space, then the set of (improper) operators ∣q, p⟩ ⟨q, p∣ provides a
satisfactory phase-space POVM for the system. It follows that the function

H (q, p) = ∣ ⟩ ⟨q, p∣ ∣q, p⟩ ⟨ ∣ (3.7)

(known as the Husimi function) expresses the phase-space structure of the quantum
state ∣ ⟩. It can further be shown that, given the Husimi function, the state vector
can be recovered (up to phase).6

Because the Husimi function is somewhat cumbersome to track, however, it will
be useful to set out an alternative way of representing the phase-space structure of
the state: the so-called Wigner function 7

W (q, p) =
1

�N/2

∫
dy e−y

2/4�2

eipy ⟨q−y/2∣ � ∣q+y/2⟩ , (3.8)

6The Husimi function was first introduced in Husimi (1940); see Hillery et al (1984) for a review
of its properties.

7The Wigner function was first introduced in Wigner (1932) and explored further by Moyal
(1949); see citeNhilleryetal for a review of its properties.
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which is related to the Husimi function by

H(q, p) =
1

�N/2

∫
dq′ dp′ e−(q−q

′)2/�2

e−(p−p
′)2/�2

W (q′, p′). (3.9)

(That is, the Husimi function is obtained from the Wigner function by smearing it
over a small region of phase space.)

It is sometimes said that the Wigner function “is not a probability distribution
because it is not positive definite”. This is misleading at best. It is indeed the
case that the Wigner function is not guaranteed to be nonnegative, but the deeper
reason why it is not a probability distribution is that (at the risk of being repetitive),
if“phase space” means “space representing the positions and momenta of all the
particles”, then there is no phase space in quantum mechanics (except emergently),
and the Husimi function, positive definite though it may be, is no more a probability
distribution on phase space than the Wigner function. The only reason for using
these “phase space” representations of the state at all is that we are interested in the
emergent quasi-classical structures within the state, and these structures are most
perspicuously identifiable in the phase-space representation.

The Wigner function is computationally somewhat more tractable than the
Husimi function (being obtained rather more straightforwardly from the position
representation of the state): its dynamics can be expressed in closed form as

Ẇ = {H,W}MB ≡
2i

ℎ̄
sin

(
ℎ̄

2i
{⋅, ⋅}PB

)
⋅ (H,W ), (3.10)

where {⋅, ⋅}PB is the classical Poisson bracket and {⋅, ⋅}MB is known as the Moyal

bracket (Moyal 1949). Less compactly but more illuminatingly, we can expand (3.10)
as

Ẇ = {H,W}PB +
ℎ̄2

24

∂3V

∂q3
∂3W

∂p3
+O(ℎ̄4). (3.11)

showing that the quantum dynamics is the classical dynamics plus correction terms
in successively higher powers of ℎ̄2. This seems very reassuring: as ℎ̄ → 0, we
revert to classical dynamics. But as Zurek and Paz reminded us in the quotation
at the start of this chapter, this formal mathematical limit is not directly physically
relevant: what matters for emergent classicality is the behaviour of macroscopic
systems for fixed ℎ̄.

The simplest such system is a free particle in one dimension. For this system, the
higher-order terms in the Moyal bracket vanish, and classical dynamics holds exactly.
The spread of a wavepacket in this situation is then a purely classical phenomenon:
if the wavepacket has position spread Δq (and thus momentum spread at least
∼ ℎ̄/Δq), over a time t the part of the packet with momentum p+ ℎ̄/Δq will travel
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a distance ℎ̄t/mΔq further than the part with momentum p, and so the position
spread will increase to Δq + ℎ̄t/mΔq. Over a time t, then, the minimum size that
a packet will obtain is

Δq(t) ∼

√
ℎ̄t

m
. (3.12)

Not only does this decrease to zero as ℎ̄ → 0, it does so satisfactorily fast. An
invisibly small dust mote, for instance (ten microns across, say, with a mass of
∼ 10−12kg) , if evolving freely, could be prepared in a wavepacket state that remained
of width ≤ 1cm for the age of the Universe; a bowling ball with a mass of ∼ 1kg,
could be similarly prepared in a state that remained of width ≤ 10−8m.

No real systems are entirely free, of course; but some real systems (sometimes
called regular) share with free systems the property that phase-space distributions
spread out at a rate linear in time. For these systems, (3.12) will remain a fairly
good approximation for the minimum achievable spread of a classical distribution of
area ∼ ℎ̄. (I continue to work in one dimension for convenience; the generalisation
is straightforward). Furthermore, the classical spread will be a good approximation
to the quantum spread as long as the higher terms in the Moyal bracket are small.
The first such term, evaluated for a wavepacket of initial size Δq, will be of order

ℎ̄2V
′′′

(q)×

(
1

Δp

)3

∼ ℎ̄1/2V
′′′

(q)(Δq)3. (3.13)

Again, this goes to zero as ℎ̄ → 0; again, it does it sufficiently quickly that, for
systems of micron size or above, quantum corrections are utterly negligible.

So: regular, isolated systems do indeed instantiate quasi-classical dynamics if
they are above a certain size. Unfortunately, most Hamiltonians do not give rise to
regular dynamics. Much more commonly, a system is chaotic: phase-space regions
in such systems spread out exponentially, not linearly. (Or, more accurately: they
spread out exponentially in some directions and contract exponentially in others,
so as to conserve phase-space volume.) In such a system, the spread of a classical
packet of initial width Δq (and so of a quantum wavepacket of width Δq, as long
as classical dynamics remains approximately valid for it) will be of the form8

Δq(t) ≃ et/�LΔq (3.14)

where �L is the so-called Lyapunov exponent.9 Since the wavepacket cannot be dra-
matically narrower than (3.12) on pain of being so delocalised in momentum space

8The results in this section are based on results in Berry and Balzas (1979), Zurek and Paz
(1995a) and Zurek and Paz (1994).

9In the classical theory of chaos, a system is chaotic if (roughly) infinitesimally close points in
phase space diverge exponentially in some directions; the Lyapunov exponent is the timescale of
this exponential divergence. See (e. g. ) Cvitanović et al (2009) for a formal definition.
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that it rapidly spreads out anyway, a crude estimate for the minimum achievable
wavepacket spread after time t is

Δq(t) ∼ et/�L

√
ℎ̄t

m
; (3.15)

equivalently, we have

lnΔq(t) ∼
t

�L
+ ln

(
ℎ̄t

m

)
=

t

�L
+ ln

(
ℎ̄�L
m

)
+ ln

(
t

�L

)
(3.16)

or

lnΔq(t) ∼
t

�L
+ ln

(
ℎ̄t

m

)
(3.17)

in the regime where t≫ �L. If the packet becomes so spread that it samples regions
of appreciably different potentials, it certainly will no longer instantiate a classical
trajectory, so a criterion for emergent classicality (at least of the form we have so
far discussed) is that Δq(t) remains below the lengthscale on which this happens.
Writing this lengthscale as L, we find that classicality fails once

t ≥ �L ln
(
Lm

ℎ̄�L

)
. (3.18)

The good news is: t does go to infinity as ℎ̄ → 0. The bad news is: thanks to
the logarithm in (3.18), it does so alarmingly slowly. Suppose that our dust mote
(mass ∼ 10−12 kg) is experiencing chaotic dynamics with a Lyapunov timescale of
∼ 10 seconds in a region where the potential varies on a scale of ∼ 10cm. (These
numbers are off the top of my head; the logarithm means that (3.18) is enormously
insensitive to the details.) Then classicality fails when

t ≥ 10 s× ln 1022. (3.19)

The logarithm of 1022 is about 50, so the system will cease to behave classically
after about 500 seconds. This is uncomfortably short compared with, say, the age of
the Universe. Nor does the problem go away for still larger systems. To borrow an
example from Zurek and Paz (1995a), Saturn’s moon Hyperion tumbles chaotically
in its orbit on a Lyapunov timescale of about 20 days. Hyperion weighs ∼ 1020 kg
and is ∼ 105 m in size, so (if treating it as an isolated system were appropriate) its
wavefunction would become highly nonclassical once

t ≥ 20 days× ln 1064 ∼ 10 yrs. (3.20)
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Since we are discussing a supposed many-worlds theory, one tempting idea is to
say: this spreading out of the quantum state is exactly the branching of worlds that
we were expecting to find. Whether or not this is conceptually appropriate, though
(more on this later), it fails on technical grounds in this case, for presumably a
necessary condition for the idea is that the phase-space distribution defined by the
quantum state — localised or no — continues to follow, approximately, the classical
dynamics. If not, the various parts of the wavefunction cannot suffice to instantiate
dynamically independent worlds. And it turns out that classical dynamics, too,
fail for chaotic systems. For consider the correction term (3.13), the leading-order
correction to the classical dynamics. This term grows as 1/(Δp)3. But — thanks
to the conservation of phase-space volume — generically we would expect Δp to
shrink exponentially as Δq grows. (Chaos generally “fibrillates” systems, turning
compact regions into long, thin ones.) In this case, the correction term will also
grow exponentially, and so on a timescale which increases logarithmically with 1/ℎ̄,
but will in general still be uncomfortably short, we would expect classical dynamics
to fail for the system’s Wigner function.

To conclude: chaotic, isolated, unitarily evolving quantum systems cannot ap-
proximate classical ones on acceptably long timescales.

3.3 The need for decoherence

Leaving aside for the moment the technical problems with chaotic isolated systems,
there remain severe conceptual problems with the naive recovery of quasi-classicality
which was sketched in section 3.1. For a start, notice that we found the emergent
structure in the quantum state not by any principled means, but by our pre-existing
intuitions that those variables which we call “position” and “momentum” would
indeed turn out to function like classical position and momentum. We might worry
that, in fact, this supposed “structure” is an artefact of our choosing those variables,
and that we might have found similar results in any number of alternative ways.

I think that this is more of a “niggling doubt” than it is a real worry. As chapter
2 stressed, emergent properties cannot be deductively found by applying any sort
of algorithm to the instantiating theory (the fact that biology is instantiated by
molecular physics is something we realised after the fact, not something we deduced
from physics). If quasi-classical dynamics are present, then this is a real, objective
fact about the system. Nonetheless, it would be more satisfactory if we were able
to gain a better understanding of why the structures we seek are instantiated in the
phase-space basis.

A much more serious reason to be unsatisfied is that we have assumed, with-
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out any justification, that the system we are studying — consisting, recall, of the
macroscopic degrees of freedom of some isolated system — can indeed be considered
as isolated. For a system such as a rigid body, we know (from the translational in-
variance of the global Hamiltonian) that the centre-of-mass degrees of freedom are
dynamically independent of the internal degrees of freedom, but we have no reason
to assume that those centre-of-mass degrees of freedom are dynamically isolated
from other systems. And in more general cases we cannot even neglect the internal
degrees of freedom — in a fluid, for instance, the macroscopic coordinates would
normally be taken to be spatial averages of fluid density and momentum over small
regions, but there is no reason at all to suppose that those coordinates are dynami-
cally independent of the remaining coordinates (no reason except, perhaps, classical
intuition — but to invoke that would be to beg the question.) Indeed, even in the
case of the “rigid body” we do not escape such worries — the very claim that the
body is “rigid” cannot be taken as primitive, but must be regarded as something
which ought to be derivable from the underlying physics of its constituents.

A further concern is that, if quantum systems always behave approximately
classically, we would not have needed quantum mechanics! Obviously our theory
must accommodate situations — such as quantum measurements — where classi-
cal mechanics breaks down even at the macroscopic scale. In these situations, we
have as yet no solid reason to expect the “branching” behaviour which the Everett
interpretation claims is the correct description of measurement.

To summarise, the main problems with directly reading off quasi-classical struc-
ture from the dynamics of isolated macroscopic systems are:

1. It is inaccurate, or at least question-begging, to treat the macroscopic degrees
of freedom of a system as dynamically isolated from its residual degrees of
freedom.

2. In chaotic systems, it is simply false that the system has any states which
behave quasi-classically over acceptably long timescales.

3. In situations like quantum measurements where the dynamics are not even ap-
proximately classical, we have no reason to assume that a macroscopic quan-
tum system remains treatable as a collection of non-interacting quasi-classical
systems.

As we will see in the remainder of this chapter, all of these problems are satisfac-
torily solved once decoherence — the interaction of a system’s macroscopic degrees
of freedom with its internal and external environments — is properly allowed for.10

10There is a terminological issue here. Some authors (such as Wojciech Zurek, Erich Joos, and
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Furthermore, this section’s “niggling doubt” is also at least partially assuaged: de-
coherence provides at least a substantial part of the answer to the question of why it
is the quasi-classical degrees of freedom which instantiate the interesting structures
in macroscopic quantum systems.

3.4 Environment-induced decoherence: a simple

model

“Decoherence” is the process by which the environment of a system continually
interacts with, and becomes entangled with, that system. Its most well-known
property is the suppression of coherence in coherent superpositions of states in that
basis — hence the name — but, as we will see, its real significance is much greater.
However, suppression of coherence is a convenient way to begin our investigations.11

Let us begin by considering a simple model: suppose that we have two one-
particle systems, the first much heavier than the other and that the first system is
prepared in a superposition of two localised wavepackets separated from one another
by some distance large compared to the packet width. That is: let the first system
be in state

∣ ⟩ = � ∣ q1⟩+ � ∣ q2⟩ (3.21)

where ∣ qi⟩ is localised around qi, and suppose for simplicity that ∣ ⟩ is stationary
on relevant timescales. And suppose that the Hamiltonian of the system contains
some interaction term

Ĥ int = V (X̂ − x̂) (3.22)

where X̂ and x̂ are the position operator of the first and second particles respectively.

H. Dieter Zeh) use “decoherence” to mean specifically an environment-induced process. Others
(such as Jonathan Halliwell, James Hartle and Murray Gell-Mann) use ‘decoherence’ to mean
any process by which interference between quasi-classical histories is suppressed: to them, then,
the evolution of the isolated regular system in section 3.1 is also decoherent. Halliwell (2010), in
fact, calls this sort of decoherence “conservation-induced decoherence”, and distinguishes it from
“environment-induced decoherence”. In this thesis, I largely follow the former authors’ terminology,
writing just ‘decoherence’ where Halliwell would write “environment-induced decoherence”; I do,
however, follow standard terminology in referring to a history space (as discussed in section 3.8
and subsequently) as decoherent in the event that its decoherence functional vanishes.

11Here and subsequently I draw extensively on the discussions of decoherence by Zurek (1991,
1998, 2003), Joos et al (2003) and Schlosshauer (2007), and while my models and analyses are in
many cases not explicitly lifted from any single source, I claim no particular originality for any of
them.
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If one of � or � is zero, then to a very good approximation this problem reduces
to a standard piece of scattering theory: the second particle is scattering off a
scattering centre at x = qi, and (again, to a very good approximation) the first
particle does not change at all. (See box 3.4 for a proof of this.)

So the dynamics is
∣ qi⟩⊗∣�0⟩ −→ ∣ qi⟩⊗

∣∣∣�+
i

〉
(3.31)

where
∣∣∣�+

i

〉
is some post-scattering state: for instance, if ∣ 0⟩ was a plane wave

or nearly so, then
∣∣∣�+

i

〉
will be a superposition of a plane wave with an outgoing

spherical wave centred on qi. By the linearity of the Schrödinger equation, then, the
general evolution has the form

∣ ⟩⊗∣�0⟩ −→ � ∣ q1⟩⊗
∣∣∣�+

1

〉
+ � ∣ q2⟩⊗

∣∣∣�+
2

〉
. (3.32)

That is: in the case where the first particle is in a superposition, but not in the
case where it is not, the scattering interaction causes the two particles to become
entangled. We might even say (though nothing hangs on this way of talking) that
the second particle has measured the position of the first.

The level of entanglement can be quantified by considering the density operator
for the first particle in the ∣ qi⟩ basis. If we idealise it as having exactly two possible
position states, ∣ q1⟩ and ∣ q1⟩, then tracing over equation 3.32 tells us that the first
particle’s density operator evolves like

�0 = ∣�∣
2 ∣ q1⟩ ⟨ q1 ∣+ ∣�∣

2 ∣ q2⟩ ⟨ q2 ∣+ �∗� ∣ q2⟩ ⟨ q1 ∣+ �∗� ∣ q1⟩ ⟨ q2 ∣

=⇒ �+ = ∣�∣2 ∣ q1⟩ ⟨ q1 ∣+∣�∣
2 ∣ q2⟩ ⟨ q2 ∣+�

∗�
〈
�+
1 ∣�

+
2

〉
∣ q2⟩ ⟨ q1 ∣+�

∗�
〈
�+
2 ∣�

+
1

〉
∣ q1⟩ ⟨ q2 ∣

(3.33)
or, in matrix form,

�0 =

(
∣�∣2 ��∗

�∗� ∣�∣2

)
−→ �+ =

⎛
⎝ ∣�∣2 ��∗

〈
�+
2 ∣�

+
1

〉

�∗�
〈
�+
1 ∣�

+
2

〉
∣�∣2

⎞
⎠ . (3.34)

The off-diagonal terms provide a measure of the coherence between the two possible
positions of the first particle: when they have magnitude equal to ∣�∗�∣, the first
particle is in a pure state and so not at all entangled with the second particle; if they
are equal to zero, then the entanglement is maximal (and, if we apply the quantum
measurement algorithm, the first particle’s state cannot be empirically distinguished
from a probabilistic mixture of the two positions.)

Hence, if the scattering is very weak, or if the wavelength of the incoming particle
is large compared with q2 − q1, then

〈
�+
2 ∣�

+
1

〉
≃ 1, and the systems become only
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Box 3.1: Scattering of light particles off heavy ones

If two interacting particles have position operators X̂1 and X̂2 and Hamiltonian

Ĥ =
1

2m1

P̂
2

1 +
1

2m2

P̂
2

2 + V (X̂2 − X̂1), (3.23)

we define the centre-of-mass coordinates by

R̂ =
m1

M
X̂1 +

m2

M
X̂2; r̂ = X̂2 − X̂1 (3.24)

where M = m1 +m2 is the total mass of the system, and the conjugate momenta
by

P̂ = P̂ 1 + P̂ 2; p̂ = �

(
P̂ 2

m2

−
P̂ 1

m1

)
(3.25)

where � = m1m2/(m1 + m2) is the reduced mass. It is then easy to verify that
[r, P ] = [R, p] = 0 and [r, p] = [R,P ] = iℎ̄, and that the Hamiltonian can be
rewritten as

Ĥ =
1

2M
P̂

2
+

1

2�
p̂2 + V (r̂); (3.26)

in other words, the system is mathematically equivalent to the tensor product of a
free particle with mass M and a particle with mass � interacting with a scattering
centre at the origin.
We now shift to the position basis. If Ψ(x1, x2; t) is the system’s wavefunction, we
will suppose that at time 0 it is factorised:

Ψ(x1, x2; 0) =  (x1)�(x2); (3.27)

in the centre-of-mass coordinates, then, this is

Ψ(R, r; 0) =  (R−m2r/M)�(R +m1r/M). (3.28)

We now assume that M ≫ m. Then to a very good approximation, m2/M = 0,
m1/M and we have

Ψ(R, r; 0) ≃  (R)�(R + r). (3.29)

If we further assume that  is tightly localised around R = q then we can approxi-
mate this as

Ψ(R, r; 0) ≃  (R)�(q + r) : (3.30)

that is, the wavefunction factorises. Since there is no interaction between q and R,
this remains the case over time: � evolves as if scattering from a centre at r = −q,
and  remains stationary (and, inter alia, justifies our continuing to assume it to be
tightly peaked around R = q). Reversing the coordinate transformation at the end
of the interaction process gives us our result.
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slightly entangled. At the other extreme, if ∣ ⟩ is highly localised, incident on q1,

and strongly scattered, then
〈
�+
2 ∣�

+
1

〉
≃ 0, and entanglement is almost maximal.

So: prepare a heavy particle in a macroscopic superposition and expose it to
a scattering environment, and that environment will become entangled with the
particle, causing the coherence between the terms in the superposition to decay. If
the environment consists of short-wavelength particles which interact strongly with
the system, the coherence will be completely lost after a single scattering event.
Even if the environment is not so constituted, sufficiently many scattering events
will still suffice to remove the coherence: it can be shown (Joos et al 2003, pp. 64–67)
that the rate is approximately

⟨q1∣ �(t) ∣q2⟩ = ⟨q1∣ �(0) ∣q2⟩ exp [−Λt(q1 − q2)] (3.35)

where
Λ ∼ k2F�, (3.36)

where k is the wavenumber, F the incoming particle flux, and � is the interaction
cross-section.

In fact, it is by now well known that in realistic situations, coherence is lost very,
very quickly. For a one-micron dust particle, the value of Λ due to the atmosphere
is 1036; the value due to sunlight is 1021; even the value due to the cosmic back-
ground radiation is 106. The rates for larger objects are correspondingly more rapid:
Schroödinger’s cat, for instance, would endure in a coherent macroscopic superpo-
sition for only ∼ 10−35 seconds before the microwave background radiation — let
alone the atmosphere — sufficed to destroy the coherence. (Of course, absent some
non-unitary dynamical process of a kind for which we have no evidence, the cat-
plus-environment system remains in a superposition of live-cat and dead-cat states.
Decoherence, alone, does not solve the measurement problem.)

Furthermore, although these examples all involve an external environment, there
is no need to make this restriction. There is, in fact, every reason to think that the
microscopic degrees of freedom of even an isolated system suffice to destroy coherence
between macroscopic superpositions of that systems macroscopic degrees of free-
dom.12The upshot, in either case, is that for systems above quite small lengthscales,
coherent superpositions of states with macroscopically distinct positions rapidly be-
come entangled with their environment. Conversely, though, if a macroscopic system

12For a concrete model, consider a solid-state system — a crystal, say — which is approximately
but not exactly harmonic. The macroscopic degrees of freedom of the system correspond to the
long-wavelength phonons; these will be decohered by scattering off the short-wavelength phonons
in qualitatively the same way that massive particles are decohered by scattering off light particles.
(Systems like this will also, in general, behave quasi-classically even absent the anharmonic terms,
for the reasons explained in sections 3.1–3.2: they are regular. See Halliwell (1998, 2010) for a
detailed analysis.)
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is prepared in a state highly localised in spatial position, very little entanglement
will occur.

3.5 Environment-induced decoherence: further de-

tails

So far we have been ignoring the dynamics of the system itself. Qualitatively,
though, it is easy to see — at least, for regular systems — how this dynamics will
proceed. Systems prepared in superpositions of macroscopically different positions
will decohere on timescales much more swift than their characteristic dynamical
timescales. Systems prepared in superpositions of macroscopically different mo-

mentums will quickly evolve into states with macroscopically different positions,
and these too will swiftly decohere. But if the system is prepared in a state which
is approximately localised in both position and momentum, then this state will un-
dergo very little decoherence, and will simply be able to evolve under the system’s
own Hamiltonian. Since we already know that that evolution takes localised states
to localised states — again, for regular systems — then this evolution will continue
to be unaffected by decoherence.

Purely phenomenologically it is fairly straightforward to write down dynamical
equations for the density operator of a decohering system: the exponential decay in
equation (3.35), in particular, is generated by the equation13

�̇ = −Λ[X, [X, �]], (3.37)

which suggests the equation

�̇ = −i[H, �]− Λ[X, [X, �]]. (3.38)

A microphysical derivation of such an equation would require a specific model for
the environment, and a number of such models have been analysed. One of the
most well-studied is the Caldeira-Leggett model14 in which a particle interacts lin-
early with an environment of harmonic oscillators; under appropriate simplifying
conditions15, this model yields an equation of the form

�̇ = −i[Ĥ +
1

2
mΩ2X̂

2
, �]− �kBTΛ[X̂, [X̂, �]]− i

�

2m
[X̂, {P̂ , �}] (3.39)

13For further discussion of this expression see Joos et al (2003, pp. 64-75) and references therein.
14The Caldeira-Leggett model was first analysed in Caldeira and Leggett (1983); see Schlosshauer

(2007, pp. 71–74) for a discussion.
15The “appropriate simplifying conditions” are a nice example of the way theoretical physics

works in practice. One of the assumptions is that the system’s internal dynamics are harmonic —
that is, that the internal potential is quadratic — and this is clearly much too strong to rigorously
justify applying the Caldeira-Leggett equation to, e. g. , chaotic systems. On the other hand, any
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Equations derived from different environments have the same general form, consist-
ing of:

1. The system’s unitary dynamics (which, generically, will turn superpositions in
momentum into superpositions in position via wave-packet spreading)

2. A decoherence term which suppresses superpositions in the position basis

3. A dissipation term (the last term in the Caldeira-Leggett equation) corre-
sponding to classical friction

4. A renormalisation term (the term proportional to Ω2 in the Caldeira-Leggett
equation).

In situations of the sort discussed earlier — a macroscopic system interacting rel-
atively weakly with a microscopic environment — the dissipation and renormalisa-
tion terms are negligible compared with the other two terms, and the decoherence
term suppresses macroscopic superpositions very quickly relative to the dynamical
timescale of the unitary term.

In the Wigner-function representation, and ignoring renormalisation and dissi-
pation, the Caldeira-Leggett equation (and, as noted, most realistic equations for
decoherent systems) takes the form [p. 304](Zurek and Paz 1995a)

Ẇ = {H,W}MB + Λ
∂2W

∂p2
. (3.40)

It can readily be seen that the decoherence term is a diffusion term, which will
cause W to spread out as long as it is sufficiently localised in momentum. For
regular systems, this term will normally be negligible for quasi-classical states: the
spread of such states in momentum space is such that the diffusion term is almost
irrelevant.

Things are interestingly different for chaotic systems. Recall that for such sys-
tems, the fact that the system begins in a phase-space-localised state is insufficient
to ensure that it remains in such a state. Instead, a state initially localised will

potential is approximately quadratic as long as we remain confined to a sufficiently small region
of it. So, provided we are entitled to assume that the system is never in a coherent superposition
which is large compared with the lengthscales on which the potential deviates from quadradicity, we
can derive the equation on the basis of a quadratic potential. And what justifies this assumption?
Earlier, qualitative arguments, of the form described above. The self-consistency of the whole
thing can be seen when it is noted that Caldeira-Leggett dynamics do indeed suppress coherent
superpositions on the required lengthscale. Philosophers of science take note: theoretical physics
does this sort of thing all the time, and naturalistically inclined philosophers should be fine with
this.
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begin to spread out — and, as soon as it starts to spread out, the diffusion term will
come into play (i. e. , the state will start to become entangled with its environment),
so that the pure delocalised state becomes replaced by a mixed state which is an
incoherent superposition of localised states. Each of these states will spread out
under the chaotic dynamics, and so will be decohered in their turn . . . and so on.
At any given time, the density operator of the system will be a weighted sum of
localised states, and because of the constant decoherence, each such state will evolve
independently of all the others, even though it is constantly splitting into multiple
states. So in the case of chaos, “worlds” — that is, emergent quasi-classical systems
— are constantly splitting from one another.

Notice that the irreversibility induced by decoherence is of a very different char-
acter from that which would be induced by the dissipative term: there is no energy
loss, no deviation from isolated classical dynamics on long lengthscales, and the
process can occur — and occur extremely quickly — in cases where dissipation
is negligible. (Consider Jupiter, for instance: the interstellar medium decoheres
Jupiter essentially instantly, but friction between the medium and Jupiter is dy-
namically utterly irrelevant.) Nonetheless, decoherence is an irreversible process,
and so the usual questions arise as to how this is compatible with an underlying
reversible dynamics. I address this question in chapter 9 of Wallace (2010c); see
Schlosshauer (2007, pp9̇3–95) for more on the contrast between decoherence and
dissipation.

3.6 Decoherent histories

Let us take stock. In section 3.3 I identified three problems with extracting quasi-
classical behaviour from macroscopic quantum systems: (i) what justifies our treat-
ing the macroscopic degrees of freedom as dynamically isolated from the remainder
of the system; (ii) why chaotic systems behave quasi-classically given that in isola-
tion they evolve into non-quasi-classical states; (iii) why even when the dynamics
of a system is not even approximately classical — such as in the case of quantum
measurement — macroscopic systems still seem to stay in quasi-classical states

We can now see that decoherence provides an answer to all three worries. Firstly,
it explains why, for the macroscopic degrees of freedom of regular systems, we are
justified in ignoring the effects of the environment: the main effect of the environ-
ment is to measure the system in the position basis, and this has no effect on the
system if it is already in a reasonably localised state.

Secondly, it explains how chaotic systems nonetheless evolve in a classical way,
at least at the coarse-grained level: decoherence constantly transforms delocalised
states into mixtures of localised states, and so prevents the system ever ending up
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in a state so delocalised that the dynamics ceases to be approximately classical.
And as for non-classical events like quantum measurement: whatever state they

put a system into, if that system’s macroscopic degrees of freedom are not fairly
localised in position then it will very rapidly become decohered: as such, it will
evolve as a collection of non-interacting systems each of which is itself fairly localised
in position.

Furthermore, decoherence at least helps to explain why it seems to be only phase-
space local states which can instantiate emergent structure. For suppose some state
like

� ∣q1, p1⟩+ � ∣q2, p2⟩ (3.41)

is supposed to instantiate a state of some emergent theory. Decoherence will wipe
away any information contained in the relative phases: the system will almost im-
mediately move into the mixed state

∣�∣2 ∣q1, p1⟩ ⟨q1, p1∣+ ∣�∣
2 ∣q2, p2⟩ ⟨q2, p2∣ (3.42)

which is simply a weighted sum of two independently evolving quasi-classical states.
So the complete dynamical story of the system is known once we know its quasi-
classical dynamics and the relative weights of the quasi-classical histories.

However, our analysis so far — which has been concentrated on the evolution
of the system’s density operator, and has invariably traced away the environment
— makes it somewhat difficult to appreciate how exactly it is that the quantum
state has the structure of a collection of quasi-classical branching worlds. We may
have established that the density operator of such systems is diagonalised in a quasi-
classical basis, but it is not immediately obvious how to read the branching structure
off from this observation.

An example may help to see the difficulty — and to see how to surmount it. The
orbit of the Earth around the Sun is chaotic: over timescales of a few million years it
is impossible (using classical physics) to predict where in its orbit the planet may be
found.16 The earth is also (obviously!) very strongly decohered by its environment.
The general considerations of section 3.5 tell us that the system’s density operator
will evolve, over the same timescales, to be a uniform mixture of states localised at
all locations in the orbit, and will thereafter remain in that state indefinitely. That
is: if ∣�⟩ is a state of the Earth localised at a particular angular coordinate �, after a
few million years the Earth (or at least, its centre-of-mass degrees of freedom) will
have state

�(t) =
∫ 2�

0
d� ∣�⟩ ⟨�∣ . (3.43)

16This example is discussed in detail in Zurek and Paz (1995a).
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This stationary state does not look much like what the Everett interpretation pre-
dicts: a set of histories of the Earth’s orbital position, each one evolving quasi-
classically. Nor does it seem to match our own observations of the Earth as in
motion.

However, this is an illusion caused by our failure to look at the overall state of
the Earth-plus-environment system. The actual structure of the this state would be
best written as

∣Ψ(t)⟩ =
∫
D�Λ[�] ∣�(t)⟩⊗∣[�]⟩ , (3.44)

where the integral is over all histories �(�) of the angular coordinate of the Earth,
and where states ∣[�]⟩, ∣[�′]⟩ of the environment are orthogonal if �(�) and �′(�)
differ significantly for any significant period of time. Each ∣[�]⟩, in other words,
encodes a different history of the Earth’s location, and this is as we should expect:
the position of the Earth at any time leaves an irreversible record in the pattern of
light, gravitational waves, and neutrinos radiating outwards from the Solar system
at that time. So despite the apparent stationarity of (3.43), actually the system
is a superposition of quasi-classical states, each of which is evolving approximately
classically but which is branching into multiple approximately-classical states on a
long timescale.

For the rest of this chapter, I wish to explore the structure of the quantum state
from this more “historical” perspective. I will begin by getting a little more precise
about what it is to say that a system’s state is “branching”.

3.7 Analysing branching structure

What would it mean to say that a quantum state “has a branching structure”?
Firstly, clearly that branching structure would have to be defined by the state to-

gether with other dynamical structures in the theory: a state, interpreted as a mere
vector in a featureless Hilbert space, has no structure at all. Relative to a basis,
on the other hand, it is comparatively clear to understand how a state could be
branching: if the state evolves from a basis vector to a superposition of such basis
vectors, and if each of those evolves into a superposition of different basis vectors so
that no two such superpositions interfere with one another — then we would have
branching (relative to that basis, at any rate).

To get rather more precise about this, suppose we have a physical system repre-
sented by some Hilbert space ℋ, evolving unitarily under some dynamics Û(t, t0).
Instead of restricting ourselves to a basis, we will consider a PVM P̂ 1, . . . P̂ n (that
is, a family of disjoint projectors whose sum is the identity but which need not be
all of dimension one). At any given time (t), and for an initial state ∣ ⟩ (at time
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t0), the weight of projector P̂j is

Wj(t) = ∥P̂j Û(t, t0) ∣ ⟩ ∥
2 ≡ ⟨ ∣ Û

†
(t, t0)P̂j Û(t, t0) ∣ ⟩ , (3.45)

and the transition weight between P̂ j at time t and P̂ j′ at time t′ is

T (j, t; j′, t′) =
∥P̂j′Û(t

′, t)P̂jÛ(t, t0) ∣ ⟩ ∥
2

∥P̂jÛ(t, t0) ∣ ⟩ ∥2

=
⟨ ∣ Û

†
(t, t0)P̂jÛ

†
(t′, t)P̂j′Û(t

′, t)P̂jÛ(t, t0) ∣ ⟩

⟨ ∣ Û
†
(t, t0)P̂jÛ(t, t0) ∣ ⟩

. (3.46)

For convenience, define T (j, t; j′, t′) = 0 whenever Wj(t) = 0 (the above definition
leaves it undefined).

When quantum mechanics is interpreted instrumentally, of course, the transi-
tion weights are supposed to be conditional probabilities and the absolute weights
are supposed to be unconditional probabilities; in quantum mechanics interpreted
realistically, though, they are just objective properties of the quantum-mechanical
Universe.

As we have noted, “branching” (relative to a given basis) is just the absence
of interference. This in turn occurs (between times t and t′) when at most one
component of the quantum state (in that basis) at time t contributes to the weight
of any given component at time t′. In terms of transition weights, this is just
to require that no two transition weights of transitions into a given projector are
nonzero — that is, to require that

T (j1, t; j
′, t′) ∕= 0, T (j2, t; j

′, t′) ∕= 0 =⇒ j1 = j2. (3.47)

(To visualise this, think of “weight” as a fluid, redistributing itself across the pro-
jectors over time. (3.47) guarantees that each projector receives weight from exactly
one previous projector. Less picturesquely, if (3.47) holds then there is a unique way
to connect projectors at later times to projectors at earlier times: each projector’s
weight may determine the weight of many future projectors but its own weight is
determined by exactly one past projector at any given past time.)

The importance of decoherence is: when it occurs, quantum-mechanical systems
(approximately) develop a particularly natural branching structure. For decoherence
is a process which constantly, and (on sub-Poincaré-recurrent timescales) irreversibly
entangles the environment with the system so as to suppress interference between
terms of the decoherence-preferred basis. (We might say that the environment
constantly measures the system and records the result). If we idealise the dynamics
as discrete, then at each branching event, the environment permanently records the
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pre-branching state, so that at each time the universal state is a superposition of
states each of which encodes a complete record of where “its weight” comes from.

Even if the dynamics is not itself discrete, a branching structure is still readily
discernible in decohering systems. In the case of phase-space decoherence, in par-
ticular, we can in full generality write the total state of the system and environment
at a given time as

∣Ψ⟩ =
∫

dp0 dq0 �(p0, q0) ∣p0, q0⟩⊗∣�(p0, q0)⟩ (3.48)

Because of decoherence, whatever initial state the system is prepared in, the to-
tal state will quickly evolve to one where ⟨�(p0, q0)∣�(p

′
0, q

′
0)⟩ ≃ 0 for sufficiently

separated q′, p′ and q, p.
After some further time Δt, the state

∣p0, q0⟩⊗∣�(p0, q0)⟩ (3.49)

will evolve to a state of form

∣ (p0, q0)⟩ =
∫
dp 1dq 1�1(p1, q1; p0, q0) ∣p1, q1⟩⊗∣�(p1, q1, p0, q0)⟩ . (3.50)

Again, decoherence ensures that ⟨�(p1, q1, p0, q0)∣�(p
′
1, q

′
1, p0, q0)⟩ ≃ 0 for sufficiently

separated q′1, p
′
1 and q1, p1. But we would also expect, in general, to find that if

⟨�(p0, q0)∣�(p
′
0, q

′
0)⟩ ≃ 0, then ⟨�(p1, q1, p0, q0)∣�(p

′
1, q

′
1, p

′
0, q

′
0)⟩ ≃ 0 irrespective of the

values of p1, q1, p
′
1, q

′
1. For the information about the system recorded in the original

decoherence process will be distributed very widely across the environment (think
of our original example of decoherence by particle scattering: the initial particles
that caused the decoherence are now a distance ∼ vΔt from the system). The total
state at after time Δt is then

∣Ψ(Δt)⟩ ≡ Û(Δt) ∣Ψ⟩

=
∫ ∫

dp0 dq0 dp1 dq1 �1(p1, q1; p0, q0)�(p0, q0) ∣p0, q0⟩⊗∣�(p1, q1, p0, q0)⟩ (3.51)

Iterating, then (and writing p, q to symbolise the N -tuples p0, . . . pN , q0, . . . qN),
after a time NΔt the system will have state

∣Ψ(NΔt)⟩ ≡ Û(NΔt) ∣Ψ⟩ =
∫
⋅ ⋅ ⋅

∫
dp dqCN(p,q) ∣pN , qN⟩⊗∣�N(p,q)⟩ , (3.52)

where ⟨�N(p,q)∣�N(p
′,q′)⟩ ≃ 0 if any of the (qi, pi) are sufficiently separated from

the (q′i, p
′
i). (For the example described by (3.35), for instance, this amounts to
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requiring that the position-space width of the cell is much larger than (Λ(ti+1 −
ti)
−1/2.)Each dynamical step can be represented by

Û(Δt) ∣pN , qN⟩⊗∣�N(p,q)⟩

=
∫

dpN+1dq N+1BN(qN+1, pN+1;q,p) ∣pN+1, qN+1⟩⊗∣�N+1(p⊕ pN+1,q⊕ qN+1)⟩ (3.53)

where q⊗q is the sequence obtained by appending q to the sequence q (and similarly
for p⊗ p).

Informally, it should be clear that a state whose dynamics take this form will
have a branching structure relative to the basis of ∣p,q⟩ states at each time-step.
To make this more rigorous, though, let us choose a partition Σi of phase space, and
define the operators

Π̂
N

i =
∫

Σi0

⋅ ⋅ ⋅
∫

Σin

dq dp 1̂⊗ ∣�N(p,q)⟩ ⟨�N(p,q)∣ . (3.54)

If the cells of the partition are chosen to be sufficiently large (in the case described
by (3.35), for instance, if they have spatial width ≫ (ΛΔt)−1/2 and an appropriate
momentum-space width) then these operators will approximately define a PVM:

Π̂
N

i Π̂
N

j ≃ �i,jΠ̂
N

i . (3.55)

Moreover, we have

Π̂
N

i Û(NΔt) ∣Ψ⟩ =
∫

Σi0

⋅ ⋅ ⋅
∫

ΣiN

dp dqCN(p,q) ∣pN , qN⟩⊗∣�N(p,q)⟩ (3.56)

and from this and (3.53) it can readily be seen that

Π̂
N+1

i′ Û(Δt)Π̂
N

i Û(NΔt) ∣Ψ⟩ ≃ 0 unless i is the initial segment of i′. (3.57)

That is: the structure of the quantum state relative to the family of PVMs {Π̂
N

i }
(for each N) is branching.

Notice that although we have imposed a discrete structure on the system so
as to make precise the claim that it branches, there is no intrinsic discreteness in
the branching process. Less rigorously, but perhaps more perspicuously, we might
rewrite (3.52) as

∣Ψ(t))⟩ =
∫
D[q(�)] Ct[q(�)] ∣p(t), q(t)⟩⊗∣�[q(�)]⟩ (3.58)

where the integral ranges over all classical trajectories defined up to time t and
where ⟨�[q(�)]∣�[q′(�)]⟩ ≃ 0 if the trajectories q(�) and q′(�) are sufficiently different
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for sufficiently long (if they differ by≫ Λ�t)−1/2 over a period of ∼ �t in the case of
(3.35), for instance). In this formalism, the state has branching structure because
∣p(t), q(t)⟩⊗∣�[q(�)]⟩ evolves over time Δt to

∫
D[q′(�)] Bt,t+Δt[q

′(�)] ∣p(t), q(t)⟩⊗∣�[q(�)⊕ q′(�)]⟩ (3.59)

where the integral ranges over classical trajectories defined between times t and
t + Δt, and where q(�) ⊕ q′(�) is the trajectory given by q(�) up till � = t and by
q′(�) thereafter.

3.8 The decoherent-histories framework

To talk more generally about the relation between branching and decoherence, and
to help the reader to connect my discussion to the literature, it will be useful to
develop a more sophisticated mathematical description of branching. We will con-
sider a discrete set of times t0, . . . tn, and will generalise our earlier description by
allowing the PVMs used to define branching to vary from time to time; we will also
(purely for mathematical convenience) switch to the Heisenberg picture. Then the
spaces on which the branching structure is defined is just a time-indexed family of

PVMs P̂
i

j (with the superscript indicating that the operator is a member of the
time-ti PVM and the subscript indexing it within that PVM), and the transition
weights are given by

T (j, ti; j
′; ti′) =

⟨ ∣ P̂
i

jP̂
i′

j′P̂
i

j ∣ ⟩

⟨ ∣ P̂
i

j ∣ ⟩
. (3.60)

The branching criterion can then be succinctly expressed as: if P̂
i′

j′P̂
i

j1
∣ ⟩ and P̂

i′

j′P̂
i

j2

are both non-zero, then j1 = j2.
It is again useful to define a history as a sequence of projectors, one from each

of the time-indexed PVMs: I call the set of such histories generated from some such
sequence of PVMs a history space. Since a sequence of projectors can also be viewed
as a function from histories to projectors, given a history � I write �̂(m) for the
projector associated with time index m; each �̂(m) is specified uniquely by giving
its index number in the time-tm PVM, and I write this index number as �m, so that

�̂(m) = P̂
m

�m
. (3.61)

I call a history realised if T (�m, tm;�m+1, tm+1) ∕= 0 for all m ≤ n. The branching
criterion then guarantees that if two realised histories coincide at some time (that is,
assign the same projector to that time) then they coincide at all earlier times, and
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we will say that any set of histories with this property has a branching structure.
Given two history spaces {P i}, {Qi}, {Qi} is a coarse-graining of {P i} if every
projector in Qi is a sum of projectors in P i.

Following Gell-Mann and Hartle (1990), we can define the history operator Ĉ�

of the history � by
Ĉ� = �̂(n) ⋅ ⋅ ⋅ �̂(0), (3.62)

and the decoherence functional, a complex function on pairs of histories, by

D(�, �) = ⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ . (3.63)

A history space is said to satisfy the decoherence condition or to be decoherent17 if
the decoherence functional between any two incompatible histories is zero. (Hence,
implicitly a history space is only decoherent relative to a choice of state vector.)

The significance of all this formalism is summarised in the following theorem
(first stated by Griffiths (1993), so far as I know).

Branching-Decoherence Theorem: If P = {P̂
i

j} is a history space
and ∣ ⟩ is a quantum state, then

(i) If ∣ ⟩ has branching structure (relative to P) and � is a history
then Ĉ� ∣ ⟩ ∕= 0 iff � is realised (with respect to ∣ ⟩.

(ii) If the set Hist of all histories� such that Ĉ� ∣ ⟩ ∕= 0 has branching
structure (that is, if no two histories in Hist agree on their nth
index but not on all previous indices), then ∣ ⟩ also has branching
structure (relative to P), and the realised histories in that branching
structure are just the histories in Hist.

(iii) If ∣ ⟩ has branching structure (relative to P), P satisfies the deco-
herence condition.

(iv) If P satisfies the decoherence condition, it is a coarse-graining of
a (decoherent) history space relative to which ∣ ⟩ has branching
structure.

The proof of the Branching-Decoherence Theorem is straightforward but tedious
and is relegated to Appendix A; however, the basic ideas behind it are easy to un-
derstand. The first two parts is just an iteration of the branching condition to apply

17Sometimes this condition is calledmedium decoherence, following Gell-Mann and Hartle (1990)
and in contrast to weak decoherence, defined in the next section.



Chapter 3 Chaos, decoherence, and branching 75

to sequences of more than two projectors, and the third part follows straightfor-
wardly from the first two. The key to understanding the fourth part is to notice
that it implies that the states

∣�⟩ = Ĉ� ∣ ⟩ (3.64)

are orthonormal. These states can be thought of as “record states”, each recording
the structure of an entire branch. The state of the system at a given time, then,
is a superposition of all these histories, and the subsequent evolution of the system
will not erase these histories; hence, the terms in the superposition cannot interfere
with one another, and so the state has a branching structure.

3.9 Decoherence, records, and consistency

From the Everettian perspective, the decoherence functional is a purely technical
tool: its significance comes from the Branching-Decoherence theorem, which tells us
that the vanishing of the decoherence function between any two distinct histories is a
necessary and sufficient condition for a history space to have a branching structure.
An alternative perspective, however — developed by Robert Griffiths (1984, 1996,
2002), Roland Omnés (1988, 1992, 1994), and (from a rather different viewpoint)
by Murray Gell-Mann and James Hartle (1990, 1993, 2007) — was historically
important and remains frequently discussed in the literature, and is the subject
of this section. For clarity, I follow Griffiths in calling this approach a consistent

histories approach, though actual terminology has been somewhat varied.
This framework starts with the idea that quantum mechanics ought somehow

to be interpreted as a stochastic theory. Doing this consistently would require
the theory to specify a space of histories and some probability measure over those
histories. Within quantum mechanics, the obvious mathematical representation of a
history is that of the previous section: a string of time-indexed projectors (note that
for the moment I do not assume that a history is part of some previously specified
history space) . And the obvious probability to assign to a history � is

Pr(�) = ∥�̂n ⋅ ⋅ ⋅ �̂1 ∣ ⟩ ∥
2 (3.65)

(that is, start with the quantum state, sequentially project it out by the projectors,
and take the mod-squared amplitude of the resulting state — in the Schrödinger
picture it would also be necessary to evolve the state unitarily between sequential
projections). Using the history operator Ĉ� and decoheence functional D(�, �)
defined in the previous section, we can write this succinctly as

Pr(�) = ⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ = D(�, �). (3.66)
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The problem, of course, is the same problem that besets all attempts to interpret
quantum mechanics probabilistically: interference. In this case, the mathematical
representation of interference is as a failure of the probability calculus. Suppose, for
instance, that � and � are histories with �̂(k) = �̂(k) for all time indexes k except
some m, and that �̂(m) and �̂(m) are orthogonal. If  is defined by

̂(k) = �̂(k) = �̂(k) (k ∕= m)

̂(m) = �̂(m) + �̂(m) (3.67)

then the probability calculus would require that Pr() = Pr(�) + Pr(�). But this,
of course, is generally not the case.

In the consistent-histories approach, this is solved by restricting the set of allowed
histories. The starting point here is the history space of section 3.8, which was
defined (recall) as the set of histories generated from a particular time-indexed
family of PVMs. To allow for histories which are sums of other histories (as in the
above case), we now permit histories which assign to a time ti a sum of projectors
(rather than just a single projector) in the time-ti PVM. A history which assigns
only one projector in the appropriate PVM to each time is called atomic. (In fact,
once we generalise history spaces in this way, the notion of atomic histories becomes
dispensible, as I explain in box 3.2, but for expository purposes it is convenient to
retain them.)

Given histories � and �, I call � a subhistory of � iff �̂(k ⊂ �̂(k)18 for all k.
And Dec(�), the decomposition of �, is then the set of all atomic histories that are
subhistories of �: in effect (if a stochastic interpretation is required) the various
elements of the decomposition of � are the various ways of filling in the details of a
system’s history which � itself leaves unspecified.

A succinct way of writing the condition required by the probability calculus is
then that for any history �,

Pr(�) =
∑

�i∈Dec(�)

Pr(�i), (3.68)

or in terms of the history formalism,

⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ =
∑

�i∈Dec(�)

⟨ ∣ Ĉ
†

�i
Ĉ�i

∣ ⟩ . (3.69)

We can say that a history space is consistent if this condition holds; it follows that
in general, consistency is relative to the quantum state.

18Recall that given projectors P , Q, then P ⊂ Q iff the range of P is a subspace of the range of
Q.
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Box 3.2: Atomless history spaces

Given a Hilbert space, a Boolean algebra of projectors on that Hilbert space is just
a set of projectors which contains the identity and is closed under taking countable
sums and complements; such an algebra is atomic if there is a countable set of
projectors such that all elements of the algebra are sums of elements of the set. I
specify a history algebra {S i} by assigning to each time index ti a Boolean algebra
S i of projectors; the histories in that algebra are sequences of such projectors, and
I call the history atomic iff all its Boolean algebras are atomic.The history operator
and the decoherence functional can be defined as before; the probability of history
� is by definition D(�, �).
Two histories �, � are overlapping if for each k, �̂(k)�̂(k) ∕= 0. Given a history � in
{S i}, a decomposition of � is a set of histories specified by giving, for each k, a set

of mutually orthogonal projectors P̂
k

i ∈ S
k whose sum is �(k); the histories in the

refinement are exactly those histories constructed from projectors in this set.
A history space continues to be specified by a time-indexed sequence of sets of
projectors; each history space determines an atomic history algebra in the obvious
way, and conversely a history space is contained within a history algebra if all its
histories are histories in the algebra. Given a history algebra, and two history spaces
contained within it, the first is a refinement of the second iff each projector in each
time-tk projector set in the second space is the sum of projectors in the time-tk
projector set in the first space. (It follows that a history algebra is atomic iff it
contains some history space with no proper refinements.)
We can then make the following definitions. Given a history algebra, then with
respect to some state ∣ ⟩:

∙ the algebra is branching if it contains some history space relative to which ∣ ⟩
has branching structure.

∙ the algebra satisfies decoherence iff D(�, �) vanishes whenever �, � are non-
overlapping, and weak decoherence if the real part of D(�, �) vanishes for
non-overlapping �, �.

∙ the algebra is consistent iff for any history �, and any decomposition of that
history, the probability of � is the sum of the probabilities of the histories in
its decomposition.

It then follows that:

1. A history algebra is decoherent iff it is branching (atomless version of the
Branching-Decoherence Theorem)

2. A history algebra is weakly decoherent iff it is consistent

The former is proved in appendix A; the latter is proved by the method used in
section 3.9.
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Now, since
Ĉ� =

∑

�i∈Dec(�)

Ĉ�i
(3.70)

we can rewrite the left hand side of (3.69) as

⟨ ∣ Ĉ
†

�Ĉ� ∣ ⟩ =
∑

�i,�j∈Dec(�)

⟨ ∣ Ĉ
†

�j
Ĉ�i

∣ ⟩ =
∑

�i,�j∈Dec(�)

D(�i, �j) (3.71)

and the right hand side as ∑

�i∈Dec(�)

D(�i, �i). (3.72)

It follows that any history space which is decoherent — that is, which satisfies
D(�, �) = 0 for � ∕= � — is also consistent. Because D(�, �) = D(�, �)∗, a slightly
weaker condition — that the real part of D(�, �) vanishes for � ∕= �, suffices to guar-
antee that a history space is consistent; for this reason, Griffiths calls this condition
consistency ; Gell-Mann and Hartle call it weak decoherence. However, weak decoher-
ence does not seem to have any dynamical significance (in the way that decoherence
proper has been shown to have) and composite systems satisfying weak but not
full decoherence have been shown to have various unsatisfactory properties (Diósi
2004). By the branching-decoherence theorem, it follows that any branching his-
tory space is consistent and that physically interesting consistent history spaces are
coarse-grainings of branching history spaces.

Originally, it was possible to suppose that consistency, or decoherence, or some
reasonable strengthening of these conditions, would suffice to pick out a unique his-
tory space; the measurement problem would thereby have been solved and quantum
mechanics could have been interpreted as a stochastic theory. Unfortunately for
the consistent-histories program, this turns out not to be the case: Fay Dowker
and Adrian Kent demonstrated convincingly (Dowker and Kent 1996; Kent 1996)
that an enormous number of consistent history spaces and that many of them are
pathologically unlike the observed macroworld.

The responses19 of Griffiths, Omnes, and Gell-Mann and Hartle to this problem
differ interestingly. Griffiths and Omnes attempt to hold on to the idea of quantum
mechanics as a stochastic theory of a single quasi-classical world, and in doing so
end up advocating interpretations of quantum mechanics that offer “vestiges of
reality” as I put it in section 1.6, but fall short of conventional scientific realism.
Griffiths (2002), for instance, tries to regard different history spaces as different
ways of describing the same underlying reality. But while in classical mechanics

19I do not want to make any historical claim here as to the influence or otherwise of Dowker and
Kent’s work on proponents of consistent-histories approaches: my account is intended to capture
the logic of the situation, rather than its chronology.
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such multiple descriptions can always be understood as coarse-grainings of a single
exhaustive description (a principle which Griffiths dubs the principle of unicity),
this fails in the consistent-histories setting:

The principle of unicity does not hold: there is not a unique exhaustive
description of a physical system or a physical process. Instead, reality is
such that it can be described in various alternative, incompatible ways,
using descriptions which cannot be combined or compared.

Approaches of this kind, of course, fall outside the scope of this thesis.
Gell-Mann and Hartle, on the other hand, rule out pathological history spaces

by requiring histories to be “quasi-classical”, which they define (consistently with
my usage in this chapter) as histories

such that the individual histories obey, with high probability, effective
classical equations of motion interrupted continually by small fluctua-
tions and occasionally by large ones.

This is not the kind of criterion which can be formalised as a new law of physics:
it is a criterion for emergent structure of very much the same kind as I discussed
in chapter 2. Gell-Mann and Hartle’s exploration of consistent histories, in other
words, can be understood as an exploration of those emergent structures which exist
within the unitarily evolving state: that is, it can be understood as an exploration
of Everettian quantum mechanics. (And indeed, this is how Hartle, at least, does
understand it; see Hartle (2010)).

3.10 How many worlds?

We are finally in a position to answer one of the most commonly asked questions
about the Everett interpretation,20 namely: how much branching actually happens?
As we have seen, branching is caused by any process which magnifies microscopic
superpositions up to the level where decoherence kicks in, and there are basically
three such processes:

1. Deliberate human experiments: Schrödinger’s cat, the two-slit experiment,
Geiger counters, and the like.

2. “Natural quantum measurements”, such as occur when radiation causes cell
mutation.

20Other than “and you believe this stuff?!”, that is.
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Box 3.3: A metaphor for indefinite branch number

1. Firstly, imagine a world consisting of a very thin, infinitely long and wide,
slab of matter, in which various complex internal processes are occurring —
up to and including the presence of intelligent life, if you like. In particular
one might imagine various forces acting in the plane of the slab, between one
part and another.

2. Now, imagine stacking many thousands of these slabs one atop the other, but
without allowing them to interact at all. If this is a “many-worlds theory”, it is
a many-worlds theory only in the sense of the philosopher David Lewis (Lewis
1986a): none of the worlds are dynamically in contact, and no (putative)
inhabitant of any world can gain empirical evidence about any other.

3. Now introduce a weak force normal to the plane of the slabs — a force with
an effective range of 2-3 slabs, perhaps, and a force which is usually very small
compared to the intra-slab force. Then other slabs will be detectable from
within a slab but will not normally have much effect on events within a slab.
If this is a many-worlds theory, it is a science-fiction-style many-worlds theory
(or maybe a Phillip Pullman or C.S. Lewis many-worlds theory): there are
many worlds, but each world has its own distinct identity.

4. Finally, turn up the interaction sharply: let it have an effective range of several
thousand slabs, and let it be comparable in strength (over that range) with
characteristic short-range interaction strengths within a slab. Now, dynami-
cal processes will not be confined to a slab but will spread over hundreds of
adjacent slabs; indeed, evolutionary processes will not be confined to a slab,
so living creatures in this universe will exist spread over many slabs. At this
point, the boundary between slabs becomes epiphenomenal. Nonetheless, this
theory is stratified in an important sense: dynamics still occurs predominantly
along the horizontal axis and events hundreds of thousands of slabs away from
a given slab are dynamically irrelevant to that slab.a One might well, in
studying such a system, divide it into layers thick relative to the range of the
inter-slab force — and emergent dynamical processes in those layers would be
no less real just because the exact choice of layering is arbitrary.

aObviously there would be ways of constructing the dynamics so that this was not the case: if
signals could easily propagate vertically, for instance, the stratification would be lost. But it’s only
a thought experiment, so we can construct the dynamics how we like.
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3. Classically chaotic processes.

The first is a relatively recent and rare phenomenon, but the other two are ubiq-
uitous. Chaos, in particular, is everywhere, and where there is chaos, there is
branching (the weather, for instance, is chaotic, so there will be different weather in
different branches). Furthermore, there is no sense in which these phenomena lead
to a naturally discrete branching process: as we have seen in studying quantum
chaos, while a branching structure can be discerned in such systems it has no natu-
ral “grain”. To be sure, by choosing a certain discretisation of (configuration-))space
and time, a discrete branching structure will emerge, but a finer or coarser choice
would also give branching. And there is no “finest” choice of branching structure:
as we fine-grain our decoherent history space, we will eventually reach a point where
interference between branches ceases to be negligible, but there is no precise point
where this occurs. As such, the question “how many branches are there?” does not,
ultimately, make sense.

This may seem paradoxical — certainly, it is not the picture of “parallel uni-
verses” one obtains from science fiction. But as we have seen in chapter 2, it is
commonplace in emergence for there to be some indeterminacy (recall: when ex-

actly are quasi-particles of a certain kind present?) And nothing prevents us from
making statements like:

Tomorrow, the branches in which it is sunny will have combined weight
0.7

— the combined weight of all branches having a certain macroscopic property is
very (albeit not precisely) well-defined. It is only if we ask: ”how many branches
are there in which it is sunny”, that we end up asking a question which has no
answer.

This bears repeating, as it will be central to some of the arguments of Part II:

Decoherence causes the Universe to develop an emergent branching struc-
ture. The existence of this branching is a robust (albeit emergent) fea-
ture of reality; so is the mod-squared amplitude for any macroscopi-

cally described history. But there is no non-arbitrary decomposition of
macroscopically-described histories into “finest grained” histories, and
no non-arbitrary way of counting those histories.

(Or, put another way: asking how many worlds there are is like asking how many
experiences you had yesterday, or how many regrets a repentant criminal has had.
It makes perfect sense to say that you had many experiences or that he had many
regrets; it makes perfect sense to list the most important categories of either; but it
is a non-question to ask how many.)
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If this picture of the world seems unintuitive, the metaphor in box 3.10 may
help. Ultimately, though, that a theory of the world is “unintuitive” is no argument
against it, provided it can be cleanly described in mathematical language.

CHAPTER 3: If we apply to quantum mechanics the same principles we apply
right across science, we find that a multiplicity of quasi-classical worlds are emergent
from the underlying quantum physics. These worlds are structures instantiated
within the quantum state, but they are no less real for all that.

CHAPTER 4: Quantum mechanics is a probabilistic theory; how is this compat-
ible with the Everett interpretation’s deterministic dynamics?
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Abstract 

A central assumption of the conventional “Copenhagen” interpretation of quantum measurement is 
the “collapse” of the wavefunction, which is not predicted by the time-dependent Schrődinger 
equation.   Alternative interpretations (notably “many worlds”) have been developed that claim to 
avoid this. I aim to develop an essentially simple, but I believe novel, argument to show that the 
quantum measurement process requires that some aspect of the measurement must be distinct from 
the quantum system being studied, so that no description in terms of the whole process in terms of 
Schrődinger evolution only is possible .   

I intend to initiate a discussion on the nature of quantum measurement.    I shall develop an 
essentially simple, but I believe novel, argument showing that the measuring apparatus and 
observer must be in some way distinct from the quantum system being studied.  This is set out 
briefly in the following notes; accompanying papers develop the argument further and include 
further criticisms of attempts to reconcile the predictions of the TDSE and the assignment of 
probabilities to branches.  

Consider an archetypical quantum measurement with two possible outcomes, such as the 
measurement of the spin component of a spin-half particle in a Stern-Gerlach experiment.  Before 
the measurement, the wavefunction has the form 

[cos| sin|>]|k0> 

where | and |> are eigenstates of the spin components parallel to the measurement direction of 

the apparatus; the angle between the incident spin and the measurement axis is 2k0> describes a 
spatial wave packet travelling towards  the measuring apparatus.   After the measurement, the TDSE 
predicts that the state evolves to 

cos|k1> sin|>|k2> 

where |k1> and |k2> describe wave packets travelling away from the apparatus, in the directions k1 
and k2  We assume that the size of the wavepacket is assumed to be much greater than the 
wavelength of the wave (so that spreading can be ignored) and significantly smaller than the 
dimensions of the experiment.  
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The measurement postulate (also known as the Born rule) states that after the completion of a 

measurement, the outcome will be |k1> with probability cos2
 or |k2> with probability 

sin2
The inconsistency between this and the predictions of the TDSE constitutes the quantum 

measurement problem. 

Discussions of the measurement problem often stress the importance of the actual measurement 
process whereby the outcome is recorded on an apparatus whose final states, along with those of 
the associated environment, can be represented by, say, |A1> and |A2>, so that the TDSE prediction 
for the whole set up becomes 

cos|k1>|A1> sin|>|k2>|A2> 

with a corresponding density operator given by 

cos2
|<||k1>|k1||A1>< A1|+ sin2

|<||k2>|k2||A2>< A2| 

+ 2cos sin|<||k1>|k2||A1>< A2| 

This is an entangled state of the system and the apparatus.  However, to demonstrate this, say by 
constructing an interference experiment, is impossible in practice because of decoherence. For all 
practical purposes at least, we can assume that “collapse” has occurred into one or other of the 
component states of the supervision.  The “holy grail” of quantum measurement theory is to provide 
a consistent self-contained interpretation whereby this random collapse and the relative 
probabilities of the possible outcomes is a natural part of our theoretical description rather than 
something that has to be added “by hand”. 

Let us consider the role of the amplitudes cosand sinwhich determine the probabilities, a little 
more carefully.  We first note that under the given conditions illustrated in the figure, the outgoing 

states are spatially separated so the product |k1>|k2| vanishes along with the product terms in the 
density operator which are therefore equal to zero.  This happens without the need to invoke 
environmental decoherence. In contrast, if an interference experiment is carried out, the two 
components of the superposition are brought together and the measurement probabilities are 
determined by the modulus squared of the wavefunction with the interference pattern being 
generated by these off-diagonal terms and decoherence is essential if these are to be ignored.   The 
role of decoherence is therefore quite incidental if no interference because the output states are 
always spatially separated, but is crucial in ensuring that the off-diagonal terms of the (now partially 
traced) density operator are zero in situations where interference patterns would otherwise be 
formed.   Once the density operator contains only diagonal terms, their magnitudes can be 
interpreted as the probabilities of obtaining the corresponding results and these agree with the Born 
rule and experiment.   However, this implies an additional assumption that the system has 
collapsed” into one or other of the outcome states.  This statistical collapse cannot be a direct 
consequence of the linear TDSE. 

We further note that, if the output states remain spatially separated, the form of the state vectors 

|k1>|A1>  and |>|k2>|A2>  are independent of .  The question arises as to how the probabilities 
of the measurement results, which are recorded by the apparatus (possibly including an observer) 

and therefore embedded in |A1>   and |A2> can be affected by the value of If there is only the 
TDSE, there would appear to be no means whereby an observer interacting with such an experiment 

could ever gain any knowledge of  by simply observing the measurement outcomes.  This is the 
central point of my argument, which is probably more clearly illustrated if we consider an ensemble 



consisting of a large number (N) of identical measurements.  The initial state is assumed to be the 
same in each case.  There are then 2N possible outcomes and in NCM of these, M positive and N – M 
negative spins are detected.  The Born rule states that the most probable outcome is when M/N = 

cos2
.  For large N, results different from this are very unlikely, so an observer can reliably deduce 

the value of by obtaining M from such an observation, without directly observing how the 
experiment is set up.  However, this directly contradicts the earlier result where it was shown that 

the state of the apparatus, including the observer is the same, whatever the value of 

One possible counter to this argument is that, if all branches resulting from decoherence exist and 
the observers associated with them know about the Born rule, then they can each make a prediction 

of the value of  based on the Born rule.  Some observers’ predictions will be correct and others (in 

general the great majority) will be wrong: which is which depends on the value of  but the 

observer's  experience is the same, whatever the value of and they can only obtain this by a direct 

observation.   It would then be irrational of them to expect that they could deduce a value of  from 
their observations and they could not logically believe in the Born rule. 

These arguments are consistent with the standard view of quantum measurement as an operation 
that is performed from “outside” the system, which has always been the conventional 
“Copenhagen” interpretation of quantum measurement.   However, I believe that they are 
incompatible with alternative interpretations – in particular “many-worlds” theories – where 
everything is described by the TDSE, and measurement becomes a choice between co-existing 
“branches” that are defined by the experimental set-up and the action of decoherence and 
interaction with the environment.  The implications of these ideas to other approaches to the 
quantum measurement problem will be discussed in my presentation and will hopefully form a part 
of our discussions. 

 



Red Hats and Ancillae 
 

1. The Everett interpretation claims that all the observed features of quantum measurement 

are contained in the Schrődinger equation applied to the wavefunction, extended (by 

implication at least) to include some aspects of quantum field theory. 

   

2. The metaphysical implications associated with the many-world features of the Everett 

approach are radical in the extreme, but this is not a sufficient reason to reject the 

interpretation.  However, the onus should be on its supporters  to show that observed 

behaviour does supervene on the Schrodinger equation and that any additional assumptions 

made are consistent with it. 

 

3. The Copenhagen interpretation is widely considered unsatisfactory for several reasons, but 

its predictions agree with experiment and can be used as a yardstick for assessing the 

validity of alternatives.  In particular, if we consider the standard Stern-Gerlach (SG) 

measurement of the spin of a spin-half particle, we expect the outcome to be in one or 

other channel with probabilities defined by the Born rule.  Whatever these probabilities 

“really” are, they are confirmed or otherwise by observations of outcome frequencies.  The 

quantum field point mentioned above is covered in the SG context by assuming that the 

system is in a superposition of two Foch states, each of which corresponds to a particle 

emerging through one of the possible output channels. 

 

4. The first challenge to the Everett interpretation is the preferred basis problem: why do the 

detected states correspond to one or other of the output channels and not a linear 

combination of them.  I assume that this has been resolved by the work surrounding 

decoherence, where the system can be shown to be extremely well approximated by a 

density matrix (DM) that is diagonal in a representation defined by the two output states.  

We  note two points in passing: (i) Ignoring very small, (or even zero) elements of the DM is 

an assumption that assigns some significance of the wavefunction amplitude, which also 

enters the Born rule; (ii) DM diagonalisation is initially achieved  when the wave packets 

associated with the two Foch states emerging from SG magnet are spatially separated and 

these states are chosen as a basis of the representation of Hilbert space: provided detection 

takes place without allowing the states to interfere, decoherence acts to confirm this initial 

diagonalisation and ensures that it is effectively permanent. 

 

5. The remaining challenge is to show that Born-rule probabilities also supervene from the 

Schrodinger equation.  This result is often thought to contradict “common sense” and a 

more intuitive expectation appears to be that, when a system including a detector (and 

possibly an observer) branches, there would seem to be no reason for preferring any one 

outcome over another, and therefore  every branch should be equally probable.  This of 

course is inconsistent with the Born rule and with experiment which has motivated a search 

for arguments that would go beyond common sense and reconcile the assignment of Born 

probabilities with the existence of multiple branches.    



 

6. The first point to be addressed is how branches are to be defined and counted.  Leaving 

aside the actual quantum context for the moment, consider the following example, which is 

based on one originally proposed by David Wallace 

 

Suppose I am part of a system that splits into two branches (A and B) at some time t1, 

following which the observer in branch A is given a red hat to wear. At time t2, A 

splits into two branches A1 and A2 while B remains unsplit. What initial probability 

should I assign before the first split occurs to having a hat after both splits have been 

completed? Between t1 and t2 there will be two branches, in one of which I get the 

hat; so the branch-counting rule says that the probability of getting it is 1/2. 

However, after t2 there will be three branches, in two of which I get the hat; so the 

branch-counting rule says that the probability of getting it is 2/3. Which is right, or 

does the probability change with time?   In fact, standard probability theory implies 

that if the probability equals 1/2 between t1 and t2, it will continue to have this value 

after t2.  

 

We may be led to conclude from this example, that estimating probabilities on the 

basis of the number of branches created is likely to lead to ambiguities in the values 

of the defined probabilities.   However, we should note that it is relevant to situation 

where there are two successive branching events and we are considering the 

probability as estimated at time t0 where the first branching takes place.  Unsurprisingly, 

branching that occurs after I have recorded a result (obtained a red hat) is irrelevant to the 

calculation of this probability, which depends only on the number of branches at the first 

node.  I also note in passing that the same result would hold if red hats were awarded after 

rather than before the second bifurcation, provided this occurred in both the resulting 

branches.   

 

7.  Suppose now that, instead of successive bifurcations there was trifurcation from a single 

node into three branches, in two of which I am given a red hat.  The branch-counting 

probability of getting a red hat would now be 2/3.  (This begs the question of what 

determines the size of the node and whether there are situations where this is ambiguous, 

but there are many classical cases, such as throwing a fair die, where more than two 

outcomes follow a single event).  We see that, although the triplet of final states is the same 

after both processes, the branch-counting probabilities are different, depending on whether 

the history of the process was a trifurcation or two successive bifurcations. 

 

8. I develop this point further by returning to the original example with the addition of a 

second observer (Alice) who interacts with the system.  If this happens after the first and 

before the second, branching (i.e. for t1 < t < t2) and if she has equal expectation of ending 

up in one or other of the two branches,  I should expect the likelihood of her seeing me with 

a red hat to be ½.  However, if she interacts with the system after the second branching 

(t > t2) and now has equal expectation of emerging in one of the three branches, her 



probability of seeing me with a red hat will be increased to 2/3, which is the same as we 

would expect in the case of three branches emerging from a single node.  We appear to 

have a potential paradox: I know that the probability of my obtaining a red hat is 1/2, but I 

also believe that the probability of Alice seeing me with a red hat is 2/3. 

 

Let us compare the above with what we should expect in a  “collapse” context where there 

is only one outcome at each branch point.  We shall assume equal likelihoods of possible 

outcomes at any branching.  For example:  at t1 I either emerge in branch A and then acquire 

a red hat or I emerge in branch B with no hat; while at t2 I proceed along with my hat to 

either A1 or A2.  Given this my red-hat prediction before t1 will be 1/2 as before and we now 

consider what Alice will experience in this case.  She can see one of three things: either I am 

in branch B with no hat on or I am in one of the other two branches wearing a hat.  

Moreover, if she repeats the observation many times, she can deduce (by Baysian updating 

or otherwise) that the probabilities of my being found in B (without a hat) or in one of the A 

branches (with a hat) are equal, so she can conclude that my red-hat probability is 1/2, 

agreeing with my original estimate.   

 

9. The source of the apparent inconsistencies in the splitting scenario arises from the fact that 

splitting implies the simultaneous creation of several possible outcomes, while the 

probability calculus applies to mutually exclusive events.   Effectively, treat the second 

branching event is one in which I, along with my hat, am cloned into two copies of myself.  

This increases the likelihood that the Alice will see me with my red hat and the probability 

calculus cannot be applied to this situation unless it is modified to take this cloning into 

account.   The situation is very similar to the following.   Suppose I take two coins and place 

them on the table one showing heads and one showing tails; if Alice picks one of them at 

random she can expect to see heads or tails with equal probability.  Suppose I now replace 

the coin showing heads with ten more coins, each of which also has heads up.  Alice will now 

have a ten-to-one probability of seeing heads rather than tails. 

 

10.  I now consider how the cloning model would apply if the pattern of splitting were more 

complex.  There might be a huge number of branches at any one time and this number 

might also be subject to wild, unpredictable fluctuations.  Decoherence is generally believed 

to produce such a scenario.  The first point is that, the complexity of the pattern of 

branching subsequent to an observation can have no effect on the prior estimates of the 

probabilities of the outcomes of that observation.  Secondly, if an observation is made after 

complex branching has occurred, the observer will be unable to predict probabilities 

because she does not know the instantaneous number of branches.  However, this does not 

ipso facto imply that there is no fact of the matter concerning the number of branches at 

that point.    If the observation is repeated, the number of branches will be different on each 

occasion, leading to an apparently chaotic, unpredictable pattern of events.    

  

11.  I now turn to the quantum measurement problem in the light of the above.  Consider the 

archetypical example of a spin-half particle initially in a state |z,k0> passing through a SG 

magnet, this will produce the output state  

    cos| k1> + sin|,k2>      (1) 



where  and  are the spin eigenstates corresponding to the orientation of the SG magnet 

which is at an angle /2 to z; ko, k1 and k2 represent the directions of motion of the wave 

packets associated with the spins.  Now suppose that the state |,k2> is further split by a 

partial reflector into states defined by k21 and k22.  The total state vector is now a sum of 

three spatially separated terms: 

                                    cos | k1>  +  sin cos | k21>  +  sin sin | k22>   (2) 

 

12. Some special values of  and  are of interest.  First, suppose that 

cos =  sin = cos = sin = 2-1/2.  Expressions (1) and (2) are then 

                                  2-1/2| k1> + 2-1/2|,k2>      (3) 

                            2-1/2 | k1>  +  ½| k21>  +  ½| k22>      (4) 

respectively.  Now consider the case where cos = 3-1/2, sin = (2/3)1/2 and cos = sin = 2-1/2.  

Expressions (1) and (2) are then 

                                 (1/3)1/2 | k1> + (2/3)1/2 |,k2>     (5) 

                             (1/3)1/2  [| k1>  +  | k21>  +  | k22> ]     (6) 

That is, all three have the same amplitude in the final state. 

 

13. If we apply the Born rule to (3) and (4), the probabilities of the system being in the states 

|> and  |> are  ½,  and ½  in both cases, which are the same as the probabilities in the 

original example discussed above, provided we identify obtaining a red hat with the act of 

detecting the spin state to be |>.  Moreover, if we apply the Born rule to (5) and (6), we 

find that each output channel has the same probability and that the total probability of 

being in state |> is 2/3, which is the same as predicted in the case of a single node with 

three outputs, discussed in paragraph 8.  

 

14. In a “collapse” scenario, where only one output survives every splitting event, the Born 

probabilities follow all the normal rules of probability, including the updating rule, but I 

contend that this should require justification if Everett branching  occurs.   I now wish to re-

examine the DSW proof of the Born rule to identify what assumptions are made or implied 

in the cases where collapse or branching is assumed.   

 

15. The first step in the proof is the case where there are two outputs with the same amplitude.  

Symmetry is taken to imply that the two outcomes should have equal probability and I 

accept that this follows in both the collapse and the branching case. 

 

16. The second step is to extend the above result to the case of more than two outputs where 

the amplitudes are again the same.  If these are from a single node, symmetry arguments 

similar to those used in the previous case, imply that each branch will have equal 

probability.  If the multiple branches result from more than one branching event, the 

symmetry may appear to be broken (c.f. the red hat example) and the result is then less 

obvious.  To consider this further, I return to the example of the state set out in (4), which 

was created by two bifurcations.  A similar state would also result from a single equal-

amplitude trifurcation, but the histories of the process are not the same and their 

symmetries differ (see diagram).  It is an assumption that the resulting probabilities must be 



the same in both cases. 

 

 

17.  If we do assume that the probabilities are the same in the two set-ups and the updating rule 
holds, we obtain the Born rule for the unequal probabilities of the two branches following 
the first bifurcation.  This is essentially the DSW proof of the Born rule with the second 
bifurcation playing the role of the ancilla. 
 

18. A further often unstated assumption underlies all attempts to reconcile probabilities with 
Everett.  This is that it is actually possible to make sense of probabilities in this context.  
Once one assumes ab initio that a probabilistic model must supervene on the Schrődinger 
equation, that the probabilities must be a function only of the final state and that the 
standard updating rule must apply, everything else follows.  But all these assumptions 
require justification: if supervenience holds, they need to be shown to be consistent with the 
Schrődinger equation and, ideally, we should be able to see how they emerge from it.  

 

19. I now restate the argument in my paper that there is an actual inconsistency between the 
Born rule and the Everettian assumption that everything supervenes on Schrődinger.  I 
consider the case where a significantly large number (N) of two-state systems have been 
measured using a SG apparatus or its equivalence.  Assuming no collapse, branching occurs 
to produce one branch associated with each of the 2N permutations of the final states of the 
N particles.   The number of branches where M particles have been observed to have spin 

state |> equals NCM
   and if this is combined with the Born-rule weights, the outcomes 

where M/N equals the Born probability are much more likely than the others when N and  M 
are >> 1.   

 
20. Given this, we consider a scenario where an observer (Alice again) has no prior information 

about the setting of the SG apparatus, but does know the value of N.  After she observes M 
positive outcomes, she can deduce the likely setting of the apparatus from M/N using the 
Born rule.  Moreover, if her state is completely described by the Schrődinger equation, all 
her properties, including this newly acquired knowledge, must be included in the part of the 
wavefunction  associated with the branch she is in.   The key point is that this is inconsistent 
with the linearity of the Schrődinger equation which requires that the form of the 
wavefunction associated with a branch is independent of the expansion coefficients that 
enter the Born rule. 
 

21. A counter-argument to the above is to note that there are branches corresponding to every 

value of M, each containing a copy of Alice, who may attempt to use the Born rule to deduce 

the SG orientation.  Some of these deductions will be right, but others (in general many 

more) will be wrong and they can only tell whether they are right or wrong by making a 

direct observation of the actual SG setting.  Alice’s “state of expectation” resulting from the 

observations would then be the same whatever the actual setting of the SG apparatus. 

However, the logical consequence of this is that if Alice understands these arguments, she 

should not expect to be able to acquire knowledge of the SG settings from her observation 

of the outputs and that her experience cannot be a function of the Born weights.  She should 

therefore conclude that any probabilities or betting preferences she forms cannot be 

influenced by the Born weights and that the Born rule cannot apply.  But of course, Alice’s 

experience is the same as ours and is strongly governed by the Born rule.  
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an Everettian context. It is further argued that the Born rule, in common with any interpretation that

relates outcome likelihood to the expansion coefficients connecting the wavefunction with the

eigenfunctions of the measurement operator, is incompatible with the purely unitary evolution

assumed in the Everett interpretation.
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1. Introduction

The conventional (‘‘Copenhagen’’) interpretation of quantum
mechanics states that the result of a measurement is one (and
only one) of the eigenvalues belonging to the operator represent-
ing the measurement and that, following the measurement, the
wavefunction ‘‘collapses’’ to become the corresponding eigenfunc-
tion (ignoring the possibility of degeneracy). According to the
‘‘Born rule’’, the probability of any particular outcome is propor-
tional to the squared modulus of the scalar product of this
eigenfunction with the pre-measurement wavefunction. This
analysis underlies many of the predictions of quantum mechanics
that have been invariably confirmed by experiment. An alternative
approach to quantum measurement is the Everett interpretation
(also known as the ‘‘relative states’’ or the ‘‘many worlds’’
interpretation) which was proposed by Everett III (1957). The
essence of this approach is that it assumes no collapse of the
wavefunction associated with a measurement: instead, the time
development of the state is everywhere governed by the time-
dependent Schrödinger equation. After a ‘‘measurement-like’’
event, this results in a splitting of the wavefunction into a number
of branches, which are then incapable of reuniting or commu-
nicating with each other in any way. This splitting occurs even
when a human observer is part of the measurement chain: the
resulting branches then each contain a copy of the observer, who
is completely unaware of the existence of the others.

Since its inception, the Everett interpretation has been subject
to considerable criticism—e.g. Kent (1990) and Squires
(1990)—which has three main strands (or branches [sic]). First,
there is its metaphysical extravagance. The continual evolution of
the universe into a ‘‘multiverse’’ containing an immense number
of branches would mean that the universe we observe should be
accompanied by an immense number of parallel universes, which
we do not observe and have no awareness of—surely such a
postulate must be a gross breach of the principle of Occam’s
razor! Everett himself was aware of this criticism and, in a
footnote to his original paper, he compares the conceptual
difficulties of accepting his interpretation with those encountered
by Copernicus when the latter proposed the (in his time
revolutionary) idea that the earth moves around the sun.
However, the reason that arguments based on Occam’s razor have
not led to the universal rejection of Everett’s ideas has less to do
with the strength or otherwise of the Copernican analogy and is
more a result of the fact that the branching of the universe into
the multiverse is claimed to be a direct consequence of the time-
dependent Schrödinger equation: no additional postulate, such as
the collapse of the wavefunction, is required to explain the
phenomenon of quantum measurement and the extravagance
with universes may therefore be considered a price worth paying
for the economy in postulates.

The second strand in the criticism of Everett is known as the
‘‘preferred basis’’ problem. This is because there is an apparent
ambiguity in the way the branches are defined. Thus, if the
wavefunction of a system has the form c ¼ Ac1 þ Bc2, then
Everett suggests that a measurement should lead to two sets of
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branches, one associated with each of the states represented by c1

and c2. However, the original state could just as well be written as
c ¼ Cf1 þ Df2 where f1 ¼ 2�1=2

ðc1 þ c2Þ, f2 ¼ 2�1=2
ðc1 � c2Þ,

C ¼ 2�1=2
ðAþ BÞ and D ¼ 2�1=2

ðA� BÞ, so why should the branches
not be just as well defined by f1 and f2—or indeed any other
orthogonal pair of linear combinations of c1 and c2? This
problem has been largely resolved by the appreciation of the
importance of the effect of the environment on a quantum system
and the associated ‘‘decoherence’’—Zurek (2007) and Wallace
(2002, 2003a). A quantum measurement is inevitably accompa-
nied by complex, chaotic processes which act to pick out the
particular basis defined by the eigenstates of the measurement
operator. This basis is then the one ‘‘preferred’’ by the Everett
interpretation and this supervenes on the Schrödinger wavefunc-
tion. This result is now generally accepted, although Baker (2006)
argued that its derivation uses the Born rule so that there is a
danger of circularity if it is then assumed as part of its proof.

The third criticism leveled at Everett is the problem of
probabilities. The conventional (Copenhagen) interpretation
states that, if the wavefunction before a measurement is
c ¼ Ac1 þ Bc2, and if c1 and c2 are eigenstates of the measure-
ment operator with eigenvalues q1 and q2, respectively, then the
outcome will be either q1 with probability jA2j or q2 with
probability jB2j, where these probabilities reflect the frequencies
of the corresponding outcomes after a large number of similar
measurements. However, according to the Everett approach there
is no ‘‘either–or’’ because both outcomes are manifest, albeit in
different branches. Instead of a disjunction to which we can apply
standard probability theory, we have a conjunction, where it is
hard to see how probabilities can make any sense—Squires (1990),
Graham (1973), and Lewis (2004). There have been several
attempts to resolve this conundrum and to show how probability
(or something else that is in practice equivalent to it) can be used
in an Everettian context. David Wallace has proposed a principle
that he calls ‘‘subjective uncertainty’’ in which he claims that a
rational observer should expect to emerge in one branch after a
measurement, even though she is also reproduced in the other
branches—Wallace (2003b, 2007). Greaves (2004) has criticized
this approach and suggested an alternative in which we have to
take into account the observer’s ‘‘descendants’’ in all the branches,
but we should ‘‘care’’ more about some than others; the extent to
which we should care is quantified by a ‘‘caring measure’’ that is
proportional to the corresponding Born-rule weight. Both these
approaches are designed to explain why some branches appear to
be favored over others, but both attempt to do this without
altering Everett’s main principle that the quantum state evolves
under the influence of the time-dependent Schrödinger equation
with nothing else added, so that the Born rule supervenes on this.
An alternative approach, which I shall not discuss any further in
this paper, is to maintain most of the fundamental ideas of the
Everettian interpretation, but add a further layer of ‘‘reality’’ to
justify the use of probabilities; an example of this can be found in
Lockwood (1989).

Interest in the Everett interpretation has been on the increase
recently—particularly during 2007, which was the 50th anniver-
sary of the publication of Everett’s original paper (Everett III,
1957). Much of the renewed interest has developed from the work
by Deutsch (1999) some eight years earlier, which was then
developed by Wallace (2003b, 2007) and Saunders (2004). This
program (which I refer to below by the initials DSW) aims to
derive the Born rule from minimal postulates that are claimed to
be consistent with the Everett interpretation, as well as with other
approaches to the measurement problem. In fact, Deutsch (1999)
made little reference to the Everett interpretation in his derivation
of the Born rule, and Saunders (2004) emphasized and believed
that his derivation is independent of any assumptions about the

measurement process. However, Wallace (2007) assumed the
Everett interpretation and claimed that his derivation shows the
Born rule to be completely consistent with it. Gill (2005)
examined Deutsch’s derivation and sought to clarify the assump-
tions underlying it, again without referring to the Everett
interpretation as such. A similar approach, but using slightly
different assumptions, has been developed by Zurek (2007) and is
set out in a recent review paper.

The present paper aims to show that some of the postulates
underlying the above derivations arguments do not follow
naturally from the Everett interpretation and may well not be
consistent with it.

2. The DSW proof of the Born rule

This section sets out the DSW derivation of the Born rule by
applying it to a particular example. The argument is deliberately
kept as simple as possible and more general treatments can be
found in the cited references. Consider the case of a spin-half
particle, initially in an eigenstate of an operator representing a
component of spin in a direction in the xz plane at an angle y to
the z axis, passing along the y axis through a Stern–Gerlach
apparatus oriented to measure a spin component in the z

direction.
Standard quantum mechanics tells us that the initial state ay

can be written as a linear combination of the eigenstates of Ŝz:a
with eigenvalue þ1 (in units of ‘ =2) and b with eigenvalue �1.
We have

ay ¼ caþ sb ð1Þ

where c ¼ cosðy=2Þ and s ¼ sinðy=2Þ. Particles emerge from the
two channels of the Stern–Gerlach apparatus, with the upper and
lower channels indicating Sz ¼ þ1 and �1, respectively, and are
then detected. After they have entered the detectors, but before
any collapse1 associated with the measurement, the total
wavefunction of the system is

c ¼ cawþ þ sbw� ð2Þ

where wþ (w�) is the wavefunction representing the detectors,
including their environment, when a particle is detected in the
positive (negative) channel. According to the Copenhagen inter-
pretation, the corresponding probabilities for a positive or a
negative outcome are given by the Born rule as c2 and s2,
respectively. From the Everettian point of view, on the other hand,
there is no collapse and the system is always in a state of the form
c. However, because of the effects of the environment and
decoherence, phase coherence between the two terms on the
right-hand side of (2) is lost, so they can never in practice
interfere. The wavefunction has therefore evolved into two
‘‘branches’’ which then develop independently.

The principle of the DSW approach is to describe the process
being studied as a game, or series of games, where we receive
rewards, or pay penalties (i.e. receive negative rewards) depend-
ing on the outcomes. The derivation proposed by Zurek (2007) is
quite similar to this, although it does not use game theory.

Imagine a game where the player receives a reward depending
on the outcome of the experiment. Assume that the value of y is
under our control and that, whenever the experimenter observes a

1 At a number of points in this paper, I compare the predictions of the Everett

model with those produced by the ‘‘Copenhagen interpretation’’, by which I mean

a model in which the wavefunction collapses into one of the eigenstates of the

measurement operator. This is assumed to occur early enough in the process for

the outcomes to be the same as would be observed if particles were to emerge

randomly from one or other output channel, with the relative probabilities of the

two outcomes determined by the Born rule.
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particle emerging from the positive or negative channel of the
Stern–Gerlach apparatus, she receives a reward equal to xþ or x�,
respectively; these values can be chosen arbitrarily by the
experimenter. In the special cases where y ¼ 0 or p, the initial
spin state is an eigenstate of Ŝz with eigenvalues þ1 and �1,
respectively. The particle then definitely emerges from the
corresponding channel of the Stern–Gerlach apparatus and the
corresponding reward is paid.

In the general case, we define the ‘‘value’’—VðyÞ—of the game
as the minimum payment a rational player would accept not to
play the game, and look for an expression for VðyÞ of the form

VðyÞ ¼ wþðyÞxþ þw�ðyÞx� ð3Þ

where the ws are non-negative real numbers that we call
‘‘weights’’ and which are normalized so that their total is unity.
We shall find that

wþðyÞ ¼ c2 and w�ðyÞ ¼ s2 ð4Þ

which are the probabilities predicted by the Born rule for this
setup.

First consider the effect on the wavefunction of rotating the SG
magnet through 1803 about the y axis. It follows from the
symmetry of the Stern–Gerlach apparatus that spins that were
previously directed into the upper channel will now be detected in
the lower channel and vice versa. Thus

Vðyþ pÞ ¼ wþðyþ pÞxþ þw�ðyþ pÞx� ¼ w�ðyÞxþ þwþðyÞx� ð5Þ

From standard quantum mechanics, the effect of this rotation on
wavefunction (2) is to transform it to

c ¼ �sawþ þ cbw� ð6Þ

We now proceed by considering a series of particular values of y.
Case 1: The first case is where y ¼ 0 so that the initial state, ay,

is identical with a. As noted above, this state is unaffected by the
measurement and the particle is always detected in the positive
channel. Thus Vð0Þ ¼ xþ, wþð0Þ ¼ 1 and w�ð0Þ ¼ 0. Similarly,
VðpÞ ¼ x�, wþðpÞ ¼ 0 and w�ðpÞ ¼ 1.

Case 2: In the second case, y ¼ p=2 so that c is as in (2), but
with c ¼ s ¼ 2�1=2. Now consider the effect of rotating the
Stern–Gerlach apparatus through an angle p. Using (5) and (6),
we get the following expressions for V and c:

Vð3p=2Þ ¼ w�ðp=2Þxþ þwþðp=2Þx� ð7Þ

c ¼ 2�1=2
½�awþ þ bw�� ð8Þ

The only change in the wavefunction is the change of sign in the
term involving a. DSW point out that this sign, in common with
any other phase factor, should not affect the value, because it can
be removed by performing a unitary transformation on this part of
the wavefunction only—e.g. by a rotation of the spin through 2p
or by introducing an additional path length equal to half a
wavelength. Moreover, Zurek (2007) showed that one of the
effects of the interaction of the system with the environment is to
remove any physical significance from these phase factors. It
follows that the value should not be affected by the rotation so
that Vð3p=2Þ ¼ Vðp=2Þ, which leads directly to

wþðp=2Þ ¼ w�ðp=2Þ ¼ 1=2 and Vðp=2Þ ¼ ðxþ þ x�Þ=2 ð9Þ

This result (which might be thought to be an inevitable
consequence of symmetry) is considered by DSW to be the key
point of the proof. We should note that, although it agrees with
the Born rule, it would also be consistent with any alternative
weighting scheme that predicted equal weights in this symmetric
situation: in particular it is consistent with a model in which the
weights were assumed to be independent of y.

We now extend the result to the case where the number of
output channels is M instead of two and the wavefunction is the
sum of M terms, each of which corresponds to a different
eigenstate of the measurement operator. In the case where the
coefficients of this expansion are all equal, any action that has
the effect of exchanging any two output channels (which are
numbered 1 and 2) must leave the wavefunction unchanged apart
from irrelevant changes in phase. The value is then also un-
changed, but the roles of w1 and w2 are reversed. Hence

w1x1 þw2x2 ¼ w1x2 þw2x1 ð10Þ

where xi is the reward associated with the ith output channel. It
follows that w1 ¼ w2; consideration of other permutations
immediately extends this result to all i and we have wi ¼ N�1.

Case 3: In the third case, y ¼ p=3 so that cosðy=2Þ ¼ O3=2 and
sinðy=2Þ ¼ 1=2. We now assume that the system is modified so
that, after emerging from the Stern–Gerlach magnet and before
being detected, the outgoing particles interact with a separate
quantum system that can exist in one of, or a linear combination
of, four eigenstates fi. Following Zurek (2007), this is referred to
as an ‘‘ancilla’’ from now on. The ancilla is designed so that, if
y ¼ 0 so that all spins emerge from the positive channel, the
ancilla is placed in the state 3�1=2P

i¼1;3 fi; while, if y ¼ p and all
spins are negative, its state becomes f4. From linear superposition
it follows that if the original spin is in a state of form (2) with
y ¼ p=3, the total wavefunction of the spin plus the ancilla is

C ¼ 3�1=2
½f1 þf2 þ f3�cosðp=6Þaþf4sinðp=6Þb

¼ 1
2½f1aþ f2aþ f3aþf4b� ð11Þ

As the coefficients of each term in the above expansion are equal,
it follows from the earlier discussion of case 2 that all four weights
are equal to 0.25. If we were to measure on the ancilla a quantity
whose eigenstates were one of the functions f1–f4, we should
obtain a result equal to one of the corresponding eigenvalues. If
the result corresponds to one of the first three eigenfunctions, we
can conclude that if, instead, we had measured the spin directly,
we would have got a positive result, while a result corresponding
to f4 indicates a negative spin. As this is the only such state, it
follows that the weight corresponding to a negative spin is
w�ðp=3Þ ¼ 0:25 and therefore, from normalization, that
wþðp=3Þ ¼ 0:75. (The last step, which follows Zurek (2007),
establishes these results without assuming that the weights are
additive.) The value of the game therefore equals 0:75xþ þ 0:25x�.
It can also be shown quite straight forwardly—Zurek (2007)—
that, after a number of repeats of the experiment, the predicted
distribution of the results is as observed experimentally.

Following DSW, the above argument can be extended to the
case of a measurement made in the absence of the ancilla if we
make a further assumption, known as ‘‘measurement neutrality’’.
This states that the outcome of the game is independent of the
details of the measurement process—i.e. the presence or absence
of the ancilla—so that wþðp=3Þ ¼ 0:75 and w�ðp=3Þ ¼ 0:25 in
either case. These quantities are identical to cos2ðy=2Þ and
sin2
ðy=2Þ, respectively, so the derived weights are the same as

those predicted by the Born rule. By choosing an appropriate
ancilla, the above argument can be directly extended to examples
where the ratio of the weights is any rational number, and then to
the general case by assuming that the weights are continuous
functions of y. Hence, the expression for the value is the same as
that predicted by the Born rule:

VðyÞ ¼ c2xþ þ s2x� ð12Þ

Further generalization to experiments with more than two
possible outcomes is reasonably straightforward and does not
introduce any major new principles.
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3. Discussion

There have been a number of criticisms of the DSW proof when
applied to the Everett model in particular—e.g. Baker (2006),
Barnum, Caves, Finkelstein, Fuchs, and Schack (2000), Lewis
(2005, 2007), and Hemmo and Pitowski (2007); some of these
even challenge result (9) for the symmetric case. I shall shortly
develop arguments to show that, although the symmetric results
appear to be consistent with the Everett model, this may not be so
in the asymmetric case.

First consider how the above translates into predictions of
experimental results. The game value is the minimum payment a
rational observer would accept in order not to play the game. This
means that after playing the game a number of times, a rational
observer should expect to receive a set of rewards whose average
is equal to the game value. Thus, if we consider a sequence of N

such observations in which nþ and n�ð¼ N � nþÞ particles are
detected in the positive and negative channels, respectively, the
total reward received will be nþxþ þ n�x�, and this should
equal Nðwþxþ þw�x�Þ implying that wþ ¼ nþ=N and
w� ¼ n�=N. This, of course, is just what is observed in a typical
experiment provided N is large enough for statistical fluctuations
to be negligible. It should be noted that frequencies are not

being used to define probabilities, but the derived weights are
used to predict the results of experimental measurement of the
frequencies.

The above results are of course consistent with the standard
Copenhagen interpretation, whose fundamental mantra was set
out by Bohr (1935): ‘‘y there is essentially the question of an
influence on the very conditions which define the possible types
of predictions regarding the future behavior of the system’’. In the
present context, this means that, because an experiment designed
to demonstrate interference would involve a different experi-
mental arrangement, the experiment can be modelled as a
classical stochastic system in which spins emerge from either

the positive or the negative channel of the Stern–Gerlach
apparatus. (It should be noted that this paper does not aim to
justify the Copenhagen interpretation, but employs its results as a
comparator with the Everettian case.)

Why should an Everettian observer have experiences such as
those just described? In the Everett interpretation, the quantum
state evolves deterministically and on first sight, there would
appear to be no room for uncertainty. However, after a splitting
has occurred, observers in different branches have the same
memories of their state before the split, but undergo different
experiences after it. Given this, it may be meaningful for an
experimenter to have an opinion about the likelihood of becoming
a particular one of her successors. This introduces a form of
subjective uncertainty, and Wallace (2007) claimed that this plays
a role in the Everett interpretation that is equivalent to that played
by objective stochastic uncertainty in the Copenhagen case.
However, we should note that such subjective uncertainty can
only come into play at the point where the experimenter becomes
aware of an experimental result, in contrast to the Copenhagen
model where the splitting is assumed to occur as the particles
emerge from the Stern–Gerlach magnet. I shall shortly proceed to
compare and contrast the Copenhagen and Everettian interpreta-
tions of the different experiments discussed above. To help focus
the discussion, I shall initially assume that in such experiments
each particular result is associated with only one branch of the
final wavefunction. This assumption has been strongly criticized
by DSW and others and I shall return to the question of how it
affects our conclusions at a later stage. I now analyze our earlier
arguments step by step.

Case 1: Copenhagen: As the initial spin state is in an eigenstate
of Sz, the result is completely determined. The probability of the

result equalling the corresponding eigenvalue is 1 and the
probability of the alternative is zero.

Case 1: Everett: There is only one branch and this contains the
only copy of the observer who invariably records the appropriate
eigenvalue.

There is therefore no difference between the observers’
experiences in case 1 under the Copenhagen and Everettian
interpretations.

Case 2: Copenhagen: The probabilities of positive and negative
results are both 0.5. After a large number of repeats of the
experiment, the experimenter will have recorded approximately
equal numbers of positive and negative results, so her average
reward will be ðx1 þ x2Þ=2, which is the same as the game value.

Case 2: Everett: The observer will split into two copies each
time a spin is observed and the weights of the two branches are
equal for the reasons discussed earlier. After a large number (N) of
repeats of the experiment the vast majority of observers will have
recorded close to N=2 positive and N=2 negative results and their
average rewards will both equal the game value.

There is therefore no difference between the predictions of the
Copenhagen and Everettian interpretations in case 2.

Case 3: Copenhagen: As emphasized above, this assumes that
the experiment is a stochastic process in which a particle emerges
from either the positive or the negative channel and the relative
probabilities of the outcomes are equal to the Born weights. In the
presence of the ancilla, a particle is detected in one (and only one)
of the equally weighted states f1 to f4, and all four outcomes
have equal probability. To have been observed in any of the first
three states, the spin must have emerged from the Stern–Gerlach
experiment through the positive channel, while if the final result
corresponded to f4, it must have come through the negative
channel. It follows directly that if the ancilla were absent, three
times as many spins would be detected as positive than as
negative. Thus, the principle of measurement neutrality, assumed
in stage 3 of the earlier derivation, follows naturally from the
assumptions underlying the Copenhagen interpretation.

Case 3: Everett: We first consider the situation where an ancilla
is present so that the state is described by (11); there are therefore
four equally weighted branches, one corresponding to each of the
fi. The observer splits into four equally weighted copies and
should expect her descendants to record an equal number of each
of the four possible results and therefore conclude that there are
three times as many positive as negative spins. However, in the
absence of an ancilla, there are only two branches and the
observer is split into two copies each time a result is obtained. To
show that a typical Everettian observer should record results that
are consistent with the Born weights, we again have to apply the
principle of measurement neutrality. We saw above that this is a
natural, if not inevitable, consequence of the Copenhagen
interpretation, but we shall now demonstrate that this is not
the case in an Everettian context.

Under the Copenhagen interpretation, particles are assumed to
emerge from either the positive or the negative channel and then
into one, and only one, of the states fi. This is not true in the case
of the Everett interpretation, where the system evolves determi-
nistically and the state is described by a linear combination of the
wavefunctions associated with a particle being present in each
channel. Apparent stochasticity, or subjective uncertainty, only
enters the situation at the point where the experimenter observes
the result and splits into a number of descendants—two in the
absence of the ancilla and four if it is present. There is no
requirement for the frequencies to be the same in both cases—i.e.
no a priori reason to apply the principle of measurement
neutrality. In the language of decision theory, the values of the
two games are not necessarily the same, so a decision on whether
or not to accept a payoff may depend on whether the game is
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being played with or without an ancilla. Indeed, as in the absence
of an ancilla there are only two branches, we might expect each
observer’s experience to be the same as in case 2, with equal
numbers of positive and negative results and an equal reward for
each outcome—i.e. the statistical outcomes would be indepen-
dent of the weights. I shall argue later that this is a natural
consequence of the Everettian interpretation, but at present
simply emphasize that the principle of measurement neutrality
is a self-evident consequence of the assumptions underlying the
Copenhagen interpretation, but constitutes a major additional
postulate in the context of Everett.

I further illustrate this last point by considering a simple
classical example that consists of a box with two exit ports from
each of which a series of balls emerges as in Fig. 1. The apparatus
can be operated in one of two modes that we denote as ‘‘C’’ and
‘‘E’’. In the C mode, balls emerge one at a time from one of two
output ports and, on average, three times as many come out of the
upper port as from the lower. An experimenter observes the balls
as they emerge and confirms this relative likelihood. Still in the C
mode, the experiment is modified so that when a ball emerges
from the upper port, it passes into a second, ‘‘ancillary’’ box and
then emerges at random through one of three output channels
before being detected. The experimenter now detects a ball either
in one of these three channels or emerging from the lower port.
Clearly the first of these results is three times as likely as the
second, so the observed frequencies are independent of the
presence or absence of the second box. Thus the equivalent of
measurement neutrality holds in this case.

Now consider the game in the E mode, which is also illustrated
in Fig. 1. In this case two balls emerge from the box simulta-
neously: a black ball from the upper port and a white ball from the
lower. The two balls fall into a receptacle (not shown in the figure)
and an experimenter draws one at random; after repeating the
experiment a number of times she sees equal numbers of black
and white balls. The experiment is now modified so that the black
balls are directed into an ancillary box which now contains a
device that releases three identical black balls, one through each
of the three output ports, whenever one enters. These three balls
along with the white one now fall into the receptacle and the
observer again draws one at random; she now sees a black ball
three times as often as a white ball. Thus, the relative likelihood of
a black or a white ball depends on the presence or absence of the
second box, and we can conclude that measurement neutrality is
not necessarily preserved when the game is played in the E mode.

A more whimsical analogy follows the precedent set by
Schrödinger’s cat by using animals to illustrate our point. First
consider Copenhagen rabbits. These come in two colors—black
and white; they are all female and capable of giving birth to one
(and only one) baby rabbit which is always of the same color as its
mother. Let us suppose we have four Copenhagen rabbits, three
black and one white in a hat and suppose that one, of them,
chosen at random, is pregnant. We first play the game of ‘‘pick out
the pregnant rabbit’’ by putting our hand in the hat, identifying

and then pulling out the pregnant rabbit. We are paid different
rewards (xb and xwÞ depending on whether the extracted rabbit is
black or white. After playing the game a number of times, we find
that we have pulled out three times as many black rabbits as
white, so that the game value is ð3xb þ xwÞ=4. The second game is
one where we wait until the pregnant rabbit has given birth and
then pull out and identify the color of the baby. Clearly the results
and the value are the same as in the first game.

Now consider Everettian rabbits, which are also either black or
white. In contrast to the Copenhagen rabbits, they are capable of
carrying and giving birth to more than one offspring. Suppose we
have two pregnant Everettian rabbits: a white rabbit that is
pregnant with a single offspring and a black rabbit that is
expecting triplets. If we draw one of the two pregnant rabbits
from the hat at random, the game value will be ðxb þ xwÞ=2.
However, if, instead, we wait until after the rabbits have given
birth and then draw out one of the offsprings at random, the game
value will now be ð3xb þ xwÞ=4. Thus Copenhagen rabbits preserve
measurement neutrality, but Everettian rabbits do not.

Given the assumptions underlying the Copenhagen interpreta-
tion, the first game in the C mode and the game with the
Copenhagen rabbits form close parallels with the quantum
example discussed earlier. Similarly, the first game in the E mode
and the game with Everettian rabbits are closely parallel to the
quantum case, provided we accept that random selection at the
point where the observer becomes aware of the result is
equivalent to subjective uncertainty in the quantum case.

In both these examples as well as in the quantum case, I have
shown that measurement neutrality is not a necessary conse-
quence of the principles underlying the Everett interpretation.
However, in all the cases where it need not apply, the symmetry is
broken in the sense that the weights associated with the different
outcomes are not equal. It follows that measurement neutrality
(or, indeed, some other quite different principle) could be restored
in the classical examples by making additional assumptions: for
example, it could be arranged that the ball emerging from the
upper channel in the E game is heavier than that coming out of the
lower, and that it is three times easier to find and extract a more
massive ball when making the selection; similarly, it might be
three times easier to catch a rabbit carrying triplets than one
pregnant with a single offspring. However, such ad hoc rules
would have to be built into the physics of the setup when it was
designed and constructed. In the quantum case under the Everett
interpretation, measurement neutrality therefore has to be an
additional assumption, rather than following directly from the
structure of the theory as in the Copenhagen case. Gill (2005)
showed that measurement neutrality is equivalent to assuming
that the measures of probability are invariant under functional
transformations—i.e. the probability of obtaining a particular
result when measuring a variable is the same as that pertaining
when a function of the variable is measured. He considers that
functional invariance in the case of one-to-one transformations
is ‘‘more or less definitional’’, but is much less obvious in the

Fig. 1. In the C mode a ball is emitted from the first box through either the upper or the lower port and detected either before or after entering the second box; the figure

shows one possible outcome. In the E mode, balls emerge from both ports and one of them is detected either before or after the second box, which releases three balls every

time one enters.
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many-to-one case, which is required for situations such as
case 3. Gill’s discussion relates to probabilities as conventionally
defined and his paper makes no reference to the Everett
interpretation. I believe that the above argument shows that
many-to-one transformations are also ‘‘more or less definitional’’
under the Copenhagen interpretation, but not in the Everettian
context.

Measurement neutrality and an associated principle that he
calls ‘‘equivalence’’ have been argued for by Wallace in a number
of papers—Wallace (2002, 2003a, 2003b, 2007). He considers
games in which the measurement result is erased after it triggers
an associated reward and before the experimenter has recorded
the outcome. In the symmetric (y ¼ p=2) case, the final states are
independent of the pattern of rewards, which reinforces the
arguments leading to (9). However, this is not an issue in the
present discussion, which challenges the assumption of measure-
ment neutrality only in the asymmetric case. Another point
emphasized by Wallace (2007) is that the boundary between what
is usually taken as preparation and what is part of the ‘‘actual’’
measurement is essentially arbitrary, particularly in the context of
the Everett interpretation. However, the observation and record-
ing of the result by a conscious observer is part of the
measurement proper, and it is only at this point that subjective
uncertainty or the relevance of a caring measure is introduced
into the Everettian treatment of the Born rule.

Up to this point I have argued that the assumptions underlying
the derivation of the Born rule, in particular measurement
neutrality, are not necessary in an Everettian context, though
they may be treated as added postulates. I now intend to go
further and argue that there is an inconsistency between the
assumptions underlying the Everett interpretation and the Born
rule—or, indeed any rule that relates the likelihood of a
measurement outcome to the amplitudes (c and s in the above
example) associated with the branching of the wavefunction in a
non-trivial way. I shall continue to use the example of the
measurement of the spin component of a spin-half particle as a
focus of the discussion.

The scenario I now discuss is one where an observer (‘‘Bob’’)
records the number of positive spins (M) in a set of measurements
of the state of N identically prepared spins that have passed
through a Stern–Gerlach apparatus. We consider the particular
case where Bob does not know the value of y before he makes any

measurements; that is, he has not seen the apparatus or been told
how the magnet is oriented, which means that his initial state is
represented by a wavefunction which is independent of y.
However, if Bob knows the Born rule, he can estimate the value
of y as 2cos�1ðM=NÞ1=2 and his confidence in this value will be the
greater, the larger are M and N. As a result of this experience, Bob’s
state has been changed from one of ignorance to one where he has
some knowledge of y. This change must therefore have been
reflected in Bob’s quantum state, causing a modification to his
wavefunction, which now depends on y. To further emphasize this
point, suppose that the value of y can be changed without Bob’s
direct knowledge by another experimenter (‘‘Alice’’) who has
control of the Stern–Gerlach apparatus. If she does this and the
experiment is repeated a number of times at the new setting, Bob
will find that his expectations have been consistently wrong. He
may initially attribute this to statistical fluctuation, but eventually
he will amend his state of expectation to bring it into line with his
experience. Indeed, Bob may know that Alice is able to do this, in
which case he will be more likely to amend his state of
expectation at an earlier stage. Alice could then send signals to
Bob by transmitting sets of N particles using the same value of y
for each set, but changing it between sets. If the Born rule applies,
Bob can deduce the values of y that Alice has used from the
relative numbers of positive and negative results, so Alice has

again caused changes in Bob’s state of expectation and therefore
of his wavefunction.

It is one of the principles of the Everett interpretation that,
once branching has occurred and the possibility of interference
between branches has been eliminated, the wavefunction asso-
ciated with a branch describes the ‘‘relative state’’ of the system
contained in that branch, which cannot be influenced by the state
of any other branch. Moreover, the form of the relative state
functions, which represent the whole branch including the
version of Bob associated with it, are the same whatever the
values of the expansion coefficients c and s. This implies that
the properties of a system represented by such a relative state are
not affected by the measuring process. Thus, although these
constants enter the expressions, they do so only as expansion
coefficients, which have no effect on the wavefunctions of the
relative states associated with the component branches. In
particular, the observer’s state of knowledge of the value of y
cannot be altered as a result of this process. This is in direct
contradiction to the conclusion reached above, assuming that the
Born rule holds. There is therefore an inconsistency between the
principles underlying the Everett interpretation and the appear-
ance of a correlation between the apparatus setting and the
relative frequencies of the possible outcomes, such as is implied
by the Born rule.

To develop this point further, consider the state of the whole
system after N particles have passed through the apparatus, so
that, according to the Everett interpretation, the wavefunction
contains 2N branches that correspond to all possible sequences of
the results of the measurements performed so far. That is, using
(2),
Y

i¼1;N

ayðiÞw0�!
X

Psi

cmsN�mCðs1; s2; . . . ; sNÞ ð13Þ

where ayðiÞ is the initial state of spin i and w0 refers to the initial
state of the detecting apparatus, including the observer Bob,
which is independent of y, given the assumptions set out earlier.
Each parameter si has two values, þ and �; Cðs1; s2; . . . ; sNÞ

represents the state of the whole system (i.e. spins, measuring
apparatus and Bob) after the results si have been recorded in a
measurements on spin i for all i from 1 to N; m equals the number
of positive spins in this set;

P
Psi

implies a summation over all 2N

permutations of si. Each term in the summation refers to a
separate branch in the Everett interpretation.

It follows from (13) that the number of branches in which m

positive results have been recorded is N!=m!ðN �mÞ! and the Born
weight associated with this whole subset equals c2ms2ðN�mÞ. Under
the Copenhagen interpretation, the probability of observing m

positive results is the product of these two quantities: this has a
maximum value when m ¼ M ¼ Nc2 (¼ 3N=4, if y ¼ p=3 as in
case 3) and a standard deviation of jcsjN1=2 (¼ ON=4). Suppose
now that the Everett assumptions hold so that there has been no
collapse. After the measurement, wavefunction (13) will consist of
a linear combination of branches, each of which contains a version
of Bob who has recorded a value for m. If N is large, the vast
majority of observers will observe approximately equal numbers
of positive and negative results and a small minority will observe
results in the vicinity of the ratio predicted by the Born rule.
Repeating the experiment with a different value of y does not
change the number of observers recording any particular result,
so, if this were all there were to it, Bob’s experience would not
correlate with the apparatus setting and he would be unable to
deduce a reliable value of y from his observations. However, the
Everett interpretation only works if this is not all there is to it.
Because of subjective uncertainty, an observer’s successors in
branches that have a high Born-rule weight are somehow favored
over the others. How this can work is at the heart of the
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difficulties many critics have with the Everett interpretation, but
let us leave this on one side. The fact that these successors are so
preferred means that they can with confidence deduce the value
of y from their observations of M and N. Acquiring this
information must therefore have altered their reduced state, in
contradiction to the Everettian assumptions set out above.

Several points should be noted about the above. First, the
contradiction does not arise in the Copenhagen interpretation
because, as noted earlier, this assumes that stochasticity arises at
the point where the spin emerges from the Stern–Gerlach magnet.
The information as to which branch is occupied by the spin is
additional to that contained in the wavefunction and is obtained
by Bob through the collapse process. Hence, no contradiction
arises when this is used by the experimenter to guide his
expectations about subsequent measurements.

Second, it should be emphasized that the argument applies
only to information about the apparatus setting that is obtained
by Bob as a result of the measurement process. He could of course
have been told in advance how the apparatus was set up so, in this
case, w0 would already be a function of y. The latter argument
could probably be extended to show that he should not be able to
obtain further information about y by the measurement process,
but I believe it clarifies the discussion if we focus on the case
where Bob has no prior knowledge of y: to demonstrate
inconsistency, it is only necessary to establish a contradiction in
at least one particular case.

Third, although I have focussed on the Born rule, the above
arguments would apply equally well to any model in which the
outcome frequencies were assumed to depend systematically on
the expansion coefficients. This is of rather marginal interest given
that the Born rule is the one that is established by experiment.

If we accept the above, it follows that the only way probability
should be able to enter the Everett interpretation is if all branches
are assigned equal weight. Might it nevertheless be possible to
reconcile this conclusion with experiment? Up to now, we have
assumed one branch per outcome, without attempting to justify
this. We now turn to the question of ‘‘branch counting’’, which
means considering the number of branches associated with any
given measurement outcome. If we accept the argument that the
expansion coefficients play no role in determining the outcome
likelihood in an Everettian context, then an experimenter’s
expectation of a particular outcome should be proportional to
the number of branches associated with it. Such an assumption is
similar to that made in statistical thermodynamics, where the
ergodic hypothesis states that the result of averaging over an
ensemble of systems is the same as the time average for a single
system. When applied to the symmetric case, this is an essential
part of the arguments leading to (9) and (10). However, branch
counting has been strongly criticized by DSW on a number of
grounds. Wallace (2007) considered a scenario in which extra
branching is introduced into one (say the plus) channel by
associating with it a device that displays one of, say, a million
random numbers. He argued that this must be irrelevant to an
experimenter who sees only the measurement result and is
indifferent to the outcome of the randomizing apparatus. This is
because ‘‘if we divide one outcome into equally valued sub-
outcomes, that division is not decision-theoretically relevant’’.
However, this argument does not fully take into account the
Everettian context. Referring again to the classical game discussed
earlier and illustrated in Fig. 1, we can consider the additional
branching on the right of both setups as due to the presence of a
randomizer with three possible outputs. In the case of the C game,
these are indeed irrelevant to the expectation of the player,
because a ball emerges from only one of the three channels and
must therefore have passed through the upper channel at the
previous stage. However, in the case of the E game, the chances of

observing a black ball are enhanced (tripled) by the splitting and
this would have to be taken into account by any rational player,
even if the only result she sees is the color of the ball. Similarly, if
we introduce a random number machine as Wallace suggests,
then its state will be a linear combination of its million possible
outcomes and all these will be associated with a positive value of
spin. Given that there is only one branch associated with the
alternative outcome, we could well expect the subjective like-
lihood of a positive result to be one million times greater than that
for a negative outcome.

A second argument deployed to criticize branch counting is
based on the fact that the interaction of a quantum system with
its environment leads to an immensely complex branching
structure. Indeed it is claimed by DSW that the number of
branches is not only very large (possibly infinite), but is also
subject to very large and rapid fluctuations before, during and
after the observation of a result; which may mean that it is not
meaningful to talk about even the approximate number of
branches that exist at any time. This is adduced as a reason why
a rational player should ignore the complexity of the branching
structure and instead expect to observe results consistent with
the Born rule. However, if the likelihood of observing a particular
result is proportional to the number of associated branches, the
complexity introduced by decoherence should actually result in
the outcome of a measurement being completely unpredictable.
The situation is similar to chaos in classical mechanics or to
turbulence in hydrodynamics, whose onset certainly does not lead
to increased predictability. In the arguments above, we assumed
that each outcome was associated with a single branch, so what
would be the likely consequences of a complex branch structure
in an Everettian context? First, there may well be situations in
which we could expect the number of branches associated with
different outcomes to be equal, at least when averaged over a
number of measurements, and in this case our earlier discussion
would not be affected. However, we might be able to devise a
situation (e.g. one in which a detector was placed in the positive
output channel only) where the numbers of branches in the two
channels would be expected to differ greatly. We should then
expect to detect a larger number of (say) positive than negative
results. This would be true even if the Stern–Gerlach apparatus
were oriented symmetrically—i.e. with y ¼ p=2, so the symmetry
on which we based some of our earlier arguments would not hold.
The complexity and fluctuations of the branch structure in the
Everett case would render even the statistical results of a
quantum measurement unpredictable. Such a situation is some-
times described as being ‘‘incoherent’’ and it has been argued that
this would mean that the universe would be nothing like the one
we experience. However, the obvious conclusion to draw from this
is that the Everett assumptions are falsified, rather than that the
Everett model is correct and the arguments based on it that lead
to this incoherence must be wrong.

It might be thought that branch counting could restore the
Born rule if the number of branches associated with a particular
outcome were proportional to the Born weight. However, not only
is there no obvious mechanism to achieve this, but it is also
inconsistent with the Everett model for the same reasons as were
set out earlier. The quantum description of the branch structure is
contained within C in (13) and therefore cannot depend on the
expansion coefficients for the reasons argued above.

4. Conclusions

I have argued that attempts to prove the Born rule make
assumptions that are essentially self-evident in the context of the
Copenhagen interpretation, but not with the Everett model of
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measurement. I have further argued that probabilities which are
functions of the expansion coefficients are not consistent with the
Everett interpretation, because these quantities are not then
accessible to an observer in the reduced state associated with a
branch. An alternative scheme that could be consistent with
Everett is one where each branch has the same probability and the
probability of a given outcome depends on the number of
branches associated with it. However, this also cannot be made
consistent with the Born rule and it leads to predictions of chaotic,
unpredictable behavior, in contrast to the relatively well-ordered
behavior, invariably demonstrated in experiments. I conclude that
the Born rule is a vitally important principle in determining
quantum behavior, but that it depends on wavefunction collapse,
or something very like it, that does not supervene upon the time-
dependent Schrödinger equation. It would be possible to retain
the many-worlds ontology of the Everett model while allowing
information to be transferred through the measurement, but the
state evolution would no longer be governed by the Schrödinger
equation alone and the economy of postulates would no longer
obviously outweigh the metaphysical extravagance associated
with the Everett picture.

The debate between the different interpretations of quantum
mechanics has often been metaphysical in the sense that they
often make the same predictions and cannot therefore be
distinguished experimentally. The present paper has argued that
this is not so in the case of the Everett interpretation, which
predicts results different from those that follow from the
Copenhagen interpretation, which in turn are supported by
experiment. If this is accepted, the Everett model will have been
falsified and the search for a consensual resolution of the
quantum measurement problem will have to be focussed else-
where.
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The topic of decoherence has a long history, beginning in the 1950s by Ludwig, Green and others; by the 1970s 
simple analyses of real systems had begun (Zeh, Simonius), and the idea that the environment could impose 
‘selection rules’ (what later was called by Zurek the ‘pointer basis’) had been analysed (see eg., Simonius). A 
fundamental change in attitude began with the idea of Leggett et al. in the 1980’s, that one could give detailed 
theoretical predictions for the quantum mechanics of large systems, and that SQUIDs could show macroscopic 
coherence properties (this was finally seen by Chiorescu et al. in 2003). This forced the well-known ‘measurement 
problem’ to become a serious topic of investigation in mainstream condensed matter physics; it also stimulated 
serious experimental tests of the validity of QM on the mesoscopic scale. Perhaps an even more fundamental change 
in focus was engendered in the discussion, mainly in the last 15 years, of large-scale entanglement, which is required 
for most kinds of quantum information processing. The quest for quantum communication devices, and for a 
workable quantum computer, has led to an avalanche of experimental work, in solid-state systems and in quantum-
optical systems. As a result of these developments, it has become clear that we need a proper theory of decoherence, 
which explains not only general features like the connection to quantum measurements, the relationship to 
dissipative processes, and the possibility that there may be ‘intrinsic decoherence’ processes in Nature, but which 
also elucidates the detailed mechanisms involved in decoherence, and which can make quantitative predictions for 
the dynamics of decoherence in real systems.  
 
This talk will begin by reviewing some of the history, and standard questions that arise, such as the relationship 
between decoherence and the ‘classical’ limit of QM, as well as to quantum measurements, dissipation, and so on. I 
will briefly discuss some recent ideas such as ‘intrinsic decoherence’ mechanisms, and ‘3rd party decoherence’. 
However the main focus of this talk will be on the mechanisms of decoherence arising in Nature, and the ways in 
which one can try to control or suppress them in the lab. I will emphasize decoherence in condensed matter systems, 
discussing how one can reduce the description of environmental decoherence to one of two models, in which the 
environment is described as either an oscillator bath or a spin bath. The implications for important contemporary 
problems in physics are discussed, with emphasis on solid-state qubits, and on ‘quantum critical phenomena’.  
 
Decoherence is often assumed to rule out coherence phenomena at high temperatures. Some of the most interesting 
examples of large-scale low-temperature quantum coherence will be referred to (involving SQUIDs and magnetic 
systems) [1]. However one can actually get remarkable examples of room-temperature coherence, even in condensed 
matter systems: I will make some brief remarks on decoherence in some biological systems, with specific reference 
to the light-harvesting molecules [2]. 
 
[1] Experimental work on decoherence in solid-state systems is being reviewed in B Barbara’s talk. 
[2] Decoherence in biological systems will be discussed in detail in H Briegel’s talk. 
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(1978) 
3. HM Ronnow et al., “Quantum Phase transition of a magnet in a spin bath” Science 308, 389 (2005) 

[included in reader—see Bernard Barbara’s section] 
4. E Collini et al., “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature” 

Nature 463, 644 (2010). 
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Abstract

The understanding of decoherence is critical to philosophical debates on several different topics,

including measurements, the ‘emergence’ of classical mechanics from quantum mechanics, and the

arrows of time. This paper first reviews the basic mechanisms of decoherence in Nature, stressing

recent discoveries and the crucial importance of ‘low-energy’ physics. The way in which the

interpretation of some recent experiments relates to the problem is also delineated. Finally, some of

the more common questions posed by philosophers about decoherence are reformulated, and partial

answers are given to these. Throughout the article, the incomplete nature of our understanding is

stressed, and the way it depends on several different unresolved questions in both low- and high-

energy physics.
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1. Introduction

‘Decoherence’ means different things to different people. To most physicists, phase
decoherence is a fact of life, important throughout physics (and large parts of chemistry).
For those interested in the foundations of quantum mechanics, and for historians and
philosophers of physics, decoherence is interesting because of its connection to three main
problems, viz., (i) the ‘quantum measurement’ problem; (ii) the ‘emergence’ of classical
see front matter r 2006 Published by Elsevier Ltd.

.shpsb.2006.04.003

nding author at: Department of Physics, Pacific Institute of Theoretical Physics, University of British

24 Agricultural Road, Vancouver BC, Canada. Tel.: +1604 822 5711; fax: +1604 822 5324.

dress: stamp@physics.ubc.ca.

www.elsevier.com/locate/shpsb
dx.doi.org/10.1016/j.shpsb.2006.04.003
mailto:stamp@physics.ubc.ca


ARTICLE IN PRESS
P.C.E. Stamp / Studies in History and Philosophy of Modern Physics 37 (2006) 467–497468
from quantum mechanics (and the hinterland between the two); and (iii) the arrows of
time. The philosophical literature on decoherence over the last two decades has mostly
focussed on what is sometimes called the ‘decoherence programme’,1 viz., the effort to
explain away problems like the three just mentioned as decoherence phenomena.
Curiously most physicists are not interested in either the decoherence programme or

philosophical discussions of it—this in spite of their strong professional interest in
decoherence phenomena. One reason for this is probably the empirical bent of most
physicists, who quickly lose interest in grand ‘scenarios’ or ‘programmes’ when details are
not forthcoming,2 or when the scenario is not experimentally testable (necessarily the case
for many discussions of the arrows of time (Halliwell et al., 1994; Savitt, 1995; Schulman,
1997; Zeh, 1989)). However there is also somewhat of a schism, between (a) physicists who
feel that decoherence is a fairly trivial process, ubiquitous in physics, about which no
interesting general statements can be made, and (b) those who feel it is highly non-trivial,
but that meaningful discussion requires models that are both realistic and of some
generality. The problem here is that most discussions of decoherence in the context of
foundational problems (e.g., quantum measurements) have been based on simple idealised
models. There is an obvious need for realistic models of complex macroscopic systems, if
we are to address any of the three big questions mentioned above. This problem has
occasionally been acknowledged by proponents of the decoherence programme. For
example, Omnés (1994, Chapter 7), in his book does recognise some of the limitations of
simplified models of decoherence—although this does not stop him from claiming some
rather general results for macroscopic systems! For remarks on the validity of such results,
see Section 4.
Ironically, in the last 20 years a quiet revolution has taken place in our understanding of

the quantum mechanics of large systems, and of decoherence phenomena. The revolution
is by no means complete, and we will see that several crucial problems remain to be solved.
However we now have at hand many of the details missing from earlier discussions. As
often happens, many early general assertions made on the basis of the idealised models can
now be seen to be misleading, or just plain wrong. Despite this, the newer advances have
had little impact on the philosophical literature. This is surprising and unfortunate, since
the results do radically change our perspective on at least the first two questions mentioned
above, and possibly also the third.
1For an introduction to the philosophical literature on decoherence, see Bacciagaluppi (2005). What is called

the ‘decoherence programme’ by, e.g., Joos et al. (2003) and Zeh (2002), can actually be separated into various

strands, depending on whether one is dealing with non-relativistic physics or quantum gravity, and on which

question one is interested in (quantum measurements, the interpretation of quantum mechanics, large-scale

quantum phenomena, cosmology, etc.). For extensive reviews, see Joos et al. (2003), Omnés (1992, 1994), Zeh

(2002) and Zurek (2003), and for reviews of the ‘decoherence histories’ approach, see Griffiths (1984, 1986), Hartle

(1991) and Gell-Mann & Hartle (1993). For discussions of the arrows of time, which touch upon the connections

to decoherence, the quantum arrow, etc., see Schulman (1997), Zeh (1989), Halliwell, Pérez-Mercader, & Zurek

(1994) and Savitt (1995).
2Typically what experimentalists are looking for is testable predictions—or at least something sufficiently

precise and realistic that it can be related to some present or future class of experiments. Theorists are also looking

for something quantitatively precise, which acquires much greater interest if it is both realistic (i.e., not

oversimplified) and of some broad generality. Note that ‘theoretical programmes’ sometimes have a bad name in

physics—an attitude summed up in Pauli’s famous letter to Gamow in 1954 (referring to Heisenberg’s

‘programme’ for a unified field theory). Writing ‘‘This is to show I can paint like Titian’’, he drew a simple

rectangle, and then wrote ‘‘Only technical details are missing’’.
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The purpose of this paper is to
(a)
3I

that
4T

early
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Zeh
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(Zur
review quickly, for non-specialists,3 what we now know about the physical mechanisms
of decoherence, stressing the recent developments and their broader implications
(Section 2). Then, in Section 3, I discuss what this means in the lab—how do
experiments bear on the fundamental questions mentioned above? The main interest
here for philosophers is to see just how much the interpretation of experiments depends
on how one feels about the ultimate validity of quantum mechanics. For those wishing
to follow up any of the themes mentioned in these two sections, I have given extensive
references;
(b)
 in the light of the recent developments, to reconsider some of the more general
questions mentioned above—concentrating on whether there exist ‘intrinsic’ sources of
decoherence in Nature, how decoherence relates to the emergence of classical physics,
to irreversibility and dissipation, to quantum measurements, and to the arrows of time
(all in Section 4). The conclusion (Section 5) summarises where we are now.
2. Decoherence and quantum relaxation: models, mechanisms, dynamics

Discussions of decoherence usually begin with the interaction of a physical systemS with
an environment E. One imagines that S starts off in some simple superposition of states,
sayC ¼

P
jcjcj, which upon interaction with E, becomes entangled with it, so that the final

state cannot be decomposed into a product state. Averaging over the environmental
variables then produces a full or partial mixture, rather than a superposition of states, for
S. How this all happens in the real world is part of the ‘decoherence problem’, and it is
interesting to see how views on this have evolved over the years.

Even before decoherence was discussed as such in the literature, mechanisms for it were
being discussed in the context of the measurement problem, in the wake of the analyses of
the 1930s of quantum measurements (London & Bauer, 1939/1983; Neumann, 1932/1955;
Pauli, 1980). Early discussions of decoherence processes emphasised the role of
randomisation of phases, and analysed this in terms of simple models of system/
environment interactions, leading to irretrievable loss of phase correlations in the
environment.4 Very interesting ideas emerged from these discussions, including the
possible role of amplification and relaxation, at least in measurements (Daneri et al., 1962,
1966), and the idea that the structure of interactions in the world might inevitably lead to
decoherence in certain ‘preferred bases’.5 Simple models of decoherence were analysed in
some of these papers, including Geiger counters, cloud chambers (an analysis going back
t is assumed that the reader is familiar with elementary quantum mechanics. An intuitive understanding like

provided by Feynman (1965) is also useful.

he idea of decoherence goes back at least to Ludwig (Born & Ludwig, 1958; Ludwig, 1953, 1958). Another

paper, concentrating on the role of the environment in the measurement problem, is Green (1958). These

rs all argued that environmental dephasing (what we now call decoherence) would destroy large-scale

tum behaviour. This idea was picked up and further developed in Daneri, Loinger, & Prosperi (1962, 1966),

(1970, 1973), Joos & Zeh (1985) and Simonius (1978), amongst others.

he idea of preferred bases and preferred states, selected by decoherence, is described in, e.g., Simonius (1978),

e these states are called ‘inert states’; and in Zurek (1981, 1982), where they are called ‘pointer states’. See also

ek, 2003).
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to Mott), Stern–Gerlach experiments, sugar molecules, damped oscillators, etc. However,
insofar as any macroscopic features of these examples were discussed, this was done in a
very crude way, the aim being to demonstrate that decoherence would always suppress
quantum interference effects except at the atomic or molecular scale (an assertion repeated
(Van Kampen, 1988) as late as 1988).
This old orthodoxy was severely upset at the beginning of the 1980s by the now well-

known work of Leggett et al. (Caldeira & Leggett, 1983; Leggett, 1984; Leggett et al.,
1987), who pointed out that in fact one could expect superconducting SQUIDs to show
quantum tunneling and interference properties at the macroscopic scale—and that
moreover, one could test quantum theory at the macroscopic scale in this way. Initial
scepticism has yielded in most quarters to the weight of experimental evidence—
both macroscopic tunneling and coherence have now been seen in superconductors (see
Section 3). In related developments, experimentalists have succeeded in the multi-particle
entanglement of atoms in traps (Häffner et al., 2005; Leibfried et al., 2005), as well as
superpositions of photon states in cavities (Zhao et al., 2004, and refs. therein); and new
schemes, involving ideas like ‘quantum non-demolition’ measurements,6 have been
employed to reduce decoherence and dissipation effects in optical systems and in large
Al bars (for gravity wave experiments).
Leggett et al. used an ‘‘oscillator bath’’ representation of the environment—a ploy first

described by Feynman and Vernon (1963) and developed much further by Leggett et al.
(Caldeira & Leggett, 1983; Leggett, 1984; Leggett et al., 1987). These models clearly lend
themselves to problems in particle and string physics, quantum optics, and cosmology,7

and they are also often used in condensed matter systems at low temperatures (Weiss,
1999). In contrast to the qualitative pre-1980 discussions of decoherence, we have a real
theory, quantitatively testable on a large variety of systems. This completely changes the
nature of both the scientific and the philosophical debates, as we shall see in the rest of this
article.
However, in spite of this remarkable success, there is an important quantitative problem,

particularly in solid-state systems—when one comes to compare the decoherence rates
predicted by Caldeira–Leggett theory with the measured rates, the experimental rates are
typically several orders of magnitude larger than theory predicts (see Section 3). This
discrepancy indicates that most of the decoherence is coming from somewhere else, in ways
not described by oscillator bath models. Whether this constitutes in some way a real
problem of principle, particularly for tests of quantum mechanics at the macroscopic scale,
is one of the topics addressed herein.
In Section 2.1 the main features of environmentally induced decoherence are explained,

with an emphasis on the physical mechanisms responsible. Since there is a widespread
belief that all decoherence is caused by direct interaction with an environment, in Section
2.2 I briefly outline another way decoherence can happen. The material of Section 2 is
essential if one wishes to address the more philosophical questions associated with
decoherence.
6For discussions of some novel measurement schemes, including quantum non-demolition schemes, see

Braginsky & Khalili (1992) and Caves, Thorne, Drever, Sandberg, & Zimmermann (1980).
7For some examples of the use of oscillator bath models in cosmology and string theory see Cornwal &

Bruinsma (1988), Callan & Freed (1992) and Callan, Felce, & Freed (1993, and refs. therein).
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2.1. Quantum environments

2.1.1. Extended environmental modes; oscillator baths

Research on the dynamics of polarons and related problems led Feynman in the early
1960s to a general discussion of the interaction of a quantum system with its background
environment. Feynman and Vernon (1963) considered the case where each environmental
mode coupled only weakly to the central system. Arguing that for this weak-coupling case,
the effect of any environment could be mapped to that of a set of oscillators, they treated a
model Hamiltonian in which a central system S, with generalised coordinates P;Q and
Hamiltonian H0ðP;QÞ, interacted with an environment E of oscillators with generalised
coordinates fpq;xqg and Hamiltonian Hosc

envðfpq; xqgÞ, via a simple bilinear coupling:

Hosc
eff ¼ H0 þH int þHosc

env; H intðQ; fxqgÞ ¼
XN

q¼1

cqxqQ. (1)

We assume that the entire Hamiltonian Heff ðO0Þ is defined with an ultraviolet cutoff energy
O0. The important points to bear in mind here are:
(i)
 the oscillators have bosonic statistics, and typically represent delocalised modes,
extending over the whole region of the environment. Typical examples are phonons,
magnons, electron–hole pairs, or photons, which are wave-like oscillations of some
background field. These are the low-energy modes of the environment—at higher
energies the model usually breaks down;
(ii)
 the couplings fcqg are weak—in fact cq�OðN�1=2Þ, where N is the number of low-
energy environmental modes (N is thus proportional to the size of the environmental
domain). This typically follows because we must normalise the oscillator wave
functions (so they are �OðN�1=2Þ). Typically N is very big, so that mathematical
treatments often just adopt the ‘thermodynamic limit’ N !1. Since the effect of each
oscillator to second order is �jcqj

2�Oð1=NÞ, their total effect is then independent of N,
as it should be in this limit. Thus each oscillator is only very weakly affected by the
system, but the system may be quite strongly affected by the oscillators.
Curiously, the work of Feynman and Vernon had no impact whatsoever on the discussion
of quantum measurements or decoherence for two decades—possibly because it was
phrased in the then unfamiliar language of path integrals, and because the community
working on the foundations of quantum mechanics was less interested at that time in
detailed models.

At the beginning of the 1980s Caldeira and Leggett (1983) introduced a somewhat
generalised Feynman–Vernon model, in which the coupling

P
qcqxqQ was replaced by

Hosc
int ¼

XN

q¼1

½FqðQÞxq þ GqðPÞpq�. (2)

The Hamiltonians (1) and (2) are effective ones, which means amongst other things that
the couplings cq;Fq, and Gq, the oscillator frequencies oq, and even the system
Hamiltonian H0 depend not only on the UV cutoff O0 but also on the bath temperature
T. This may seem strange to some (particularly readers more at home with the models used
in particle physics). Recall however that all Hamiltonians in physics are effective ones,
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written in a quantum system in terms of operators defined over some restricted Hilbert
space, depending implicitly or explicitly on energy cutoffs, temperature, and possibly other
boundary conditions.8 It is only when dealing with a very rarified medium that one can
ignore these complexities.
Caldeira and Leggett gave arguments for the very general applicability of such effective

Hamiltonians to systems at low energy (along with specific application to superconducting
SQUIDs). Consider some arbitrary environment, with eigenstates faðXÞ and eigenenergies
�a defined over the environment’s full multi-dimensional coordinate space X. Assume the
system interacts with this environment via some interaction V ðQ;XÞ. Then the arguments
go as follows:
(a)
8T

recen

19th

philo
Certainly we can recover an oscillator bath model if the coupling between different
eigenstates induced by the interaction V ðQ;XÞ is weak, i.e., under the Feynman–
Vernon condition that

jVabj5jð�a � �bÞj (3)

for all relevant environmental states, where V ab ¼
R
dXf�aðXÞV ðQ;XÞfbðXÞ. The

oscillator modes then correspond to the transitions between these states, and
oq � ð�a � �bÞ.
(b)
 However, even if the weak-coupling condition is not obeyed, we can use a
Born–Oppenheimer argument to derive a similar criterion. We first define adiabatic
environmental eigenstates ~faðX;QÞ and eigenenergies ~�aðQÞ, which depend on the
instantaneous system coordinate Q. Now suppose that these states have a fast

dynamics compared to the slower dynamics of the system coordinate Q (formally, that
if Q moves on a frequency scale E0, then E05~�a). One then defines a fake ‘gauge
potential’ Aab, describing the effect of the slowly changing Q on the bath modes, given
by iAab ¼

R
dX ~f

�

aðXÞq=qQ ~fbðXÞ; there is no reference to the original interaction
between Q and the bath modes, because this has already been incorporated into the
renormalised ~�a. Standard manoeuvres then show that we can make a mapping to an
oscillator bath provided

jAabj5jð~�a � ~�bÞj (4)

for all the relevant modes. If (4) is satisfied, then the oscillators now describe
transitions between the new adiabatic bath modes, with frequencies oq � ð~�a � ~�bÞ; and
one can also derive the couplings F q;Gq in terms of the gauge coupling in (4).
(c)
 Leggett et al. then argued that the low-T, low-energy quantum dynamics of such a
system could be related to its higher T dissipative classical dynamics (cf. Fig. 1). From
the classical dissipative dynamics one infers a low-energy effective Hamiltonian
(having the form (1), with the generalised interaction in (2)); in particular, one finds
the form of the couplings in (2). This is crucially important—instead of trying to derive
the form of Heff from some theory (a move which is always open to criticism given the
he idea of the ‘effective Hamiltonian’ (or the effective Lagrangian) is rather subtle, and bound up in the

t history of physics with the idea of the renormalisation group (although discussions go back at least to the

century). See, e.g., Anderson (1984). For a recent discussion of the effective Hamiltonian, directed to a

sophical readership, see Stamp (to be published).
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huge complexity of large systems), one instead infers it directly from experiment.9 One
then derives the quantum dynamics of the system from this effective Hamiltonian.
At first glance the assumptions behind the oscillator bath model seem restrictive—small
oscillations and weak coupling to each mode, use of a Born–Oppenheimer approximation,

etc. However appearances are deceptive—oscillator bath models are quite robust in the
real world. A large class of effective Hamiltonians (sometimes called a universality class),
which will describe many physical systems, can be mapped to models of the oscillator bath
type (Dubé & Stamp, 2001). Examples include: (i) itinerant fermion baths (e.g., a bath of
interacting conduction electrons), in three, two or one dimensions; (ii) systems having
weak higher-order ‘anharmonic’ couplings to extended bath modes—these can be
absorbed into modified couplings to a new set of oscillators (the couplings and oscillator
frequencies now being very strongly T-dependent); and (iii) systems where bath modes are
strongly coupled to the system, provided the condition (4) is not violated (i.e., provided the
effective coupling between two environmental states goes to zero fast enough as one
reduces the energy difference between them). It is worth remarking here on a point
which is crucially important for decoherence. The reduction in the strength of coupling to
oscillator bath modes at low energies is a general feature of extended environmental
states, whose density of states always goes down with energy, because of decreasing
available phase space volume. This means that at as one lowers energies and temperatures
towards zero, we can naively expect the decoherence from oscillator baths to also decrease
to zero.

We have seen that oscillator bath models of quantum environments are thus much more
general than is often assumed in the literature. However they certainly cannot always
work, and they clearly fail in many solid-state systems at low temperatures. In order to
understand why, we make a little diversion into the real world of low-energy physics.
n Caldeira–Leggett theory, the interaction between system and environment is summarised in a ‘spectral

tion’ Jðo;TÞ, a function of frequency and temperature. If the Caldeira–Leggett effective Hamiltonian applies

ome physical system, and if one knows Jðo;TÞ, then the behaviour can be derived theoretically in both

ical and quantum regimes. More typically, one infers Jðo;TÞ from the classical and/or quantum behaviour in

riments.
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2.1.2. Interlude: real condensed matter

Condensed matter is all around us—we are directly aware of little else. All measuring
systems are made from condensed matter. It is clearly messy, and complex structures and
order are evident everywhere (not least in living things). As a result, except for the He
liquids (which go superfluid at low T and which can be made in essentially completely pure
form) and rarified gases and plasmas, the low-energy effective Hamiltonians of real

condensed matter systems are extraordinarily subtle (and very far from the descriptions
usually given in student textbooks). There is a common misunderstanding that these
subtleties have to do with ‘dirt’ effects (the ‘squalid state’, in Pauli’s famous phrase). In fact
they are mostly intrinsic, for the following reasons (footnote 8):
(i)
10T

articl

(1986

comp
Topology. Many-particle wave-functions have topological properties which restrict
and sometimes control the dynamics. This often leads to new branches of low-energy
‘topological excitations’, with their counterpart in the effective Hamiltonian
(Thouless, 1998).
(ii)
 Lattices þ interactions. In solids, electrons are constrained to move between different
atomic orbitals. Strong repulsive interactions between electrons can prevent more than
one particle per orbital, imposing a highly non-trivial structure on the Hilbert space of
the effective Hamiltonian and even causing the low-energy states to localise.
(iii)
 Boundaries or edges. All systems have boundaries. In conjunction with long-range
forces and/or the topological properties of wave-functions, the boundaries and the
states localised near them can control the low-energy properties of the whole system.
(iv)
 Frustration. Interactions between two different pairs of particles or spins are often
‘incompatible’ (i.e., lead to contradictory effects on any one of the particles). The
result is typically a large number of almost degenerate low-energy states which hardly
communicate.10 The system can never reach its putative ground state (which then
becomes a mere mathematical chimera). Because of frustration, most pure solids,
without impurities, are intrinsically disordered. States pile up at low energies—many
of these low-energy states are localised (footnote 10).
Clearly none of these effects come from ‘junk’ or ‘dirt’; moreover, because they arise
from very general mechanisms, they lead to effects that are ubiquitous in low-temperature
experiments. These include peculiar structure in the low-energy density of states, complex
and often non-linear long-time relaxation phenomena, including ‘glassy’ behaviour (the
freezing out of dynamics caused by frustration), increasingly subtle kinds of quantum
ordering as one lowers the temperature, etc. Over the last four decades a phenomenological
description has emerged for these low-energy phenomena, in terms of a set of low-energy
discrete modes (i.e., each having a discrete finite set of states, often only two, in the energy
range of interest), appropriate to localised states (Anderson, 1994; Binder & Young, 1986;
Esquinazi, 1998; Mézard et al., 1987). These states interact both amongst themselves, and
with the extended ‘oscillator modes’. Thus one ends up with a low energy description in
terms of a set of interacting ‘two-level systems’; usually the interactions are fairly weak,
he only elementary review of some of the low-energy complexities in real solids seems to be the five short

es by Anderson on ‘spin glasses’ (Anderson, 1994). More sophisticated reviews are by Binder & Young

) and Mézard, Parisi, & Virasoro (1987); this latter book also makes the connection with work in

utation and biology.
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although they can have important effects. There is certainly no universal agreement about
this picture (Yu & Leggett, 1988), but in many cases there is extensive evidence that it gives
a good description of the low-energy physics (Anderson, 1994; Binder & Young, 1986;
Esquinazi, 1998; Mézard et al., 1987). I emphasise again that these effects are pretty much
universal in solids, although their effects are sometimes not obvious until very low
temperatures. Their effects on ordinary transport and other dissipative properties can be
very small (making them almost invisible at higher temperatures), but we shall see that
their contribution to decoherence can be very large.

One is often met by surprise at this situation. How, it is asked, can a simple solid show
such ‘pathological behaviour’, when after all it is made up electrons, protons, etc., which
can be described by a simple continuum theory having none of these complexities? The
fallacy in this argument is the assumption that the effective Hamiltonian of a composite
system will somehow be analysable into that of its constituents.11 This is not true—the
effective theory of the constituents is still an effective theory, applicable only in a certain
energy range and assuming a restricted Hilbert space. For this reason neither the
vacuum nor the low-energy eigenstates of the high-energy Hamiltonians used in particle
physics look anything like a condensed matter system (even though this is physically what
a high-energy system becomes if it is cooled!). In many real solids, an infinite hierarchy of
effective Hamiltonians, ever more complex, is expected as one lowers the energy scale
(footnote 8), and we only have a dim understanding of what their structure might be. In
other words, we do not really understand the basic structure of the lowest energy states
or Hilbert spaces of most many-body systems. An understanding of this low-energy
structure is one of the holy grails of condensed matter physics—in many ways it seems
more elusive now than it did 30–40 (or even 100) years ago. One hundred years ago,
with the vindication of the atomic hypothesis, but before quantum mechanics, a simple
reductionist view of condensed matter looked very reasonable. Thirty to forty years
ago, a unification of methods between quantum field theory and condensed matter physics
looked imminent—the Ginzburg–Landau–Wilson theory of phase transitions, and the
BCS theory of superconductivity, were shaping much of modern particle theory. This
unification has happened, but only in the study of ‘simple’ systems. For a more realistic
perspective see Anderson (1994), Binder and Young (1986), Esquinazi (1998) and Mézard
et al. (1987).

If some day we ever have a ‘‘complete theory of everything’’, with a ‘universal
Hamiltonian’ whose eigenstates (including the ground state) represent the real states of the
universe, over all energy scales, then we would presumably find that the low-energy states
of this Hamiltonian contain the full complexity of real condensed matter. Right now we
have little idea if such a theory would even be meaningful (it is perhaps more likely that the
whole Hamiltonian structure will be replaced by something more fundamental). We
certainly have not the slightest idea whatsoever what it would look like. Current efforts
towards progress range from theory at supra-Planck scale energies, to the exploration of
coherence phenomena at temperatures below 10�9 K.
11It is commonly argued that the ‘complexity’ of low-energy physics comes only from the large number of

constituents (this is certainly the point of view of ‘reductionists’). This argument is refuted in a well-known paper

by Anderson (1972), which inspired a very large subsequent literature.
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2.1.3. Localised modes: spin baths

We return now to the question at hand, which is to understand the sources of
decoherence at low energies in real condensed matter systems. The importance of the
previous discussion is that we now see we must deal with the large number of low-energy
localised states existing in solids, or more generally, low-energy modes having a finite
Hilbert space, with discrete excitations. The general nature of these was described above;
they include the eigenstates of nuclear spins, of topological defects, and of various more
subtle modes associated with frustration, boundaries, and intrinsic disorder. In any real
system there will also be ‘junk’ effects, coming from paramagnetic impurities, ‘charge trap’
excitations, etc. In many systems we may not know exactly what these discrete modes are,
but as noted above, their presence is often very obvious in experiments (Anderson, 1994;
Binder & Young, 1986; Esquinazi, 1998; Mézard et al., 1987).
Now one can always map a system having a set of M discrete states to a spin system,

with spin s, such that 2sþ 1 ¼M. Thus we can in all cases describe an environment of
these states as a ‘spin bath’ (Prokof’ev & Stamp, 2000). Spin baths have the following
general characteristics:
(i)
 The generic model for a quantum system interacting with a spin bath (corresponding to
the generic oscillator bath model defined by Eqs. (1) and (2)) has the effective
Hamiltonian:

H
sp
eff ðO0Þ ¼ H0 þH

sp
int þHsp

env, (5)

where H0ðP;QÞ describes the system as before; but now the interaction term is a vector
coupling to a set of ‘spins’ frkg (which for simplicity we take here to be two-level
systems, i.e., spin-1

2
systems):

H
sp
int ¼

XNs

k

FkðP;QÞ � rk, (6)

and the spin bath Hamiltonian itself has the form:

Hsp
env ¼

XNs

k

hk � rk þ
XNs

k;k0
V

ab
kk0
saks

b
k0
, (7)

with a set of external fields fhkg, and interspin interactions Vkk0 . The generalisation of
this model to bath modes having M42 discrete states is straightforward.
(ii)
 Each bath ‘spin’ interacts only weakly with its compatriots—formally we require that
fjFkjgbjV kk0 j. If the frkg describe localised modes, this is quite typical. The different
bath excitation wave-functions do not overlap and can only communicate via weak
long-range interactions Vkk0 , whereas there is nothing limiting the size of the fjFkjg

(which are no longer �Oð1=N1=2Þ). The bath dynamics is then under the direct control
of the central system (note that inequality (4) is now violated), with its own ‘intrinsic
dynamics’ playing second fiddle. Recall that this is exactly opposite to the oscillator
bath system, where the intrinsic dynamics of the oscillator bath is only weakly
perturbed by the central system, because the oscillator frequencies foqg are much larger
than either the fcqg or the F q;Gq in (2). This situation is illustrated in Fig. 2.
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spins typically represent localised modes (not necessarily spins!) in the environment, each with a finite Hilbert

space (often two-dimensional). The coupling between spins is weak compared to the coupling of each to the

central system.
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Clearly under some circumstances we can map the spin bath onto an oscillator bath. For
example, if the interactions V kk0 are strong (i.e., if fjFkjgojVkk0 j and if jhkjojV kk0 j), then
the bath spins can couple together to form extended ‘spin waves’, and H

sp
eff ðO0Þ then maps

back to a Caldeira–Leggett model. If the central system dynamical energy scale E0bjFkj,
then one goes to an anti-adiabatic (or ‘anti-Born–Oppenheimer’) limit, in which the
system–bath couplings can be treated perturbatively. One can give more complete criteria
for the mapping of spin baths to oscillator baths (Prokof’ev & Stamp, 2000), which we see
must also involve the static fields fhkg.

In real physical systems the coupling energies jFkj and static field strengths fjhkjg are
often spread over a very wide range, particularly in systems with frustration, disorder or
impurities (note that ‘impurities’ include nuclear spins, which are almost everywhere; they
live in some finite fraction of the nuclei of almost all the elements in solids). We cannot
then use either or a Born–Oppenheimer or an anti-Born–Oppenheimer approximation,
there are many environmental modes which must be treated directly as localised modes.
Because these modes then have characteristic frequencies similar to those of the central
system we are interested in, they cause a lot of decoherence.

2.2. Bath-induced decoherence and relaxation

Although the detailed calculation of the dynamics of decoherence is a complicated
business, many of the main points can be understood by simple (although qualitative)
arguments.

As noted earlier, in the early development of this subject, the idea of decoherence was
very much bound up with quantum measurements. Decoherence was, in effect, viewed as a
process in which the environment E ‘measured’ the state of the system S being decohered,
via a transition

X

j

cjcjF0 !
X

j

cjwjFj, (8)
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for the combined S� E, with the final states fFjg of E uniquely correlated to the original
system states fcjg. The superposition still exists in the combined state of S� E, but
tracing out the environment gives a reduced density matrix rS

jj0 ¼ jcjj
2djj0 forS, in which all

correlations between the cj (i.e., all off-diagonal matrix elements in rS
jj0 , in this particular

Hilbert space basis) have disappeared. Recall that the infamous ‘measurement problem’
(d’Espagnat, 1976; Wheeler & Zurek, 1983) centres around states like (8).
Any real environment would not align its states so exactly with those of S; such precise

correlations can only be engineered by an experimentalist, by deliberate ‘state preparation’
(Margenau, 1973a,b). Nevertheless over the last 50 years there has been great interest in
how the environment might cause rS

jj0 to diagonalise in certain preferred bases (in the
context of measurement theory these states are called the ‘inert’ or ‘pointer’ states
(footnote 5)). The most popular is the basis set fQg of position eigenstates fQg, and one
assumes that rS

Q;Q0 tends over some timescale to a function which is narrowly focussed

around dðQ�Q0Þ (e.g., a Gaussian function rS
Q;Q0 ¼ ð1=2ps

2Þ
1=2 exp½�ðQ�Q0Þ2=2s�, with

small variance s2). This certainly can happen in simple models. The easiest way is to couple
some bath to S with a coupling linear in the system coordinate Q, and the model of a
central oscillator coupled bilinearly to a bath of oscillators has been the object of many
papers (which usually assume an Ohmic coupling) like Grabert, Schramm, and Ingold
(1988).
However these models and their behaviour lack generality, as we will see. Before

continuing, it is useful to give some intuition for the dynamics of decoherence, i.e., the time
evolution of rS. This is described by a propagator K, which relates the density matrix at
some time t2 to its state at an earlier time t1. Now let us go to a particular basis, the
position basis, which allows us to look at how K evolves in real space, using the highly
intuitive path integral formulation of quantum mechanics (Feynman & Hibbs, 1965;
Feynman, Leighton, & Sands, 1965). As discussed by Feynman, one can usefully write (see
also Feynman & Vernon, 1963):

KðQ2;Q
0
2;Q1;Q

0
1; t; t

0Þ ¼

Z Q2

Q1

Dq

Z Q02

Q01

Dq0e�i=_ðS0½q��S0½q
0�ÞF½q; q0�, (9)

where F½q; q0� embodies all the effects of the bath on the dynamics of S, after we have
averaged over the bath. To interpret (9), suppose first thatF½q; q0� ¼ 1, i.e., that the system
S is completely decoupled from the bath, and propagates freely. Then K propagates along
two paths qðtÞ and q0ðtÞ between the limiting arguments, and in the usual quantum way,
one sums over all possible pairs of paths. Thus F½q; q0� is just a weighting factor, defined
over these two paths, and it couples them. Moreover, F½q; q0� has a simple form; one can
always write F½q; q0� ¼ exp½�iF� G�, where the phase F½q; q0� and ‘damping’ G½q; q0� are
real.
Now suppose, for example, that F½q; q0� falls off rapidly when the paths q and q0 move

apart from each other. Then the density matrix will be forced towards an approximate
‘pointer basis’ in Q-space. Many other behaviours are also possible. The advantage of
dealing with F½q; q0� is that it can also be connected in a transparent way with (and
calculated from) the effective Hamiltonian, and the behaviour of F½q; q0� is easily
visualised.

Decoherence and relaxation in oscillator bath models. The essential properties of F½q; q0�
for a system in contact with an oscillator bath were defined by Feynman (Feynman &
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Hibbs, 1965; Feynman et al., 1965; Feynman & Vernon, 1963), and as noted above,
Caldeira and Leggett were able to relate the quantum and classical dynamics ofS for such
environments. This crucial step allows us to understand decoherence for such models in the
same terms as we understand ordinary dissipation.

In this way one arrives at the following intuitive picture. The ‘fast’ environmental modes
cause little decoherence or dissipation. They simply adapt their dynamics to the much
slower system dynamics, and their main effect is simply to renormalise this slow dynamics
(i.e., change its frequency scale somewhat). Dissipation and decoherence both arise from
energy exchange between system and bath, either because of thermal or quantum
fluctuations in the bath (one can also think of this as a combination of stimulated and
spontaneous emission/absorption processes). The connections established for oscillator
baths between decoherence and dissipation and between the classical and quantum
dynamics, are amongst the most remarkable results derived by Caldeira and Leggett.

The crux of the connection between decoherence and relaxation in oscillator bath
models lies in the weak-coupling assumption (i.e., the assumption that each bath mode is
only weakly perturbed by the central system; note again that the system itself may be very
strongly affected by the combined effect of all the bath modes). Decoherence and
dissipation are arising then from the same second-order processes, in which a single bath
mode intervenes to exchange energy with the system (foonote 9). By summing over all the
bath modes, one rapidly introduces standard results for a situation like this (Leggett, 1984;
Caldeira & Leggett, 1983). The ‘fluctuation–dissipation’ theorem, connecting the
fluctuation spectrum of the bath with the dissipation it causes on the system, is an
immediate consequence of the weak-coupling assumption (the derivation uses ‘linear
response’ theory). We can thereby connect the decoherence and dissipation in the system
directly to the noise spectrum of the environment.

To give a quick intuitive picture of all this, let us pick a really simple central system S,
viz., a ‘qubit’, the elementary component of a quantum computer, which we then couple to
an oscillator bath. This model (known as the ‘spin–boson’ model) has been studied rather
exhaustively (Leggett et al., 1987; Weiss, 1999). The qubit itself can be described by a Pauli
spin-1

2
vector s, and we choose a Hamiltonian H0ðsÞ ¼ D0tx þ �tz. Working in the basis of

the eigenstates j "i and j #i of tz, the propagation of the density matrix in time can then be
visualised very easily in path integral language (see Fig. 3). The qubit simply ‘flips’ back
and forth between j "i and j #i. This happens on a very short timescale �1=O0, governed
by the high-energy physics of the qubit at energy �O0. If we now add the couplingP

qcqtzxq to the oscillators (the analogue of the Feynman–Vernon coupling
P

qcqQxq to
Q), the effect of the bath is to allow ‘second-order’ interaction processes between the bath
and qubit,12 with the oscillators shown as wavy lines.

The qubit-bath coupling distinguishes the states j "i and j #i, so that the bath is in effect
‘watching’ the qubit. It is not surprising that the general effect of this coupling is to slow
down the qubit dynamics and to degrade coherence (i.e., superpositions) between j "i and
j #i. In path integral language, attractive interactions are generated between the jumps,
both on the same path and between paths; this causes them to bind together and thereby
disappear (thereby making jumps less frequent and also suppressing ‘off-diagonal’ states
12Each wavy line in the figure represents the emission and absorption of a bath excitation, and is thus second

order in the interaction. Multiple interaction lines appear in the figure because the influence functional in the path

integral (Eq. (9)) is an exponential function of the interaction.
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Fig. 3. The behaviour in time t of the density matrix of a simple two-level system (a ‘qubit’) which is interacting

with a bath. The density matrix always involves two paths (the ‘forward’ path 1 and ‘return’ path 2); each switches

between the two available qubit states as time goes on. The qubit–bath coupling mediates interactions between

paths (hatched lines), as well as ‘self-energy’ interactions between states of the same path at different times.
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corresponding to interference). If the qubit-bath interaction is strong enough, this can
even cause all transitions to disappear, and the qubit is then frozen by the bath. The
dissipative slowing down can be related directly to the decoherence rate, and both can be
related to the quantum fluctuations of the bath, as we expect from the remarks made
above.
All this is very much what one might expect from the bath. Study of other models, such

as a moving particle coupled linearly to the bath according to (1) or (2), and either in a
homogeneous medium or in some potential well (or tunneling from it), give similar results.
Finally, we re-emphasise the point already made above that as one lowers the bath

temperature and the operating energy scale D0 of the qubit, the decreasing available phase
space for transitions in the bath states means that decoherence also falls rapidly
(particularly rapidly in insulators) and eventually goes to zero, as T and D0 go to zero.
High-energy bath modes cause little decoherence (one has to be careful to distinguish
simple renormalisation effects caused by these modes from genuine decoherence (Unruh,
1999)). Under certain circumstances, one can then engineer the oscillator bath environment
to have very few low-energy states (for example, in a superconductor one has a gap in
the low-energy spectrum). In this case we expect very little decoherence from the
oscillator bath.

Decoherence from spin baths. Decoherence works in a very different way for a spin bath,
and the differences with oscillator bath decoherence are very illuminating (Dubé & Stamp,
2001; Prokof’ev & Stamp, 2000). Consider a particular bath spin rk. Its dynamics is
controlled by (i) a static field hk, and (ii) a dynamic field FkðP;QÞ caused by the central
system, whose state is evolving in time. The interaction V kk0 with other spins is a small
perturbation on this.
How rk actually evolves in time depends on a third energy/frequency scale—the rate

_FkðP;QÞ at which FkðP;QÞ is changing. This rate is controlled by the dynamics of the
central system S. If the characteristic frequency scale for changes of FkðP;QÞ is O0, so that
j _Fk=Fkj�O0, then we have two limits, viz., (a) if uk51, where uk ¼ jFkj=O0�jF

2
k=
_Fkj, the
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system is moving too fast for rk to follow the field Fk (the ‘fast’ or ‘sudden’ limit); whereas
(b) if ukb1, the system dynamics is slow, and rk can track Fk fairly accurately (the
adiabatic limit).

To get an idea of how decoherence works here, imagine that S is a qubit s, so that its
typical paths are those just discussed for the spin–boson model. The coupling between rk

and s can be assumed quite generally to take the form H int ¼ t̂zxk � rk, so that the field
on rk from the central qubit, when it is in state j*i, is xk, and this field reverses its
direction when the qubit flips. Note that there is also another static field hk acting on rk

(cf. Eq. (7)); the total field is the sum of the two (we ignore the interaction fVkk0 g for
the moment).

How this then affects the dynamics of our bath spin rk is shown schematically in Fig. 4,
which shows a typical path for the bath spin (not for the qubit!). Each time s flips, the total
field jerks suddenly (on a time scale O�10 ) between two orientations. Suppose the bath spin
begins in a state oriented along one of these fields. A qubit flip then starts it precessing
about the new field; in general when s flips back the bath spin will be oriented in some
other direction, and it will begin to precess anew around this field. We see immediately
that: (i) the bath spin’s dynamics is now entangled with that of the qubit. In particular it
accumulates a ‘precessional phase’ that depends on the qubit path; and thence (ii)
averaging over the bath spins now gives decoherence in the dynamics of the central system
s, this is called ‘precessional decoherence’.
Fig. 4. The dynamics of a bath spin (the ‘kth’ bath spin) under the influence of a qubit. The qubit exerts fields c
"

k

or c
#

k , depending on whether the qubit is in state j "i or j #i. Each time the qubit flips, the bath spin must begin to

precess in the new field, causing the bath spin trajectory shown. The dependence of this trajectory on the qubit

trajectory means that their quantum dynamics are strongly entangled, even though no energy is exchanged.



ARTICLE IN PRESS
P.C.E. Stamp / Studies in History and Philosophy of Modern Physics 37 (2006) 467–497482
Precessional decoherence is almost always the most important mechanism of
decoherence coming from a spin bath. However it has very different characteristics from
that coming from oscillator baths. In particular
(i)
13

prec

the a

a tra
Notice that no energy transfer between system and bath is involved in precessional
decoherence; no transitions in the bath spin state occur.13 Nevertheless very strong
decoherence can occur—if the total phase accumulated by all the bath spins over a time
t is \2p, then averaging over this phase will give very strong decoherence in the qubit
dynamics over this time.
(ii)
 The bath spin dynamics is being driven by the qubit. If the qubit dynamics is switched
off, only the very weak interspin interactions fV kk0 g can drive the bath spins. Thus the
bath spin dynamics is largely slaved to the qubit dynamics and will slow down
drastically if the bath spin dynamics is frozen. Again, this is totally different from an
oscillator bath, whose internal dynamics is only weakly affected by coupling to the
central system. Incidentally this means that the intrinsic noise coming from the spin
bath has little connection to the decoherence.
These results underline the fact that decoherence caused by a quantum environment is
really about phase exchange between system and environment, and has no necessary
connection with either environmental noise or dissipation at all. It can proceed in the
complete absence of either. Some physicists, used to the framework of linear response and
fluctuation dissipation theorems, are quite surprised by this. It is important to remember
the limitations of the fluctuation–dissipation framework—it only works if the bath is
weakly perturbed by the central system (or by some probe). In the present case the spin
bath will only obey linear response and the fluctuation–dissipation theorem if it is weakly
perturbed, which is precisely the point at issue here. Indeed, it should be remarked that all
the standard ideas about linear response are more and more difficult to apply as one lowers
the temperature, since ever smaller perturbations will take the bath outside the linear
response regime.
This naturally leads one to ask how decoherence from spin baths behaves as one goes to

the low temperature limit. In contrast to oscillator baths, we can no longer assume that the
oscillators will go away in the low-energy limit. Indeed, as remarked above, localised states
tend to pile up at low energies, in many solids. Thus one can expect very large contributions
to decoherence from these states. Thus on purely theoretical grounds one can expect that
spin bath decoherence will dominate over oscillator bath decoherence at low temperature.
There is no reason to expect it to go to zero, even as T ! 0. Thus we see that the intuitive
connection between decoherence, dissipation, and environmental noise, all gained from the
oscillator bath models, is in no way generic to decoherence.
Nevertheless very surprising features can emerge. For example, a particle hopping

quantum mechanically around a lattice of some topology will, if coupled to an oscillator
bath, always tend at long times to show diffusive dynamics, and this feature is often cited
as an example of the inevitable crossover of quantum behaviour to classical stochastic
We omit here discussion of ‘topological decoherence’ from the spin bath, which is usually much weaker than

essional decoherence (and also causes no dissipation). See, e.g., Prokof’ev & Stamp (1993, 2000). Note that

nalogue of this can exist in special oscillator bath models where the longitudinal coupling cqxqtz is absent, but

nsverse coupling like c?q xqtx is present—again there will be no dissipation.
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behaviour in the presence of decoherence. But one can show (Prokof’ev & Stamp, 2006)
that if the particle is instead coupled to a spin bath, this is not so. In fact, in the long time
limit, there will always be some part of the particle density matrix which still shows
quantum interference behaviour. Since such lattices can be used as very general models for
the propagation of quantum information (Kempe, 2003; Kendon, 2003), this result is of
some importance.

Finally, I emphasise that none of these results are mere remarks about abstract models.
As we will note in Section 3, they are crucial for recent experiments.

2.3. Third-party decoherence

The literature on decoherence deals entirely, as far as I know, with environmentally
induced decoherence, in which phase correlations (and possibly also energy, etc.) are
transferred from system to environment by some physical coupling between them. The
purpose of this section is cautionary, to emphasise that entanglement between system and
environment can be set up without such a direct coupling, or even an indirect one. The
basic idea discussed briefly here (more details appear elsewhere14) is that of ‘third-party
decoherence’, in which decoherence emerges eventually in the dynamics of some system S,
not via any direct coupling to the environment E, but through the influence of a third
party.

Clearly there is a trivial way in which phase correlations can be set up between a system
S and an environment E, even when they are not directly coupled. One couples S to a
‘third party’ P3 which is in contact with (or is later brought into contact with) E. Thus
phase correlations, entanglement, etc., pass through the chain S! P3! E. However
this is clearly not a fundamentally new situation. Theoretically, we can simply expand our
original environment to a new environment E0 ¼ EþP3. The details may be non-trivial
and important for experiment, and interesting things may happen, since the entanglement
held between S and P3 may take some time to reach E (particularly if P3 is only later
allowed to interact with E). One can also extend this chain to include fourth, fifth, etc.,
parties.

There are however more interesting kinds of third-party decoherence. Consider as an
example the famous two-slit experiment, in which particles pass through two slits and an
interference pattern is produced on a screen. There will be simple decoherence mechanisms
here, in which the particle interacts with a photon bath (the dipolar EM interaction allows
photons to track the particle path QðtÞ) or even phonons emitted by the particle if it
collides inelastically with the slit system on its way through. However a more subtle effect
can arise if the particle itself possesses internal degrees of freedom fxlg, which themselves
do not interact with the particle centre of mass coordinate QðtÞ, but which do interact with
the slit system. In this way it is possible to entangle the environmental wave-function
FðfxlgÞ with the system wave-function CðQÞ, not through any interaction mediated by the
slit, but simply because they interact in similar ways with the slit system.

Without going into details (footnote 14), we can easily see how this works in a ‘toy’
calculation. If we ignore the internal modes of the particle, we have the usual situation
depicted in Fig. 5. Assuming slit states cj�jcjje

ifj , where j ¼ A;B, we then find the
14The discussion of third-party decoherence here is simplified and does not include energy relaxation and

equilibration, or any dynamics. For a proper analysis, see Stamp (to be published).
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Fig. 5. The two-slit experiment—a particle can pass via either slit A or slit B to reach a point with coordinate Q

on the screen S. The probability PðQÞ of arrival at Q then shows the standard interference pattern.
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probability of arrival of particles at coordinate Q on the screen is given by

PðQÞ ¼ PAðQÞ þ PBðQÞ þ 2½PAðQÞPBðQÞ�
1=2 cosfABðQÞ, (10)

where the phase fABðQÞ ¼ fAðQÞ � fBðQÞ in the interference term comes from the
difference in phase accumulated by particles traveling through the A or B slits.
Now suppose that when the particle goes through the slit system, internal modes are

excited, and these are excited differently depending on which slit the particle goes through.
In a real experiment on, e.g., buckyballs, which could involve the excitation of phonon
modes via the deformation of the buckyball, the deformation will certainly depend on
which slit the particle goes through. In this case the internal vibration modes will be excited
rather differently. After a passage through slit A, the lth mode will be in some state
fA

l ¼
P

nl
cA

nl
wnl

, with amplitude cA
nl
to excite this mode into its nth excited state; however

passage through the other slit B will give different amplitudes cB
nl
, so that the overlap

f l ¼ jhf
A
l jf

B
l ij ¼

X

nl

jðcA
nl
Þ
�cB

nl
jo1. (11)

We see that the wave-functions of the internal modes are now entangled with that of the
centre of mass motion, even though they have never interacted with them. It is simple to
now show that after tracing over these internal modes, we get a suppression of the
interference term above by a factor D ¼

Q
l f l .

The crucial point in the above discussion is that at no point ever do the internal modes of
the particle interact with its centre of mass coordinate, either directly or indirectly—
instead, they both happen to interact in a similar way with the slit system. In other words,
because of the symmetry of the system, a kind of underlying constraint, the two different
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systems (centre of mass coordinate, and internal modes) are forced to separately interact
with the slit system in such a way that afterwards their states are entangled. One can extend
this discussion to other examples, for which there is no space here.

Considering the problem from a more general standpoint, we note that third-party
decoherence can affect any system whose behaviour is conditioned by some agency which
also happens to condition the behaviour of an environment which we trace over. This
means that it can be quite discreet, and not so easy to eliminate from an experiment. As
with the spin bath, there is no dissipation in the motion of the central system coordinate Q,
yet it still experiences decoherence. The results also mean that the usual discussions of
decoherence in terms of interacting system–bath models, described by some effective
Hamiltonian, are incomplete. I emphasise that none of the above results are beyond the
reach of standard formalism (one can describe them equally well with reduced
density matrices or with the decoherence functional formalism, by suitably generalising
the averages). The novelty is the necessity for inclusion of the apparently innocuous third
party.
3. Decoherence in the lab

The 21st-century lab is the battlefield upon which our ideas on decoherence, confronted
by experiment, are going to live or die. Two points are worth emphasising:
(i)
 The stakes are very high. Questions at issue include: do we really understand what
causes decoherence and are there ineluctable or even intrinsic decoherence sources in
Nature? Is quantum mechanics valid at large scales? If so, can we use highly entangled
multi-particle states (in spite of decoherence)? The experimental answers to these
questions will play a major role in the future evolution of physics.
(ii)
 The relationship between experiment and theory is very complex here. On some fronts,
experiment is loath to challenge theory, even where there is striking disagreement. In
many cases, the interpretation of the experiments often depends on what theoretical
question the experimentalists decide they are probing. Any experiment can be
examined through different theoretical lenses.
In the last four decades some landmark experimental tests of quantum mechanics have
been formulated and enacted, particularly associated with Bell’s theorem and entangle-
ment (Aspect, Dalibard, & Roger, 1982; Clauser & Shimony, 1978). In some of this work,
and in offshoots of it, quantum entanglement and superposition have been tested over
length scales of many km (Marcikic et al., 2004). However none of these tests has involved
a large number of particles; rather, they have involved small molecules or a few entangled
photons or ions. A number of experimental tests of quantum mechanics at the macroscopic
scale, involving very large numbers of particles, were suggested by Leggett et al. (Caldeira
& Leggett, 1983; Leggett, 1984, 2002; Leggett & Garg, 1985). These tests all involved the
use of superconductors. One set of tests looked at ‘macroscopic quantum tunneling’ of
superconductors—the quantitative theoretical predictions of tunneling rates vs. tempera-
ture and applied field (Caldeira & Leggett, 1983; Leggett, 1984) included the dissipative
effect on tunneling of the environment (Caldeira–Leggett theory). The later experiments
(Clarke, Cleland, Devoret, Esteve, & Martinis, 1988) agreed with this theory over the
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whole range of experimental parameters, to within experimental error-a remarkable result.
None of these experiments probed decoherence.
Tests of our understanding of decoherence have come both from quantum optics and

from solid-state physics. In the former, decoherence in the dynamics of entangled ions is
expected to come from interaction with photons (Myatt et al., 2000). Experiment indicates
that the mechanisms are understood; there seem to be no hidden sources of decoherence.
Tests in the solid state have looked at (i) coherent electron dynamics in mesoscopic
conductors, and (ii) coherent tunneling in superconductors and magnetic systems. The
main results here are as follows:
(a) Many experiments on mesoscopic conductors measure the time it takes for phase

coherence to be lost in the dynamics of the electrons. Some of these experiments indicate
that strong decoherence persists down to very low temperature. Since this result conflicts
with the standard theory (in which decoherence comes from interactions of electrons
between themselves and with phonons and impurities), it has caused much controversy
(Aleiner, Altshuler, & Gershenson, 1999; Mohanty, Jariwala, & Webb, 1997). Some more
recent experiments (Pierre et al., 2003) indicate that interaction of the electrons with spin
impurities may be responsible (i.e., a ‘junk’ effect, with the junk being the bath of spin
impurities).
(b) In a large number of different molecules, the electronic spins lock strongly together

to give a ‘giant spin’, which at low temperatures can quantum tunnel through the energy
barrier between two different spin orientations. Many experiments have examined this
tunneling (Wernsdorfer, 2001; Tupitsyn & Barbara, 2001), as well as related phenomena in
rare earth magnets (Ronnow et al., 2005, and refs. therein). It is now clear what controls
the tunneling dynamics of these giant spins. At low temperatures the nuclear spins in the
system (coupled strongly to the central giant spin via hyperfine interactions) disrupt the
coherent dynamics of the central spin, so that the tunneling is completely incoherent.
Present efforts to make spin qubits (for quantum computation) concentrate on suppressing
this nuclear spin-mediated decoherence by making the qubit dynamics much faster than
the nuclear spin dynamics, bringing in the risk of significant decoherence from phonons
(Stamp & Tupitsyn, 2004) (an oscillator bath effect). One can also try to eliminate the
nuclear spins by isotopic purification, but this will not be easy.
(c) Tests of the coherent dynamics of a superconducting SQUID between two potential

wells are a solid-state realisation of a ‘Schrödinger’s Cat’, in which a macroscopic number
of electrons are in a coherent superposition of two different current states (Leggett et al.,
1987). In the last few years several experiments have given very strong evidence for Cat
states in superconductors (Chiorescu, Nakamura, Harmans, & Mooij, 2003; Nakamura,
Pashkin, & Tsai, 1999; Pashkin et al., 2003; Vion et al., 2002). Leggett and Garg (1985)
also formulated a criterion of ‘macroscopic realism’ which can be tested on systems of this
kind. The criterion of macrorealism has a clear physical meaning—it distinguishes those
properties of a macroscopic system which can be treated as objectively real, in a similar
spirit to that discussed by EPR and Bell for microscopic systems. The formal criterion for
testing macrorealism involves a set of inequalities pertaining to measurements at different
times on a macroscopic variable. These inequalities test quantum mechanics explicitly on
the macroscopic scale, but experiments on them have yet to be done. Some of the existing
experiments have explicitly measured decoherence rates (Chiorescu et al., 2003; Nakamura
et al., 1999; Pashkin et al., 2003; Vion et al., 2002). The experimental decoherence rates in
superconductors are always found to be much larger (by up to six orders of magnitude)
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Fig. 6. Tests of large-scale quantum phenomena in condensed matter systems usually involve either interference

between propagation along two different paths, which may have some flux F enclosed between them (a); or they

involve interference between two states quasi-localised in two different potential wells, which communicate weakly

by tunneling (b). Experiments on magnetic molecules combine both features (see text).
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than those predicted by Caldeira–Leggett theory. Note that this is the same theory which
works so well for dissipative tunneling experiments in the same superconductors!

All of the above experiments are of course described using certain theoretical models,
and I have summarised the most important ones in Fig. 6. The experiments on decoherence
in mesoscopic conductors rely on interference between single electrons following two
different paths (Fig. 6(a)); if there is flux enclosed between these paths, we can use the
Aharonov–Bohm effect (actually, its suppression) to detect decoherence. In experiments on
magnetic molecules, or superconductors (Fig. 6(b)), the relevant mesoscopic or
macroscopic coordinate (magnetisation for the molecules, flux for the superconductors)
is confined to tunnel between two potential wells. If it moves coherently, one can use it as a
qubit, whereas decoherence gradually converts its motion to incoherent tunneling.

We may now summarise the results of the experiments insofar as they concern
decoherence. We apparently do know what is causing decoherence in some of the
experiments (ions in cavities, possibly mesoscopic conductors, possibly magnetic
molecules), but so far theory has not described the decoherence in superconductors. The
claims made for intrinsic zero-temperature decoherence in some of these experiments have
yet to be properly tested.
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Let us now come to a more general discussion of these results, which from a
philosophical standpoint is of some interest. The main point I wish to make is that how we
interpret the experiments depends mainly on what question we think they are asking. The
following questions (amongst others) are thought to be important:
(i)
15F

Penr

Bouw
Do we understand the decoherence in these experiments (where it is coming from, how
it works)? Are there hidden sources of decoherence? Are there even intrinsic

mechanisms of decoherence in Nature?

(ii)
 Is the whole idea of quantum information processing with massively entangled states

possible in practice, or even in principle? Can we get rid of decoherence?

(iii)
 Has macrorealism been tested (and what is the verdict)?
Any response to these questions depends on how one feels about the gap between theory
and experiment—in particular, on whether it is felt that standard quantum mechanics,
using one mechanism or another, can eventually explain all the decoherence in all of the
experiments. If so, then one can adopt the view that even very large existing discrepancies
are basically just a question of detail. With a lot of work theory and experiment will
eventually be brought to agree. If not, then these tests of decoherence mechanisms and
rates become of supreme importance in our quest to understand quantum mechanics
properly and possibly even to go beyond it. Disagreement between theory and experiment
is then very far from being a mere detail.
These are of course two extreme points of view, and there are others lying between them.

Nevertheless the point is clear: how the experiments are interpreted depends less on the
experiments themselves than on a faith about the validity of the existing theoretical
framework.
This point is rather obvious as far as the first two questions are concerned, so I will not

belabour it. The question about macrorealism brings the relation between experiment and
theory into acute relief. Many (indeed most) physicists, faced with the observations in
superconductors of macroscopic coherence, simply remark that the verification of
quantum mechanics at the macroscopic scale is not surprising and are then less interested
in hearing about tests of macrorealism. The expectation is that quantum mechanics will
always prevail. The existence of large amounts of decoherence is then again regarded as a
detail, a problem to be solved within the framework of quantum mechanics.
On the other hand there are those who think such tests important, that quantum

mechanics does need to be tested at the macroscopic scale and may be found wanting.
Apart from the Leggett school of thought (Leggett, 2002; Leggett & Garg, 1985), many
papers have discussed non-linear extensions of quantum mechanics, where the non-
linearity appears for sufficiently large systems and would be hard to distinguish from
decoherence in experiments (Ghirardi, Pearle, & Rimini, 1990; Ghirardi, Rimini, & Weber,
1986; Pearle, 1976, 1989). There are also more exotic ideas, involving intrinsic decoherence
sources, coming either from spacetime curvature (intrinsic gravitational decoherence)15 or
from ultra-Planck scale physics (’t Hooft, 1999, 2001), the latter idea having an interesting
or gravitationally induced wave-function collapse, see Diósi (1989), Ghirardi, Grassi, & Rimini (1990) and

ose (1994, Sections 6.10– 6.12). A possible experimental test was suggested by Marshall, Simon, Penrose, &

meester (2003).
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history.16 All of these ideas attempt to go beyond existing theory and try to remove some
of the paradoxical features of quantum mechanics. Although none of these programmes
has actually constructed a comprehensive theory, they do provide possible experimental
tests. These test macrorealism in the case of experiments on superconductors, and in the
other cases predictions are made for what looks like an intrinsic decoherence rate in
Nature, in a way which violates conventional quantum theory. This intrinsic decoherence
would show up, in all these cases, in experiments on large-scale quantum phenomena. As
noted by ’t Hooft (1999, 2001), any such intrinsic decoherence mechanism would put
severe limits on quantum information processing (in the holographic approach of ‘t Hooft
and Susskind, it would be impossible for a quantum computer or quantum memory to
involve more than roughly 400 entangled qubits).

An important point I wish to make here is that no experiment purporting to test
quantum mechanics, according to any of these scenarios, can afford to ignore
disagreements between experimental and theoretical decoherence rates; these are no
longer a question of detail. One certainly cannot treat any disagreement as a ‘dirt’ or some
other uncontrolled extrinsic effect. This would automatically dismiss any real breakdown
of quantum mechanics as a dirt effect and make tests of large-scale quantum mechanics
impossible in principle.

The aim of this section has been to give readers a feel for how current experiments bear
on some of the really fundamental questions associated with decoherence and possibly on
even more fundamental questions about quantum mechanics itself. Perhaps not
surprisingly, we see that how the experiments are interpreted depends very much on
prevailing views and prejudices, about the expected answers to these questions.17
4. Six questions about decoherence and quantum relaxation

With the material in the two previous sections in hand, we may now address directly
some of the larger problems mentioned in the introduction. Rather than a lengthy analysis
of these, it is simpler to frame the discussion in terms of a set of six questions. Some of
these have frequently been posed before, others less so. However in all cases the answers
depend in one way or another on what we have been discussing, i.e., on what are the
mechanisms of decoherence.

Question 1: What causes decoherence in Nature? Is there a ‘generic model’ of
decoherence (and if so what is it)?

Answer: We have certainly now elucidated some of the decoherence mechanisms
operating in Nature, and there is a large variety of them. While the three models discussed
in Section 2 (spin bath, oscillator bath, and third-party decoherence) themselves cover
16The idea that quantum fluctuations of spacetime at very high energies, up to the Planck scale, might cause

decoherence at low energies has been discussed in various contexts. See, e.g., Hawking (1982), Hawking &

Laflamme (1988), Coleman (1988) and Ellis, Mohanty, & Nanopoulos (1989).
17I emphasise that we are interested here in the theoretical context in which genuine experimental challenges to

an established theory (here, quantum mechanics) are mounted and what criteria are used to decide how successful

is the challenge. There are currently several controversies raging about the relation between theory and experiment

in science, notably over the misuse of experimental data (in, e.g., the debate over evolution vs. ‘intelligent design’,

or in the Schön–Batlogg debacle, where some 20 papers based on fabricated data were published by Nature and

Science). This is of course a very different issue, and should not be confused in any way with the present

discussion.
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many different physical systems, there is no reason to suppose we have found all possible
mechanisms of decoherence!
At this point one has to insist that the real verdict must come from experiment. Without

a quantitative explanation of experimental decoherence rates in terms of known theoretical
models, one can always posit undiscovered sources of decoherence ‘out there’. As
emphasised above, many experimental systems at present show anomalously large
experimental decoherence rates (although some discrepancies can probably be explained
by spin bath effects). To have a generic model for decoherence would suppose a much
better understanding than we presently have of most condensed matter systems. One
should beware of general theorems on decoherence rates for large systems, since they
usually make very restrictive (and unrealistic) assumptions about the structure of the
many-body states.
Thus we are not yet in a position to be talking about a generic model for decoherence.
Question 2: Is decoherence necessarily related to irreversibility and dissipation/

relaxation? If so, does decoherence then go to zero with temperature, and can it be
eliminated in the real world?

Answer: All these questions have been controversial and are also of fundamental
interest. If decoherence were tied to dissipation, then at low energy, with a cold
environment, decoherence rates would be very low, going to zero with temperature; and
moreover vacuum fluctuations would not cause decoherence at all. Such a conclusion
would be of great importance, if true.
As we saw in Section 2, dissipation and decoherence are tied together in the oscillator

bath models of the environment. However, as we also saw, this result is not true for spin
baths, where one can have decoherence with no dissipation, even at T ¼ 0; and in the case
of third-party decoherence there cannot possibly be any environmental dissipation, at any
T, since there is no direct coupling to the environment. Thus there is no necessary
connection between decoherence and dissipation in the real world, and no necessary reason
for it to go to zero at T ¼ 0.
This is a problem of real practical interest right now, both for the construction of

quantum information processing systems and for the standard physics of solids. There is
thus a massive worldwide quest going on for ways to eliminate environmental decoherence.
If the three sources of decoherence just mentioned are in fact the only kinds that exist, then
one might still entertain hopes of eliminating them; indeed, some very interesting idea for
doing this are under present investigation. However, what if there are other decoherence
sources? This suggests the next question:

Question 3: Are there ‘intrinsic’ sources of decoherence in Nature, impossible to
eradicate?

Answer: By ‘intrinsic’ sources, is meant sources which are inevitable in the world as it is,
not arising from dissipative processes and perhaps even arising as part of the basic
structure of the universe. Such intrinsic sources of decoherence in Nature, operating even
at T ¼ 0, would not only provide a way of explaining the ‘emergence of classical physics’
in fields ranging from quantum cosmology to condensed matter physics; they would also
place a fundamental limit on the observability of quantum phenomena. This would limit
the possibility of seeing macroscopic quantum phenomena, and also place fundamental
limits on the superpositions required for quantum computing.
Possibilities for intrinsic decoherence mechanisms have already emerged from both low-

and high-energy physics. From low-energy physics there has been a suggestion that zero
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point modes of continuous quantum fields (in particular, the photon field) could
cause T ¼ 0 decoherence. This has, for example, been suggested as an explanation
of the decoherence saturation at low T in mesoscopic conductors (Mohanty et al., 1997).
This suggestion is controversial and was discussed in Section 3; many feel that the
explanation lies instead with magnetic impurities (a spin bath effect). There is also the
suggestion of non-linear terms in the dynamics of macroscopic quantum systems
(Ghirardi, Pearle et al., 1990; Ghirardi et al., 1986; Pearle, 1976, 1989); this has hardly
been tested yet.

On the high-energy side a wide range of possibilities has been canvassed and already
noted in Section 3. These include, again, low-energy decoherence from zero point modes—
this time from gravitons, or string fields, or from vacuum fluctuations of the spacetime
metric (footnote 16) (including the so-called ‘baby universe’ fluctuations). So far these
suggestions have not been met enthusiastically for they fly in the face of conventional ideas
about renormalisation, according to which neither very high energy modes nor vacuum
fluctuations can enter into any dynamic processes in a low-energy effective Hamiltonian.
There are also more exotic ideas, involving modifications of quantum theory. Two recent
proposals are an intrinsic decoherence arising from spacetime curvature (intrinsic
gravitational decoherence) (footnote 15), and a source arising from ultra-Planck scale
physics, suggested by ’t Hooft (1999, 2001). Although neither of these programmes has
actually constructed a comprehensive theory, they do provide possible experimental tests,
in both cases involving an intrinsic decoherence rate, which violates conventional quantum
theory. This intrinsic decoherence would show up in both cases in experiments on large-
scale quantum phenomena. As noted by ’t Hooft, any such intrinsic decoherence
mechanism would put severe limits on quantum information processing (in the
holographic approach of ’t Hooft and Susskind, it would be impossible for a quantum
computer or quantum memory to involve more than roughly 400 entangled qubits).

Clearly some pretty crucial experiments are required here. This is one of the very
interesting frontiers of physics right now. Such experiments will have to be done with great
care, to eliminate, for example, the influence of third-party decoherence processes, not
reflected in the effective Hamiltonian of the experimental system but in its previous history.
Indeed it is not obvious to the present author how one can eliminate third-party
decoherence with certainty.

Question 4: Does decoherence give rise to the ‘emergence’ of classical physics? If so, then
what kind of a theory is quantum mechanics (often held to depend on classical mechanics
for its definition in the first place)?

Answer: One interpretation of this question focuses on the more physical question of
how classical quasi-deterministic behaviour emerges for large systems, and/or how quasi-
classical stochastic behaviour emerges, even for small systems. It should now be completely
evident, from Sections 2 and 3, that a proper answer to this question requires
understanding the real decoherence mechanisms operating in Nature and that these are
not so simple, or necessarily completely understood. Thus we do not yet have a theory
which derives classical physics from quantum physics solely using ideas from decoherence,
even though we do have some derivations of classical behaviour within certain models. It is
important to note that in some other models one can actually find non-classical behaviour
emerging in the large-scale dynamics, because of decoherence (this happens, for example,
when one is dealing with a spin bath environment (Prokof’ev & Stamp, 2006)). Thus there
is nothing inevitable about classical behaviour!
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In a second interpretation, it is suggested that decoherence might not only derive
classical physics as a limiting case of quantum mechanics but also show how strictly
classical concepts such as momentum and position are inevitable in the very formulation of
quantum mechanics. The basic argument here is that the structure of interactions in
Nature inevitably leads to a preferred ‘inert’ or ‘pointer’ basis for the states of macroscopic
objects (Simonius, 1978; Zurek, 1981, 1982, 2003). Again, however, this argument has
relied on simple models, and a general demonstration would require the use of more
general models. It is extremely interesting to ask whether more general models could yield
instead ‘non-classical’ pointer bases. Just as interesting is to ask what physicists will do if,
as seems very possible, experiments find that ‘macrorealism’ (in the Garg–Leggett sense)
fails. How then will we formulate quantum mechanics?

Question 5: With the understanding gained into the mechanisms of decoherence, can we
now say how quantum measurements work? And does decoherence ‘solve’ the
measurement problem?

Answer: One of the remarkable paradoxes of quantum physics is how difficult to give a
theoretical description of most measurement schemes, even though they are being used all
the time to do experiments! Detailed accounts, including all steps from the measured
degrees of freedom up to the final ‘classical’ state of the measuring apparatus, are
mostly confined to experiments designed for tests of quantum phenomena (often in
quantum optics labs) or to sensitive experiments designed to search for very weak effects
(e.g., gravity waves (Braginsky & Khalili, 1992; Caves et al., 1980)). Usually in
these descriptions assumptions are made about how irreversible amplification processes,
accompanied by strong decoherence, lead to definite results, FAPP (For All Practical
Purposes). There is no question that if serious tests of quantum mechanics are to be
made at the macroscopic scale (e.g., of macrorealism), a more complete analysis will
need to be done, carrying the full quantum description right up to the macroscopic
scale and including all sources of decoherence at each stage. It hardly matters which
verdict the experiments give here. In either case a convincing experimental result will only
be attained if all sources of decoherence are understood (including third-party
decoherence).
Whether such analyses will ‘solve’ the measurement problem depends on what the

problem is supposed to be. As with question 4, we remark that there is nothing inevitable
about a classical behaviour for the measuring system (unless one defines measuring systems
so that they must be classical!). On the other hand if tests of quantum mechanics at the
macroscopic scale do actually vindicate it, so that macrorealism is falsified, then the
measurement problem will surely undergo a radical transformation to a new problem, viz.:
how far can we push the ‘FAPP barrier’ (between the quantum and classical worlds) into
what is now considered the classical world? Certainly a new vocabulary will be required by
physicists to deal with genuinely macroscopic quantum states.

Question 6: Is decoherence connected to the ‘Arrow of Time’? If so, how?
Answer: It is commonly assumed that all arrows, including the thermodynamic arrow,

derive from the cosmological arrow. In this view, irreversibility is caused ultimately by the
cosmological arrow. If one assumes that decoherence is connected with irreversibility, then
the ‘quantum arrow’ results from the thermodynamic arrow (a commonly adopted point of
view) and is also then subservient to the cosmological arrow. In this picture, everything in
the universe, even something as basic as classical spacetime, has resulted from special
initial conditions.
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However, this point of view is by no means universally accepted, and it is possible to
write quantum mechanics, including measurements, in a time-symmetric form (Aharonov,
Bergmann, & Lebowitz, 1964). We have also seen above that some kinds of decoherence
are not at all connected with dissipation or irreversibility and that decoherence does not
even necessarily have to lead to classical behaviour. Thus we are driven back to the
familiar question about mechanisms—whether or not we should associate decoherence
with either the thermodynamic or the cosmological arrow of time depends on what
mechanisms are responsible for decoherence. Certainly the results about the mechanisms
of decoherence, discussed in Sections 2 and 3, make it clear that there is no necessary or
logical connection between decoherence and the thermodynamic arrow. If decoherence is
logically independent of the thermodynamic arrow, it is much less obvious that it is
connected with the cosmological arrow.

A real handicap in analyses of this question is that many of the current discussions of the
arrow of time are framed in terms of theories about the beginning of the universe, or of
vague ideas like the ‘anthropic principle’, which have not been really tested and which
change fairly rapidly with time. The most prudent course of action here may be to suspend
judgement on any possible connection between the cosmological arrow of time and
decoherence until both are understood a little better.
5. Conclusions

In this article I have discussed how general questions about the nature of solids and
about the low-energy physics of macroscopic systems have consequences for old questions
about quantum measurements, about the relation between classical and quantum
mechanics, and about the validity of quantum mechanics itself. If there is a central point
here, it is that facts about the physical mechanisms of decoherence are crucial to answering
these questions. We now know something about these mechanisms, and what we have
found out has radically changed our perspective. Far from asking ‘‘how do decoherence
and/or dissipation produce classical mechanics at the macroscopic scale?’’, we are now
asking ‘‘how can we evade decoherence at the macroscopic scale?’’. The preparation and
use of states with high-level entanglement (i.e., N-entangled states with Nb1), instead of
being treated as a theoretical impossibility, is now a target in many experimental research
programmes. Most radical of all, the idea that the investigation of such states could lead to
a failure of quantum mechanics itself is being taken seriously by both high- and low-energy
theorists, with experiments to test this idea in preparation.

If there is a thread running through all of this, it is that to make progress we need a firm
understanding of the physical mechanisms governing decoherence. Decoherence, accord-
ing to the older ideas, is supposed to explain away the quantum measurement problem and
to explain how classical mechanics emerges from quantum mechanics. And yet in the last
few years experiments have been gradually bringing decoherence under control, inexorably
pushing quantum mechanics to scales that were formerly the preserve of classical physics.
Along the way a new picture, a picture of how decoherence operates, has begun to emerge.
Far from being associated with ordinary relaxation, the decoherence in most experiments
(certainly those in solid-state systems) appears to come from ‘sleeper’ modes, modes nearly
invisible in most experiments because they cause almost no dissipation. Thus decoherence
is more subtle, and perhaps more pervasive, than previously thought. There are many
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things we still do not understand about decoherence and what causes it, and it should now
be clear that this is a very pressing problem.
We have seen that how one views all this depends much on pre-existing prejudices, both

about our present understanding of solids and about the validity of quantum mechanics
itself. The point of view I have taken is that there are still many things we do not
understand about solids, particularly at very low energies, and that the failure of quantum
mechanics is a possibility which is certainly worth considering and testing experimentally.
It then follows that we cannot dismiss disagreement between theoretical and experimental
decoherence rates, which may conceal the very failure we are looking for, whether it comes
from the ultra-Planck scale or from very low energies.
It is always remarkable when a combination of theory and experiment has larger

philosophical consequences. Perhaps the most dramatic example in recent times has been
the impact of Bell’s inequalities, where a set of experiments in atomic physics was able to
rule out a whole class of possible theories about Nature, and in doing so, consign a widely
accepted philosophical view about ‘reality’ to the dustbin. The fascinating prospect is that
future experiments at low temperatures in condensed matter systems looking for
‘gravitational decoherence’, or non-linear terms in a future quantum mechanics, or
something else, may have a similar impact. But this remains to be seen.
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Coherently wired light-harvesting in photosynthetic
marine algae at ambient temperature
Elisabetta Collini1*{, Cathy Y. Wong1*, Krystyna E. Wilk2, Paul M. G. Curmi2, Paul Brumer1 & Gregory D. Scholes1

Photosynthesis makes use of sunlight to convert carbon dioxide into
useful biomass and is vital for life on Earth. Crucial components for
the photosynthetic process are antenna proteins, which absorb light
and transmit the resultant excitation energy between molecules to a
reaction centre. The efficiency of these electronic energy transfers
has inspired much work on antenna proteins isolated from pho-
tosynthetic organisms to uncover the basic mechanisms at play1–5.
Intriguingly, recent work has documented6–8 that light-absorbing
molecules in some photosynthetic proteins capture and transfer
energy according to quantum-mechanical probability laws instead
of classical laws9 at temperatures up to 180 K. This contrasts with the
long-held view that long-range quantum coherence between mole-
cules cannot be sustained in complex biological systems, even at
low temperatures. Here we present two-dimensional photon echo
spectroscopy10–13 measurements on two evolutionarily related light-
harvesting proteins isolated from marine cryptophyte algae, which
reveal exceptionally long-lasting excitation oscillations with distinct
correlations and anti-correlations even at ambient temperature.
These observations provide compelling evidence for quantum-
coherent sharing of electronic excitation across the 5-nm-wide
proteins under biologically relevant conditions, suggesting that
distant molecules within the photosynthetic proteins are ‘wired’
together by quantum coherence for more efficient light-harvesting
in cryptophyte marine algae.

Cryptophytes are eukaryotic algae that live in marine and freshwater
environments. They are members of an evolutionary group notable
because their photosynthetic apparatus was acquired from red algae
by a sequence of endosymbiotic events. As a result, cryptophyte pho-
tosynthetic antenna proteins (phycobiliproteins) exhibit exceptional

spectral variation between species because they use mainly tunable
linear tetrapyroles (bilins) for light-harvesting. Another remarkable
feature of cryptophytes is that they can photosynthesize in low-light
conditions, which suggests that the absorption of incident sunlight by
phycobiliprotein antennae in the intrathylakoid space14 and the sub-
sequent transfer of that energy among these proteins and eventually to
the membrane-bound photosystems is particularly effective15. Theory
indicates that fast energy transfer is facilitated by small interchromo-
phore separations2, yet the average nearest-neighbour centre-to-centre
separation of chromophores within cryptophyte light-harvesting
antenna proteins (Fig. 1) is ,20 Å (ref. 16)—about double that for
the major light-harvesting protein in plants. To explore how a light-
harvesting antenna can function efficiently with such a counter-
intuitive design, we study the antennae of two marine cryptophytes,
phycoerythrin PE545 from Rhodomonas CS24 and phycocyanin PC645
from Chroomonas CCMP270 at ambient temperature (294 K) using
two-dimensional photon echo (2DPE) spectroscopy10–13.

PC645 contains eight light-absorbing bilin molecules covalently
bound to a four-subunit protein scaffold17. Its structure, determined
to 1.4-Å resolution by X-ray crystallography18 and shown in Fig. 1a,
exhibits approximate twofold symmetry. A dihydrobiliverdin (DBV)
dimer (green) located in the centre of the protein and two mesobili-
verdin (MBV) molecules (blue) located near the protein periphery give
rise to the upper half of the complex’s absorption spectrum (Fig. 1c),
spanned by our laser pulse spectrum. The electronic coupling of
,320 cm21 between the DBV molecules C and D (labelled according
to the protein subunit that binds them) leads to delocalization of the
excitation and yields the dimer electronic excited states, or so-called
molecular excitonic states19, labelled DBV1 and DBV–. Excitation
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Figure 1 | Structure and spectroscopy of cryptophyte antenna proteins.
a, Structural model of PC645. The eight light-harvesting bilin molecules are
coloured red (PCB), blue (MBV) and green (DBV). b, Chromophores from
the structural model for PE545 showing the different chromophore
incorporation. c, Electronic absorption spectrum of isolated PC645 protein

in aqueous buffer (294 K). The approximate absorption energies of the bilin
molecules are indicated as coloured bars. d, Electronic absorption spectrum
of isolated PE545 protein in aqueous buffer (294 K) with approximate
absorption band positions indicated by the coloured bars. The spectrum of
the ultrafast laser pulse is plotted as a dashed line in c and d.
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energy absorbed by the dimer flows to the MBV molecules. which are
each 23 Å from the closest DBV, and ultimately to four phycocyano-
bilins (PCB, coloured red) that absorb in the lower-energy half of the
absorption spectrum.

The structure of PE545 (Fig. 1b) is closely related to that of PC645
except that the bilin types differ16,20. The lowest-energy chromo-
phores are DBV bilins. The dimer consists of phycoerythrobilin chro-
mophores PEB9, with the prime indicating they are doubly covalently
bound to the protein. The remaining chromophores are singly bound
PEBs. The electronic couplings between the chromophores are
reported elsewhere21. The approximate absorption spectrum and
band positions are shown in Fig. 1d.

For the experiments the proteins were isolated from the algae and
suspended at low concentration in aqueous buffer at ambient tem-
perature (294 K). The femtosecond laser pulse (25-fs duration) excites
a coherent superposition of the antenna protein’s electronic-
vibrational eigenstates (absorption bands). The initial state of the
system is thus prepared in a non-stationary state22, where electronic
excitation is localized to a greater or lesser degree compared to the
eigenstates. The time-dependent solution to quantum dynamics for
electronically coupled molecules with this initial condition predicts
that excitation subsequently oscillates among the molecules under the
influence of the system Hamiltonian until the natural eigenstates are
restored owing to interactions with the environment. 2DPE provides a
means of observing this experimentally, enabling us to explore the
significance of quantum coherence.

Representative 2DPE data for PC645 are shown in Fig. 2 with posi-
tions on the diagonal assigned to absorption bands. Rich features such
as cross-peaks and excited state absorptions are evident. In the 2DPE
experiment the two-pulse excitation sequence (sweeping t . 0) can
prepare population density, for example DBV{j i DBV{h j, that
evolves during the delay time T and can be probed as a bleach signal
on the diagonal part of a rephasing 2DPE spectrum. Alternatively, off-
diagonal contributions like DBVzj i DBV{h j can be excited when the
pump pulse sequence interacts coherently with both absorption
bands. The resulting signal will be probed as a cross-peak above the
diagonal in rephasing spectra that oscillate as a function of T
with frequency w~2p EDBVz

{EDBV{

� �
=h because it carries a phase

exp(–iwT). Similarly the complementary coherence DBV{j i DBVzh j
will contribute a cross-peak below the diagonal in rephasing spectra
that will carry an opposite phase, exp(1iwT).

These predicted coherent oscillations can be reproducibly seen in
our 2DPE spectra by plotting the intensity of rephasing spectra at
lower and upper cross-peaks as a function of waiting time T (Fig. 2b
and c). The red line indicates the cross-peak above the diagonal, the
black line is that below. As mentioned above, the upper and lower
cross-peak oscillations should differ by a phase factor determined by
the sign of the energy difference between the states in superposition,
leading to anti-correlated upper and lower cross-peak beats with a
dominant frequency component equal to the eigenvalue energy dif-
ference. Such behaviour is indeed clearly seen in the experimental
data, with the anti-correlated oscillations providing striking evidence
that both DBV dimer and DBV–MBV electronic superposition states
persist for more than 400 fs after photo-excitation. It is remarkable
that electronic coherence spans from the DBV dimer to the peri-
pheral MBV molecules, over a distance of 25 Å.

The PC645 cross-peak beating is complex; multiple frequencies arise
for the same reason they do in a simple mechanical system comprised of
a mass connected by a weak spring to a pair of masses coupled by a
strong spring. And because these data were recorded at room tem-
perature, line broadening is significant, so that overlapping bands partly
obscure oscillating features. Nevertheless, Fourier transforms of these
data (Supplementary Fig. 1) suggest the presence of frequencies in these
beating patterns that can be related to the frequency differences between
absorption bands. A careful global analysis of the data (see Sup-
plementary Information) provides evidence that the oscillations in the
2DPE data can be decomposed into components corresponding to
frequency differences between absorption bands and that—most
importantly—the cross-peak beats at each frequency are anti-correlated.

For a comparison with the PC645 results, we also undertook
experiments on the PE545 antenna protein by exciting the blue side
of the absorption. A typical rephasing 2DPE spectrum (that is,
scanned so that t . 0) is shown in Fig. 3a. To show beats across the
entire anti-diagonal slice through the PEB/PEB9 cross-peaks we plot
the intensity of the 2DPE rephasing spectrum along the anti-diagonal
line drawn in Fig. 3a as a function of population time T (Fig. 3b).
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Figure 2 | Two-dimensional photon echo data for PC645. a, The left column
shows the total real 2DPE spectrum recorded for PC645 at zero waiting time
(T 5 0), together with the rephasing contribution to this signal. The right
column shows the data for T 5 200 fs. The 2DPE spectra show the signal
intensity on an arcsinh scale (colour scale, arbitrary units) plotted as a function

of coherence frequency vt and emission frequency vt. b, Intensity of the DBV
dimer cross-peaks (open circle) as a function of time T. c, Intensity of the
MBV–DBV1 cross-peaks (open square) as a function of time T. The dashed
lines interpolate the data points (solid circles). The solid line is a fit to a sum of
damped sine functions (Supplementary Information). a.u., arbitrary units.
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Oscillations of the main bleach and excited-state absorption peaks
are clearly evident. The beats in the centre of this plot are cross-peaks
excited because the PEB and PEB9 absorption bands overlap owing to
spectral line broadening. The cross-peaks, indicated by dashed hori-
zontal lines in Fig. 3b (red is the cross-peak above the diagonal, the
black line is that below), are more clearly seen in Fig. 3c, in which the
beats are well resolved and markedly anti-correlated—a signature of
quantum coherence. These oscillations are directly analogous to
those observed for PC645 (compare Fig. 2b).

Figure 3d–f shows plots similar to those in Fig. 3a–c, but for non-
rephasing spectra (t , 0) of PE545. The same electronic coherences
giving rise to oscillating cross-peaks in rephasing spectra are pre-
dicted to cause oscillations at the diagonal positions of non-rephasing
2DPE spectra23. Indeed, we observe a clear phase relationship between
beats within the rephasing and non-rephasing spectra and also
between the data sets, which is compelling evidence for the presence
of long-lived quantum coherence. The first ,130 fs of these spectra
reproducibly show clear oscillations with a period of ,60 fs
(n < 500 cm–1). After this time the oscillation pattern becomes more
complicated, suggesting that the initial coherence may evolve owing to
coupling with other molecules in the protein.

In our experiments the light-harvesting process in both PC645 and
PE545 antenna proteins involves quantum coherence at ambient tem-
perature, suggesting that coherence may more generally be used by
cryptophyte algae. Quantum coherence occurs in an intermediate
regime of energy transfer where there is a complex balance between
quantum interference among electronic resonances and coupling to
the environment causing decoherence24. There still remains the question
of precisely how quantum coherence can persist for hundreds of femto-
seconds in these biological assemblies. In an isolated molecule, electronic
decoherence arises from the decay of the overlap S(t)~ v2(t) j v1(t)h i
between the unobserved vibrational wavepackets v1(t)j i and v2(t)j i
associated with the lower and upper electronic states respectively25,26.
In 2DPE experiments, the observable includes both vibrational and
electronic components and, as such, decoherence due to decay of S(t)
is not manifest in the data. Rather, the slow decay of electronic coherence
reflects the interaction of vibronic superposition states with the external
environment.

Recent studies have attributed the slow dephasing of electronic
coherence to the presence of shared or correlated motions in the

surrounding environment6,7,27,28. In this context, we note that, unlike
most photosynthetic pigments that are non-covalently complexed to
their protein environment (chlorophyll via histidine residues, for
example), the bilins in PC645 are covalently bound to the protein
backbone. Covalent attachment of the chromophores to their protein
environment may support or strengthen correlated motions between
chromophores and protein and thus be an important factor in slow-
ing down decoherence in cryptophyte antenna proteins at ambient
temperature, thereby differentiating them from many other photo-
synthetic light-harvesting antennae. We also note that the precise
manifestation of long-lived quantum-coherence depends on the
photo-excitation conditions22,29,30, and cryptophyte algae are obviously
using sunlight that does not arrive in the form of laser pulses as used in
our experiments. Nevertheless, the couplings giving rise to the long-
lived quantum coherence that we clearly observe at ambient tem-
perature will still be present and strongly suggest that quantum effects
facilitate the efficient light-harvesting by cryptophyte algae. That is,
long-lived quantum coherence can facilitate energy transfer by ‘wiring’
together the final energy acceptors (PCB in the case of PC645 and DBV
for PE545) across a single protein unit, and thereby help to compensate
for the exceptionally large average interchromophore separations in
these antenna proteins.

METHODS SUMMARY

Cryptophyte Chroomonas sp. (CCMP270 strain, National Culture Collection of

Marine Phytoplankton, Bigelow Laboratory for Ocean Sciences, USA) and

Rhodomonas sp. (CS24) were cultivated and harvested, and the phycobiliproteins

were isolated by usual procedures20. 2DPE experiments were performed as

described in refs 11 and 27. The laser pulse duration and chirp were measured

using transient grating frequency resolved optical gating (TG-FROG) experi-

ments on a solvent (typically ethanol). The time-bandwidth product was esti-

mated to be about 0.53, close to the ideal transform-limited condition for a

Gaussian pulse. During data collection for PC645, for any given population time

T, t was scanned from –200 to 200 fs with 0.25-fs steps. Each 2D map at a fixed T

is the average of at least three separate scans, and each series of 2D scans at

different T was further repeated on different days for comparison. For PE545,

t was scanned from –60 to 60 fs with 0.15-fs steps, and each 2D map is the average

of two separate scans. Additionally, PE545 was measured at this wavelength

numerous times with different T steps, on different days. The samples were

moved after each scan and absorption spectra taken before and after each series

of scans confirmed that the sample did not degrade during the measurements.
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Figure 3 | Two-dimensional photon echo data for PE545. a, 2DPE
spectrum (rephasing real signal) for PE545 recorded at T 5 100 fs. b, The
intensity of the 2DPE rephasing spectrum along an anti-diagonal slice
through the cross-peaks versus population time T. Upper and lower cross-
peaks are indicated by red and black dashed lines respectively. c, Intensity

oscillations in the cross-peaks (red and black squares in a). d, 2DPE
spectrum (non-rephasing real signal) for PE545 recorded at T 5 100 fs.
e, f, As for b and c but for the 2DPE non-rephasing spectrum along the
diagonal slice. The 2DPE spectra are plotted on a linear intensity scale.
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Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Cryptophyte Chroomonas sp. (CCMP270 strain, National Culture Collection of

Marine Phytoplankton, Bigelow Laboratory for Ocean Sciences, USA) was cultured

at 20 uC under constant low light illumination (12-V white fluorescent tubes, 300 lx

at 0.3 m) in a modified ‘Fe’ medium. The algal cells were harvested and passed twice

through a French press cell at a pressure of 1,000 psi. The resultant solution was

centrifuged, yielding a supernatant solution containing PC645. PC645 was isolated

using gradual ammonium sulphate precipitation from 0 to 80%. The pellets were

re-suspended in a minimal volume of 25 mM phosphate buffer at pH 7.1. Further

purification was continued using a combination of ion-exchange and size-

exclusion chromatography. About 20 ml of pure PC645 was concentrated to

approximately 200ml using a 10-kDa Amicon Centriprep and then frozen using

liquid nitrogen before being stored at –80 uC. A buffer solution, prepared from a

25 mM solution of HEPES (4-(2–hydroxyethyl)–1–piperazineethanesulphonic

acid) in deionized water, adjusted to pH 5 7.5 by the addition of concentrated

NaOH solution, was used to prepare dilute PC645 samples for the experiments.
Rhodomonas sp. (CS24) was cultivated and harvested as previously reported20.

Cell pellets were re-suspended in buffer A (0.05 M Mes (pH 6.5) with 1 mM

NaN3) and homogenized in a Teflon glass homogenizer followed by passage

though a French press at a pressure of 1,000 psi. The resultant solution was

centrifuged for 30 min at 17,000g, producing a pellet of cell debris containing

thylakoid membranes and a supernatant containing phycoerythrin. PE545 was

purified from the supernatant as described elsewhere20.

2DPE experiments were performed as described in refs 11 and 27. A Ti:sapphire

regeneratively amplified laser system was used to pump a Noncolinear Optical

Parametric Amplifier (NOPA) to produce 25-fs duration pulses centred at 590 nm

for PC645 experiments or at 520 nm for PE545 for the results reported here, with a

spectral bandwidth of about 25 nm and repetition rate of 1 kHz. The laser pulse

duration and chirp were measured using TG-FROG experiments on a solvent

(typically ethanol). The time-bandwidth product was estimated to be about

0.53, close to the ideal transform-limited condition for a Gaussian pulse. The pulse

from the NOPA was split by a 50% beam splitter and the two resulting beams were

overlapped in a diffractive optic, producing two pairs of phase-locked beams in a

boxcars phase-matched geometry. The delay time T was controlled by a motorized

translation stage inserted in one beam path before the diffractive optic, whereas the

delay time t was introduced by means of movable glass wedge pairs, calibrated by

spectral interferometry11.

During data collection for PC645, for any given population time T, t was

scanned from –200 to 200 fs with 0.25-fs steps. Each 2D map at a fixed T is the

average of at least three separate scans, and each series of 2D scans at different T

was further repeated on different days for comparison. For PE545, t was scanned

from –60 to 60 fs with 0.15-fs steps, and each 2D map is the average of two

separate scans. Additionally, PE545 was measured at this wavelength numerous

times with different T steps, on different days. The samples were moved after

each scan and absorption spectra taken before and after each series of scans

confirmed that the sample did not degrade during the measurements.

To ensure that the local oscillator did not influence the response of the system,

its intensity was attenuated by about three orders of magnitude relative to the

other beams and the time ordering was set so that the local oscillator always

preceded the probe by ,500 fs. The resulting local oscillator–signal interference

intensity was focused into a 0.63-m spectrograph (25-mm slit) and recorded using

a 16-bit, 400 3 1,600 pixel, thermo-electrically cooled charge-coupled device

(CCD) detector. Subtraction of unwanted scatter contributions, Fourier window-

ing, transformation and phase retrieval were performed as reported previously11.
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A short review will be given of experimental aspects of decoherence in solid state qubits, 

including magnetic and superconducting qubits. Most important decoherence mechanisms will 

be discussed, for single or ensembles of qubits with or without excitation pulse, with different 

dimensions and degrees of complexity. More specific subjects, such as the effects of 

decoherence on magnetic molecules or in quantum phase transitions, will be tackled. 
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Quantum oscillations in a molecular magnet
S. Bertaina1{, S. Gambarelli2, T. Mitra3, B. Tsukerblat4, A. Müller3 & B. Barbara1,2

The term ‘molecular magnet’ generally refers to a molecular entity
containing several magnetic ions whose coupled spins generate a
collective spin, S (ref. 1). Such complex multi-spin systems provide
attractive targets for the study of quantum effects at the meso-
scopic scale. In these molecules, the large energy barriers between
collective spin states can be crossed by thermal activation or
quantum tunnelling, depending on the temperature or an applied
magnetic field2–4. There is the hope that these mesoscopic spin
states can be harnessed for the realization of quantum bits—
‘qubits’, the basic building blocks of a quantum computer—based
on molecular magnets5–8. But strong decoherence9 must be over-
come if the envisaged applications are to become practical. Here
we report the observation and analysis of Rabi oscillations
(quantum oscillations resulting from the coherent absorption
and emission of photons driven by an electromagnetic wave10) of
a molecular magnet in a hybrid system, in which discrete and well-
separated magnetic VIV

15 clusters are embedded in a self-organized
non-magnetic environment. Each cluster contains 15 antiferro-
magnetically coupled S 5 1/2 spins, leading to an S 5 1/2 collective
ground state11–13. When this system is placed into a resonant
cavity, the microwave field induces oscillatory transitions between
the ground and excited collective spin states, indicative of long-
lived quantum coherence. The present observation of quantum
oscillations suggests that low-dimension self-organized qubit net-
works having coherence times of the order of 100 ms (at liquid
helium temperatures) are a realistic prospect.

In the context of quantum computing, it was recently discussed
how the decoherence of molecular magnet spin quantum bits could
be suppressed, with reference to the discrete low spin clusters V15 and
Cr7Ni (ref. 7; see also refs 8 and 14). In both systems, their low spin
states cause weak environmental coupling7, making them candidates
for the realization of a long-lived quantum memory. Measurement of
the spin relaxation time t2 in Cr7Ni was subsequently reported and
found to be interestingly large15,16; however, the important Rabi
quantum oscillations were not observed, probably because electronic
and nuclear degrees of freedom were too strongly linked to each
other. As these oscillations have until now only been observed in
non-molecular spin systems (see, for example, refs 17–20), it has
remained an open question whether quantum oscillations could in
principle be realized in molecular magnets7,8. This question is now
answered by our observation of quantum oscillations of the Rabi type
in V15. The main reason for this success lies in the fact that the
important pairwise decoherence mechanism7,8 associated with
dipolar interactions could be strongly reduced.

Before discussing the observed quantum oscillations, we first
briefly describe the magnetic/electronic structure of the VIV

15 species
as determined experimentally. Following the synthesis of the quasi-
spherical mesoscopic cluster anion VIV

15AsIII
6 O42 H2Oð Þ

� �
6{ :V15ð Þ

nearly two decades ago (ref. 11), the properties of this molecule have

received considerable attention (see, for example, refs 1, 11, 14, 21–
25). The V15 cluster with an ,1.3 nm diameter exhibits an unique
structure with layers of different magnetizations: a large central VIV

3

triangle is sandwiched by two smaller VIV
6 hexagons11 (Fig. 1). The 15

S 5 1/2 spins are coupled by antiferromagnetic super-exchange and
Dzyaloshinsky–Moriya (DM) interaction13,21–25 (see also refs 26, 27)
through different pathways, which results in a collective low spin
ground state with S 5 1/2 (refs 12, 13, 24, 25).

Energy spectrum calculations for the full cluster spin space give
two S 5 1/2 (spin doublet) ground states slightly shifted from each
other by DM interactions, and an S 5 3/2 (spin quartet) excited state;
these states are ‘isolated’ from a quasi-continuum of states lying at
energy E/kB < 250 K above the S 5 3/2 excited state. These low-lying
energy states can be obtained with a good accuracy using the
generally accepted three-spin approximation (valid below 100 K),
in which the spins of the inner triangle are coupled by an effective
interaction J0j j= J 0j j mediated by the spins of the hexagons12,13,21–25

(Fig. 2 and Methods; J0 and J9 are shown in Fig. 1b).
The spin hamiltonian of V15 can be written as:

H~{J0

X3

i,j~1
ivjð Þ

Si Sjz
X

ij~12, 13, 31

Dij Si|Sj

� �
zA

X3

i~1

Ii SjzgmBH
X3

i~1

Si ð1Þ
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Figure 1 | Structure and exchange interaction pathways of the cluster anion
[VIV

15AsIII
6 O42(H2O)]62. a, The cluster is shown in ball-and-stick

representation (green, V; orange, As; red, O). The outer V6 hexagons are
highlighted by thick green lines. A weak deviation from trigonal symmetry
can be attributed to the water molecule located in the centre of the cavity (O
of the encapsulated water molecule in purple) or/and to the presence of
water in the lattice between molecules. The different types of V ions, namely
V1, V2, V3, V19 and V29, are shown for the definition of different exchange
pathways. b, Sketch showing the spin arrangement at low temperatures
(three-spin approximation), emphasizing some of the exchange interaction
pathways (J, J1, J2, J9). The coupling J0 between the spins of the inner triangle
is not direct but results from different exchange pathways through the
hexagons. The magnetic layer system is defined by one V3 triangle
sandwiched by two V6 hexagons (for further details see text).
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where Dij is the antisymmetric vector of the DM interaction assoc-
iated with the pair ij, and A is the hyperfine coupling constant of the
51V isotope (see below). The six components of Dij can be expressed
in terms of two parameters, namely DZ (perpendicular to the plane)
and DXY (in-plane). The DM interaction removes the degeneracy of
the two low-lying doublets and produces a first order zero-field split-

ting DDM<
ffiffiffi
3
p

DZ (plus small second order corrections)22–25. The
excited (quartet) state shows only a second order splitting caused
by a small inter-multiplet mixing through the in-plane component

of DM coupling, that is, D0DM~{D2
XY

�
8J

0
(refs 24, 25). The energy

separation between the doublet states and quartet state is given by
3J0=2<{3:67K (refs 13, 21–25). Figure 2 shows the level scheme
calculated by diagonalization of the hamiltonian (equation (1)), with
only one free parameter DZ < 43 mK adjusted to fit the positions of
the measured resonances (a value close to that obtained from mag-
netization data13,21,24), and DXY 50, a choice conditioned by the fact
that the transverse DM component has a negligible effect on res-
onance fields below 0.5 T (this is important in the calculation of
transition probabilities only). To ensure legibility, hyperfine interac-
tions are not included in Fig. 2 (they simply broaden the levels).

A new hybrid material, based on the use of a cationic surfactant—
DODA Me2N CH2ð Þ17Me

� �
2

� �
z

� �
—as an embedding material for

the anionic clusters, was developed for the present work (see
Methods). The related frozen system contains V15 clusters integrated
into the self-organized environment of the surfactant. The clusters—
prepared according to ref. 11—were extracted from aqueous solution
into chloroform by the surfactant DODA present in large excess. The
surfactants, which wrap up the cluster anions, are amphiphilic
cations, with their long hydrophobic tails pointing away from the
cluster anions, enabling solubility in chloroform. The procedure
ensures that the cluster anions cannot get into direct contact with
one another; they are clearly separated by the surfactants (mean
distance ,13 nm).

Electron paramagnetic resonance (EPR) experiments were per-
formed on this hybrid material at ,4 K using a Bruker E-580
X-band continuous-wave (CW) and pulsed spectrometer operating
at 9.7 GHz. The CW-EPR spectrum, recorded at 16 K on a frozen
sample, corresponds precisely to that obtained in the solid state in a
previous study12. In particular, the resonance field shows the same
profile and line-width (,30 mT), compatible with the g-tensor
values of a single crystal (g==~1:98 and g\~1:95). The measured
transition width W < 35 mT is directly connected with the energy E
occurring in the expression of decoherence calculated for a multi-
spin molecule7,8 (see below). Note that this transition width W should
be associated with S 5 3/2, the EPR spectrum being dominated by the
excited quartet.

Rabi oscillations were recorded using a nutation pulse of length t,
followed (after a delay greater than t2) by a p/22p sequence.
Experimental results showed two different types of Rabi oscillations,
corresponding to the resonant transitions 1, 2 and 3 for S 5 3/2 spins,
and 4, 5, 6 and 7 for S 5 1/2 spins, here called ‘3/2’ and ‘1/2’, respec-
tively (Fig. 3b and a, respectively). Although both types of oscillation
are associated with the same collective degrees of freedom of the
clusters, they show very different behaviour. In particular, the first
type of Rabi frequency compares well with that of a single spin-3/2
system, whereas the Rabi frequency of the second type is much smal-
ler than that of a single spin-1/2. This is a consequence of selection
rules: the transition type ‘3/2’ is always allowed, whereas the transi-
tions 5 and 7 of the ‘1/2’ type occur only due to transverse DM
interactions or/and breaking of the C3 symmetry25 (Methods).
Therefore we obtained Rabi oscillations with quite different frequen-
cies, VR 3=2<18:5+0:2MHz and VR1=2<4:5+0:2MHz, and a small
ratio of transition probabilities (or intensities) R , 6 3 1022 (Fig. 3,
Methods). When the transition ‘1/2’ is excited (by a single excitation
pulse), a whole spectrum of Rabi oscillations is generated. The fre-
quency of the detected oscillation depends on the characteristics of
the detection pulse, such as its length or its amplitude (Fig. 3). This
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Figure 2 | Low-energy EPR transitions. These calculated diagrams used
parameter values g < 1.96, J0 < 22.45 K, DZ < 43 mK and DXY 5 0 (see text
for details). a, The magnetic field is parallel to the c axis. Whereas the orbital
singlet 4A2 (S 5 3/2) gives the superposition of the three transitions 1, 2, and
3, the orbital doublet 2E (S 5 1/2) gives two inter-doublet transitions 4 and 6
which are basically allowed, as well as two intra-doublet transitions 5 and 7
(which are respectively allowed by transverse DM interactions and non-
symmetrical exchange interactions due to a small deviation from the trigonal
symmetry24 (Methods)). Second order zero-field splitting of 4A2 and small

splitting of the lines 1, 2, and 3 is not shown. The MJ labels correspond to the
quantization axis along the DM anisotropy field. b, Shown are the
transitions 4, 5, 6, and 7 for the angle h 5 45u between the field and cluster
C3-axis. The MJ labels correspond to the quantization axis along the field in
the strong field limit. The boundaries of the measured resonance fields of
Fig. 4 correspond to the field distribution given by the positions of labels 4, 5,
6 and 7 above the curves. The blue transitions correspond to S 5 3/2; the red
and the green transitions correspond to S 5 1/2.
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spectrum is due to the presence of an avoided level crossing and the
special selection rules; these are caused by the uniaxial anisotropy
introduced by the DM interactions in the spin-frustrated (orbitally
degenerate) ground state giving the overlapping transitions 4–7
(Fig. 2). The glassy character of the investigated frozen material is
also relevant here; this material contains different cluster orienta-
tions, leading to a distribution of transverse field components, which
gives a scattering of the coefficients of the states entering in the two-
level wavefunctions Q1j i and Q2j i and therefore a distribution of
the Rabi frequencies VR 1=2! Q1h jSz Q2j ij j (Fig. 2 and Methods).
Whereas the splitting of the excited quartet state in a magnetic field
is almost isotropic, the distribution function of the associated Rabi
frequency is very narrow.

An extension of the experiments shown in Fig. 3 to other values of
the applied field showed that Rabi oscillations could be detected for
each value of the applied field below 500 mT, while the transitions are
inhomogeneously broadened. Figure 4 gives the result of a systematic
investigation, consisting of the measurement of the spin-echo inten-
sity at time t 5 0 in a sweeping magnetic field. Two broad resonance
distributions are observed, which correspond to the Rabi oscillations
‘3/2’ and ‘1/2’ of Fig. 3b and a, respectively, which were measured
near the maxima H3/2 < 357 mT and H1/2 < 335 mT of the curves of

Fig. 4. Whereas the nearly symmetrical type ‘3/2’ distribution shows
resonances which are optimally excited by pulse durations and
powers similar to those generally used for isolated 3/2 spins, the
asymmetrical type ‘1/2’ distribution shows resonances requiring lar-
ger power and pulse length, confirming much smaller transition
probabilities. The observed inhomogeneous widths (,50 6 10 mT)
result from the existence of different transitions—that is 1 to 3 and 4
to 7 shifted by the longitudinal field components associated with the
glassy character of the frozen solution. The width of the resonance
of type ‘1/2’ (Fig. 4) fits the transition fields calculated from the
hamiltonian (equation (1)) for the resonances 4 to 7 with limiting
angles q~0 and p/2 (Fig. 2), whereas the width of the resonance of
type ‘3/2’ is simply given by the unique resonance field of transitions
1 to 3 (Fig. 2 a). In both cases, the 51V hyperfine interactions con-
tribute equally to the resonance widths.

To conclude, it was possible to entangle the 15 spins of a molecular
magnet—a complex system which, formally speaking, entails a
Hilbert space of dimension DH 5 215 (Methods)—with photons by
performing pulse EPR experiments on a frozen solution of randomly
oriented and well separated clusters. Despite the complexity of the
system11–14,21–25 (involving in a formal consideration dozens of cluster
electrons and nuclear spins of 51V, 75As and 1H), long-lived Rabi
oscillations10 were generated and selectively detected. An analysis,
based on the widely used three-spin approximation of V15 (refs 12,
13, 21–25; the related interactions are mediated by the 12 other spins)
gives a global interpretation of the results.

The observed coherence on the microsecond timescale seems to be
mainly limited by the bath of nuclear spins. Each V15 cluster is cor-
respondingly weakly coupled to 36 first-neighbour protons of the six
DODA methyl groups distributed around the cluster, and to two
water protons at the cluster centre. According to the charge (62)
of V15, six cationic DODA surfactants are relevant, with their posi-
tively charged parts (six dimethyl groups) attached to the O atoms of
the cluster surface (see also ref. 28); the corresponding neutral hybrid
just leads to the solubility in the organic solvent. The distance from
the H atoms of a methyl group to a VIV is ,0.45 nm. For this typical
spin–proton distance, the half-width of the gaussian distribution of
the coupling energy of a cluster/surfactant unit is E < 3.5 mK, giving,
for the level separation D < 0.4 K (Fig. 2), the coherence time7,8
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Figure 3 | Generation and detection of Rabi oscillations. a, Time evolution
of the average spin ÆSzæ after a spin-echo sequence. The ‘1/2’ type transition
observed near the maximum of the corresponding resonance of Fig. 4 (B0,
336.0 mT) requires unusually large excitation power B1 5 1.1 mT and pulse
length Tp/2 5 64 ns. It corresponds to the transitions 4–7 of Fig. 2. The Rabi
frequency VR 5 4.5 MHz was selected by a detection pulse with
characteristics B1 5 0.3 mT and Tp/2 5 200 ns. b, The ‘3/2’ type transition
with Rabi frequency VR 5 18.5 MHz was excited near the maximum of the
corresponding resonance of Fig. 4 (B0 5 354.3 mT). It requires excitation
and detection pulses similar to those usually used for a single spin of 3/2
(B1 5 0.27 mT, Tp/2 5 16 ns) and corresponds to the transitions 1–3 of Fig. 2.
Inset, spin-echo intensity measured versus time for both oscillations. The
coherence times t2 obtained from exponential fits are inverse functions of
the spin values: 800 ns for S 5 1/2 (red) and 340 ns for S 5 3/2 (blue).
Superimposed oscillations, mainly observed on the ‘3/2’ type curve come
from the precession of proton spins19. These oscillations correspond to only
a weak perturbation of the Rabi coherence. Temperature, 4 K for all results
shown.
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Figure 4 | Distribution of spin-echo intensities. The measurements were
done in field sweep experiments for two excitation pulse configurations. The
blue curve, corresponding to ‘3/2’ type transitions (obtained with the
excitation pulse B1 5 0.27 mT and Tp/2 5 16 ns), is nearly symmetrical and
has a high transition probability. The red curve, corresponding to ‘1/2’ type
transitions (obtained with the excitation pulse B1 5 1.1 mT and
Tp/2 5 64 ns), is asymmetrical and has a low probability (involving collective
orbital degrees of freedom). The resonance fields form a ‘band’ due to
random cluster orientations, while the corresponding distribution widths
can be well explained by the dispersions of the resonance transitions 1–3 and
4–7.
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tH
2 ~4pD=E2<18 ms. The contribution of more distant neighbouring

protons should reduce this value to a few microseconds. Regarding
the decoherence effect from 51V, the transition width W < 35 mK
gives E 5 W/2 < 17 mK and tV

2 ~0:75 ms, suggesting that the
observed decoherence of the S 5 3/2 resonances is almost entirely
caused by the 51V nuclear spins. The observed larger coherence
time of the S 5 1/2 transitions is presumably due to their smaller
hyperfine coupling. In spite of the relatively high temperature of the
measurement, the phonons’ decoherence7,8 t

ph
2 !S{4 is strongly

lowered due to the low spin and anisotropy values involved in the
electron–phonon29,30 coupling ! vi SySzzSzSy

		 		f w

		 		2, giving
t

ph
2 <100 ms, that is, t

ph
2 ? tH

2 wtV
2 . Finally, the pairwise decoherence

mechanism originating from electronic dipolar interaction7, which is
usually considered as the most destructive, is nearly negligible, owing
to the strong dilution of the clusters that results from the surfactant
environment. This allows weak dipolar interactions only (,0.5 mK)
and very large coherence times (t

pw
2 <100 ms). A comparison of the

different decoherence mechanisms suggests that coherence times
greater than 100 ms should be obtained in molecular magnets at
liquid-helium temperatures if nuclear-spin-free molecules and
deuterated surfactants are used.

The control of complex coherent spin states of molecular
magnets—in which exchange interactions can be tuned by well
defined chemical changes of the metal cluster ligand spheres—could
finally lead to a way to avoid the ‘roadblock’ of decoherence. This
would be particularly important in the case of self-organized one- or
two-dimensional supramolecular networks, where well separated
magnetic species could be addressed selectively, following different
schemes already proposed for the molecular magnet option.

METHODS SUMMARY

When we refer to the three-spin approximation of V15 (refs 12, 13, 21–25), we

consider the three spins located on each corner of the inner triangle (Fig. 1b).

However these spins do not interact directly but via the other spins of the cluster.

Strictly speaking, each hexagon contains three pairs of spins strongly coupled

with J < 2800 K (‘dimers’) and each spin of the inner triangle is coupled to two

of those pairs, one belonging to the upper hexagon and one belonging to the

lower hexagon (J1 < 2150 K and J2 < 2300 K). This gives three groups of five

spins with resultant spin S 5 1/2 (superposition of ‘entangled’ states, coupled

through inter-dimer hexagon superexchange J9 < 2150 K), showing that, in

fact, the three-spin approximation involves all of the 15 spins of the cluster

and therefore the Hilbert space has the dimension DH 5 215 (DH for the three-

spin system is 23). This approximation simplifies the evaluation of the low-lying

energy levels of the 15 ‘entangled’ states of the V15 cluster. For DZ=0 the S 5 1/2

orbital doublet 2E, whose basis functions can be labelled by the quantum number

of the total pseudo-angular momentum MJ 5 ML 1 MS, is associated with the

pseudo-orbital momentum ML 5 11 or ML 5 21 (refs 24, 25). The allowed EPR

transitions satisfy the subsequent selection rules: DML~0, DMS~+1, that is

DMJ ~+1 for the inter-doublet transitions 4 and 6, andDML~+1,DMS~+2,

that is DMJ ~+1 for the weak intra-doublet transition 5 whose transition prob-

ability is caused by a small intermultiplet mixing through the in-plane compon-

ent of the DM coupling. The intensity of this transition is significantly increased

when transition 7 becomes allowed due to a weak deviation from the C3 sym-

metry (Fig. 1). This also leads to an increased zero-field gap D2
DM zd2

� �1=2
where

d is the parameter in the exchange shift dS1S2.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Sample synthesis. 0.04 g (0.0175 mmol) of freshly prepared brown

K6 VIV
15AsIII

6 O42 H2Oð Þ
� �

:8H2O obtained as reported10 was dissolved in 20 ml of

degassed water. After addition of 25 ml of a (degassed) trichloromethane solu-

tion of [DODA]Br (1.10 g/1.75 mmol) the reaction medium was stirred under

inert atmosphere. The stirring was continued until the olive-brown coloured

aqueous layer turned colourless and the corresponding colour appeared in the

organic phase. The organic layer was then quickly separated, put into an EPR

tube and frozen to liquid nitrogen temperature. All operations were done in an

inert atmosphere.
Comparing Rabi frequencies. The frequency of the Rabi oscillations between

two states 1 and 2 is given by6–8,19:

VR~VR0 Q1h jSz Q2j ij j ð2Þ
Here VR0~2gmBB1=hPlanck~55:96B1 MHz , mTð Þ is the Rabi frequency of a spin

1/2, B1 is the amplitude of the a.c. microwave fields, g < 2 the Landé factor, S1

the ladder operator and Q1j i, Q2j i the wavefunctions associated with these states.

The probability of a transition, defined as P~ Q1h jSz Q2j ij j2, is directly con-

nected with its Rabi frequency:

P~ VR=VR0ð Þ2 ð3Þ
This allows one to evaluate the ratio (R) of the probabilities associated with two

transitions (here the ‘3/2’ and ‘1/2’ types) from the measurement of their Rabi

frequencies without the knowledge of their wavefunctions:

R~P3=2

�
P1=2~ VR 3=2

�
VR 1=2

� �
2 ð4Þ

Using the values of the Rabi frequencies given in Fig. 3, one gets R <
(4.5/18.5)2 < 5.9 3 1022. The time Tp/2, during which the excitation pulse is

applied to induce a p/2 rotation, is by definition equal to 1/4VR (refs 6, 19),

showing that equation (4) is equivalent to:

R~P3=2

�
P1=2~ Tp=2,1=2

�
Tp=2,3=2

� �
2 ð5Þ

This gives another way to determine R. Using the Tp/2 values given in Fig. 4

legend, one gets R < (16/64)2 < 6.2 3 1022, which is very close to the first one

and shows that the probability associated with the ‘1/2’ type transition is much
smaller than the one associated with ‘3/2’.
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Quantum bits (qubits) are the basic building blocks of any
quantum computer. Superconducting qubits have been created
with a top-down approach that integrates superconducting
devices into macroscopic electrical circuits1–3, and electron-spin
qubits have been demonstrated in quantum dots4–6. The phase
coherence time (t2) and the single qubit figure of merit (QM) of
superconducting and electron-spin qubits are similar — at
t2� ms and QM� 10 – 1,000 below 100 mK — and it should be
possible to scale up these systems, which is essential for the
development of any useful quantum computer. Bottom-up
approaches based on dilute ensembles of spins have achieved
much larger values of t2 (up to tens of milliseconds; refs 7,8), but
these systems cannot be scaled up, although some proposals for
qubits based on two-dimensional nanostructures should be
scalable9–11. Here we report that a new family of spin qubits
based on rare-earth ions demonstrates values of t2 (�50 ms)
and QM (�1,400) at 2.5 K, which suggests that rare-earth
qubits may, in principle, be suitable for scalable quantum
information processing at 4He temperatures.

In general, a spin qubit state is a linear superposition of the
two spin states of an electron j". and j#.. This means that the
qubit can be represented as jcs. ¼ aj". þ bj#., where a
and b are probability amplitudes, and jaj2 þ jbj2 ¼ 1. When
measuring this qubit, the probability of outcome j". (or j#.) is
jaj2 (or jbj2). In rare earth (RE) systems, the total spin, S, is no
longer a good quantum number, because the spin-orbit coupling
between S and the total orbital angular momentum, L, is larger
than the coupling of L with the electric field gradient of
environmental ionic charges (crystal field). The good quantum
number is the total angular momentum, J ¼ L þ S, which is
coupled with the crystal field through L. The RE qubit states are
therefore crystal-field states. In addition, RE elements often have
isotopes with a nuclear spin, I, that has large hyperfine
interactions with J, leading to electro-nuclear crystal-field states
with wavefunctions jCen. (see Methods).

Qubits based on these electro-nuclear states differ from
typical spin qubits in several ways: (1) the crystal field strongly
affects the Rabi frequencies that depend on the direction and the
strength of applied magnetic fields and electric field gradients,
and this could open up new possibilities for scaling; (2) the
hyperfine interactions produce up to 3(2I þ 1) 2 2 qubits per RE,
all with slightly different resonance frequencies, which means that

it should be quite easy to selectively address them with
superimposed (low) field pulses; (3) owing to their large magnetic
moment (�10 mB), it should be simple to manipulate RE
qubits; and (4) the single qubit figure of merit, QM, should be
large enough to allow quantum information processing at 4He
temperatures (QM is the number of coherent single-qubit
operations, defined as VRt2/p, where VR is the Rabi frequency;
equivalently, it is the coherence time divided by half the
Rabi period).

This work is an extension of previous research that explored
the quantum tunnelling of the magnetization in Mn12-ac and
Ho:YLiF4 (refs 12–14). Owing to the strong hyperfine
interactions in the latter system, J tunnels simultaneously with I
(electro-nuclear tunnelling). The system chosen to illustrate the
concept of RE qubits consists of Er3þ ions (J ¼ 15/2 and
gJ ¼ 6/5) diluted in a single crystalline matrix of CaWO4, which
is isomorphic with YLiF4. The main reason for replacing YLiF4

with CaWO4 is to reduce the proportion of nuclear spins, which
are an important source of decoherence15 (the phenomenon by
which a quantum system seems to be classical as a result of
interactions with its environment).

Continuous-wave electron paramagnetic resonance (CW-EPR)
measurements were first performed in Er3þ:CaWO4. The
transitions for the isotopes with I ¼ 0 and I ¼ 7/2 were observed
at 4He temperatures using a Bruker X-band spectrometer at
9.7 GHz. These transitions occur either between pure crystal-field
levels (I ¼ 0) or between electro-nuclear crystal-field sublevels
(I ¼ 7/2) (see Methods). In both cases, the observed line-width is
small enough for the lifetime of the levels to be much larger than
calculated periods of Rabi oscillations (weak decoherence). In
order to observe these oscillations, a series of experiments was
performed in pulsed-wave EPR (PW-EPR) mode. Eight
transitions were observed (Fig. 1).

An example of the measured Rabi oscillations16 is given in
Fig. 2, for I ¼ 0, where the z component of the magnetization,
Mz, is plotted against time. It is possible to fit the data to

kMzl ¼ Mzðt¼0Þe
�t=tR sinðVRtÞ ð1Þ

using a single exponential damping parameter tR � 0.2 ms (VR

having been previously obtained from a Fourier transform of the
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data). Other experiments performed at different microwave
powers show that tR increases as the power decreases, and the
number of Rabi oscillations, N(c) (where c is the concentration
of Er), remains nearly unchanged; that is, N(c) � tR(c)VR, with
N(c) � 20 in the example of Fig. 2. This increase of tR is always
limited by t2 (Fig. 3). All of this suggests the phenomenological
expression

1=tRðcÞ � VR=NðcÞ þ 1=t2ðcÞ ð2Þ

where tR(c), N(c) and t2(c) are concentration-dependent. Rabi
oscillations are lost for t� t2 in the low power limit where
VR! 0, and for t� N(c)/VR in the large power limit where
VR� N(c)/t2. In the first case, t2 should be limited by RE

spin-diffusion because of long-range dipolar interactions, as in
nuclear magnetic resonance. In the second case, the observed
behaviour is characteristic of inhomogeneous nutation frequency.
In fact, a weak random crystal field, responsible for the
CW line-width17,18, feeds into some distribution of the
jJ,mJ,I,mI. coefficients, resulting in destructive interference of
Rabi oscillations (VR/ kf1,mIjJþjf2,m0Il, see Methods), which go
out of phase after a certain number of periods. However, the
number of oscillations N(c) depends on concentration, indicating
that dipolar interactions must also be taken into account.

Recently, a model relying on the assumption that each spin
experiences a stochastic field of mean-square amplitude b,
oscillating at the resonance frequency v, led to the expression

1=tR ¼ bVR þ 1=2t2 ð3Þ

very similar to equation (2) (ref. 19). This linear dependence on
VR was tested on pure S ¼ 1/2 spins in amorphous-SiO2

containing E0 centres where a concentration effect has also been
obtained20. In the frame of the present study, the origin of the
stochastic field should be related to both crystal-field distribution
and dipolar interactions21. In order to check equations (2) and (3)
more carefully, 1/tR versus VR is plotted for two different
directions of the microwave field h (Fig. 3, inset; see also Fig. 4).
The obtained curve is continuous, showing that the damping rate
scales with the Rabi frequency (and not with the microwave field
h when the dipole matrix elements are different) according to an
S-shaped curve of, for example, the type 1/tR ¼ 1/t2 f (VRt2),
with a progressive saturation at t2 when VR! 0. The dependence
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Figure 1 Energy levels and Rabi frequencies for the erbium-doped RE

system 167Er31:CaWO4. a, Energy spectrum calculated for a magnetic field

perpendicular to the c-axis. In the zero field, the spectrum contains 16 electro-

nuclear states ((2S þ 1)(2I þ 1) with S ¼ 1/2 and I ¼ 7/2) consisting of a

singlet, 7 doublets and another singlet (nine sublevels). The fourth doublet, near

the centre of the figure, is well separated from the other levels. When the

Zeeman splitting caused by the magnetic field becomes larger than the

hyperfine splitting, which sets the energy scale at zero field, the levels vary

linearly with the magnetic field, which gives 8 states with effective spin 1/2 and

8 states with effective spin 21/2. Each of these states is labelled by the

nuclear spin projection, m I, which increases from 27/2 for the two states at

the centre of the figure to þ7/2 for the lower- and upper-most states. EPR

transitions between spins+1/2 and Dm I ¼ 0 are represented by the vertical

arrows. b, Rabi frequencies, measured versus static field H//a and ac-field

m0h ¼ 0.12 mT//b, on a single crystal of Er3þ:CaWO4 (2 � 2.5 � 3 mm3, 1025

atomic % Er). They show an intense central peak (for the isotopes I ¼ 0) and 8

smaller peaks separated by DH � 6–8 mT (for the isotope I ¼ 7/2, 167Er3þ).

Exact diagonalization of equation (4) (see Methods) permits accurate calculation

of these frequencies (using the crystal-field and hyperfine constants only30,32);

one finds VR/2p ¼ 17.546, 17.302, 17.166, 17.115, 17.137, 17.238, 17.394

and 17.605 MHz. The colour scale shows the proportion of ions with Rabi

frequency VR at a given magnetic field (white , 80, blue ¼ 80, red . 800

arbitrary units).
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Figure 2 Rabi oscillations and coherence times. Rabi oscillations measured

on I ¼ 0 isotopes of the same single crystal for m0H ¼ 0.522 T//c,

m0h ¼ 0.15 mT//b and T ¼ 3.5 K. These oscillations are obtained by the

application of a nutation pulse of length t followed, after a delay greater than t2

(permitting the transverses spin components to relax), by a p/2 – p sequence.

The resulting echo intensity is averaged over �103 measurements, giving

the z-component of the nutating magnetization at time t (Mz). The dashed

line is a fit to equation (1) (see text) giving an exponential decay time

tR ¼ 0.2 ms ,, t2 � 7 ms (see Fig. 3). The inset shows the decay of the

transverse spin component, Sx, obtained by a conventional spin-echo method at

different temperatures, showing that the coherence time t2 reaches the 100 ms

scale at 4He temperatures. Weak superimposed oscillations come from the

ESEEM effect (Electron Spin Echo Envelope Modulation)34 produced by the

super-hyperfine coupling with second neighbour W nuclear spins. One can verify

that the oscillation frequency perfectly matches the W nucleus spin Larmor

frequency in the applied field (small super hyperfine limit).
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of VR with the direction of the microwave field, h, is
demonstrated in Fig. 4, where a simple rotation from h//b to h//c
reduces the Rabi frequency by the factor VR//b/VR//c � 6. This
ratio is slightly smaller than the one derived from the
proportionality VR//b/VR//c � geffb/geffc � 6.7, because VR//b

drops in a few degrees from its maximum value VR//b � 6.7VR//c

to its minimum value �VR//c. A better agreement would simply
require better angular accuracy in the crystal orientation.

Finally, RE qubits have large QM at 4He temperatures and, in
principle, they should be scalable. Indeed t2 increases with
dilution and cooling (Fig. 2b); an extrapolation down to 1.5 K for
a concentration of 1026 atomic Er:CaWO4 gives QM � 104, which
is enough for quantum information processing. Moreover, RE
qubits could in principle be selectively addressed and their
couplings manipulated, according to variants of existing proposals
and realizations4–6,10,11. As a matter of fact, they could be inserted
in all kinds of matrices structured by lithography, including films,
quantum dots or nanowires of semiconducting Si (ref. 22) or
GaN (ref. 23), and coupled by controlled carrier injection
through the gate voltage24. They could be addressed selectively
by application of (1) local field pulses of amplitude
,25 mT adding algebraically to the static field (this is limited
to n � 3(2I þ 1) 2 2 qubits; Fig. 1), and (2) continuous electric
field gradients for n . 3(2I þ 1) 2 2. A gradient of
10 mV (nm)22 is enough to modify the crystal-field parameters
by �10% in most matrices and therefore the resonance frequency.
Interestingly, the 3(2I þ 1) 2 2 Rabi oscillations of each 167Er
(Fig. 1) may also be used to implement Grover’s algorithm25 on
single RE ions (this is a general property of electro-nuclear RE
qubits with I = 0). Spin-state detection could follow schemes
like those in refs 4 and 6, but alternative ways using the fast
photoluminescent properties of RE (refs 22,23,26) might
ultimately be better. Finally, instead of dots one might also use
single molecules containing a RE ion27.

In conclusion, Rabi oscillations of the angular moment
J ¼ 15/2 of Er:CaWO4 have been observed for the first time and
analysed, evincing a new type of anisotropic electro-nuclear spin
qubits. Isotopes with I ¼ 0 give a single purely electronic Rabi
frequency (single qubit, DMJ ¼+1), and the isotope I ¼ 7/2
(167Er) gives a set of eight electro-nuclear frequencies (eight
qubits, DMJ ¼+1 and DMI ¼ 0), which are addressed
independently. Because the spin-orbit coupling, the magnetic
moments and the hyperfine interactions are all large, it should be
possible to couple and address selectively a large number of RE
qubits using weak electric and magnetic fields. Furthermore, each
RE ion could be used to implement Grover’s algorithm. All
this, together with large QM factors (�103–104 between 2.5
and 1.5 K), suggests that RE qubits are good candidates for
implementation of quantum computation at 4He temperatures.

METHODS

CRYSTAL-FIELD BACKGROUND

The hamiltonian The single-ion hamiltonian for Er3þ:CaWO4 (tetragonal
space group I41/a and S4 point symmetry28) contains crystal-field, hyperfine
and Zeeman terms:

HCF ¼ aJB
0
2O0

2 þ bJðB0
4O0

4 þ B4
4O4

4Þ þ gJðB0
6O0

6

þ B4
6O4

6 þ B�4
6 O�4

6 Þ þ AJI � Jþ gJmBm0JH ð4Þ

The Ol
m are the Stevens’ equivalent operators with the reduced matrix elements

aJ, bJ, gJ (ref. 29), and the Bl
m are the crystal-field parameters determined by

high-resolution optical spectroscopy (B2
0 ¼ 231 cm21, B4

0 ¼ 290 cm21,
B4

4 ¼+852 cm21, B6
0 ¼20.6 cm21, B6

4 ¼+396 cm21 and B6
24 ¼+75 cm21;

ref. 30).

Energy spectra and wavefunctions Exact diagonalization of the 16 � 16
matrix of equation (4) with I ¼ H ¼ 0 reveals an easy plane perpendicular to
the c-axis with a doublet ground state of wavefunctions jf1. and jf2.. This
doublet, with effective spin 1/2 and anisotropic geff tensor (g// ¼ 1.247,
g? ¼ 8.38; ref. 31), permits a single EPR transition (DmJ ¼+1), which can be
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experiment in Fig. 2 is repeated with the microwave field reduced by a factor of

20, the period of the Rabi oscillations becomes longer (by the same factor of

20), but the number of periods remains of the order of 20 (up to 20 ms). The

same fit as in Fig. 2 gives tR � 3 ms, which is comparable with the t2 � 7 ms

obtained in spin-echo measurements under the same experimental conditions.

The inset shows the damping rate of the Rabi oscillations, 1/tR, plotted against

the Rabi frequency, VR, for two directions of the microwave field. The continuity

of the curve proves that 1/tR depends on VR only and tends to 1/t2 at low

microwave power (dashed line).
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Figure 4 Maximum and minimum coupling of the microwave field to Er

effective spins and direction-dependent Rabi frequencies. Rabi frequency,

VR, measured for two directions of the microwave field, hm, on a single crystal

with atomic Er concentration of 5 � 1024. The ac field was calibrated by

comparison with a coal sample. Owing to the ‘easy’ plane anisotropy (see

Methods), the coupling between Er effective spins and the microwave field is

maximum when the latter is in the easy plane (giving large VR) and minimum

when it is perpendicular to it (giving small VR).
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Black plate (42,1)

observed on I ¼ 0 isotopes (�77%). The Rabi frequency is given by
VR ¼ 2gJmBkf1jJmhmjf2l/h / geff , where h is Planck’s constant. Natural Er also
contains 167Er with I ¼ 7/2 (�23%) and AJ ¼24.16� 1023 cm21

(2125 MHz) (ref. 32). In this case the 128 � 128 matrix leads to the energy
spectrum of Fig. 1a. The degeneracy is completely removed by H and the new
set of wavefunctions jCen. ¼ SbijJ,mJ,I,mI. on the space product
jL,S,J,mJ. 	 jI,mI. differs from jf1. and jf2. owing to the nuclear degrees
of freedom. Figure 1 also shows that 3(2I þ 1) 2 2 EPR transitions are allowed,
giving, for I ¼ 7/2, eight transitions with conservation of I (DmJ¼+1 and
DmI ¼ 0) and 14 transitions without (DIJ ¼+1 and DmI ¼+1).

Received 23 October 2006; accepted 27 November 2006; published

3 January 2007.
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REPORTS
Coherent Quantum Dynamics of
a Superconducting Flux Qubit

I. Chiorescu,1* Y. Nakamura,1,2 C. J. P. M. Harmans,1 J. E. Mooij1

We have observed coherent time evolution between two quantum states of a
superconducting flux qubit comprising three Josephson junctions in a loop. The
superposition of the two states carrying opposite macroscopic persistent cur-
rents is manipulated by resonant microwave pulses. Readout by means of
switching-event measurement with an attached superconducting quantum in-
terference device revealed quantum-state oscillations with high fidelity. Under
strong microwave driving, it was possible to induce hundreds of coherent
oscillations. Pulsed operations on this first sample yielded a relaxation time of
900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These
results are promising for future solid-state quantum computing.

It is becoming clear that artificially fabricated
solid-state devices of macroscopic size may, un-
der certain conditions, behave as single quantum
particles. We report on the controlled time-depen-
dent quantum dynamics between two states of a
micron-size superconducting ring containing bil-
lions of Cooper pairs (1). From a ground state in
which all the Cooper pairs circulate in one direc-
tion, application of resonant microwave pulses
can excite the system to a state where all pairs
move oppositely, and make it oscillate coherently
between these two states. Moreover, multiple
pulses can be used to create quantum operation
sequences. This is of strong fundamental interest
because it allows experimental studies on deco-
herence mechanisms of the quantum behavior of a
macroscopic-sized object. In addition, it is of
great importance in the context of quantum com-
puting (2) because these fabricated structures are
attractive for a design that can be scaled up to
large numbers of quantum bits or qubits (3).

Superconducting circuits with mesoscopic Jo-
sephson junctions are expected to behave accord-
ing to the laws of quantum mechanics if they are
separated sufficiently from external degrees of

freedom, thereby reducing the decoherence.
Quantum oscillations of a superconducting two-
level system have been observed in the Cooper
pair box qubit using the charge degree of freedom
(4). An improved version of the Cooper pair box
qubit showed that quantum oscillations with a
high quality factor could be achieved (5). In ad-
dition, a qubit based on the phase degree of
freedom in a Josephson junction was presented,
consisting of a single, relatively large Joseph-
son junction current-biased close to its critical
current (6, 7).

Our flux qubit consists of three Josephson
junctions arranged in a superconducting loop
threaded by an externally applied magnetic flux
near half a superconducting flux quantum �0 �
h/2e [(8); a one-junction flux qubit is described in
(9)]. Varying the flux bias controls the energy
level separation of this effectively two-level
system. At half a flux quantum, the two lowest
states are symmetric and antisymmetric super-
positions of two classical states with clockwise
and anticlockwise circulating currents. As
shown by previous microwave spectroscopy
studies, the qubit can be engineered such that
the two lowest eigenstates are energetically
well separated from the higher ones (10).
Because the qubit is primarily biased by
magnetic flux, it is relatively insensitive to
the charge noise that is abundantly present in
circuits of this kind.

The central part of the circuit, fabricated
by electron beam lithography and shadow

evaporation of Al, shows the three in-line
Josephson junctions together with the small
loop defining the qubit in which the persistent
current can flow in two directions, as shown
by arrows (Fig. 1A). The area of the middle
junction of the qubit is � � 0.8 times the area
of the two outer ones. This ratio, together
with the charging energy EC � e 2/2C and the
Josephson energy EJ � hIC/4�e of the outer
junctions (where IC and C are their critical
current and capacitance, respectively), deter-
mines the qubit energy levels (Fig. 2A) as a
function of the superconductor phase �q

across the junctions (Fig. 1B). Close to �q �

1Quantum Transport Group, Department of Nano-
Science, Delft University of Technology and Delft
Institute for Micro Electronics and Submicron Tech-
nology (DIMES), Lorentzweg 1, 2628 CJ Delft, Neth-
erlands. 2NEC Fundamental Research Laboratories, 34
Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan.

*To whom correspondence should be addressed. E-
mail: chiorescu@qt.tn.tudelft.nl

Fig. 1. (A) Scanning electron micrograph of a flux
qubit (small loop with three Josephson junctions of
critical current �0.5 �A) and the attached SQUID
(large loop with two big Josephson junctions of
critical current �2.2 �A). Evaporating Al from two
different angles with an oxidation process between
them gives the small overlapping regions (the Jo-
sephson junctions). The middle junction of the
qubit is 0.8 times the area of the other two, and
the ratio of qubit/SQUID areas is about 1:3. Ar-
rows indicate the two directions of the persistent
current in the qubit. The mutual qubit/SQUID in-
ductance is M � 9 pH. (B) Schematic of the
on-chip circuit; crosses represent the Josephson
junctions. The SQUID is shunted by two capacitors
(�5 pF each) to reduce the SQUID plasma fre-
quency and biased through a resistor (�150 ohms)
to avoid parasitic resonances in the leads. Symme-
try of the circuit is introduced to suppress excita-
tion of the SQUID from the qubit-control pulses.
The MW line provides microwave current bursts
inducing oscillating magnetic fields in the qubit
loop. The current line provides the measuring pulse
Ib and the voltage line allows the readout of the
switching pulse Vout. The Vout signal is amplified,
and a threshold discriminator (dashed line) detects
the switching event at room temperature.
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�, the loop behaves as a two-level system
with an energy separation E10 � E1 – E0 of
the eigenstates �0	 and �1	 described by the
effective Hamiltonian H � –ε
z/2 – �
x/2,
where 
z,x are the Pauli spin matrices, � is
the level repulsion, and ε � Ip�0(�q – �)/�
(where Ip � 2��EJ/�0 is the qubit maximum
persistent current) (11).

The sample is enclosed in a gold-plated cop-
per shielding box kept at cryogenic temperatures
T � 25 mK (kBT �� �). The qubit is initialized to
the ground state simply by allowing it to relax.
Coherent control of the qubit state is achieved by
applying resonant microwave excitations on the
microwave (MW) line (Fig. 1B), thereby inducing
an oscillating magnetic field through the qubit
loop. The qubit state evolves driven by a time-
dependent term (–1⁄2)εmw cos(2�Ft)
z in the
Hamiltonian where F is the microwave frequency
and εmw is the energy-modulation amplitude pro-
portional to the microwave amplitude. This dy-
namic evolution is similar to that of spins in
magnetic resonance. When the MW frequency
equals the energy difference of the qubit, the qubit
oscillates between the ground state and the excit-
ed state. This phenomenon is known as Rabi
oscillation. The Rabi frequency depends linearly
on the MW amplitude (12–14).

Readout is performed with an underdamped
superconducting quantum interference device
(SQUID) with a hysteretic current-voltage char-
acteristic in direct contact with the qubit loop (Fig.
1A). The mutual coupling M is relatively large
because of the shared kinetic and geometric in-
ductances of the joint part enhancing the qubit
signal. After performing the qubit operation, a
bias current pulse Ib is applied to the SQUID (15).
The Ib pulse consists of a short current pulse of
length �50 ns followed by a trailing plateau of
�500 ns (Fig. 1B). During the current pulse, the
SQUID either switches to the gap voltage or stays
at zero voltage. The pulse height and length are
set to optimize the distinction of the switching
probability between the two qubit states, which
couple to the SQUID through the associated cir-
culating currents. Because the readout electronics
has a limited bandwidth of �100 kHz, a voltage
pulse of 50 ns is too short to be detected. For that
reason the trailing plateau is added, with a current
just above the retrapping current of the SQUID.
The whole shape is adjusted for maximum read-
out fidelity. The switching probability is obtained
by repeating the whole sequence of reequilibra-
tion, microwave control pulses, and readout typ-
ically 5000 times.

When the SQUID bias current is switched on,
the circulating current in the SQUID changes.
This circulating current, coupled to the qubit
through the mutual inductance, changes the phase
bias of the qubit by an estimated amount 0.01�.
Consequently, the phase bias at which the quan-
tum operations are performed is different from the
phase bias at readout. This can be very useful
because at the phase bias near �, where the qubit
is least sensitive to flux noise, the expectation

values for the qubit circulating current are ex-
tremely small. The automatic phase bias shift can
be used to operate near � and to perform readout
at a bias with a good qubit signal (11). Care must
be taken that the fast shift remains adiabatic and
that the whole sequence is completed within the
relaxation time.

The average SQUID switching current Isw

versus applied flux shows the change of the
qubit ground-state circulating current (Fig. 2B).
Here, the Ib pulse amplitude is adjusted such
that the averaged switching probability is main-
tained at 50%. A step corresponding to the
change of qubit circulating current was ob-
served (around the dashed line). The relative
variation of 2.5% of Isw is in agreement with
the estimation based on the qubit current Ip

and the qubit-SQUID mutual inductance M.
The relevant two energy levels of the qubit

were first examined by spectroscopic means.
Before each readout, a long microwave pulse (1
�s) at a series of frequencies was applied to
observe resonant absorption peaks/dips each
time the qubit energy separation E10—adjusted
by changing the external flux—coincides with
the MW frequency F (10). The dots in Fig. 2C
are measured peak/dip positions, obtained by
varying F, whereas the continuous line is a
numerical fit produced by exact diagonalization
(compare Fig. 2A) giving an energy gap � �
3.4 GHz. The curves in Fig. 2, B and C, are
plotted against the change ��ext in external flux
from the symmetry position indicated by the
dotted line. In agreement with our numerical
simulations, the step (Fig. 2B) is shifted away
from the symmetry position of the energy spec-
trum (Fig. 2C) by a phase bias shift ��q �
2�(��ext/�0) � 0.008�. The step reflects the
external-flux dependence of the qubit circulat-
ing current at Ib � Isw (after the shift), whereas
the spectrum reflects E01 at Ib � 0 (before the
shift) (16).

Next, we used different MW pulse sequences
to induce coherent quantum dynamics of the
qubit in the time domain. For a given level sep-
aration E10, a short resonant MW pulse of vari-
able length with frequency F � E10 was applied.
Together with the MW amplitude, the pulse
length defines the relative occupancy of the
ground state and the excited state. The corre-
sponding switching probability was measured
with a fixed-bias current pulse amplitude. We
obtained coherent Rabi oscillations of the qubit
circulating current for a frequency F � 6.6 GHz
and three different values of the MW power A
(Fig. 3). The variation in switching probability is
around 60%, indicating that the fidelity in a sin-
gle readout is of that order. By varying A, we
verified the linear dependence of the Rabi fre-
quency on the MW amplitude, a key signature of
the Rabi process (Fig. 3B). The oscillation pat-
tern can be fitted to a damped sinusoid. For
relatively strong driving (Rabi period below 10
ns), decay times Rabi up to �150 ns are obtained.
This large decay time resulted in hundreds of
coherent oscillations at large microwave power.

The Rabi scheme also allows the study of
the state occupancy relaxation. This can be
done by applying a coherent � pulse for full
rotation of the qubit into the excited state and
varying the delay time before readout. Exper-
iments performed at F � 5.71 GHz gave an
exponential decay with relaxation time
relax � 900 ns.

As a next step we measured the undriven,
free-evolution dephasing time � by perform-
ing a Ramsey interference experiment (17) as
follows. Two �/2 pulses, whose length is
determined from the Rabi precession present-
ed above, are applied to the qubit. The first
pulse creates a superposition of the �0	 and �1	
states. If the microwave frequency is detuned
by �F � E10 – F away from resonance, the
superposition phase increases with a rate

Fig. 2. (A) Calculated
energy diagram for the
three-junction qubit, for
EJ/EC � 35, EC � 7.4
GHz, and � � 0.8 (11).
��q indicates the phase
shift induced by the
SQUID bias current. (B)
Ground-state transition
step: The sinusoidal
background modulation
of the SQUID (Ibg) is
subtracted from the Ib
pulse amplitude corre-
sponding to 50%
switching probability
(Isw) and then normal-
ized to Istep, the middle
value (at the dashed
line). A sharp peak and dip are induced by a long (1 �s) MW radiation burst at 16 GHz, allowing
the symmetry point to be found (midpoint of the peak/dip positions, dotted line). Data show
Isw versus ��ext, the deviation in external flux from this point. The transition step is displaced
from this point by ��q/2�. (C) Frequency of the resonant peaks/dips (dots) versus ��ext; the
continuous line is a numerical fit with the same parameters as in (A) leading to a value of � �
3.4 GHz, whereas the dashed line depicts the case � � 0.
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2��F, in the frame rotating with the MW
frequency F. After a varying delay time, we
apply another �/2 pulse to measure the final
�0	 and �1	 state occupancy via the switching
probability. The readout shows Ramsey
fringes with a period 1/�F, as in Fig. 4A,
where E10 � 5.71 GHz and �F � 220 MHz.
The dots represent experimental data, where-
as the continuous line is an exponentially
damped sinusoidal fitting curve, yielding a
free-evolution dephasing time � � 20 ns.
Note that the oscillation period of 4.5 ns
agrees well with 1/�F.

Additional information on the spectral prop-
erties of the decohering fluctuations can be ob-
tained with a modified Ramsey experiment. By
inserting a � pulse between the two �/2 pulses
(Fig. 4B), we obtain a spin-echo pulse configu-
ration. The role of the � pulse is to reverse the
noise-driven diffusion of the qubit phase at the
midpoint in time of the free evolution. Dephasing
due to fluctuations of lower frequencies should
be cancelled by their opposite influence before
and after the � pulse (18). Spin-echo oscillations
(Fig. 4B) are taken under the same conditions as
the Ramsey fringes, but are here recorded as a

function of the � pulse position. The period
(�2.3 ns) is half that of the Ramsey interference.
We measured the decay of the maximum spin-
echo signal (i.e., with the � pulse in the center)
versus the delay time between the two �/2 pulses.
The data can be fitted to a half-Gaussian (not
shown) with a decay time echo � 30 ns.

We conclude that with the present device
and setup, the dephasing time � � 20 ns, as
measured with the Ramsey pulses, is much
shorter than the relaxation time relax � 900 ns.
Dephasing is probably caused by a variation in
time of the qubit energy splitting, attributable to
external or internal noise. A likely source is
external flux noise, which can be reduced in the
future. The present qubit could not be operated
at the symmetry point �q � � where the influ-
ence of flux noise is minimal (5), presumably as
the result of an accidentally close SQUID reso-
nance (19). Other possible noise sources are
thermal, charge, critical current, and spin fluc-
tuations. From estimations of the Johnson noise
in the bias circuit (20, 21), we find a contribu-
tion that is several orders of magnitude weaker.

For strong driving, Rabi oscillations per-
sisted for times much longer than �. This

constitutes no inconsistency. The dependence
of the Rabi period on the detuning, due to
fluctuations of the qubit energy E10, is weak
when the Rabi period is short. The fact that
coherence is only marginally improved by the
� pulse in the spin-echo experiment seems to
indicate the presence of noise at frequencies
beyond 10 MHz. Further analysis and addi-
tional measurements are needed.

These first results on the coherent time
evolution of a flux qubit are very promis-
ing. The already high fidelity of qubit ex-
citation and readout can no doubt be im-
proved. Quite likely it is also possible to
reduce the dephasing rate. Taken together,
these results establish the superconducting
flux qubit as an attractive candidate for
solid-state quantum computing.
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Fig. 3. (A) Rabi oscillations
for a resonant frequency
F � E10 � 6.6 GHz and
three different microwave
powers A � 0, –6, and
–12 dBm, where A is the
nominal microwave pow-
er applied at room tem-
perature. The data arewell
fitted by exponentially
damped sinusoidal oscilla-
tions. The resulting decay
time is �150 ns for all
powers. (B) Linear depen-
dence of the Rabi frequen-
cy on the microwave am-
plitude, expressed as 10A/

20. The slope is in agree-
ment with estimations
based on sample design.

Fig. 4. (A) Ramsey inter-
ference: Themeasured switch-
ing probability (dots) is plot-
ted against the time between
the two �/2 pulses. The con-
tinuous line is a fit by expo-
nentially damped oscillations
with a decay time of 20 ns.
The Ramsey interference peri-
od of 4.5 ns agrees with the
inverse of the detuning from
resonance, 220 MHz. The res-
onant frequency is 5.71 GHz
and microwave power A � 0
dBm. (B) Spin-echo experi-
ment: switching probability
versus position of the � pulse
between two �/2 pulses. The
period of�2.3 ns corresponds
well to half the inverse of the
detuning. The width and timing of microwave pulses in the MW line are shown in each graph. The readout
pulse in the bias line immediately follows the last �/2 pulse (see Fig. 1B).
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Driven coherent oscillations of a single
electron spin in a quantum dot
F. H. L. Koppens1, C. Buizert1, K. J. Tielrooij1, I. T. Vink1, K. C. Nowack1, T. Meunier1, L. P. Kouwenhoven1

& L. M. K. Vandersypen1

The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments
towards a scalable spin-based quantum computer. In combination with the recently demonstrated controlled exchange
gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations.
Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a
continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent
transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by
applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called
Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron
spins in a quantum dot as quantum bits.

The use of quantum mechanical superposition states and entangle-
ment in a computer can theoretically solve important mathematical
and physical problems much faster than classical computers1,2.
However, the realization of such a quantum computer represents a
formidable challenge, because it requires fast and precise control of
fragile quantum states. The prospects for accurate quantum control
in a scalable system are thus being explored in a rich variety of
physical systems, ranging from nuclear magnetic resonance and ion
traps to superconducting devices3.

Electron spin states were identified early on as an attractive
realization of a quantum bit4, because they are relatively robust
against decoherence (uncontrolled interactions with the environ-
ment). Advances in the field of semiconductor quantum dots have
made this system very fruitful as a host for the electron spin. Since
Loss and DiVincenzo’s proposal5 on electron spin qubits in quantum
dots in 1998, many of the elements necessary for quantum compu-
tation have been realized experimentally. It is now routine to isolate
with certainty a single electron in each of two coupled quantum
dots6–9. The spin of this electron can be reliably initialized to the
ground state, spin-up, via optical pumping10 or by thermal equili-
bration at sufficiently low temperatures and strong static magnetic
fields (for example, T ¼ 100 mK and B ext ¼ 1 T). The spin states are
also very long-lived, with relaxation times of the order of milli-
seconds11–13. Furthermore, a lower bound on the spin coherence time
exceeding 1ms was established, using spin-echo techniques on a two-
electron system14. These long relaxation and coherence times are
possible in part because the magnetic moment of a single electron
spin is so weak. On the other hand, this property makes read-out and
manipulation of single spins particularly challenging. By combining
spin-to-charge conversion with real-time single-charge detec-
tion15–17, it has nevertheless been possible to accomplish single-shot
read-out of spin states in a quantum dot13,18.

The next major achievement was the observation of the coherent
exchange of two electron spins in a double dot system, controlled by
fast electrical switching of the tunnel coupling between the two
quantum dots14. Finally, free evolution of a single electron spin about

a static magnetic field (Larmor precession) has been observed, via
optical pump–probe experiments19,20. The only missing ingredient
for universal quantum computation with spins in dots remained the
demonstration of driven coherent spin rotations (Rabi oscillations)
of a single electron spin.

The most commonly used technique for inducing spin flips is
electron spin resonance (ESR)21. ESR is the physical process whereby
electron spins are rotated by an oscillating magnetic field B ac (with
frequency f ac) that is resonant with the spin precession frequency in
an external magnetic field B ext, oriented perpendicularly to B ac

(hf ac ¼ gmBB ext, where mB is the Bohr magneton and g the electron
spin g-factor). Magnetic resonance of a single electron spin in a solid
has been reported in a few specific cases22–24, but has never been
realized in semiconductor quantum dots. Detecting ESR in a single
quantum dot is conceptually simple25, but experimentally difficult to
realize, as it requires a strong, high-frequency magnetic field at low
temperature, while accompanying alternating electric fields must be
minimized. Alternative schemes for driven rotations of a spin in a dot
have been proposed, based on optical excitation26 or electrical
control27–29, but this is perhaps even more challenging and has not
been accomplished either.

Here, we demonstrate the ability to control the spin state of a single
electron confined in a double quantum dot via ESR. In a double dot
system, spin-flips can be detected through the transition of an
electron from one dot to the other30,31 rather than between a dot
and a reservoir, as would be the case for a single dot. This has the
advantage that there is no need for the electron spin Zeeman splitting
(used in a single dot for spin-selective tunnelling) to exceed the
temperature of the electron reservoirs (,100 mK; the phonon
temperature was ,40 mK). The experiment can thus be performed
at a smaller static magnetic field, and consequently with lower,
technically less demanding, excitation frequencies. Furthermore, by
applying a large bias voltage across the double dot, the spin detection
can be made much less sensitive to electric fields than is possible in the
single-dot case (electric fields can cause photon-assisted tunnelling;
see Supplementary Discussion). Finally, in a double dot, single-spin
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operations can in future experiments be combined with two-qubit
operations to realize universal quantum gates5, and with spin read-out
to demonstrate entanglement32,33.

Device and ESR detection concept

Two coupled semiconductor quantum dots are defined by surface
gates (Fig. 1a) on top of a two-dimensional electron gas. By applying
the appropriate negative voltages to the gates the dots can be tuned to
the few-electron regime8. The oscillating magnetic field that drives
the spin transitions is generated by applying a radio-frequency (RF)
signal to an on-chip coplanar stripline (CPS) which is terminated in a
narrow wire, positioned near the dots and separated from the surface
gates by a 100-nm-thick dielectric (Fig. 1b). The current through the
wire generates an oscillating magnetic field B ac at the dots, perpen-
dicular to the static external field B ext and slightly stronger in the left
dot than in the right dot (see Supplementary Fig. S1).

To detect the ESR-induced spin rotations, we use electrical trans-
port measurements through the two dots in series in the spin
blockade regime where current flow depends on the relative spin
state of the electrons in the two dots30,34. In brief, the device is
operated so that current is blocked owing to spin blockade, but this
blockade is lifted if the ESR condition (hf ac ¼ gmBB ext) is satisfied.

This spin blockade regime is accessed by tuning the gate voltages
such that one electron always resides in the right dot, and a second
electron can tunnel from the left reservoir to the left dot (Fig. 1c and
Supplementary Fig. S2). If this electron forms a double-dot singlet
state with the electron in the right dot (S ¼ " # 2 # "; normalization
omitted for brevity), it is possible for the left electron to move to the
right dot, and then to the right lead (leaving behind an electron in the
right dot with spin " or spin # ), since the right dot singlet state is
energetically accessible. If, however, the two electrons form a double-
dot triplet state, the left electron cannot move to the right dot because
the right dot’s triplet state is much higher in energy. The electron also
cannot move back to the lead and therefore further current flow is
blocked as soon as any of the (double-dot) triplet states is formed.

Role of the nuclear spin bath for ESR detection

In fact, the situation is more complex, because each of the two spins
experiences a randomly oriented and fluctuating effective nuclear
field of ,1–3 mT (refs 35, 36). This nuclear field, B N, arises from the
hyperfine interaction of the electron spins with the Ga and As nuclear
spins in the host material, and is in general different in the two dots,
with a difference of DB N. At zero external field and for sufficiently
small double dot singlet–triplet splitting (see Supplementary Fig.
S2d), the inhomogeneous component of the nuclear field causes all
three triplet states (T0, Tþ and T2) to be admixed with the singlet S
(for example, T0 ¼ " # þ # " evolves into S ¼ " #2 # " due to DB N,z,
and Tþ¼ " " and T2¼ # # evolve into S owing to DB N,x). As a result,
spin blockade is lifted. For Bext ..

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

, however, the Tþ and T2

states split off in energy, which makes hyperfine-induced admixing
between T^and S ineffective (T0 and S remain admixed; see Fig. 2a).
Here spin blockade does occur, whenever a state with parallel spins
( " " or # #) becomes occupied.

ESR is then detected as follows (see Fig. 1c). An oscillating
magnetic field resonant with the Zeeman splitting can flip the spin
in the left or the right dot. Starting from " " or # #, the spin state then
changes to " # (or # "). If both spins are flipped, transitions occur
between " " and # # via the intermediate state "^#ffiffi

2
p "^#ffiffi

2
p . In both cases,

states with anti-parallel spins (S z ¼ 0) are created owing to ESR.
Expressed in the singlet-triplet measurement basis, " # or # " is a
superposition of the T0 and S state ( " # ¼ T0 þ S). For the singlet
component of this state, the left electron can transition immediately to
the right dot and from there to the right lead. The T0 component first
evolves into a singlet due to the nuclear field and then the left electron
can move to the right dot as well. Thus whenever the spins are anti-
parallel, one electron charge moves through the dots. If such transitions
from parallel to anti-parallel spins are induced repeatedly at a suffi-
ciently high rate, a measurable current flows through the two dots.

ESR spectroscopy

The resonant ESR response is clearly observed in the transport
measurements as a function of magnetic field (Fig. 2a, b), where
satellite peaks develop at the resonant field B ext ¼ ^ hf ac /gmB when
the RF source is turned on (the zero-field peak arises from the
inhomogeneous nuclear field, which admixes all the triplets with the
singlet36,37). The key signature of ESR is the linear dependence of the
satellite peak location on the RF frequency, which is clearly seen in
the data of Fig. 2c, where the RF frequency is varied from 10 to
750 MHz. From a linear fit through the top of the peaks we obtain a g-
factor with modulus 0.35 ^ 0.01, which lies within the range of
reported values for confined electron spins in GaAs quantum
dots11,38–40. We also verified explicitly that the resonance we observe
is magnetic in origin and not caused by the electric field that the CPS
generates as well; negligible response was observed when RF power is
applied to the right side gate, generating mostly a RF electric field (see
Supplementary Fig. S3).

The amplitude of the peaks in Fig. 2b increases linearly with RF
power (,B ac

2 ) before saturation occurs, as predicted25 (Fig. 2b, inset).
The ESR satellite peak is expected to be broadened by either the

Figure 1 | Device and ESR detection scheme. a, Scanning electron
microscope (SEM) image of a device with the same gate pattern as used in
the experiment. The Ti/Au gates are deposited on top of a GaAs/AlGaAs
heterostructure containing a two-dimensional electron gas 90 nm below the
surface. White arrows indicate current flow through the two coupled dots
(dotted circles). The right side gate is fitted with a homemade bias-tee (rise
time 150 ps) to allow fast pulsing of the dot levels. b, SEM image of a device
similar to the one used in the experiment. The termination of the coplanar
stripline is visible on top of the gates. The gold stripline has a thickness of
400 nm and is designed to have a 50Q characteristic impedance,Z0, up to the
shorted termination. It is separated from the gate electrodes by a 100-nm-
thick dielectric (Calixerene)50. c, Diagrams illustrating the transport cycle in
the spin blockade regime. This cycle can be described via the occupations
(m,n) of the left and right dots as (0,1) ! (1,1) ! (0,2) ! (0,1). When an
electron enters the left dot (with rate GL) starting from (0,1), the two-
electron system that is formed can be either a singlet S(1,1) or a triplet
T(1,1). From S(1,1), further current flow is possible via a transition to S(0,2)
(with rate Gm). When the system is in T(1,1), current is blocked unless this
state is coupled to S(1,1). For T0, this coupling is provided by the
inhomogeneous nuclear fieldDBN. For Tþor T2, ESR causes a transition to
" # or # ", which contains a S(1,1) component and a T0 component (which is
in turn coupled to S(1,1) by the nuclear field).
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excitation amplitude B ac or incoherent processes, like cotunnelling,
inelastic transitions (to the S(0,2) state) or the statistical fluctuations
in the nuclear field, whichever of the four has the largest contri-
bution. No dependence of the width on RF power was found within
the experimentally accessible range (B ac , 2 mT). Furthermore, we
suspect that the broadening is not dominated by cotunnelling or
inelastic transitions because the corresponding rates are smaller than
the observed broadening (see Supplementary Figs S4b and S2d). The
observed ESR peaks are steeper on the flanks and broader than
expected from the nuclear field fluctuations. In many cases, the peak
width and position are even hysteretic in the sweep direction,
suggesting that the resonance condition is shifted during the field
sweep. We speculate that dynamic nuclear polarization due to feedback
of the electron transport on the nuclear spins plays a central part here37.

Coherent Rabi oscillations

Following the observation of magnetically induced spin flips, we next
test whether we can also coherently rotate the spin by applying RF
bursts with variable length. In contrast to the continuous-wave
experiment, where detection and spin rotation occur at the same
time, we pulse the system into Coulomb blockade during the spin
manipulation. This eliminates decoherence induced by tunnel events
from the left to the right dot during the spin rotations. The
experiment consists of three stages (Fig. 3): initialization through
spin blockade in a statistical mixture of " " and # #, manipulation by
a RF burst in Coulomb blockade, and detection by pulsing back for
projection (onto S(0,2)) and tunnelling to the lead. When one of the
electrons is rotated over (2n þ 1)p (with integer n), the two-electron
state evolves to " # (or # "), giving a maximum contribution to the
current (as before, when the two spins are anti-parallel, one electron
charge moves through the dots). However, no electron flow is
expected after rotations of 2pn, where one would find two parallel
spins in the two dots after the RF burst.

We observe that the dot current oscillates periodically with the RF
burst length (Fig. 4). This oscillation indicates that we performed
driven, coherent electron spin rotations, or Rabi oscillations. A key
characteristic of the Rabi process is a linear dependence of the Rabi
frequency on the RF burst amplitude, B ac (f Rabi ¼ gmBB 1/h with
B 1 ¼ B ac/2 due to the rotating wave approximation). We verify this
by extracting the Rabi frequency from a fit of the current oscillations
of Fig. 4b with a sinusoid, which gives the expected linear behaviour

Figure 2 | ESR spin state spectroscopy. a, Energy diagram showing the
relevant eigenstates of twoelectron spins inadouble-dot, subject to an external
magnetic field and nuclear fields. Because the nuclear field is generally
inhomogeneous, the Zeeman energy is different in the two dots and results
therefore in a different energy for " # and # ". ESR turns the spin states " " and
# # into " # or # ", depending on the nuclear fields in the two dots. The yellow
bandsdenotetherangesinBextwherespinblockadeis lifted(by thenuclearfield
or ESR) and current will flow through the dots. b, Current measured through
the double-dot in the spinblockade regime, with (red trace, offset by 100 fA for
clarity)andwithout(bluetrace)aRFmagneticfield.Satellitepeaksappearasthe
external magnetic field is swept through the spin resonance condition. Each
measurement point is averaged for one second, and is therefore expected to
representanaverageresponseovermanynuclearconfigurations.TheRFpower
Papplied to theCPS isestimated fromthepowerapplied tothecoax lineandthe
attenuation in the lines. Inset, satellite peak height versus RF power
(f ¼ 408MHz, Bext ¼ 70mT, taken at slightly different gate voltage settings).
The current isnormalized to the current atB ext ¼ 0 ( ¼ I0).Unwantedelectric
fieldeffects are reducedbyapplying a compensating signal to the right side gate
with opposite phase as the signal on the stripline (see Supplementary Fig. S4).
This allowed us to obtain this curve up to relatively highRFpowers. c, Current
through the dots when sweeping the RF frequency and stepping themagnetic
field. The ESR satellite peak is already visible at a smallmagnetic field of 20mT
and RF excitation of 100MHz, and its location evolves linearly in field when
increasing the frequency. Forhigher frequencies the satellite peak is broadened
asymmetrically for certain sweeps, visible as vertical stripes.This broadening is
time dependent, hysteretic in sweep direction, and changes with the dot level
alignment. The horizontal line at 180MHz is due to a resonance in the
transmission line inside the dilution refrigerator.

Figure 3 | The control cycle for coherent manipulation of the electron
spin. During the ‘initialization’ stage the double-dot is tuned in the spin
blockade regime. Electrons will move from left to right until the system is
blocked with two parallel spins (either " " or # #; in the figure only the " "
case is shown). For the ‘manipulation’ stage, the right dot potential is pulsed
up so none of the levels in the right dot are accessible (Coulomb blockade),
and a RF burst with a variable duration is applied. ‘Read-out’ of the spin
state at the end of the manipulation stage is done by pulsing the right dot
potential back; electron tunnelling to the right lead will then take place only
if the spins were anti-parallel. The duration of the read-out and initialization
stages combined was 1 ms, long enough (1ms . .1/GL, 1/GM, 1/GR) to have
parallel spins in the dots at the end of the initialization stage with near
certainty (this is checked by signal saturation when the pulse duration is
prolonged). The duration of the manipulation stage is also held fixed at 1ms
to keep the number of pulses per second constant. The RF burst is applied
just before the read-out stage starts.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59 mT for a stripline
current I CPS of ,1 mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B 1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9 mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.

The oscillations in Fig. 4b remain visible throughout the entire
measurement range, up to 1 ms. This is striking, because the Rabi
period of ,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model

To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBextþBL;NÞSLþ gmBðBextþBR;NÞSR

þ gmB cosðqtÞBacðSLþ SRÞ

where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.

In the current measurements of Fig. 4a, each data point is averaged
over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Taking m and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts

We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.

When a RF burst is applied to two spins initially in " ", and is on-
resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l
j " lþ j # lffiffiffi

2
p ! j " lj # l !

j " l
j " l 2 j # lffiffiffi

2
p ! j " lj " l

When the RF burst is on-resonance with both spins, the time
evolution is:

j " lj " l !
j " lþ j # lffiffiffi

2
p

j " lþ j # lffiffiffi
2
p ! j # lj # l !

j " l 2 j # lffiffiffi
2
p

j " l 2 j # lffiffiffi
2
p ! j " lj " l

Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

� �2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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In both cases, the RF causes transitions between the " and # states of
single spin-half particles. When the RF is on-resonance with both spins,
such single-spin rotations take place for both spins simultaneously.
Because the current through the dots is proportional to the Sz ¼ 0
probability ( " # or # "), we see that when both spins are excited
simultaneously, the current through the dots will oscillate twice as
fast as when only one spin is excited, but with only half the amplitude.

In the experiment, the excitation is on-resonance with only one
spin at a time for most of the frozen nuclear configurations (Fig. 5).
Only at the highest powers (B1=

ffiffiffiffiffiffiffiffiffiffiffiffi
kB2

N;zl
p

. 1), both spins may be
excited simultaneously (but independently) and a small double Rabi
frequency contribution is expected, although it could not be
observed, owing to the measurement noise.

Quantum gate fidelity

We can estimate the angle over which the electron spins are rotated in
the Bloch sphere based on our knowledge of B 1 and the nuclear
field fluctuations in the z-direction, again using the hamiltonian
H. For the maximum ratio of B1=

ffiffiffiffiffiffiffiffiffiffiffiffi
kB2

N;zl
p

¼ B1=ðj=
ffiffiffi
3
p
Þ ¼ 1:5

reached in the present experiment, we achieve an average tip angle
of 1318 for an intended 1808 rotation, corresponding to a fidelity of
73% (Fig. 5). Apart from using a stronger B 1, the tip angle can be
increased considerably by taking advantage of the long timescale of
the nuclear field fluctuations. First, application of composite pulses,
widely used in nuclear magnetic resonance to compensate for
resonance off-sets44, can greatly improve the quality of the rotations.
A second solution comprises a measurement of the nuclear field
(nuclear state narrowing45–47), so that the uncertainty in the nuclear
field is reduced, and accurate rotations can be realized for as long as
the nuclear field remains constant.

In future experiments, controllable addressing of the spins in the
two dots separately can be achieved through a gradient in either the
static or the oscillating magnetic field. Such gradient fields can be
created relatively easily using a ferromagnet or an asymmetric
stripline. Alternatively, the resonance frequency of the spins can be
selectively shifted using local g-factor engineering48,49. The single spin
rotations reported here, in combination with single-shot spin read-
out13,18 and the tunable exchange coupling in double dots14,
offers many new opportunities, such as measuring the violation of
Bell’s inequalities or the implementation of simple quantum
algorithms.
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tinctive features are very similar to those ob-
served in the ;2500-Ma Mt. McRae Shale, and
their age is supported by more thorough analyt-
ical protocols (24). The discovery and careful
analysis of biomarkers in rocks of still greater
age and of different Archean environments will
potentially offer new insights into early micro-
bial life and its evolution.
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R E P O R T S

Josephson Persistent-Current
Qubit

J. E. Mooij,1,2* T. P. Orlando,2 L. Levitov,3 Lin Tian,3

Caspar H. van der Wal,1 Seth Lloyd4

A qubit was designed that can be fabricated with conventional electron beam
lithography and is suited for integration into a large quantum computer. The
qubit consists of a micrometer-sized loop with three or four Josephson junc-
tions; the two qubit states have persistent currents of opposite direction.
Quantum superpositions of these states are obtained by pulsed microwave
modulation of the enclosed magnetic flux by currents in control lines. A su-
perconducting flux transporter allows for controlled transfer between qubits of
the flux that is generated by the persistent currents, leading to entanglement
of qubit information.

In a quantum computer, information is stored
on quantum variables such as spins, photons, or
atoms (1–3). The elementary unit is a two-state
quantum system called a qubit. Computations
are performed by the creation of quantum su-
perposition states of the qubits and by con-
trolled entanglement of the information on the
qubits. Quantum coherence must be conserved

to a high degree during these operations. For a
quantum computer to be of practical value, the
number of qubits must be at least 104. Qubits
have been implemented in cavity quantum elec-
trodynamics systems (4), ion traps (5), and
nuclear spins of large numbers of identical mol-
ecules (6). Quantum coherence is high in these
systems, but it seems difficult or impossible to
realize the desired high number of interacting
qubits. Solid state circuits lend themselves to
large-scale integration, but the multitude of
quantum degrees of freedom leads in general to
short decoherence times. Proposals have been
put forward for future implementation of qubits
with spins of individual donor atoms in silicon
(7), with spin states in quantum dots (8), and
with d-wave superconductors (9); the technol-
ogy for practical realization still needs to be
developed.

In superconductors, all electrons are con-
densed in the same macrosopic quantum
state, separated by a gap from the many
quasi-particle states. This gap is a measure
for the strength of the superconducting ef-
fects. Superconductors can be weakly cou-
pled with Josephson tunnel junctions (regions
where only a thin oxide separates them). The
coupling energy is given by EJ(1 2 cos g),
where the Josephson energy EJ is proportion-
al to the gap of the superconductors divided
by the normal-state tunnel resistance of the
junction and g is the gauge-invariant phase
difference of the order parameters. The cur-
rent through a Josephson junction is equal to
Io sin g, with Io 5 (2e/\) EJ, where e is the
electron charge and \ is Planck’s constant
divided by 2p. In a Josephson junction circuit
with small electrical capacitance, the num-
bers of excess Cooper pairs on islands ni, nj

and the phase differences gi,gj are related as
noncommuting conjugate quantum variables
(10). The Heisenberg uncertainty between
phase and charge and the occurrence of quan-
tum superpositions of charges as well as
phase excitations (vortexlike fluxoids) have
been demonstrated in experiments (11). Co-
herent charge oscillations in a superconduct-
ing quantum box have recently been observed
(12). Qubits for quantum computing based on
charge states have been suggested (13, 14).
However, in actual practice, fabricated Jo-
sephson circuits exhibit a high level of static
and dynamic charge noise due to charged
impurities. In contrast, the magnetic back-
ground is clean and stable. Here, we present
the design of a qubit with persistent currents
of opposite sign as its basic states. The qubits
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can be driven individually by magnetic mi-
crowave pulses; measurements can be made
with superconducting magnetometers [super-
conducting quantum interference devices
(SQUIDs)]. They are decoupled from charges
and electrical signals, and the known sources
of decoherence allow for a decoherence time
of more than 1 ms. Switching is possible at a
rate of 100 MHz. Entanglement is achieved
by coupling the flux, which is generated by
the persistent current, to a second qubit. The
qubits are small (of order 1 mm), can be
individually addressed, and can be integrated
into large circuits.

Our qubit in principle consists of a loop
with three small-capacitance Josephson junc-
tions in series (Fig. 1A) that encloses an
applied magnetic flux fFo (Fo is the super-
conducting flux quantum h/2e, where h is
Planck’s constant); f is slightly smaller than
0.5. Two of the junctions have equal Joseph-

son coupling energy EJ; the coupling in the
third junction is aEJ, with 0.5 , a , 1.
Useful values are f 5 0.495 and a 5 0.75 (as
chosen in Fig. 1A). This system has two
stable classical states with persistent circulat-
ing currents of opposite sign. For f 5 0.5, the
energies of the two states are the same; the
offset from 0.5 determines the level splitting.
The barrier for quantum tunneling between
the states depends strongly on the value of a.
The four-junction version (Fig. 1B) allows
modulation of this barrier in situ. Here, the
third junction has been converted into a par-
allel circuit of two junctions, each with a
coupling energy aEJ. The four-junction qubit
behaves as the three-junction circuit of Fig.
1A, with an enclosed flux ( f1 1 f2/2)Fo and
a third-junction (SQUID) strength 2aEJ

cos( f2p). The constant fluxes fFo, f1Fo, and
f2Fo are supplied by an external, static, ho-
mogeneous magnetic field. Control lines on a

separate fabrication level couple inductively
to individual qubit loops. All operations on
qubits are performed with currents in the
control lines.

When g1 and g2 are the gauge-invariant
phase differences across the left and right
junctions, the Josephson energy of the four-
junction qubit UJ is

UJ/EJ 5 2 1 2a 2 cos g1 2 cos g2 2 2a cos

~ f2p) cos (2f1p 1 f2p 1 g1 2 g2) (1)

In this expression, the self-generated flux has
been neglected. Although this flux will be
used for coupling of qubits, it is much smaller
than the flux quantum and only slightly
changes the picture here. UJ is 2p periodic in
g1 and g2 (Fig. 2A) for the parameter values
a 5 0.75 and f1 5 f2 5 0.330. Each unit cell
has two minima Lij and Rij with left- and
right-handed circulating currents of about
0.75Io at approximate g1,g2 values of
60.27p. The minima would have been sym-
metric for 2f1 1 f2 5 1, which corresponds to
a three-junction loop enclosing half a flux
quantum. The set of all L minima yields one
qubit state and the set of R minima the other.
In g1,g2 space, there are saddle-point connec-
tions between L and R minima as indicated
with red (intracell, in) and blue lines (inter-
cell, out). Along such trajectories, the system
can tunnel between its macroscopic quantum
states. The Josephson energy along the tra-
jectories is plotted in Fig. 2B. The saddle-
point energies Uin and Uout depend on a and
f2; lower SQUID coupling gives lower Uin

but higher Uout. For 2a cos ( f2p) , 0.5, the
barrier for intracell tunneling has disap-
peared, and there is only one minimum with
zero circulating current.

Motion of the system in g1,g2 space can
be discussed in analogy with motion of a
mass-carrying particle in a landscape with
periodic potential energy. Motion in phase
space leads to voltages across junctions. The
kinetic energy is the associated Coulomb charg-

A BFig. 1. Persistent cur-
rent qubit. (A) Three-
junction qubit. A super-
conducting loop with
three Josephson junc-
tions (indicated with
crosses) encloses a flux
that is supplied by an
external magnet. The
flux is f Fo, where Fo
is the superconducting
flux quantum and f is
0.495. Two junctions
have a Josephson cou-
pling energy EJ, and the
third junction has aEJ, where a 5 0.75. This system has two (meta)stable states I0. and I1. with
opposite circulating persistent current. The level splitting is determined by the offset from Fo/2 of
the flux. The barrier between the states depends on the value of a. The qubit is operated by
resonant microwave modulation of the enclosed magnetic flux by a superconducting control line
(indicated in red). (B) Four-junction qubit. The top junction of (A) is replaced by a parallel junction
(SQUID) circuit. There are two loops with equal areas; a magnet supplies a static flux 0.330Fo to
both. Qubit operations are performed with currents in superconducting control lines (indicated in
red) on top of the qubit, separated by a thin insulator. The microwave current Ic1 couples only to
the bottom loop and performs qubit operations as in (A). Ic2 couples to both loops; it is used for
qubit operations with suppressed sz action and for an adiabatic increase of the tunnel barrier
between qubit states to facilitate the measurement.

A B
Fig. 2. Josephson ener-
gy of qubit in phase
space. (A) Energy plot-
ted as a function of the
gauge-invariant phase
differences g1 and g2
across the left and
right junctions of Fig.
1A. The energy is peri-
odic with period 2p.
There are two minima
in each unit cell, for
the center cell indicat-

ed with L00 and R00. The trajectory between L00 and R00 is indicated in red; the trajectories
between R00 and minima in next-neighbor cells L10 and L021 are indicated in blue. (B)
Energy along the red and a blue trajectory of (A). For the parameters chosen, the blue
saddle point is substantially higher than the red saddle point. As a result, tunneling from
cell to cell is suppressed and the qubit is decoupled from electrical potentials. (solid lines)
Ic1 5 Ic2 5 0 (see Fig. 1B). (dashed lines) Control current Ic2 reduces the flux in the SQUID
loop by d2 5 20.02 times the flux quantum. Similarly, when a is increased (decreased)
from 0.75, the red saddle point goes up (down), whereas the blue saddle point goes down
(up).
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ing energy of the junction capacitances. The
mass is proportional to the junction capacitance
C because other capacitance elements are small.
The effective mass tensor has principal values
Ma and Mb in the g1 2 g2 5 0 and g1 1 g2 5
0 directions. For the chosen values of the circuit
parameters, these principal values are Ma 5
\2/(4EC) and Mb 5 \2/(EC), where the charging
energy is defined as EC 5 e2/2C. The system
will perform plasma oscillations in the potential
well with frequencies \vb ' 1.3(ECEJ)

1/2 and
\va ' 2.3(ECEJ)

1/2. The tunneling matrix ele-
ments can be estimated by calculation of the
action in the Wentzel-Kramers-Brillouin ap-
proximation. For tunneling within the unit cell
between the minima L and R, the matrix ele-
ment is Tin ' \vb exp[20.64(EJ/EC)1/2]; for
tunneling from cell to cell, the matrix element is
Tout ' 1.6\vbexp[21.5(EJ/EC)1/2]. For the
qubit, a subtle balance has to be struck: The
plasma frequency must be small enough rel-
ative to the barrier height to have well-de-
fined states with a measurable circulating
current but large enough (small enough mass)
to have substantial tunneling. The preceding
qualitative discussion has been confirmed by
detailed quantitative calculations in phase
space and in charge space (15). From these
calculations, the best parameters for qubits
can be determined. In practice, it is possible
to controllably fabricate aluminum tunnel
junctions with chosen EJ and EC values in a
useful range.

It is strongly desirable to suppress the
intercell tunneling Tout. This suppression
leads to independence from electrical poten-
tials, even if the charges on the islands are
conjugate quantum variables to the phases.
The qubit system in phase space is then com-
parable to a crystal in real space with non-
overlapping atomic wave functions. In such a
crystal, the electronic wave functions are in-
dependent of momentum; similarly, charge
has no influence in our qubit.

Mesoscopic aluminum junctions can be
reliably fabricated by shadow evaporation
with critical current densities up to 500
A/cm2. In practice, a junction of 100 nm2 by

100 nm2 has EJ around 25 GHz and EC

around 20 GHz. A higher EJ/EC ratio can be
obtained by increasing the area to which EJ is
proportional and EC is inversely proportional.
A practical qubit would, for example, have
junctions with an area of 200 nm2 by 400
nm2, EJ ; 200 GHz, EJ/Ec ; 80, level split-
ting DE ; 10 GHz, barrier height around 35
GHz, plasma frequency around 25 GHz, and
tunneling matrix element Tin ; 1 GHz. The
matrix element for undesired tunneling Tout is
smaller than 1 MHz. The qubit size would be
of order 1 mm; with an estimated inductance
of 5 pH, the flux generated by the persistent
currents is about 1023Fo.

To calculate the dependence of the level
splitting on f1 and f2, we apply a linearized
approximation in the vicinity of f1 5 f2 5 1/3,
defining F as the change of UJ away from the
minimum of UJ(g1,g2). This yields F/EJ 5
1.2[2( f1 2 1/3)1( f2 2 1/3)]. The level split-
ting without tunneling would be 2F. With
tunneling, symmetric and antisymmetric
combinations are created; the level splitting is
now DE 5 2(F2 1 Tin

2)1/2. As long as F ..
Tin, the newly formed eigenstates are local-
ized in the minima of UJ(g1,g2).

We discuss qubit operations for the four-
junction qubit. They are driven by the cur-
rents Ica and Icb in the two control lines (Fig.
1B). The fluxes induced in the two loops,
normalized to the flux quantum, are d1 5
(La1Ica 1 Lb1Icb)/Fo and d2 5 (La2Ica 1
Lb2Icb)/Fo. The control line positions are
chosen such that La2 5 0 and Lb2 5 22Lb1.
When the two loops have equal areas, f1 5 f2
for zero control current. We assume that the
qubit states are defined with zero control
current and that d1 and d2 act as perturbations
to this system. The effective Hamiltonian
operator (Hop) in terms of Pauli spin matrices
sx and sz for the chosen parameters is about

Hop/DE ' (80d1 1 42d2)sz

2 (9.2d1 1 8.3d2)sx (2)

The numerical prefactors follow from the
variational analysis of the influence of d1 and
d2 on the tunnel barrier and the level splitting.

The terms that contain sx can be used to
induce Rabi oscillations between the two
states, applying microwave pulses of fre-
quency DE/h. There are two main options,
connected to one of the two control lines.
Control current Ica changes d1, which leads to
a Rabi oscillation (sx term) as well as a
strong modulation of the Larmor precession
(sz term). As long as the Rabi frequency is
far enough below the Larmor frequency, this
is no problem. For d1 5 0.001, the Rabi
frequency is 100 MHz. This mode is the only
one available for the three-junction qubit and
is most effective near the symmetry point f 5
0.5 or f1 5 f2 51/3. Control current Icb is
used to modulate the tunnel barrier. Here, the
sz action is suppressed by means of the
choice Lb2/Lb1 5 d2/d1 5 22. However, a
detailed analysis shows that with d2 modula-
tion, it is easy to excite the plasma oscillation
with frequency vb. One has to restrict d2 to
remain within the two-level system. Values
of 0.001 for d1 or d2 correspond to about
50-pW microwave power at 10 GHz in the
control line. These numbers are well within
practical range.

Two or more qubits can be coupled by
means of the flux that the circulating persis-
tent current generates. The current is about
0.3 mA, the self-inductance of the loop is
about 5 pH, and the generated flux is about
1023Fo. When a superconducting closed
loop (a flux transporter) with high critical
current is placed on top of both qubits, the
total enclosed flux is constant. A flux change
DF that is induced by a reversal of the cur-
rent in one qubit leads to a change of about
DF/2 in the flux that is enclosed by the other
qubit. One can choose to couple the flux,
generated in the main loop of qubit 1, to the
main loop of qubit 2 (szVsz coupling) or to
the SQUID loop of qubit 2 (szVsx coupling).
A two-qubit gate operation is about as effi-
cient as a single qubit operation driven with
d1 5 0.001. An example of a possible con-
trolled-NOT operation with fixed coupling runs
as follows: The level splitting of qubit 2 de-
pends on the state of qubit 1, the values are
DE20 and DE21. When Rabi microwave pulses,
resonant with DE21, are applied to qubit 2, it
will only react if qubit 1 is in its I1. state. In
principle, qubits can be coupled at larger dis-
tances. An array scheme as proposed by Lloyd
(1, 3), where only nearest neighbor qubits are
coupled, is also very feasible. It is possible to
create a flux transporter that has to be switched
on by a control current (Fig. 3).

The typical switching times for our
qubit are 10 to 100 ns. To yield a practical
quantum computer, the decoherence time
should be at least 100 ms. We can estimate
the influence of known sources of decoher-
ence for our system, but it is impossible to
determine the real decoherence time with cer-
tainty, except by measurement. We discuss

Fig. 3. Switchable qubit coupler.
A superconducting flux trans-
porter (blue) is placed on top of
two qubits, separated by a thin
insulator. The transporter is a
closed loop that contains two
Josephson junctions in parallel
(SQUID) with high critical cur-
rent. In the off state, the two
loops of the transporter contain
an integer number of flux quanta
(main loop) and half a flux quan-
tum (SQUID loop), supplied by a
permanent magnet. The current response to a flux change is very small. In the on state, the flux
in the SQUID loop is made integer by means of a control current Ict (red). As the transporter
attempts to keep the flux in its loop constant, a flux change induced by qubit 1 is transmitted to
qubit 2. As shown here, the two three-junction qubits experience szVsz-type coupling. The flux
values have to be adjusted for the influence of circulating currents.
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some decohering influences here. All quasi-
particle states in the superconductor have to
remain unoccupied. In equilibrium, the number
is far below 1 at temperatures below 30 mK.
Extreme care must be taken to shield the sam-
ple from photons. Even 4 K blackbody photons
have enough energy to break a Cooper pair.
Adequate shielding is possible on the time scale
of our computer. Inductive coupling to bodies
of normal metal has to be avoided. By decou-
pling the qubit from electrical potentials, we
have eliminated coupling to charged defects in
substrate or tunnel barriers. The aluminum nu-
clei have a spin that is not polarized by the
small magnetic fields at our temperature of 25
mK. Statistical fluctuations will occur, but their
time constant is very long because of the ab-
sence of electronic quasi-particles. The net ef-
fect will be a small static offset of the level
splitting, within the scale of the variations due
to fabrication. The dephasing time that results
from unintended dipole-dipole coupling of
qubits is longer than 1 ms if the qubits are
farther apart than 1 mm. Emission of photons is
negligible for the small loop. Overall, the sourc-
es of decoherence that we know allow for a
decoherence time above 1 ms.

Requirements for a quantum computer are
that the qubits can be prepared in well-de-
fined states before the start of the computa-
tion and that their states can be measured at
the end. Initialization will proceed by cooling
the computer to below 50 mK and having the
qubits settle in the ground state. For the mea-
surement, a generated flux of 1023Fo in an
individual qubit can be detected with a
SQUID if enough measuring time is avail-
able. A good SQUID has a sensitivity of
1025Fo/Hz1/2, so that a time of 100 ms is
required. Usual SQUIDs have junctions that
are shunted with normal metal. The shunt
introduces severe decoherence in a qubit
when the SQUID is in place, even if no
measurement is performed. We are develop-
ing a nonshunted SQUID that detects its crit-
ical current by discontinuous switching. For a
measurement at the end of a quantum com-
putation scheme, the qubit can be frozen by
an adiabatic increase of the tunnel barrier
between the two qubit states. As Fig. 2 indi-
cates, we can increase the barrier by a change
of control current. A similar procedure, as
suggested by Shnirman and Schön (14), for
charge qubits can be followed.

The proposed qubit should be of con-
siderable interest for fundamental studies
of macroscopic quantum coherence, apart
from its quantum computing potential.
Compared with the radio frequency SQUID
systems that have been used in attempts to
observe such effects (16 ) and also have
been suggested as possible qubits for quan-
tum computation (17 ), the much smaller
size of the qubit decouples it substantially
better from the environment.
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Energetic Iron(VI) Chemistry:
The Super-Iron Battery

Stuart Licht,* Baohui Wang, Susanta Ghosh

Higher capacity batteries based on an unusual stabilized iron(VI) chemistry are
presented. The storage capacities of alkaline and metal hydride batteries are
largely cathode limited, and both use a potassium hydroxide electrolyte. The
new batteries are compatible with the alkaline and metal hydride battery
anodes but have higher cathode capacity and are based on available, benign
materials. Iron(VI/III) cathodes can use low-solubility K2FeO4 and BaFeO4 salts
with respective capacities of 406 and 313 milliampere-hours per gram. Super-
iron batteries have a 50 percent energy advantage compared to conventional
alkaline batteries. A cell with an iron(VI) cathode and a metal hydride anode
is significantly (75 percent) rechargeable.

Improved batteries are needed for various
applications such as consumer electronics,
communications devices, medical implants,
and transportation needs. The search for
higher capacity electrochemical storage has
focused on a wide range of materials, such as
carbonaceous materials (1), tin oxide (2),
grouped electrocatalysts (3), or macroporous
minerals (4). Of growing importance are re-
chargeable (secondary) batteries such as met-
al hydride (MH) batteries (5), which this year
have increased the commercial electric car
range to 250 km per charge. In consumer
electronics, primary, rather than secondary,
batteries dominate. Capacity, power, cost,
and safety factors have led to the annual
global use of approximately 6 3 1010 alka-
line or dry batteries, which use electrochem-
ical storage based on a Zn anode, an aqueous
electrolyte, and a MnO2 cathode, and which

constitute the vast majority of consumer bat-
teries. Despite the need for safe, inexpensive,
higher capacity electrical storage, the aque-
ous MnO2/Zn battery has been a dominant
primary battery chemistry for over a century.
Contemporary alkaline and MH batteries
have two common features: Their storage
capacity is largely cathode limited and both
use a KOH electrolyte.

We report a new class of batteries, re-
ferred to as super-iron batteries, which con-
tain a cathode that uses a common material
(Fe) but in an unusual (greater than 3) va-
lence state. Although they contain the same
Zn anode and electrolyte as conventional al-
kaline batteries, the super-iron batteries pro-
vide .50% more energy capacity. In addi-
tion, the Fe(VI) chemistry is rechargeable, is
based on abundant starting materials, has a
relatively environmentally benign discharge
product, and appears to be compatible with
the anode of either the primary alkaline or
secondary MH batteries.

The fundamentals of MnO2 chemistry
continue to be of widespread interest (6). The
storage capacity of the aqueous MnO2/Zn
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Quantum Phase Transition of a
Magnet in a Spin Bath

H. M. Rønnow,1,2,3* R. Parthasarathy,2 J. Jensen,4 G. Aeppli,5

T. F. Rosenbaum,2 D. F. McMorrow3,4,6

The excitation spectrum of a model magnetic system, LiHoF4, was studied
with the use of neutron spectroscopy as the system was tuned to its quantum
critical point by an applied magnetic field. The electronic mode softening
expected for a quantum phase transition was forestalled by hyperfine
coupling to the nuclear spins. We found that interactions with the nuclear
spin bath controlled the length scale over which the excitations could be
entangled. This generic result places a limit on our ability to observe intrinsic
electronic quantum criticality.

The preparation and preservation of entangled

quantum states is particularly relevant for the

development of quantum computers, where

interacting quantum bits (qubits) must produce

states sufficiently long lived for meaningful

manipulation. The state lifetime, typically re-

ferred to as decoherence time, is derived from

coupling to the background environment. For

solid-state quantum computing schemes, the

qubits are typically electron spins, and they

couple to two generic background environ-

ments (1). The oscillator bath—that is, delocal-

ized environmental modes (2) such as thermal

vibrations coupled via magnetoelastic terms to

the spins—can be escaped by lowering the tem-

perature to a point where the lattice is essentially

frozen. Coupling to local degrees of freedom,

such as nuclear magnetic moments that form a

spin bath, may prove more difficult to avoid,

because all spin-based candidate materials for

quantum computation have at least one natu-

rally occurring isotope that carries nuclear spin.

Experimental work in this area has been

largely restricted to the relaxation of single,

weakly interacting magnetic moments such as

those on large molecules (3); much less is known

about spins as they might interact in a real

quantum computer. In this regard, the insight

that quantum phase transitions (QPTs) (4) are

a good arena for looking at fundamental quan-

tum properties of strongly interacting spins

turns out to be valuable, as it has already been

for explorations of entanglement. In particular,

we show that coupling to a nuclear spin bath

limits the distance over which quantum mechan-

ical mixing affects the electron spin dynamics.

QPTs are transitions between different

ground states driven not by thermal fluctuations

but by quantum fluctuations controlled by a

parameter such as doping, pressure, or magnetic

field (5, 6). Much of the interest in QPTs stems

from their importance for understanding

materials with unconventional properties, such

as heavy fermion systems and high-temperature

superconductors. However, these materials are

rather complex and do not easily lend them-

selves to a universal understanding of QPTs. To

this end, it is desirable to identify quantum

critical systems with a well-defined and solv-

able Hamiltonian and with a precisely control-

lable tuning parameter. One very simple model

displaying a QPT is the Ising ferromagnet in a

transverse magnetic field (5, 7–9) with the

Hamiltonian

H 0 j
X

ij

J ij s z
i I s z

j j G
X

i

sx
i ð1Þ

where J
ij

is the coupling between the spins on

sites i and j represented by the Pauli matrices

sz with eigenvalues T1. In the absence of a

magnetic field, the system orders ferromag-

netically below a critical temperature T
c
. The

transverse-field G mixes the two states and

leads to destruction of long-range order in a

QPT at a critical field G
c
, even at zero tem-

perature. In the ferromagnetic state at zero

field and temperature, the excitation spectrum

is momentum independent and is centered at

the energy 4
P

j
J

ij
associated with single-spin

reversal. Upon application of a magnetic field,

however, the excitations acquire a dispersion,

softening to zero at the zone center q 0 0

when the QPT is reached.

We investigated the excitation spectrum

around the QPT in LiHoF
4
, which is an excel-

lent physical realization of the transverse-field

Ising model, with an added term accounting

for the hyperfine coupling between electron-

ic and nuclear moments (10–12). The dilu-

tion series LiHo
x
Y

1–x
F

4
is the host for a wide

variety of collective quantum effects, ranging

from tunneling of single moments and domain

walls to quantum annealing, entanglement,

and Rabi oscillations (13–17). These intriguing

properties rely largely on the ability of a

transverse field, whether applied externally or

generated internally by the off-diagonal part of

the magnetic dipolar interaction, to mix two

degenerate crystal field states of each Ho ion.
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The Ho ions in LiHoF
4

are placed on a

tetragonal Scheelite lattice with parameters

a 0 5.175 ) and c 0 10.75 ). The crystal-field

ground state is a G
3,4

doublet with only a c

component to the angular momentum and

hence can be represented by the sz 0 T1 Ising

states. A transverse field in the a-b plane

mixes the higher lying states with the ground

state; this produces a splitting of the doublet,

equivalent to an effective Ising model field.

The phase diagram of LiHoF
4

(Fig. 1A) was

determined earlier by susceptibility measure-

ments (10) and displays a zero-field T
c

of 1.53

K and a critical field of H
c
0 49.5 kOe in the

zero temperature limit. The same measure-

ments confirmed the strong Ising anisotropy,

with longitudinal and transverse g factors dif-

fering by a factor of 18 (10). The sudden

increase in H
c

below 400 mK was explained by

alignment of the Ho nuclear moments through

the hyperfine coupling. Corrections to phase

diagrams as a result of hyperfine couplings

have a long history (18) and were noted for the

LiREF
4

(RE 0 rare earth) series, of which

LiHoF
4

is a member, more than 20 years ago

(19). What is new here is that the application

of a transverse field and the use of high-

resolution neutron scattering spectroscopy al-

low us to carefully study the dynamics as we

tune through the quantum critical point (QCP).

We measured the magnetic excitation

spectrum of LiHoF
4

with the use of the

TAS7 neutron spectrometer at RisL National

Laboratory, with an energy resolution (full

width at half maximum) of 0.06 to 0.18 meV

(20). The transverse field was aligned to better

than 0.35-, and the sample was cooled in a

dilution refrigerator. At the base temperature of

0.31 K, giving a critical field of 42.4 kOe, the

excitation spectrum was mapped out below, at,

and above the critical field (Fig. 2). For all

fields, a single excitation branch disperses

upward from a minimum gap at (2,0,0) toward

(1,0,0). From (1,0,0) to (1,0,1), the mode shows

little dispersion but appears to broaden. The

discontinuity on approaching (1,0,1 – e) and

(1 þ e,0,1) as e Y 0 reflects the anisotropy

and long-range nature of the magnetic dipole

coupling. However, the most important ob-

servation is that the (2,0,0) energy, which is

always lower than the calculated single-ion

energy (È0.39 meV at 42.4 kOe), shrinks

upon increasing the field from 36 to 42.4 kOe

and then hardens again at 60 kOe. At this

qualitative level, what we see agrees with the

mode softening predicted for the simple Ising

model in a transverse field. However, it ap-

pears that the mode softening is incomplete. At

the critical field of 42.4 kOe, the mode retains a

finite energy of 0.24 T 0.01 meV. This result is

apparent in Fig. 1B, which shows the gap

energy as a function of the external field.

To obtain a quantitative understanding of

our experiments, we consider the full rare-earth

Hamiltonian, which closely resembles that of

HoF
3

(21, 22). Each Ho ion is subject to the

crystal field, the Zeeman coupling, and the

hyperfine coupling. The interaction between

moments is dominated by the long-range

dipole coupling, with a small nearest neighbor

exchange interaction J
12

:

H 0
X

i

EHCFðJiÞ þ AJi I Ii j gmBJi I H^

j
1

2

X

ij

X

ab

JDDabðijÞJiaJjb

j
1

2

Xn:n:

ij

J 12 Ji I Jj ð2Þ

where J and I are the electronic and nuclear

moments, respectively, and for 165Ho3þ J 0 8

and I 0 7/2. Hyperfine resonance (23) and heat

capacity measurements (24) show the hyper-

fine coupling parameter A 0 3.36 meV as for

the isolated ion, with negligible nuclear-

quadrupole coupling. The Zeeman term is

reduced by the demagnetization field. The

normalized dipole tensor Dab(ij) is directly cal-

culable, and the dipole coupling strength J
D

is

simply fixed by lattice constants and the mag-

netic moments of the ions at J
D
0 (gm

B
)2N 0

1.1654 meV, where m
B

is the Bohr magneton.

This leaves as free parameters various num-

bers appearing in the crystal-field Hamiltonian

H
CF

and the exchange constant J
12

. The former

are determined (25) largely from electron spin

resonance for dilute Ho atoms substituted for

Y in LiYF
4
, whereas the latter is constrained

by the phase diagram determined earlier (10)

(Fig. 1A). We have used an effective medium

theory (9) previously applied to HoF
3

(26) to

fit the phase diagram, and we conclude that a

good overall description—except for a modest

(14%) overestimate of the zero-field transition

temperature—is obtained for J
12

0 –0.1 meV.

On the basis of quantum Monte Carlo simu-

lation data, others (27) have also concluded that

J
12

is substantially smaller than J
D

.

Having established a good parameterization

of the Hamiltonian, we model the dynamics,

where expansion to order 1/z (where z is the

number of nearest neighbors of an ion in the

lattice) leads to an energy-dependent re-

normalization E1 þ S(w)^–1 (on the order of

10%) of the dynamic susceptibility calculated

in the random phase approximation, with the

self energy S(w) evaluated as described in

(26). For the three fields investigated in detail,

the dispersion measured by neutron scattering

is closely reproduced throughout the Brillouin

zone. As indicated by the solid lines in Fig. 2,

the agreement becomes excellent if the calcu-

lated excitation energies are multiplied by a re-

normalization factor Z 0 1.15. The point is not

that the calculation is imperfect but rather that

it matches the data as closely as it does. Indeed,

it also predicts a weak mode splitting of about

0.08 meV at (1,0,1 – e), consistent with the

increased width in the measurements. The

agreement for the discontinuous jump between

(1,0,1 – e) and (1 þ e,0,1) as a result of the

long-range nature of the dipole coupling shows

that this is indeed the dominant coupling.

Fig. 1. (A) Phase diagram of
LiHoF4 as a function of transverse
magnetic field and temperature
from susceptibility (10) (circles)
and neutron scattering (squares)
measurements. Lines are 1/z cal-
culations with (solid) and without
(dashed) hyperfine interaction.
Horizontal dashed guide marks
the temperature 0.31 K at which
inelastic neutron measurements
were performed. (B) Field depen-
dence of the lowest excitation
energy in LiHoF4 measured at
Q 0 (1 þ e,0,1). Lines are calcu-
lated energies scaled by Z 0 1.15
with (solid) and without (dashed)
hyperfine coupling. The dashed
vertical guides show how in either
case the minimum energy occurs
at the field of the transition
[compare with (A)]. (C) Schematic
of electronic (blue) and nuclear
(red) levels as the transverse field
is lowered toward the QCP.
Neglecting the nuclear spins, the electronic transition (light blue arrow) would soften all the way to
zero energy. Hyperfine coupling creates a nondegenerate multiplet around each electronic state. The
QCP now occurs when the excited-state multiplet through level repulsion squeezes the collective mode
of the ground-state multiplet to zero energy, hence forestalling complete softening of the electronic
mode. Of course, the true ground and excited states are collective modes of many Ho ions and should
be classified in momentum space. (D) Calculated ratio of the minimum excitation energy Ec to the
single-ion splitting D at the critical field as a function of temperature. This measures how far the
electronic system is from the coherent limit, for which Ec/D 0 0.
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The simple origin of the incomplete soft-

ening and enhanced critical field (Fig. 1, B and

C) is easiest to understand if we start from

the polarized paramagnetic state above H
c
,

where the experiment, the purely electronic

calculation, and the theory including the hy-

perfine coupling all coincide. At high fields,

the only effect of the hyperfine term is to

split both the ground state and the electron-

ic excitation modes into multiplets that are

simply the direct products of the electron-

ic and nuclear levels, with a total span of

2AbJ ÀI , 0.1 meV (Fig. 1C). Upon lowering

the field, the electronic mode softens and

would reach zero energy at H
c
0 0 36 kOe in

the absence of hyperfine coupling. The hy-

perfine coupling, however, already mixes

the original ground and excited (soft mode)

states above H
c
. As this happens, the for-

mation of a composite spin from mixed

nuclear and electronic contributions imme-

diately stabilizes ordering along the c axis

of the crystal. In other words, the hyperfine

coupling shunts the electronic mode, raising

the critical field to the observed H
c
0 42.4

kOe, where the mode reaches a nonzero mini-

mum. This process is accompanied by transfer

of intensity from the magnetic excitation of

electronic origin to soft modes of much lower

energy (in the 10-meV range) that have an

entangled nuclear/electronic character. Cool-

ing to very low temperatures would reveal

these modes as propagating and softening

to zero at the QCP, but at the temperatures

reachable in our measurements there is ther-

malization, dephasing the composite modes to

yield the strong quasi-elastic scattering ap-

pearing around Q 0 (2,0,0) and zero energy

at the critical field, as in Fig. 2.

The intensities of the excitations are simply

proportional to the matrix elements kb f k
P

j

exp(iQ I R
j
)J

j
þk0Àk2, and therefore provide a

direct measure of the wave functions via the

interference effects implicit in the spatial

Fourier transform of J
j
. Figure 3 shows

intensities recorded along (h,0,0) for the three

fields 36, 42.4, and 60 kOe. They follow a

momentum dependence characterized by a

broad peak near (2,0,0), which is well

described by our theory. In the absence of

hyperfine interactions, the intensity at H
c
0

would diverge as q approaches (2,0,0),

reflecting that the real-space dynamical coher-

ence length x
c

of the excited state grows to

infinity. The finite width of the peak observed

at H
c

corresponds in real space to a distance

on the order of the interholmium spacing;

because the hyperfine interactions forestall the

softening of the electronic mode, the implica-

tion is that these interactions also limit the

distance over which the electronic wave

functions can be entangled (4). Thus, Fig. 3

is a direct demonstration of the limitation of

quantum coherence in space via coupling to a

nuclear spin bath. x
c

is obtained from a sum

over matrix elements connecting the ground

state to a particular set of excited states,

whereas the thermodynamic correlation length

x
t

is derived from the equal time correlation

function S(r), which is the sum over all final

states. x
t

diverges at second-order transitions

such as those in LiHoF
4
, where the quasielastic

component seen in our data dominates the

long-distance behavior of S(r) at T
c
(H). It is

the electronic mode, and hence x
c
, that dictates

to what extent LiHoF
4

can be characterized

and potentially exploited as a realization of the

ideal transverse-field Ising model.

Beyond providing a quantitative understand-

ing of the excitations near the QCP of a model

experimental system, we obtain new insight by

bringing together the older knowledge from rare-

earth magnetism and the contemporary ideas of

entanglement, qubits, and decoherence. Although

the notion of the spin bath was developed to

address decoherence in localized magnetic

clusters and molecules (1), our work discloses

its importance for QPTs. In particular, we

establish that the spin bath is a generic feature

that will limit our ability to observe intrinsic

electronic quantum criticality. This may not

matter much for transition metal oxides with

very large exchange constants, but it could

matter for rare earth and actinide intermetallic

compounds, which show currently unexplained

crossovers to novel behaviors at low (G1 K)

temperatures Esee, e.g., (28)^.
For magnetic clusters, decoherence can be

minimized in a window between the oscilla-

tor bath–dominated high-temperature regions

and the spin bath–dominated low-temperature

regions (29). Our calculations suggest that

the dense quantum critical magnet shows anal-

ogous behavior. Here the interacting electron

spins themselves constitute the oscillator bath,

and the extent to which the magnetic excita-

tion softens at T
c
(H), as measured by the ratio

of the zone center energy E
c

to the field-

induced single-ion splitting D (Fig. 1D), gauges

the electronic decoherence. E
c
/D achieves its

minimum not at T 0 0 but rather at an inter-

mediate temperature T , 1 K, exactly where

the phase boundary in Fig. 1A begins to be

affected by the nuclear hyperfine interactions.

Fig. 2. Pseudocolor representa-
tion of the inelastic neutron scat-
tering intensity for LiHoF4 at T 0
0.31 K observed along the recip-
rocal space trace (2,0,0) Y (1,0,0)
Y (1,0,1) Y (1.15,0,1). White
lines show the 1/z calculation for
the excitation energies as
described in the text. White ellip-
ses around the (2,0,0) Bragg peak
indicate 5 times the resolution tail
(full width at half maximum).

Fig. 3. Measured intensities of the excitations
along Q 0 (h,0,0) at the same values of the
field as in Fig. 2. Lines are calculated with
geometric and resolution corrections applied
to allow comparison to the neutron data.
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The motion of atoms on interatomic potential energy surfaces is fundamental
to the dynamics of liquids and solids. An accelerator-based source of
femtosecond x-ray pulses allowed us to follow directly atomic displacements
on an optically modified energy landscape, leading eventually to the
transition from crystalline solid to disordered liquid. We show that, to first
order in time, the dynamics are inertial, and we place constraints on the shape
and curvature of the transition-state potential energy surface. Our measure-
ments point toward analogies between this nonequilibrium phase transition
and the short-time dynamics intrinsic to equilibrium liquids.

In a crystal at room temperature, vibrational

excitations, or phonons, only slightly perturb

the crystalline order. In contrast, liquids

explore a wide range of configurations set

by the topology of a complex and time-

dependent potential energy surface (1, 2). By

using light to trigger changes in this energy

landscape, well-defined initial and final states

can be generated to which a full range of

time-resolved techniques may be applied. In

particular, light-induced structural transitions

between the crystalline and liquid states of

matter may act as simple models for dynam-

ics intrinsic to the liquid state or to transition

states in general (3).

In this context, a new class of nonthermal

processes governing the ultrafast solid-liquid

melting transition has recently emerged,

supported by time-resolved optical (4–7) and

x-ray (8–10) experiments and with technolog-

ical applications ranging from micromachining

to eye surgery (11). Intense femtosecond

excitation of semiconductor materials results

in the excitation of a dense electron-hole

plasma, with accompanying dramatic changes

in the interatomic potential (12–14). At suffi-

ciently high levels of excitation, it is thought

that this process leads to disordering of the

crystalline lattice on time scales faster than the

time scale for thermal equilibration Eoften

known as the electron-phonon coupling time,

on the order of a few picoseconds (15)^. In a

pioneering study, Rousse et al. (9) determined

that the structure of indium antimonide (InSb)

changes on sub-picosecond time scales, but

the mechanism by which this occurs and the

microscopic pathways the atoms follow have

remained elusive, in part because of uncer-

tainties in the pulse duration of laser-plasma

sources and signal-to-noise limitations.

Research and development efforts leading

toward the Linac Coherent Light Source

(LCLS) free-electron laser have facilitated the

construction of a new accelerator-based x-ray

source, the Sub-Picosecond Pulse Source

(SPPS), which uses the same linac-based

acceleration and electron bunch compression

schemes to be used at future free-electron

lasers (16, 17). In order to produce femto-

second x-ray bursts, electron bunches at the

Stanford Linear Accelerator Center (SLAC)

are chirped and then sent through a series of

energy-dispersive magnetic chicanes to create

80-fs electron pulses. These pulses are then

transported through an undulator to create sub-

100-femtosecond x-ray pulses (18). In order to

overcome the intrinsic jitter between x-rays

and a Ti:sapphire-based femtosecond laser
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Quantum computers promise to exceed the computational efficiency of ordinary classical machines because quantum
algorithmsallow theexecution of certain tasks in fewersteps. But practical implementationof thesemachinesposesa
formidable challenge. Here I present a scheme for implementing a quantum-mechanical computer. Information is
encoded onto the nuclear spins of donor atoms in doped silicon electronic devices. Logical operations on individual
spins are performed using externally applied electric fields, and spin measurements are made using currents of
spin-polarizedelectrons.The realization of suchacomputer is dependenton future refinementsof conventional silicon
electronics.

Although the concept of information underlying all modern com-
puter technology is essentially classical, phsyicists know that nature
obeys the laws of quantum mechanics. The idea of a quantum
computer has been developed theoretically over several decades to
elucidate fundamental questions concerning the capabilities and
limitations of machines in which information is treated quantum
mechanically1,2. Specifically, in quantum computers the ones and
zeros of classical digital computers are replaced by the quantum
state of a two-level system (a qubit). Logical operations carried out
on the qubits and their measurement to determine the result of the
computation must obey quantum-mechanical laws. Quantum
computation can in principle only occur in systems that are
almost completely isolated from their environment and which
consequently must dissipate no energy during the process of
computation, conditions that are extraordinarily difficult to fulfil
in practice.

Interest in quantum computation has increased dramatically in
the past four years because of two important insights: first, quantum
algorithms (most notably for prime factorization3,4 and for exhaus-
tive search5) have been developed that outperform the best known
algorithms doing the same tasks on a classical computer. These
algorithms require that the internal state of the quantum computer
be controlled with extraordinary precision, so that the coherent
quantum state upon which the quantum algorithms rely is not
destroyed. Because completely preventing decoherence (uncon-
trolled interaction of a quantum system with its surrounding
environment) is impossible, the existence of quantum algorithms
does not prove that they can ever be implemented in a real machine.

The second critical insight has been the discovery of quantum
error-correcting codes that enable quantum computers to operate
despite some degree of decoherence and which may make quantum
computers experimentally realizable6,7. The tasks that lie ahead to
create an actual quantum computer are formidable: Preskill8 has
estimated that a quantum computer operating on 106 qubits with a
10−6 probability of error in each operation would exceed the
capabilities of contemporary conventional computers on the
prime factorization problem. To make use of error-correcting
codes, logical operations and measurement must be able to proceed
in parallel on qubits throughout the computer.

The states of spin 1/2 particles are two-level systems that can
potentially be used for quantum computation. Nuclear spins have
been incorporated into several quantum computer proposals9–12

because they are extremely well isolated from their environment
and so operations on nuclear spin qubits could have low error rates.
The primary challenge in using nuclear spins in quantum compu-
ters lies in measuring the spins. The bulk spin resonance approach

to quantum computation11,12 circumvents the single-spin detection
problem essentially by performing quantum calculations in parallel
in a large number of molecules and determining the result from
macroscopic magnetization measurements. The measurable signal
decreases with the number of qubits, however, and scaling this
approach above about ten qubits will be technically demanding37.

To attain the goal of a 106 qubit quantum computer, it has been
suggested that a ‘solid state’ approach13 might eventually replicate
the enormous success of modern electronics fabrication technology.
An attractive alternative approach to nuclear spin quantum com-
putation is to incorporate nuclear spins into an electronic device
and to detect the spins and control their interactions
electronically14. Electron and nuclear spins are coupled by the
hyperfine interaction15. Under appropriate circumstances, polariza-
tion is transferred between the two spin systems and nuclear spin
polarization is detectable by its effect on the electronic properties of
a sample16,17. Electronic devices for both generating and detecting
nuclear spin polarization, implemented at low temperatures in
GaAs/AlxGa1−xAs heterostructures, have been developed18, and
similar devices have been incorporated into nanostructures19,20.
Although the number of spins probed in the nanostructure experi-
ments is still large (,1011; ref. 19), sensitivity will improve in
optimized devices and in systems with larger hyperfine interactions.

Here I present a scheme for implementing a quantum computer
on an array of nuclear spins located on donors in silicon, the
semiconductor used in most conventional computer electronics.
Logical operations and measurements can in principle be per-
formed independently and in parallel on each spin in the array. I
describe specific electronic devices for the manipulation and mea-
surement of nuclear spins, fabrication of which will require sig-
nificant advances in the rapidly moving field of nanotechnology.
Although it is likely that scaling the devices proposed here into a
computer of the size envisaged by Preskill8 will be an extraordinary
challenge, a silicon-based quantum computer is in a unique posi-
tion to benefit from the resources and ingenuity being directed
towards making conventional electronics of ever smaller size and
greater complexity.

Quantum computation with a 31P array in silicon
The strength of the hyperfine interaction is proportional to the
probability density of the electron wavefunction at the nucleus. In
semiconductors, the electron wavefunction extends over large dis-
tances through the crystal lattice. Two nuclear spins can conse-
quently interact with the same electron, leading to electron-
mediated or indirect nuclear spin coupling15. Because the electron
is sensitive to externally applied electric fields, the hyperfine inter-
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action and electron-mediated nuclear spin interaction can be
controlled by voltages applied to metallic gates in a semiconductor
device, enabling the external manipulation of nuclear spin
dynamics that is necessary for quantum computation.

The conditions required for electron-coupled nuclear spin com-
putation and single nuclear spin detection can arise if the nuclear
spin is located on a positively charged donor in a semiconductor
host. The electron wavefunction is then concentrated at the donor
nucleus (for s orbitals and energy bands composed primarily of
them), yielding a large hyperfine interaction energy. For shallow-
level donors, however, the electron wavefunction extends tens or
hundreds of ångströms away from the donor nucleus, allowing
electron-mediated nuclear spin coupling to occur over comparable
distances. The quantum computer proposed here comprises an
array of such donors positioned beneath the surface of a semicon-
ductor host (Fig. 1). A quantum mechanical calculation proceeds by
the precise control of three external parameters: (1) gates above the
donors control the strength of the hyperfine interactions and hence
the resonance frequency of the nuclear spins beneath them; (2) gates
between the donors turn on and off electron-mediated coupling
between the nuclear spins13; (3) a globally applied a.c. magnetic field
Bac flips nuclear spins at resonance. Custom adjustment of the
coupling of each spin to its neighbours and to Bac enables different
operations to be performed on each of the spins simultaneously.
Finally, measurements are performed by transferring nuclear spin
polarization to the electrons and determining the electron spin state
by its effect on the orbital wavefunction of the electrons, which can
be probed using capacitance measurements between adjacent gates.

An important requirement for a quantum computer is to isolate
the qubits from any degrees of freedom that may lead to decoher-
ence. If the qubits are spins on a donor in a semiconductor, nuclear
spins in the host are a large reservoir with which the donor spins can
interact. Consequently, the host should contain only nuclei with
spin I ¼ 0. This simple requirement unfortunately eliminates all
III–V semiconductors as host candidates, because none of their
constituent elements possesses stable I ¼ 0 isotopes21. Group IV
semiconductors are composed primarily I ¼ 0 isotopes and can in
principle be purified to contain only I ¼ 0 isotopes. Because of the

advanced state of Si materials technology and the tremendous effort
currently underway in Si nanofabrication, Si is the obvious choice
for the semiconductor host.

The only I ¼ 1=2 shallow (group V) donor in Si is 31P. The Si:31P
system was exhaustively studied 40 years ago in the first electron–
nuclear double-resonance experiments22,23. At sufficiently low 31P
concentrations at temperature T ¼ 1:5 K, the electron spin relaxa-
tion time is thousands of seconds and the 31P nuclear spin relaxation
time exceeds 10 hours. It is likely that at millikelvin temperatures the
phonon limited 31P relaxation time is of the order of 1018 seconds
(ref. 24), making this system ideal for quantum computation.

The purpose of the electrons in the computer is to mediate
nuclear spin interactions and to facilitate measurement of the
nuclear spins. Irreversible interactions between electron and nuclear
spins must not occur as the computation proceeds: the electrons
must be in a non-degenerate ground state throughout the compu-
tation. At sufficiently low temperatures, electrons only occupy the
lowest energy-bound state at the donor, whose twofold spin
degeneracy is broken by an applied magnetic field B. (The valley
degeneracy of the Si conduction band is broken in the vicinity of the
donor25. The lowest donor excited state is approximately 15 meV
above the ground state23.) The electrons will only occupy the lowest
energy spin level when 2mBB q kT, where mB is the Bohr magneton.
(In Si, the Landé g-factor is very close to +2, so g ¼ 2 is used
throughout this discussion.) The electrons will be completely spin-
polarized (n↑=n↓ , 10 2 6) when T < 100 mK and B > 2 tesla. A
quantum-mechanical computer is non-dissipative and can conse-
quently operate at low temperatures. Dissipation will arise external
to the computer from gate biasing and from eddy currents caused by
Bac, and during polarization and measurement of the nuclear spins.
These effects will determine the minimum operable temperature of
the computer. For this discussion, I will assume T ¼ 100 mK and
B ¼ 2 T. Note that these conditions do not fully polarize the nuclear
spins, which are instead aligned by interactions with the polarized
electrons.

Magnitude of spin interactions in Si:31P
The size of the interactions between spins determines both the time

articles
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Figure 1 Illustration of two cells in a one-dimensional array containing 31P donors

and electrons in a Si host, separated by a barrier from metal gates on the surface.

‘A gates’ control the resonance frequency of the nuclear spin qubits; ‘J gates’

control the electron-mediated coupling between adjacent nuclear spins. The

ledge over which the gates cross localizes the gate electric field in the vicinity of

the donors.

Figure 2 An electric field applied to an A gate pulls the electron wavefunction

away from the donor and towards the barrier, reducing the hyperfine interaction

and the resonance frequencyof the nucleus. The donor nucleus–electronsystem

is a voltage-controlled oscillator with a tuning parameter a of the order of 30MHzV−1.
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required to do elementary operations on the qubits and the
separation necessary between donors in the array. The hamiltonian
for a nuclear spin–electron system in Si, applicable for an I ¼ 1=2
donor nucleus and with Bkz is Hen ¼ mBBje

z 2 gnmnBjn
z þ Aje⋅jn,

where j are the Pauli spin matrices (with eigenvalues 61), mn is the
nuclear magneton, gn is the nuclear g-factor (1.13 for 31P; ref. 21),
and A ¼ 8

3
pmBgnmnjWð0Þj2 is the contact hyperfine interaction

energy, with | W(0)| 2, the probability density of the electron
wavefunction, evaluated at the nucleus. If the electron is in its
ground state, the frequency separation of the nuclear levels is, to
second order

hnA ¼ 2gnmnB þ 2A þ
2A2

mBB
ð1Þ

In Si:31P, 2A=h ¼ 58 MHz, and the second term in equation (1)
exceeds the first term for B , 3:5 T.

An electric field applied to the electron-donor system shifts the
electron wavefunction envelope away from the nucleus and reduces
the hyperfine interaction. The size of this shift, following estimates
of Kohn25 of shallow donor Stark shifts in Si, is shown in Fig. 2 for a
donor 200 Å beneath a gate. A donor nuclear spin–electron system
close to an ‘A gate’ functions as a voltage-controlled oscillator: the
precession frequency of the nuclear spin is controllable externally,
and spins can be selectively brought into resonance with Bac,
allowing arbitrary rotations to be performed on each nuclear spin.

Quantum mechanical computation requires, in addition to single
spin rotations, the two-qubit ‘controlled rotation’ operation, which
rotates the spin of a target qubit through a prescribed angle if, and
only if, the control qubit is oriented in a specified direction, and
leaves the orientation of the control qubit unchanged26,27. Perform-
ing the controlled rotation operation requires nuclear-spin
exchange between two donor nucleus-electron spin systems13,
which will arise from electron-mediated interactions when the
donors are sufficiently close to each other. The hamiltonian of
two coupled donor nucleus–electron systems, valid at energy scales
small compared to the donor-electron binding energy, is
H ¼ HðBÞ þ A1j

1n⋅ j2e þ A2j
2n⋅j2e þ Jj1e⋅j2e, where H(B) are the

magnetic field interaction terms for the spins. A1 and A2 are the
hyperfine interaction energies of the respective nucleus–electron
systems. 4J, the exchange energy, depends on the overlap of the
electron wavefunctions. For well separated donors28

4JðrÞ > 1:6
e2

eaB

r

aB

� �5
2

exp
2 2r

aB

� �
ð2Þ

where r is the distance between donors, e is the dielectric constant of
the semiconductor, and aB is the semiconductor Bohr radius. This
function, with values appropriate for Si, is plotted in Fig. 3.
Equation (2), originally derived for H atoms, is complicated in Si
by its valley degenerate anisotropic band structure29. Exchange
coupling terms from each valley interfere, leading to oscillatory
behaviour of J(r). In this discussion, the complications introduced
by Si band structure will be neglected. In determining J(r) in Fig. 3,
the transverse mass for Si (> 0.2me) has been used, and aB ¼ 30 Å.
Because J is proportional to the electron wave function overlap, it
can be varied by an electrostatic potential imposed by a ‘J-gate’
positioned between the donors13. As shall be seen below, significant
coupling between nuclei will occur when 4J < mBB, and this con-
dition approximates the necessary separation between donors of
100–200 Å. Whereas actual separations may be considerably larger
than this value because the J gate can be biased positively to reduce
the barrier between donors, the gate sizes required for the quantum
computer are near the limit of current electronics fabrication
technology.

For two-electron systems, the exchange interaction lowers the
electron singlet (j ↑↓ 2 ↓↑ 〉) energy with respect to the triplets30.
(The | ↑↓〉 notation is used here to represent the electron spin state,

and the | 01〉 notation the nuclear state; in the | ↓↓11〉 state, all spins
point in the same direction. For simplicity, normalization constants
are omitted.) In a magnetic field, however, | ↓↓〉 will be the electron
ground state if J , mBB=2 (Fig. 4a). In the | ↓↓〉 state, the energies of
the nuclear states can be calculated to second order in A using
perturbation theory. When A1 ¼ A2 ¼ A, the j10 2 01〉 state is
lowered in energy with respect to j10 þ 01〉 by:

hnJ ¼ 2A2 1

mBB 2 2J
2

1

mBB

� �
ð3Þ

The | 11〉 state is above the j10 þ 01〉 state and the |00〉 state below the
j10 2 01〉 state by an energy hnA, given in equation (1). For the Si:31P
system at B ¼ 2 T and for 4J=h ¼ 30 GHz, equation (3) yields
nJ ¼ 75 kHz. This nuclear spin exchange frequency approximates
the rate at which binary operations can be performed on the
computer (nJ can be increased by increasing J, but at the expense
of also increasing the relaxation rate of the coupled nuclear–
electron spin excitations). The speed of single spin operations is
determined by the size of Bac and is comparable to 75 kHz when
Bac ¼ 10 2 3 T.

Spin measurements
Measurement of nuclear spins in the proposed quantum computer
is accomplished in a two-step process: distinct nuclear spin states
are adiabatically converted into states with different electron polar-
ization, and the electron spin is determined by its effect on the
symmetry of the orbital wavefunction of an exchange-coupled two-
electron system. A procedure for accomplishing this conversion is
shown in Fig. 4. While computation is done when J , mBB=2 and the
electrons are fully polarized, measurements are made when
J . mBB=2, and j ↑↓ 2 ↓↑ 〉 states have the lowest energy (Fig. 4a).
As the electron levels cross, the | ↓↓〉 and j ↑↓ 2 ↓↑ 〉 states are coupled
by hyperfine interactions with the nuclei. During an adiabatic
increase in J, the two lower-energy nuclear spin states at J ¼ 0
evolve into j ↑↓ 2 ↓↑ 〉 states when J . mBB=2, whereas the two
higher-energy nuclear states remain | ↓↓〉. If, at J ¼ 0, A1 . A2, the
orientation of nuclear spin 1 alone will determine whether the
system evolves into the j ↑↓ 2 ↓↑ 〉 or the | ↓↓〉 state during an
adiabatic increase in J.

A method to detect the electron spin state by using electronic
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Figure 3 J gates vary the electrostatic potential barrier V between donors to

enhance or reduce exchange coupling, proportional to the electron wavefunction

overlap. The exchange frequency (4J/h) when V ¼ 0 is plotted for Si.
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means is shown in Fig. 4b. Both electrons can become bound to the
same donor (a D− state) if the A gates above the donors are biased
appropriately. In Si:P, the D− state is always a singlet with a second
electron binding energy of 1.7 meV (refs 31, 32). Consequently, a
differential voltage applied to the A gates can result in charge
motion between the donors that only occurs if the electrons are in
a singlet state. This charge motion is measurable using sensitive
single-electron capacitance techniques33. This approach to spin
measurement produces a signal that persists until the electron
spin relaxes, a time that, as noted above, can be thousands of
seconds in Si:P.

The spin measurement process can also be used to prepare
nuclear spins in a prescribed state by first determining the state of
a spin and flipping it if necessary so that it ends up in the desired
spin state. As with the spin computation procedures already
discussed, spin measurement and preparation can in principle be
performed in parallel throughout the computer.

Initializing the computer
Before any computation, the computer must be initialized by
calibrating the A gates and the J gates. Fluctuations from cell to
cell in the gate biases necessary to perform logical operations are an
inevitable consequence of variations in the positions of the donors
and in the sizes of the gates. The parameters of each cell, however,
can be determined individually using the measurement capabilities
of the computer, because the measurement technique discussed
here does not require precise knowledge of the J and A couplings.
The A-gate voltage at which the underlying nuclear spin is resonant
with an applied Bac can be determined using the technique of
adiabatic fast passage34: when Bac ¼ 0, the nuclear spin is measured
and the A gate is biased at a voltage known to be off resonance. Bac is
then switched on, and the A gate bias is swept through a prescribed

voltage interval. Bac is then switched off and the nuclear spin is
measured again. The spin will have flipped if, and only if, resonance
occurred within the prescribed A-gate voltage range. Testing for spin
flips in increasingly small voltage ranges leads to the determination
of the resonance voltage. Once adjacent A gates have been cali-
brated, the J gates can be calibrated in a similar manner by sweeping
J-gate biases across resonances of two coupled cells.

This calibration procedure can be performed in parallel on many
cells, so calibration is not a fundamental impediment to scaling the
computer to large sizes. Calibration voltages can be stored on
capacitors located on the Si chip adjacent to the quantum computer.
External controlling circuitry would thus need to control only the
timing of gate biases, and not their magnitudes.

Spin decoherence introduced by gates
In the quantum computer architecture outlined above, biasing of A
gates and J gates enables custom control of the qubits and their
mutual interactions. The presence of the gates, however, will lead to
decoherence of the spins if the gate biases fluctuate away from their
desired values. These effects need to be considered to evaluate the
performance of any gate-controlled quantum computer. During the
computation, the largest source of decoherence is likely to arise
from voltage fluctuations on the A gates. (When J , mBB=2, mod-
ulation of the state energies by the J gates is much smaller than by
the A gates. J exceeds mBB/2 only during the measurement process,
when decoherence will inevitably occur.) The precession frequencies
of two spins in phase at t ¼ 0 depends on the potentials on their
respective A gates. Differential fluctuations of the potentials pro-
duce differences in the precession frequency. At some later time
t ¼ tf, the spins will be 1808 out of phase; tf can be estimated by
determining the transition rate between j10 þ 01〉 (spins in phase)
and j10 2 01〉 (spins 1808 out of phase) of a two-spin system. The
hamiltonian that couples these states is Hf ¼ 1

4
hDðj1n

z 2 j2n
z Þ, where

D is the fluctuating differential precession frequency of the spins.
Standard treatment of fluctuating hamiltonians34 predicts:
t 2 1
f ¼ p2SDðnstÞ, where SD is the spectral density of the frequency

fluctuations, and nst is the frequency difference between the
j10 2 01〉 and j10 þ 01〉 states. At a particular bias voltage, the A
gates have a frequency tuning parameter a ¼ dD=dV. Thus:

t 2 1
f ¼ p2a2ðVÞSV ðnstÞ ð4Þ

where SV is the spectral density of the gate voltage fluctuations.
SV for good room temperature electronics is of order 10−18 V2/Hz,

comparable to the room temperature Johnson noise of a 50-Q
resistor. The value of a, estimated from Fig. 2, is 10–100 MHz V−1,
yielding tf ¼ 10–1;000 s; a is determined by the size of the donor
array cells and cannot readily be reduced (to increase tf) without
reducing the exchange interaction between cells. Because a is a
function of the gate bias (Fig. 2), tf can be increased by minimizing
the voltage applied to the A gates.

Although equation (4) is valid for white noise, at low frequencies
it is likely that materials-dependent fluctuations (1/f noise) will be
the dominant cause of spin dephasing. Consequently, it is difficult
to give hard estimates of tf for the computer. Charge fluctuations
within the computer (arising from fluctuating occupancies of traps
and surface states, for example) are likely to be particularly impor-
tant, and minimizing them will place great demands on computer
fabrication.

Although materials-dependent fluctuations are difficult to esti-
mate, the low-temperature operations of the computer and the
dissipationless nature of quantum computing mean that, in prin-
ciple, fluctuations can be kept extremely small: using low-tempera-
ture electronics to bias the gates (for instance, by using on chip
capacitors as discussed above) could produce tf < 106 s. Elec-
tronically controlled nuclear spin quantum computers thus have
the theoretical capability to perform at least 105 to perhaps 1010
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Figure 4 Two qubit quantum logic and spin measurement. a, Electron (solid lines)

and lowest energy-coupled electron-nuclear (dashed lines) energy levels as a

function of J. When J , mBB=2, two qubit computations are performed by control-

ling the j10 2 01〉 2 j10 þ 01〉 level splittingwith a J gate. Above J ¼ mBB=2, the states

of the coupled system evolve into states of differing electron polarization. The

state of the nucleus at J ¼ 0 with the larger energy splitting (controllable by the A

gate bias) determines the final electron spin state after an adiabatic increase in J.

b, Only j ↑↓ 2 ↓↑ 〉 electrons can make transitions into states in which electrons are

bound to the same donor (D− states). Electron current during these transitions is

measurable using capacitive techniques, enabling the underlying spin states of

the electrons and nuclei to be determined.
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logical operations during tf, and can probably meet Preskill’s
criterion8 for an error probability of 10−6 per qubit operation.

Constructing the computer
Building the computer presented here will obviously be an extra-
ordinary challenge: the materials must be almost completely free of
spin (I Þ 0 isotopes) and charge impurities to prevent dephasing
fluctuations from arising within the computer. Donors must be
introduced into the material in an ordered array hundreds of Å
beneath the surface. Finally, gates with lateral dimensions and
separations ,100 Å must be patterned on the surface, registered
to the donors beneath them. Although it is possible that the
computer can use SiO2 as the barrier material (the standard MOS
technology used in most current conventional electronics), the need
to reduce disorder and fluctuations to a minimum means that
heteroepitaxial materials, such as Si/SiGe, may ultimately be pre-
ferable to Si/SiO2.

The most obvious obstacle to building to the quantum computer
presented above is the incorporation of the donor array into the Si
layer beneath the barrier layer. Currently, semiconductor structures
are deposited layer by layer. The d-doping technique produces
donors lying on a plane in the material, with the donors randomly
distributed within the plane. The quantum computer envisaged
here requires that the donors be placed into an ordered one- or two-
dimensional array; furthermore, precisely one donor must be
placed into each array cell, making it extremely difficult to create
the array by using lithography and ion implantation or by focused
deposition. Methods currently under development to place single
atoms on surfaces using ultra-high-vacuum scanning tunnelling
microscopy35 or atom optics techniques36 are likely candidates to be
used to position the donor array. A challenge will be to grow high-
quality Si layers on the surface subsequent to placement of the
donors.

Fabricating large arrays of donors may prove to be difficult, but
two-spin devices, which can be used to test the logical operations
and measurement techniques presented here, can be made using
random doping techniques. Although only a small fraction of such
devices will work properly, adjacent conventional Si electronic
multiplexing circuitry can be used to examine many devices
separately. The relative ease of fabricating such ‘hybrid’ (quan-
tum-conventional) circuits is a particularly attractive feature of Si-
based quantum computation.

In a Si-based nuclear spin quantum computer, the highly coher-
ent quantum states necessary for quantum computation are incor-
porated into a material in which the ability to implement complex
computer architectures is well established. The substantial chal-
lenges facing the realization of the computer, particularly in
fabricating 100-Å-scale gated devices, are similar to those facing
the next generation of conventional electronics; consequently, new
manufacturing technologies being developed for conventional
electronics will bear directly on efforts to develop a quantum
computer in Si. Quantum computers sufficiently complex that they

can achieve their theoretical potential may thus one day be built
using the same technology that is used to produce conventional
computers. M
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Decoherence in quantum computation - foe or friend?

Robert Raussendorf, University of British Columbia

Abstract: Decoherence is detrimental to quantum computation because it makes the computation
“noisy”. Or is it? Upon closer inspection, it turns out that decoherence can both compromize and
help realize quantum computation. Which of the two applies does very much depend on the
decoherence model considered.
I will start out by proving the expected, namely that decoherence, for a certain (justifiable) class of
decoherence models, does indeed compromise quantum computation. In this regard, I will review
a result of Bravyi and Kitaev [1b]/ van Dam and Howard [1a] demonstrating an upper bound to
the error threshold for fault-tolerant quantum computation. The significance of this upper bound
is that no method of error correction, however clever, can put the quantum computation back on
track if the decoherence level per elementary gate operation is above the threshold value.
In the second part of my introduction, I will discuss two computational models [2], [3] that use
decoherent dynamics to realize quantum computation. In the case of [2], the computation is driven
by local projective measurements on a highly entangled quantum state. Therein, the entanglement
of the initial quantum state is progressively destroyed as the computation proceeds. Thus, entan-
glement is a resource for this computational model. In the second case, Ref. [3], universal quantum
computation is implemented in a dissipative quantum system whose evolution is governed by time-
independent and local couplings to the environment. Due to the purely dissipative nature of the
process, this way of doing quantum computation exhibits some inherent robustness and defies some
of the DiVincenzo criteria for quantum computation.

Suggested Reading:

[1a] Sergey Bravyi and Alexei Kitaev, Phys. Rev. A 71, 022316 (2005).

[1b] Wim van Dam and Mark Howard, Phys. Rev. Lett. 103, 170504 (2009).

[2] R. Raussendorf and H.J Briegel, Phys. Rev. Lett. 86, 5188 (2001).

[3] F. Verstraete, M. Wolf and J.I. Cirac, Nature Physics 5, 633 - 636 (2009).

Remark: The results of refs. [1a] and [1b] are very closely related. For background reading, I
recommend Ref. [1b] over [1a] because it is shorter. In my introduction, I will discuss [1a] (first
part only), however, because the result therein is better suited for graphical display.
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Universal quantum computation with ideal Clifford gates and noisy ancillas

Sergey Bravyi* and Alexei Kitaev†
Institute for Quantum Information, California Institute of Technology, Pasadena, 91125 California, USA
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We consider a model of quantum computation in which the set of elementary operations is limited to
Clifford unitaries, the creation of the state #0$, and qubit measurement in the computational basis. In addition,
we allow the creation of a one-qubit ancilla in a mixed state !, which should be regarded as a parameter of the
model. Our goal is to determine for which ! universal quantum computation !UQC" can be efficiently simu-
lated. To answer this question, we construct purification protocols that consume several copies of ! and
produce a single output qubit with higher polarization. The protocols allow one to increase the polarization
only along certain “magic” directions. If the polarization of ! along a magic direction exceeds a threshold value
!about 65%", the purification asymptotically yields a pure state, which we call a magic state. We show that the
Clifford group operations combined with magic states preparation are sufficient for UQC. The connection of
our results with the Gottesman-Knill theorem is discussed.

DOI: 10.1103/PhysRevA.71.022316 PACS number!s": 03.67.Lx, 03.67.Pp

I. INTRODUCTION AND SUMMARY

The theory of fault-tolerant quantum computation defines
an important number called the error threshold. If the physi-
cal error rate is less than the threshold value ", it is possible
to stabilize computation by transforming the quantum circuit
into a fault-tolerant form where errors can be detected and
eliminated. However, if the error rate is above the threshold,
then errors begin to accumulate, which results in rapid deco-
herence and renders the output of the computation useless.
The actual value of " depends on the error correction scheme
and the error model. Unfortunately, this number seems to be
rather small for all known schemes. Estimates vary from
10−6 !see Ref. %1&" to 10−4 !see Refs. %2–4&", which is hardly
achievable with the present technology.
In principle, one can envision a situation in which qubits

do not decohere, and a subset of the elementary gates is
realized exactly due to special properties of the physical sys-
tem. This scenario could be realized experimentally using
spin, electron, or other many-body systems with topologi-
cally ordered ground states. Excitations in two-dimensional
topologically ordered systems are anyons—quasiparticles
with unusual statistics described by nontrivial representa-
tions of the braid group. If we have sufficient control of
anyons, i.e., are able to move them around each other, fuse
them, and distinguish between different particle types, then
we can realize some set of unitary operators and measure-
ments exactly. This set may or may not be computationally
universal. While the universality can be achieved with suffi-
ciently nontrivial types of anyons %5–8&, more realistic sys-
tems offer only decoherence protection and an incomplete set
of topological gates. !See Refs. %9,10& about non-Abelian
anyons in quantum Hall systems and Refs. %11,12& about
topological orders in Josephson junction arrays." Neverthe-
less, universal computation is possible if we introduce some

additional operations !e.g., measurements by Aharonov-
Bohm interference %13& or some gates that are not related to
topology at all". Of course, these nontopological operations
cannot be implemented exactly and thus are prone to errors.
In this situation, the threshold error rate " may become

significantly larger than the values given above because we
need to correct only errors of certain special type and we
introduce a smaller amount of error in the correction stage.
The main purpose of the present paper is to illustrate this
statement by a particular computational model.
The model is built upon the Clifford group—the group of

unitary operators that map the group of Pauli operators to
itself under conjugation. The set of elementary operations is
divided into two parts: O=Oideal!Ofaulty. Operations from
Oideal are assumed to be perfect. We list these operations
below:

!i" prepare a qubit in the state #0$;
!ii" apply unitary operators from the Clifford group;
!iii" measure an eigenvalue of a Pauli operator !#x ,#y,

or #z" on any qubit.
Here we mean nondestructive projective measurement.

We also assume that no errors occur between the operations.
It is well known that these operations are not sufficient for

universal quantum computation !UQC" !unless a quantum
computer can be efficiently simulated on a classical com-
puter". More specifically, the Gottesman-Knill theorem states
that by operations from Oideal one can only obtain quantum
states of a very special form called stabilizer states. Such a
state can be specified as an intersection of eigenspaces of
pairwise commuting Pauli operators, which are referred to as
stabilizers. Using the stabilizer formalism, one can easily
simulate the evolution of the state and the statistics of mea-
surements on a classical probabilistic computer !see Ref.
%14& or a textbook %15& for more details".
The set Ofaulty describes faulty operations. In our model, it

consists of just one operation: prepare an ancillary qubit in a
mixed state !. The state ! should be regarded as a parameter
of the model. From the physical point of view, ! is mixed
due to imperfections of the preparation procedure !entangle-
ment of the ancilla with the environment, thermal fluctua-

*Email address: serg@cs.caltech.edu
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tions, etc.". An essential requirement is that by preparing n
qubits we obtain the state !!n, i.e., all ancillary qubits are
independent. The independence assumption is similar to the
uncorrelated errors model in the standard fault-tolerant com-
putation theory.
Our motivation for including all Clifford group gates into

Oideal relies mostly on the recent progress in the fault-tolerant
implementation of such gates. For instance, using a concat-
enated stabilizer code with good error correcting properties
to encode each qubit and applying gates transversally !so that
errors do not propagate inside code blocks" one can imple-
ment Clifford gates with an arbitrary high precision, see Ref.
%16&. However, these nearly perfect gates act on encoded
qubits. To establish a correspondence with our model, one
needs to prepare an encoded ancilla in the state !. It can be
done using the schemes for fault-tolerant encoding of an ar-
bitrary known one-qubit state described by Knill in Ref. %17&.
In the more recent paper %18& Knill constructed a scheme of
fault-tolerant quantum computation which combines !i" the
teleported computing and error correction technique by Got-
tesman and Chuang %19&; !ii" the method of purification of
CSS states by Dür and Briegel %20&; and !iii" the magic states
distillation algorithms described in the present paper. As was
argued in Ref. %18&, this scheme is likely to yield a much
higher value for the threshold " !it may be up to 1%".
Unfortunately, ideal implementation of the Clifford group

cannot be currently achieved in any realistic physical system
with a topological order. What universality classes of anyons
allow one to implement all Clifford group gates !but do not
allow one to simulate UQC" is an interesting open problem.
To fully utilize the potential of our model, we allow adap-

tive computation. It means that a description of an operation
to be performed at step t may be a function of all measure-
ment outcomes at steps 1 ,… , t−1. !For even greater gener-
ality, the dependence may be probabilistic. This assumption
does not actually strengthen the model since tossing a fair
coin can be simulated using Oideal" At this point, we need to
be careful because the proper choice of operations should not
only be defined mathematically—it should be computed by
some efficient algorithm. In all protocols described below,
the algorithms will actually be very simple. !Let us point out
that dropping the computational complexity restriction still
leaves a nontrivial problem: can we prepare an arbitrary mul-
tiqubit pure state with any given fidelity using only opera-
tions from the basis O?"
The main question that we address in this paper is as

follows: For which density matrices ! can one efficiently
simulate universal quantum computation by adaptive compu-
tation in the basis O?
It will be convenient to use the Bloch sphere representa-

tion of one-qubit states:

! = 1
2 !I + !x#

x + !y#
y + !z#

z" .

The vector !!x ,!y ,!z" will be referred to as the polarization
vector of !. Let us first consider the subset of states satisfy-
ing

#!x# + #!y# + #!z# $ 1.

This inequality says that the vector !!x ,!y ,!z" lies inside the
octahedron O with vertices !±1, 0, 0", !0, ±1, 0", !0, 0, ±1",

see Fig. 1. The six vertices of O represent the six eigenstates
of the Pauli operators #x ,#y, and #z. We can prepare these
states by operations from Oideal only. Since ! is a convex
linear combination !probabilistic mixture" of these states, we
can prepare ! by operations from Oideal and by tossing a coin
with suitable weights. Thus we can rephrase the Gottesman-
Knill theorem in the following way.
Theorem 1. Suppose the polarization vector !!x ,!y ,!z" of

the state ! belongs to the convex hull of !±1, 0, 0", !0, ±1, 0",
!0, 0, ±1". Then any adaptive computation in the basis O can
be efficiently simulated on a classical probabilistic computer.
This observation leads naturally to the following question:

is it true that UQC can be efficiently simulated whenever !
lies in the exterior of the octahedron O? In an attempt to
provide at least a partial answer, we prove the universality
for a large set of states. Specifically, we construct two par-
ticular schemes of UQC simulation based on a method which
we call magic states distillation. Let us start by defining the
magic states.
Definition 1. Consider pure states #H$ , #T$!C2 such that

#T$'T# =
1
2(I + 1

)3 !#x + #y + #z"* ,
and

#H$'H# =
1
2(I + 1

)2 !#x + #z"* .
The images of #T$ and #H$ under the action of one-qubit
Clifford operators are called magic states of T type and H
type, respectively.

%This notation is chosen since #H$ and #T$ are eigenvectors
of certain Clifford group operators: the Hadamard gate H and
the operator usually denoted T, see Eq. !7".& Denote the one-
qubit Clifford group by C1. Overall, there are 8 magic states
of T type, +U#T$ ,U!C1, !up to a phase" and 12 states of H
type, +U#H$ ,U!C1,, see Fig. 1. Clearly, the polarization vec-
tors of magic states are in one-to-one correspondence with
rotational symmetry axes of the octahedron O !H-type states
correspond to 180° rotations and T-type states correspond to
120° rotations". The role of magic states in our construction
is twofold. First, adaptive computation in the basis Oideal
together with the preparation of magic states !of either type"
allows one to simulate UQC !see Sec. III". Second, by adap-

FIG. 1. Left: the Bloch sphere and the octahedron O. Right: the
octahedron O projected on the x−y plane. The magic states corre-
spond to the intersections of the symmetry axes of O with the Bloch
sphere. The empty and filled circles represent T-type and H-type
magic states, respectively.
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tive computation in the basis Oideal one can “purify” imper-
fect magic states. It is a rather surprising coincidence that
one and the same state can comprise both of these properties,
and that is the reason why we call them magic states.
More exactly, a magic state distillation procedure yields

one copy of a magic state !with any desired fidelity" from
several copies of the state !, provided that the initial fidelity
between ! and the magic state to be distilled is large enough.
In the course of distillation, we use only operations from the
set Oideal. By constructing two particular distillation
schemes, for T-type and H-type magic states, respectively,
we prove the following theorems.
Theorem 2. Let FT!!" be the maximum fidelity between !

and a T-type magic state, i.e.,

FT!!" = max
U!C1

)'T#U†!U#T$ .

Adaptive computation in the basis O=Oideal! +!, allows one
to simulate universal quantum computation whenever

FT!!" % FT = (12-1 +)3
7
.*1/2 / 0.910.

Theorem 3. Let FH!!" be the maximum fidelity between !
and an H-type magic state,

FH!!" = max
U!C1

)'H#U†!U#H$ .

Adaptive computation in the basis O=Oideal! +!, allows one
to simulate universal quantum computation whenever

FH!!" % FH / 0.927.

The quantities FT and FH have the meaning of threshold
fidelity since our distillation schemes increase the polariza-
tion of !, converging to a magic state as long as the inequali-
ties FT!!"%FT or FH!!"%FH are fulfilled. If they are not
fulfilled, the process converges to the maximally mixed state.
The conditions stated in the theorems can also be understood
in terms of the polarization vector !!x ,!y ,!z". Indeed, let us
associate a “magic direction” with each of the magic states.
Then Theorems 2 and 3 say that the distillation is possible if
there is a T direction such that the projection of the vector
!!x ,!y ,!z" onto that T direction exceeds the threshold value
of 2FT

2−1/0.655, or if the projection on some of the H
directions is greater than 2FH

2 −1/0.718.
Let us remark that, although the proposed distillation

schemes are probably not optimal, the threshold fidelities FT
and FH cannot be improved significantly. Indeed, it is easy to
check that the octahedron O corresponding to probabilistic
mixtures of stabilizer states can be defined as

O = +!:FT!!" $ FT
*, ,

where

FT
* = (12-1 +)1

3
.*1/2 / 0.888.

It means that FT
* is a lower bound on the threshold fidelity FT

for any protocol distilling T-type magic states. Thus any po-
tential improvement to Theorem 2 may only decrease FT

from 0.910 down to FT
* =0.888. From a practical perspective,

the difference between these two numbers is not important.
On the other hand, such an improvement would be of

great theoretical interest. Indeed, if Theorem 2 with FT re-
placed by FT

* is true, it would imply that the Gottesman-Knill
theorem provides necessary and sufficient conditions for the
classical simulation, and that a transition from classical to
universal quantum behavior occurs at the boundary of the
octahedron O. This kind of transition has been discussed in
context of a general error model %21&. Our model is simpler,
which gives hope for sharper results.
By the same argument, one can show that the quantity

FH
* =
def
max
!!O

)'H#!#H$ = (12-1 +)1
2
.*1/2 / 0.924

is a lower bound on the threshold fidelity FH for any protocol
distilling H-type magic states.
A similar approach to UQC simulation was suggested in

Ref. %22&, where Clifford group operations were used to dis-
till the entangled three-qubit state #000$+ #001$+ #010$
+ #100$, which is necessary for the realization of the Toffoli
gate.
The rest of the paper is organized as follows. Section II

contains some well-known facts about the Clifford group and
stabilizer formalism, which will be used throughout the pa-
per. In Sec. III we prove that magic states together with
operations from Oideal are sufficient for UQC. In Sec. IV
ideal magic are substituted by faulty ones and the error rate
that our simulation algorithm can tolerate is estimated. In
Sec. V we describe a distillation protocol for T-type magic
states. This protocol is based on the well-known five-qubit
quantum code. In Sec. VI a distillation protocol for H-type
magic states is constructed. It is based on a certain CSS
stabilizer code that encodes one qubit into 15 and admits a
nontrivial automorphism %23&. Specifically, the bitwise appli-
cation of a certain non-Clifford unitary operator preserves the
code subspace and effects the same operator on the encoded
qubit. We conclude with a brief summary and a discussion of
open problems.

II. CLIFFORD GROUP, STABILIZERS, AND SYNDROME
MEASUREMENTS

Let Cn denote the n-qubit Clifford group. Recall that it is a
finite subgroup of U!2n" generated by the Hadamard gate H
!applied to any qubit", the phase-shift gate K !applied to any
qubit", and the controlled-not gate &!#x" !which may be ap-
plied to any pair qubits",

H =
1
)2-1 1

1 − 1 ., K = -1 0
0 i ., &!#x" = - I 0

0 #x . .
!1"

The Pauli operators #x ,#y ,#z belong to C1, for instance, #z

=K2 and #x=HK2H. The Pauli group P!n""Cn is generated
by the Pauli operators acting on n qubits. It is known %24&
that the Clifford group Cn augmented by scalar unitary op-
erators ei'I coincides with the normalizer of P!n" in the uni-

UNIVERSAL QUANTUM COMPUTATION WITH IDEAL… PHYSICAL REVIEW A 71, 022316 !2005"

022316-3



tary group U!2n". Hermitian elements of the Pauli group are
of particular importance for quantum error correction theory;
they are referred to as stabilizers. These are operators of the
form

±#(1 ! ¯ ! #(n, ( j ! +0,x,y,z, ,

where #0= I. Let us denote by S!n" the set of all n-qubit
stabilizers:

S!n" = +S ! P!n" : S† = S, .

For any two stabilizers S1 ,S2 we have S1S2= ±S2S1 and S1
2

=S2
2= I. It is known that for any set of pairwise commuting

stabilizers S1 ,… ,Sk!S!n" there exists a unitary operator V
!Cn such that

VSjV† = #z%j&, j = 1,…,k ,

where #z%j& denotes the operator #z applied to the jth qubit,
e.g., #z%1&=#z ! I! ¯ ! I.
These properties of the Clifford group allow us to intro-

duce a very useful computational procedure which can be
realized by operations from Oideal. Specifically, we can per-
form a joint nondestructive eigenvalue measurement for any
set of pairwise commuting stabilizers S1 ,… ,Sk!S!n". The
outcome of such a measurement is a sequence of eigenvalues
)= !)1 ,… ,)k", ) j= ±1, which is usually called a syndrome.
For any given outcome, the quantum state is acted upon by
the projector

*) =0
j=1

k 1
2

!I + ) jSj" .

Now, let us consider a computation that begins with an
arbitrary state and consists of operations from Oideal. It is
clear that we can defer all Clifford operations until the very
end if we replace the Pauli measurements by general syn-
drome measurements. Thus the most general transformation
that can be realized by Oideal is an adaptive syndrome mea-
surement, meaning that the choice of the stabilizer Sj to be
measured next depends on the previously measured values of
)1 ,… ,) j−1. In general, this dependence may involve coin
tossing. Without loss of generality one can assume that Sj
commutes with all previously measured stabilizers
S1 ,… ,Sj−1 !for all possible values of )1 ,… ,) j−1 and coin
tossing outcomes". Adaptive syndrome measurement has
been used in Ref. %25& to distill entangled states of a bipartite
system by local operations.

III. UNIVERSAL QUANTUM COMPUTATION WITH
MAGIC STATES

In this section, we show that operations from Oideal are
sufficient for universal quantum computation if a supply of
ideal magic states is also available. First, consider a one-
qubit state

#A+$ = 2−1/2!#0$ + ei+#1$" !2"

and suppose that + is not a multiple of , /2. We now describe
a procedure that implements the phase shift gate

&!ei+" = -1 0
0 ei+ .

by consuming several copies of #A+$ and using only opera-
tions from Oideal.
Let #-$=a#0$+b#1$ be the unknown initial state which

should be acted on by &!ei+". Prepare the state #.0$= #-$
! #A+$ and measure the stabilizer S1=#z ! #z. Note that both
outcomes of this measurement appear with probability 1 /2.
If the outcome is “+1”, we are left with the state

#.1
+$ = !a#0,0$ + bei+#1,1$" .

In the case of “−1” outcome, the resulting state is

#.1
−$ = !aei+#0,1$ + b#1,0$" .

Let us apply the gate &!#x"%1,2& !the first qubit is the control
one". The above two states are mapped to

#.2
+$ = &!#x"%1,2&#.1

+$ = !a#0$ + bei+#1$" ! #0$ ,

#.2
−$ = &!#x"%1,2&#.1

−$ = !aei+#0$ + b#1$" ! #1$ .

Now the second qubit can be discarded, and we are left with
the state a#0$+be±i+#1$, depending upon the measured eigen-
value. Thus the net effect of this circuit is the application of
a unitary operator that is chosen randomly between &!ei+"
and &!e−i+" !and we know which of the two possibilities has
occurred".
Applying the circuit repeatedly, we effect the transforma-

tions &!eip1+", &!eip2+",… for some integers p1 ,p2,… which
obey the random-walk statistics. It is well known that such a
random walk visits each integer with the probability 1. It
means that sooner or later we will get pk=1 and thus realize
the desired operator &!ei+". The probability that we will need
more than N steps to succeed can be estimated as cN−1/2 for
some constant c%0. Note also that if + is a rational multiple
of 2,, we actually have a random walk on a cyclic group Zq.
In this case, the probability that we will need more than N
steps decreases exponentially with N.
The magic state #H$ can be explicitly written in the stan-

dard basis as

#H$ = cos-,

8 .#0$ + sin-,

8 .#1$ . !3"

Note that HK#H$=ei,/8#A−,/4$. So if we are able to prepare
the state #H$, we can realize the operator &!e−i,/4". It does
not belong to the Clifford group. Moreover, the subgroup of
U!2" generated by &!e−i,/4" and C1 is dense in U!2". 1 Thus
the operators from C1 and C2 together with &!e−i,/4" consti-
tute a universal basis for quantum computation.
The magic state #T$ can be explicitly written in the stan-

dard basis:

1Recall that the action of the Clifford group C1 on the set of
operators ±#x, ±#y, ±#z coincides with the action of rotational sym-
metry group of a cube on the set of unit vectors ±ex, ±ey, ±ez,
respectively.
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#T$ = cos /#0$ + ei!,/4"sin /#1$, cos!2/" =
1
)3 . !4"

Let us prepare an initial state #.0$= #T$ ! #T$ and measure the
stabilizer S1=#z ! #z. The outcome +1 appears with prob-
ability p+=cos4/+sin4/=2/3. If the outcome is −1, we dis-
card the reduced state and try again, using a fresh pair of
magic states. !On average, we need three copies of the #T$
state to get the outcome +1." The reduced state correspond-
ing to the outcome +1 is

#.1$ = cos 0#0,0$ + i sin 0#1,1$, 0 =
,

12
.

Let us apply the gate &!#x"%1,2& and discard the second
qubit. We arrive at the state

#.2$ = cos 0#0$ + i sin 0#1$ .

Next apply the Hadamard gate H:

#.3$ = H#.2$ = 2−1/2ei0!#0$ + e−2i0#1$" = #A−,/6$ .

We can use this state as described above to realize the op-
erator &!e−i,/6". It is easy to check that Clifford operators
together with &!e−i,/6" constitute a universal set of unitary
gates.
Thus we have proved that the sets of operations

Oideal! +#H$, and Oideal! +#T$, are sufficient for universal
quantum computation.

IV. ERROR ANALYSIS

To establish a connection between the simulation algo-
rithms described in Sec. III and the universality theorems
stated in the introduction we have to substitute ideal magic
states by faulty ones. Before doing that let us discuss the
ideal case in more detail. Suppose that a quantum circuit to
be simulated uses a gate basis in which the only non-Clifford
gate is the phase shift &!e−i,/4" or &!e−i,/6". One can apply
the algorithm of Sec. III to simulate each non-Clifford gate
independently. To avoid fluctuations in the number of magic
states consumed at each round, let us set a limit of K magic
states per round, where K is a parameter to be chosen later.
As was pointed out in Sec. III, the probability for some par-
ticular simulation round to “run out of budget” scales as
exp!−(K" for some constant (%0. If at least one simulation
round runs out of budget, we declare a failure and the whole
simulation must be aborted. Denote the total number of non-
Clifford gates in the circuit by L. The probability pa for the
whole simulation to be aborted can be estimated as

pa 1 1 − %1 − exp!− (K"&L 1 L exp!− (K" 1 1,

provided that L exp!−(K"11. We will assume

K 2 (−1ln L ,

so the abort probability can be neglected.
Each time the algorithm requests an ideal magic state, it

actually receives a slightly nonideal one. Such nearly perfect
magic states must be prepared using the distillation methods

described in Secs. V and VI. Let us estimate an affordable
error rate 3out for distilled magic states. Since there are L
non-Clifford gates in the circuit, one can tolerate an error
rate of the order 1 /L in implementation of these gates.2 Each
non-Clifford gate requires K1 ln L magic states. Thus the
whole simulation is reliable enough if one chooses

3out 1 1/!L ln L" . !5"

What are the resources needed to distill one copy of a
magic state with the error rate 3out? To be more specific, let
us talk about H-type states. It will be shown in Sec. VI that
the number n of raw !undistilled" ancillas needed to distill
one copy of the #H$ magic state with an error rate not ex-
ceeding 3out scales as

n 1 %ln!1/3out"&0, 0 = log315/ 2.5,

see Eq. !39". Taking 3out from Eq. !5", one gets

n 1 !ln L"0.

Since the whole simulation requires KL1L ln L copies of
the distilled #H$ state, we need

N 1 L!ln L"0+1

raw ancillas overall.
Summarizing, the simulation theorems stated in the intro-

duction follow from the following results !the last one will
be proved later":

!i" the circuits described in Sec. III allow one to simulate
UQC with the sets of operations Oideal! +#H$, and
Oideal! +#T$,;

!ii" these circuits work reliably enough if the states #H$
and #T$ are slightly noisy, provided that the error rate does
not exceed 3out11/ !L ln L";

!iii" a magic state having an error rate 3out can be pre-
pared from copies of the raw ancillary state ! using the dis-
tillation schemes provided that FT!!"%FT or FH!!"%FH.
The distillation requires resources that are polynomial in
ln L.

V. DISTILLATION OF T-TYPE MAGIC STATES

Suppose we are given n copies of a state !, and our goal
is to distill one copy of the magic state #T$. The polarization
vector of ! can be brought into the positive octant of the
Bloch space by a Clifford group operator, so we can assume
that

!x,!y,!z 4 0.

In this case, the fidelity between ! and #T$ is the largest one
among all T-type magic states, i.e.,

FT!!" = )'T#!#T$ .

A related quantity,

2This fault tolerance does not require any redundancy in the
implementation of the circuit !e.g., the use of concatenated codes".
It is achived automatically because in the worst case the error prob-
ability accumulates linearly in the number of gates. In our model
only non-Clifford gates are faulty.
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3 = 1 − 'T#!#T$ =
1
2(1 − 1

)3 !!x + !y + !z"* ,
will be called the initial error probability. By definition, 0
$3$1/2.
The output of the distillation algorithm will be some one-

qubit mixed state !out. To quantify the proximity between !out
and #T$, let us define a final error probability:

3out = 1 − 'T#!out#T$ .

It will be certain function of n and 3. The asymptotic behav-
ior of this function for n→5 reveals the existence of a
threshold error probability,

30 =
1
2
-1 −)3

7
. / 0.173,

such that for 3630 the function 3out!n ,3" converges to zero.
We will see that for small 3,

3out!n,3" 1 !53"n
7
, 7 = 1/log2 30/ 0.2. !6"

On the other hand, if 3%30, the output state converges to the
maximally mixed state, i.e., limn→53out!n ,3"=1/2.
Before coming to a detailed description of the distillation

algorithm, let us outline the basic ideas involved in its con-
struction. The algorithm recursively iterates an elementary
distillation subroutine that transforms five copies of an im-
perfect magic state into one copy having a smaller error
probability. This elementary subroutine involves a syndrome
measurement for certain commuting stabilizers S1 ,S2 ,S3 ,S4
!S!5". If the measured syndrome !)1 ,)2 ,)3 ,)4" is non-
trivial !) j=−1 for some j", the distillation attempt fails and
the reduced state is discarded. If the measured syndrome is
trivial !) j=1 for all j", the distillation attempt is successful.
Applying a decoding transformation !a certain Clifford op-
erator" to the reduced state, we transform it to a single-qubit
state. This qubit is the output of the subroutine.
Our construction is similar to concatenated codes used in

many fault-tolerant quantum computation techniques, but it
differs from them in two respects. First, we do not need to
correct errors—it suffices only to detect them. Once an error
has been detected, we simply discard the reduced state, since
it does not contain any valuable information. This allows us
to achieve higher threshold error probability. Second, we do
not use quantum codes in the way for which they were origi-
nally designed: in our scheme, the syndrome is measured on
a product state.
The state #T$ is an eigenstate for the unitary operator

T = ei,/4KH =
ei,/4

)2 -1 1
i − i . ! C1. !7"

Note that T acts on the Pauli operators as follows:3

T#xT† = #z, T#zT† = #y, T#yT† = #x. !8"

We will denote its eigenstates by #T0$ and #T1$, so that

T#T0$ = e+i,/3#T0$, T#T1$ = e−i,/3#T1$ ,

#T0,1$'T0,1# =
1
2(I ± 1

)3 !#x + #y + #z"* .
Note that #T0$ =

def
#T$ and #T1$=#yH#T0$ are T-type magic

states.
Let us apply a dephasing transformation,

D!8" =
1
3

!8 + T8T† + T†8T" , !9"

to each copy of the state !. The transformation D can be
realized by applying one of the operators I ,T ,T−1 chosen
with probability 1 /3 each. Since

D!#T0$'T1#" = D!#T1$'T0#" = 0,

we have

D!!" = !1 − 3"#T0$'T0# + 3#T1$'T1# . !10"

We will assume that the dephasing transformation is applied
at the very first step of the distillation, so ! has the form !10".
Thus the initial state for the elementary distillation subrou-
tine is

!in = !!5 = 2
x!+0,1,5

3#x#!1 − 3"5−#x##Tx$'Tx# , !11"

where x= !x1 ,… ,x5" is a binary string, #x# is the number of
1’s in x, and

#Tx$=
def

#Tx1$ ! ¯ ! #Tx5$ .

The stabilizers S1 ,… ,S4 to be measured on the state !in
correspond to the famous five-qubit code, see Refs. %26,27&.
They are defined as follows:

S1 = #x
! #z

! #z
! #x

! I ,

S2 = I ! #x
! #z

! #z
! #x,

S3 = #x
! I ! #x

! #z
! #z,

S4 = #z
! #x

! I ! #x
! #z. !12"

This code has a cyclic symmetry, which becomes explicit if
we introduce an auxiliary stabilizer, S5=S1S2S3S4=#z ! #z

! #x ! I! #x. Let L be the two-dimensional code subspace
specified by the conditions Sj#.$= #.$, j=1,…, 4, and * be
the orthogonal projector onto L:

* =
1
160j=1

4

!I + Sj" . !13"

It was pointed out in Ref. %16& that the operators

X̂ = !#x"!5, Ŷ = !#y"!5, Ẑ = !#z"!5,

and
3The operator denoted by T in Ref. %16& does not coincide with
our T. They are related by the substitution T→e−i,/4T† though.
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T̂ = !T"!5 !14"

commute with *, thus preserving the code subspace. More-
over, X̂ , Ŷ , Ẑ obey the same algebraic relations as one-qubit
Pauli operators, e.g., X̂Ŷ= iẐ. Let us choose a basis in L such
that X̂ , Ŷ, and Ẑ become logical Pauli operators #x ,#y, and
#z, respectively. How does the operator T̂ act in this basis?
From Eq. !8" we immediately get

T̂X̂T̂† = Ẑ, T̂ẐT̂† = Ŷ, T̂ŶT̂† = X̂ .

Therefore T̂ coincides with the logical operator T up to an
overall phase factor. This factor is fixed by the condition that
the logical T has eigenvalues e±i!,/3".
Let us find the eigenvectors of T̂ that belong to L. Con-

sider two particular states from L, namely

#T1
L$ = )6*#T00000$, and #T0

L$ = )6*#T11111$ .

In the Appendix we show that

'T00000#*#T00000$ = 'T11111#*#T11111$ =
1
6
, !15"

so that the states #T0
L$ and #T1

L$ are normalized. Taking into
account that %T̂ ,*&=0 and that

T̂#Tx$ = ei!,/3"!5−2#x#"#Tx$ for all x ! +0,1,5, !16"

we get

T̂#T1
L$ = )6T̂*#T00000$ = )6*T̂#T00000$ = e−i,/3#T1

L$ .

Analogously, one can check that

T̂#T0
L$ = e+i,/3#T0

L$ .

It follows that T̂ is exactly the logical operator T, including
the overall phase, and #T0

L$ and #T1
L$ are the logical states #T0$

and #T1$ !up to some phase factors, which are not important
for us". Therefore we have

#T0,1
L $'T0,1

L # =*
1
2(I ± 1

)3 !X̂ + Ŷ + Ẑ"* . !17"

Now we are in a position to describe the syndrome mea-
surement performed on the state !in. The unnormalized re-
duced state corresponding to the trivial syndrome is as fol-
lows:

!s =*!in* = 2
x!+0,1,5

3#x#!1 − 3"5−#x#*#Tx$'Tx#* , !18"

see Eq. !11". The probability for the trivial syndrome to be
observed is

ps = Tr !s.

Note that the state *#Tx$ is an eigenvector of T̂ for any x
! +0,1,5. But we know that the restriction of T̂ on L has
eigenvalues e±i,/3. At the same time, Eq. !16" implies that

T̂*#Tx$ = −*#Tx$

whenever #x#=1 or #x#=4. This eigenvalue equation is not a
contradiction only if

*#Tx$ = 0 for #x# = 1,4.

This equality can be interpreted as an error correction prop-
erty. Indeed, the initial state !in is a mixture of the desired
state #T00000$ and unwanted states #Tx$ with #x#%0. We can
interpret the number of “1” components in x as a number of
errors. Once the trivial syndrome has been measured, we can
be sure that either no errors or at least two errors have oc-
curred. Such error correction, however, is not directly related
to the minimal distance of the code.
It follows from Eq. !16" that for #x#=2, 3 one has

T̂*#Tx$=e±i,/3*#Tx$, so that *#Tx$ must be proportional to
one of the states #T0

L$, #T1
L$. Our observations can be summa-

rized as follows:

*#Tx$ =3
6−1/2#T1

L$ , if #x# = 0,
0, if #x# = 1,
ax#T0

L$ , if #x# = 2,
bx#T1

L$ , if #x# = 3,
0, if #x# = 4,
6−1/2#T0

L$ , if #x# = 5.
4 !19"

Here the coefficients ax ,bx depend upon x in some way. The
output state !18" can now be written as

!s = (1635 + 32!1 − 3"3 2
x:#x#=2

#ax#2*#T0
L$'T0

L#

+ (16 !1 − 3"5 + 33!1 − 3"2 2
x:#x#=3

#bx#2*#T1
L$'T1

L# . !20"

To exclude the unknown coefficients ax and bx, we can use
the identity

#T0
L$'T0

L# + #T1
L$'T1

L# =* = 2
x!+0,1,5

*#Tx$'Tx#* .

Substituting Eq. !19" into this identity, we get

2
x:#x#=2

#ax#2 = 2
x:#x#=3

#bx#2 =
5
6
.

So the final expression for the output state !s is as follows:

!s = ( 35 + 532!1 − 3"3

6 *#T0
L$'T0

L# + ( !1 − 3"5 + 533!1 − 3"2

6 *
9#T1

L$'T1
L# . !21"

Accordingly, the probability to observe the trivial syndrome
is

ps =
35 + 532!1 − 3"3 + 533!1 − 3"2 + !1 − 3"5

6
. !22"

A decoding transformaion for the five-qubit code is a uni-
tary operator V!C5 such that
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VL = C2 ! #0,0,0,0$ .

In other words, V maps the stabilizers Sj, j=2, 3, 4, 5 to
#z%j&. The logical operators X̂ , Ŷ , Ẑ are mapped to the Pauli
operators #x ,#y ,#z acting on the first qubit. From Eq. !17"
we infer that

V#T0,1
L $ = #T0,1$ ! #0,0,0,0$

!maybe up to some phase". The decoding should be followed
by an additional operator A=#yH!C1, which swaps the
states #T0$ and #T1$ !note that for small 3 the state !s is close
to #T1

L$, while our goal is to distill #T0$". After that we get a
normalized output state

!out = !1 − 3out"#T0$'T0# + 3out#T1$'T1# ,

where

3out =
t5 + 5t2

1 + 5t2 + 5t3 + t5
, t =

3

1 − 3
. !23"

The plot of the function 3out!3" is shown on Fig. 2. It
indicates that the equation 3out!3"=3 has only one nontrivial
solution, 3=30/0.173. The exact value is

30 =
1
2
-1 −)3

7
. .

If 3630, we can recursively iterate the elementary distilla-
tion subroutine to produce as good an approximation to the

state #T0$ as we wish. On the other hand, if 3%30, the distil-
lation subroutine increases the error probability and itera-
tions converge to the maximally mixed state. Thus 30 is a
threshold error probability for our scheme. The correspond-
ing threshold polarization is 1−230=)3/7/0.655. For a suf-
ficiently small 3, one can use the approximation 3out!3"
/532.
The probability ps=ps!3" to measure the trivial syndrome

decreases monotonically from 1/6 for 3=0 to 1/16 for 3
=1/2, see Fig. 2. In the asymptotic regime where 3 is small,
we can use the approximation ps/ps!0"=1/6.
Now the construction of the whole distillation scheme is

straightforward. We start from n:1 copies of the state !
= !1−3"#T0$'T0#+3#T1$'T1#. Let us split these states into
groups containing five states each and apply the elementary
distillation subroutine described above to each group inde-
pendently. In some of these groups the distillation attempt
fails, and the outputs of such groups must be discarded. The
average number of “successful” groups is obviously ps!3"
9!n /5"/n /30 if 3 is small. Neglecting the fluctuations of
this quantity, we can say that our scheme provides a constant
yield r=1/30 of output states that are characterized by the
error probability 3out!3"/532. Therefore we can obtain r2n
states with 3out/5334, r3n states with 3out/5738, and so on.
We have created a hierarchy of states with n states on the
first level and four or fewer states on the last level. Let k be
the number of levels in this hierarchy and 3out the error prob-
ability characterizing the states on the last level. Up to small
fluctuations, the numbers n ,k ,3out, and 3 are related by the
following obvious equations:

3out /
1
5 !53"2

k
, rkn / 1. !24"

Their solution yields Eq. !6".

VI. DISTILLATION OF H-TYPE MAGIC STATES

A distillation scheme for H-type magic states also works
by recursive iteration of a certain elementary distillation sub-
routine based on a syndrome measurement for a suitable sta-
bilizer code. Let us start with introducing some relevant cod-
ing theory constructions, which reveal an unusual symmetry
of this code and explain why it is particularly useful for
H-type magic states distillation.
Let F2

n be the n-dimensional binary linear space and A be
a one-qubit operator such that A2= I. With any binary vector
u= !u1 ,… ,un"!F2

n we associate the n-qubit operator

A!u" = Au1 ! Au2 ! ¯ ! Aun.

Let !u ,v"=2i=1
n uivi mod 2 denote the standard binary inner

product. If L#F2
n is a linear subspace, we denote by L" the

set of vectors which are orthogonal to L. The Hamming
weight of a binary vector u is denoted by #u#. Finally, u ·v
!F2

n designates the bitwise product of u and v, i.e., !u ·v"i
=uivi.
A systematic way of constructing stabilizer codes was

suggested by Calderbank, Shor, and Steane, see Refs.
%28,29&. Codes that can be described in this way will be
referred to as standard CSS codes. In addition, we consider

FIG. 2. The final error probability 3out and the probability ps to
measure the trivial syndrome as functions of the initial error prob-
ability 3 for the T-type states distillation.
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their images under an arbitrary unitary transformation V
!U!2" applied to every qubit. Such “rotated” codes will be
called CSS codes.
Definition 2. Consider a pair of one-qubit Hermitian op-

erators A ,B such that

A2 = B2 = I, AB = − BA ,

and a pair of binary vector spaces LA ,LB#F2
n, such that

!u,v" = 0 for all u ! LA,v ! LB.

A quantum code CSS!A ,LA ;B ,LB" is a decomposition

!C2"!n = #
;!LA

*

#
8!LB

*

H!;,8" , !25"

where the subspace H!; ,8" is defined by the conditions

A!u"#.$ = !− 1";!u"#.$, B!v"#.$ = !− 1"8!v"#.$

for all u!LA and v!LB. The linear functionals ; and 8 are
referred to as A syndrome and B syndrome, respectively. The
subspace H!0,0" corresponding to the trivial syndromes ;
=8=0 is called the code subspace.
The subspaces H!; ,8" are well defined since the opera-

tors A!u" and B!v" commute for any u!LA and v!LB:

A!u"B!v" = !− 1"!u,v"B!v"A!u" = B!v"A!u" .

The number of logical qubits in a CSS code is

k = log2%dimH!0,0"& = n − dim LA − dim LB.

Logical operators preserving the subspaces H!; ,8" can be
chosen as

+A!u" : u ! LB
"/LA, and +B!v" : v ! LA

"/LB, .

!By definition, LA#LB
" and LB#LA

", so the factor spaces
are well defined." In the case where A and B are Pauli op-
erators, we get a standard CSS code. Generally, A=V#zV†
and B=V#xV† for some unitary operator V!SU!2", so an
arbitrary CSS code can be mapped to a standard one by a
suitable bitwise rotation. By a syndrome measurement for a
CSS code we mean a projective measurement associated
with the decomposition !25".
Consider a CSS code such that some of the operators

A!u", B!v" do not belong to the Pauli group P!n". Let us pose
this question: can one perform a syndrome measurement for
this code by operations from Oideal only? It may seem that
the answer is no, because by definition of Oideal one cannot
measure an eigenvalue of an operator unless it belongs to the
Pauli group. Surprisingly, this naive answer is wrong. In-
deed, imagine that we have measured part of the operators
A!u", B!v" !namely, those that belong to the Pauli group".
Now we may restrict the remaining operators to the subspace
corresponding to the obtained measurement outcomes. It
may happen that the restriction of some unmeasured operator
A!u", which does not belong to the Pauli group, coincides
with the restriction of some other operator Ã!ũ"!P!n". If
this is the case, we can safely measure Ã!ũ" instead of A!u".
The 15-qubit code that we use for the distillation is actually
the simplest !to our knowledge" CSS code exhibiting this

strange behavior. We now come to an explicit description of
this code.
Consider a function f of four Boolean variables. Denote

by %f&!F2
15 the table of all values of f except f!0000". The

table is considered as a binary vector, i.e.,

%f& = „f!0001", f!0010", f!0011",…, f!1111"… .
Let L1 be the set of all vectors %f&, where f is a linear func-
tion satisfying f!0"=0. In other words, L1 is the linear sub-
space spanned by the four vectors %xj&, j=1, 2, 3, 4 !where xj
is an indicator function for the jth input bit":

L1 = linear span!%x1&,%x2&,%x3&,%x4&" .

Let also L2 be the set of all vectors %f&, where f is a poly-
nomial of degree at most 2 satisfying f!0"=0. In other words,
L2 is the linear subspace spanned by the four vectors %xj& and
the six vectors %xixj&:

L2 = linear span!%x1&,%x2&,%x3&,%x4&,%x1x2&,%x1x3&,

%x1x4&,%x2x3&,%x2x4&,%x3x4&" . !26"

The definition of L1 and L2 resembles the definition of punc-
tured Reed-Muller codes of order 1 and 2, respectively, see
Ref. %30&. Note also that L1 is the dual space for the 15-bit
Hamming code. The relevant properties of the subspaces L j
are stated in the following lemma.
Lemma 1.
!1" For any u!L1 one has #u#50!mod 8".
!2" For any v!L2 one has #v#50!mod 2".
!3" Let %1& be the unit vector !1, 1,…, 1, 1". Then L1

"

=L2# %1& and L2
"=L1# %1&.

!4" For any vectors u ,v!L1 one has #u ·v#50!mod 4".
!5" For any vectors u!L1 and v!L2

" one has #u ·v#
50!mod 4".
Proof.
!1" Any linear function f on F2

4 satisfying f!0"=0 takes
value 1 exactly eight times !if f!0" or zero times !if f =0".

!2" All basis vectors of L2 have weight equal to 8 !the
vectors %xi&" or 4 !the vectors %xixj&". By linearity, all ele-
ments of L2 have even weight.

!3" One can easily check that all basis vectors of L1 are
orthogonal to all basis vectors of L2, therefore L1#L2

",
L2#L1

". Besides, we have already proved that %1&!L1
" and

%1&!L2
". Now the statement follows from dimension count-

ing, since dim L1=4 and dim L2=10.
!4" Without loss of generality we may assume that u!0

and v!0. If u=v, the statement has been already proved, see
property 1. If u!v, then u= %f&, v= %g& for some linearly
independent linear functions f and g. We can introduce new
coordinates !y1 ,y2 ,y3 ,y4" on F2

4 such that y1= f!x" and y2
=g!x". Now #u ·v#= #%y1y2&#=4.

!5" Let u!L1 and v!L2
". Since L2

"=L1# %1&, there are
two possibilities: v!L1 and v= %1&+w for some w!L1. The
first case has been already considered. In the second case we
have
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#u · v# =2
j=1

15

uj!1 − wj" = #u# − #u · w# .

It follows from properties 1 and 4 that #u ·v#50!mod 4". $
Now consider the one-qubit Hermitian operator

A =
1
)2 !#x + #y" = - 0 e−i!,/4"

e+i!,/4" 0 . = e−1!,/4"K#x,

where K is the phase shift gate, see Eq. !1". By definition, A
belongs to the Clifford group C1. One can easily check that
A2= I and A#z=−#zA, so the code CSS!#z ,L2 ;A ,L1" is well
defined. We claim that its code subspace coincides with the
code subspace of a certain stabilizer code.
Lemma 2. Consider the decomposition

!C2"!15 = #
;!L2

*

#
8!L1

*

H!;,8" ,

associated with the code CSS!#z ,L2 ;A ,L1" and the decom-
position

!C2"!15 = #
;!L2

*

#
8!L1

*

G!;,8" ,

associated with the stabilizer code CSS!#z ,L2 ;#x ,L1". For
any syndrome 8!L1

* one has

H!0,8" = G!0,8" .

Moreover, for any ;!L2
* there exists some w!F2

15 such that
for any 8!L1

*

H!;,8" = A!w"G!0,8" . !27"

This Lemma provides a strategy to measure a syndrome
of the code CSS!#z ,L2 ;A ,L1" by operations from Oideal.
Specifically, we measure ; !i.e., the #z part of the syndrome"
first, compute w=w!;", apply A!w"†, measure 8 using the
stabilizers #x!%xj&", and apply A!w".
Proof of the lemma. Consider an auxiliary subspace,

H = #
8!L1

*

H!0,8" = #
8!L1

*

G!0,8" ,

corresponding to the trivial #z syndrome for both CSS codes.
Each state #.$!H!0" can be represented as

#.$ = 2
v!L2

"

cv#v$ ,

where cv are some complex amplitudes and #v$
= #v1 ,… ,v15$ are vectors of the standard basis. Let us show
that

A!u"#.$ = #x!u"#.$ for any #.$ ! H, u ! L1.

To this end, we represent A as #xei,/4K†. For any u!L1 and
v!L2

" we have

A!u"#v$ = #x!u"ei!,/4"#u#−i!,/2"#u·v##v$ = #x!u"#v$ ,

because #u#50!mod 8" and #u ·v#50!mod 4" !see Lemma 1,
parts 1 and 5".

Since for any u!L1 the operators A!u" and #x!u" act on
H in the same way, their eigenspaces must coincide, i.e.,
H!0,8"=G!0,8" for any 8!L1

*.
Let us now consider the subspace H!; ,8" for arbitrary

;!L2
*, 8!L1

*. By definition, ; is a linear functional on
L2#F2

15; we can extend it to a linear functional on F2
15, i.e.,

represent it in the form ;!v"= !w ,v" for some w!F2
15. Then

for any #.$!H!; ,8", v!L2, and u!L1 we have

#z!v"A!w"†#.$ = !− 1"!w,v"A!w"†#z!v"#.$ = A!w"†#.$ ,

A!u"A!w"†#.$ = A!w"†A!u"#.$ = !− 1"8!v"A!w"†#.$

!as #z and A anticommute", hence A!w"†#.$!H!0,8". Thus

H!;,8" = A!w"H!0,8" = A!w"G!0,8" .

$
Lemma 2 is closely related to an interesting property of

the stabilizer code CSS!#z ,L2 ;#x ,L1", namely the existence
of a non-Clifford automorphism %23&. Consider a one-qubit
unitary operator W such that

W#zW† = #z and W#xW† = A .

It is defined up to an overall phase and obviously does not
belong to the Clifford group C1. However, the bitwise appli-
cation of W, i.e., the operator W!15, preserves the code sub-
space G!0,0". Indeed, W!15G!0,0" corresponds to the trivial
syndrome of the code

CSS!W#zW†,L2;W#xW†,L1" = CSS!#z,L2;A,L1" .

Thus W!15G!0,0"=H!0,0". But H!0,0"=G!0,0" due to the
lemma.
Now we are in a position to describe the distillation

scheme and to estimate its threshold and yield. Suppose we
are given 15 copies of the state !, and our goal is to distill
one copy of an H-type magic state. We will actually distill
the state,

#A0$ =
1
)2 !#0$ + ei4

,
#1$" = ei8

,
HK†#H$ .

Note that #A0$ is an eigenstate of the operator A; specifically,
A#A0$= #A0$. Let us also introduce the state

#A1$ = #z#A0$ ,

which satisfies A#A1$=−#A1$. Since the Clifford group C1 acts
transitively on the set of H-type magic states, we can assume
that the fidelity between ! and #A0$ is the maximum one
among all H-type magic states, so that
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FH!!" = )'A0#!#A0$ .

As in Sec. V we define the initial error probability

3 = 1 − %FH!!"&2 = 'A1#!#A1$ .

Applying the dephasing transformation

D!8" =
1
2

!8 + A8A†"

to each copy of !, we can guarantee that ! is diagonal in the
+A0 ,A1, basis, i.e.,

! = D!!" = !1 − 3"#A0$'A0# + 3#A1$'A1# .

Since A!C1, the dephasing transformation can be realized
by operations from Oideal. Thus our initial state is

!in = !!15 = 2
u!F2

15
3#u#!1 − 3"15−#u##Au$'Au# , !28"

where #Au$= #Au0$ ! ¯ ! #Au15$.
According to the remark following the formulation of

Lemma 2, we can measure the syndrome !; ,8" of the code
CSS!#z ,L2 ;A ,L1" by operations from Oideal only. Let us fol-
low this scheme, omitting the very last step. So, we begin
with the state !in, measure ;, compute w=w!;", apply
A!w"†, and measure 8. We consider the distillation attempt
successful if 8=0. The measured value of ; is not important
at this stage. In fact, for any ;!L2

* the unnormalized post-
measurement state is

!s =*A!w"†!inA!w"* =*!in* .

In this equation * is the projector onto the code subspace
H!0,0"=G!0,0", i.e., *=*z*A for

*z =
1

#L2#
2

v!L2
#z!v", *A =

1
#L1#

2
u!L1

A!u" . !29"

Let us compute the state !s=*!in*. Since

A!u"#Aw$ = !− 1"!u,w"#Aw$, #z!v"#Aw$ = #Aw+v$ ,

one can easily see that *A#Aw$= #Aw$ if w!L1
", otherwise

*A#Aw$=0. On the other hand, *z#Aw$ does not vanish and
depends only on the coset of L2 that contains w. There are
only two such cosets in L1

" !because L1
"=L2# %1&, see

Lemma 1", and the corresponding projected states are

#A0
L$ = )#L2#*z#A0¯0$ =

1
)#L2#

2
v!L2

#Av$ ,

#A1
L$ = )#L2#*z#A1¯1$ =

1
)#L2#

2
v!L2

#Av+%1&$ . !30"

The states #A0,1
L $ form an orthonormal basis of the code sub-

space. The projections of #Aw$ for w!L1
" onto the code sub-

space are given by these formulas:

*#Aw$ =
1

)#L2#
#A0

L$ if w ! L2,

*#Aw$ =
1

)#L2#
#A1

L$ if w ! L2 + %1& .

Now the unnormalized final state !s=*!in* can be ex-
panded as

!s
1

#L2#
2

v!L2
!1 − 3"15−#v#3#v##A0

L$'A0
L#

9+
1

#L2#
2

v!L2
315−#v#!1 − 3"#v##A1

L$'A1
L# .

The distillation succeeds with probability

ps = #L2#Tr !s = 2
v!L1

"

315−#v#!1 − 3"#v#.

!The factor #L2# reflects the number of possible values of ;,
which all give rise to the same state !s."
To complete the distillation procedure, we need to apply a

decoding transformation that would map the two-
dimensional subspace H!0,0"" !C2"!15 onto the Hilbert
space of one qubit. Recall that H!0,0"=G!0,0" is the code
subspace of the stabilizer code CSS!#z ,L2 ;#x ,L1". Its logi-
cal Pauli operators can be chosen as

X̂ = !#x"!15, Ŷ = !#y"!15, Ẑ = − !#z"!15.

It is easy to see that X̂ , Ŷ , Ẑ obey the correct algebraic rela-
tions and preserve the code subspace. The decoding can be
realized as a Clifford operator V!C15 that maps X̂ , Ŷ , Ẑ to
the Pauli operators #x ,#y ,#z acting on the first qubit. !The
remaining 14 qubits become unentangled with the first one,
so we can safely disregard them." Let us show that the logi-
cal state #A0

L$ is transformed into #A0$ !up to some phase". For
this, it suffices to check that 'A0

L#X̂#A0
L$= 'A0##x#A0$,

'A0
L#Ŷ#A0

L$= 'A0##y#A0$, and 'A0
L#Ẑ#A0

L$= 'A0##z#A0$. Verifying
these identities becomes a straightforward task if we repre-
sent #A0

L$ in the standard basis:

#A0
L$ = #L2#1/22−15/2 2

u!L2
"

ei!,/4"#u##u$

= 2−5/2 2
u!L1

!#u$ + e−i!,/4"#u + %1&$" .

To summarize, the distillation subroutine consists of the

following steps.
!1" Measure eigenvalues of the Pauli operators #z!%xj&",

#z!%xjxk&" !for j ,k=1,2,3,4". The outcomes determine the #z

syndrome, ;!L2
*.

!2" Find w=w!;"!F2
15 such that !w ,v"=;!v" for any v

!L2.
!3" Apply the correcting operator A!w"†.
!4" Measure eigenvalues of the operators #x!%xj&". The

outcomes determine the A syndrome, 8!L1
*.

!5" Declare failure if 8!0, otherwise proceed to the next
step.

!6" Apply the decoding transformation, which takes the

UNIVERSAL QUANTUM COMPUTATION WITH IDEAL… PHYSICAL REVIEW A 71, 022316 !2005"

022316-11



code subspace to the Hilbert space of one qubit.

The subroutine succeeds with probability

ps = 2
v!L1

"

315−#v#!1 − 3"#v#. !31"

In the case of success, it produces the normalized output
state

!out = !1 − 3out"#A0$'A0# + 3out#A1$'A1# !32"

characterized by the error probability

3out = ps
−1 2

v!L2
315−#v#!1 − 3"#v#. !33"

The sums in Eqs. !31" and !33" are special forms of so-
called weight enumerators. The weight enumerator of a sub-
space L#F2

n is a homogeneous polynomial of degree n in
two variables, namely

WL!x,y" = 2
u!L

xn−#u#y#u#.

In this notation,

ps =WL1
"!3,1 − 3", 3out =

WL2!3,1 − 3"

WL1
"!3,1 − 3"

.

The MacWilliams identity %30& relates the weight enumerator
of L to that of L":

WL!x,y" =
1

#L"#
WL"!x + y,x − y" .

Applying this identity and taking into account that L2
"=L1

# %1& and that #u#50!mod 2" for any u!L1 !see Lemma 1",
we get

ps =
1
16
WL1!1,1 − 23", 3out =

1
2-1 − WL1!1 − 23,1"

WL1!1,1 − 23". .
!34"

The weight enumerator of the subspace L1 is particularly
simple:

WL1!x,y" = x15 + 15x7y8.

Substituting this expression into Eq. !34", we arrive at the
following formulas:

ps =
1 + 15!1 − 23"8

16
, !35"

3out =
1 − 15!1 − 23"7 + 15!1 − 23"8 − !1 − 23"15

2%1 + 15!1 − 23"8&
. !36"

The function 3out!3" is plotted in Fig. 3. Solving the equation
3out!3"=3 numerically, we find the threshold error probabil-
ity:

30 / 0.141. !37"

Let us examine the asymptotic properties of this scheme.
For small 3 the distillation subroutine succeeds with prob-
ability close to 1, therefore the yield is close to 1/15. The
output error probability is

3out / 3533. !38"

Now suppose that the subroutine is applied recursively. From
n copies of the state ! with a given 3, we distill one copy of
the magic state #A0$ with the final error probability

3out!n,3" /
1

)35!)353"3
k
, 15k / n ,

where k is the number of recursion levels !here we neglect
the fluctuations in the number of successful distillation at-
tempts". Solving these equation, we obtain the relation

3out!n,3" 1 !)353"n
7
, 7 = 1/log315/ 0.4. !39"

It characterizes the efficiency of the distillation scheme.

VII. CONCLUSIONAND SOME OPEN PROBLEMS

We have studied a simplified model of fault-tolerant quan-
tum computation in which operations from the Clifford
group are realized exactly, whereas decoherence occurs only
during the preparation of nontrivial ancillary states. The
model is fully characterized by a one-qubit density matrix !
describing these states. It is shown that a good strategy for
simulating universal quantum computation in this model is
“magic states distillation.” By constructing two particular
distillation schemes we find a threshold polarization of !
above which the simulation is possible.
The most exciting open problem is to understand the com-

putational power of the model in the region of parameters
16 #!x#+ #!y#+ #!z#$3/)7 !which corresponds to FT

*6FT!!"
$FT, see Sec. I". In this region, the distillation scheme based
on the five-quit code does not work, while the Gottesman-
Knill theorem does not yet allow the classical simulation.
One possibility is that a transition from classical to universal
quantum behavior occurs on the octahedron boundary, #!x#
+ #!y#+ #!z#=1.

FIG. 3. The final error probability 3out!3" for the H-type states
distillation.
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To prove the existence of such a transition, one it suffices
to construct a T-type states distillation scheme having the
threshold fidelity FT

*. A systematic way of constructing such
schemes is to replace the five-qubit by a GF!4"-linear stabi-
lizer code. A nice property of these codes is that the bitwise
application of the operator T preserves the code subspace and
acts on the encoded qubit as T, see Ref. %31& for more details.
One can check that the error-correcting effect described in
Sec. V takes place for an arbitrary GF!4"-linear stabilizer
code, provided that the number of qubits is n=6k−1 for any
integer k. Unfortunately, numerical simulations we per-
formed for some codes with n=11 and n=17 indicate that
the threshold fidelity increases as the number of qubits in-
creases. So it may well be the case that the five-qubit code is
the best GF!4"-linear code as far as the distillation is con-
cerned.
From the experimental point of view, an exciting open

problem is to design a physical system in which reliable
storage of quantum information and its processing by Clif-
ford group operations is possible. Since our simulation
scheme tolerates strong decoherence on the ancilla prepara-
tion stage, such a system would be a good candidate for a
practical quantum computer.
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APPENDIX

The purpose of this section is to prove Eq. !15". Let us
introduce this notation:

#T̂0$ = #T00000$ and #T̂1$ = #T11111$ .

Consider the set S+!5""S!5" consisting of all possible tensor
products of the Pauli operators #x ,#y ,#z on five qubits

!clearly, #S+!5"#=45= #S!5"# /2 since elements of S!5" may
have a plus or minus sign". For each g!S+!5" let #g#
! %0,5& be the number of qubits on which g acts nontrivially
!e.g., ##x ! #x ! #y ! I! I#=3". We have

#T̂0$'T̂0# =
1
25 2

g!S+!5"
- 1)3.#g#

g .

Now let us expand the formula !13" for the projector *.
Denote by G"P!5" the Abelian group generated by the sta-
bilizers S1 ,S2 ,S3 ,S4. It consists of 16 elements. Repeatedly
conjugating the stabilizer S1 by the operator T̂=T!5, we get
three elements of G:

S1 = #x
! #z

! #z
! #x

! I ,

S1S3S4 = #z
! #y

! #y
! #z

! I ,

S3S4 = #y
! #x

! #x
! #y

! I .

Due to the cyclic symmetry mentioned in Sec. V, the 15
cyclic permutations of these elements also belong to G; to-
gether with the identity operator they exhaust the group G.
Thus G"S+!5", and we have

* =
1
16 2

h!G
h .

Taking into account that Tr!gh"=25"g,h for any g ,h!S+!5",
we get

'T̂0#*#T̂0$ =
1
29 2

h!G
2

g!S+!5"
3−#g#/2Tr!gh" =

1
16 2

g!G
3−#g#/2 =

1
6
.

Similar calculations show that 'T̂1#*#T̂1$=
1
6 .
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We study how much noise can be tolerated by a universal gate set before it loses its quantum-

computational power. Specifically we look at circuits with perfect stabilizer operations in addition to

imperfect nonstabilizer gates. We prove that for all unitary single-qubit gates there exists a tight

depolarizing noise threshold that determines whether the gate enables universal quantum computation

or if the gate can be simulated by a mixture of Clifford gates. This exact threshold is determined by the

Clifford polytope spanned by the 24 single-qubit Clifford gates. The result is in contrast to the situation

wherein nonstabilizer qubit states are used; the thresholds in that case are not currently known to be tight.

DOI: 10.1103/PhysRevLett.103.170504 PACS numbers: 03.67.Lx, 03.67.Pp

Introduction.—Away to study the resources needed for
universal quantum computation (UQC) is to analyze the
transition from a system that can provide UQC to one that
is classically efficiently simulable. A particularly useful
example of a classically simulable system is given by the
stabilizer operations, which are made by a combination of
preparation of j0i states, unitary Clifford gates, measure-
ments in the fj0i; j1ig basis, and classical control deter-
mined by the measurement outcomes. The Gottesman-
Knill theorem tells us that stabilizer operations can be
efficiently simulated classically (see, for example, [1],
Theorem 10.7), while it also known that the addition of
any other one-qubit gate outside the Clifford group will
enable the system to perform UQC. This fact provides us
with a framework for testing tolerance to noise—one can
examine how noisy this additional non-Clifford gate can be
before it becomes classically simulable itself. If the non-
Clifford operation has become a probabilistic combination
of Clifford gates due to the noise, then we know that we are
unequivocally in the classical computational regime. The
noise rate where the extra gate becomes simulable (where
it enters the ‘‘Clifford polytope’’ [2]) is thus an upper
bound for fault tolerance. If the converse is true—i.e., if
any operation outside the Clifford polytope enables UQC,
then the threshold is tight. In this Letter we show that for
single-qubit gates undergoing depolarizing such a tight
noise threshold does indeed apply. We will do so by
proving that any depolarized gate that lies outside the
Clifford polytope of single-qubit operations, in combina-
tion with noiseless stabilizing operations, allows for UQC.
This result should be contrasted to the situation for non-
stabilizer qubit states where the thresholds in that case are
not currently known to be tight. In fact, a recent result by
Campbell and Browne [3] states that achieving tight
thresholds for all nonstabilizer qubit states is impossible
if the number of copies of the resource state must be finite.

We will consistently assume that Clifford gates can be
implemented perfectly, motivated by the fact that these
gates can be implemented fault tolerantly by applying
them transversally and to encoded states [4–7]. The fault-
tolerant implementation of Clifford gates naturally carries
with it a threshold of its own, independent of the kind we
discuss in this Letter. The current model is particularly
relevant to the so-called Pfaffian quantum Hall state in
topological quantum computation [8,9], the two-qubit
Clifford group (but only the Clifford group) can be imple-
mented using braiding making these operations naturally
fault tolerant. The additional resource required to perform
UQC will likely be highly noisy, and so we can see the
parallels with our model.
We will begin by listing a couple of previously known

results in this area. Next, we will discuss the connection
between the geometry of the Clifford polytope and stabil-
izer measurements, and show that tightness of a magic-
state distillation procedure for single-qubit states automati-
cally ensures tight thresholds for non-Clifford gates under-
going any kind of unital noise. Finally, we show that
currently known magic-state distillation techniques are
sufficient to prove tight thresholds for a non-Clifford gate
undergoing depolarizing noise.
Previously known results.—The idea of using perfect

stabilizer operations in conjunction with imperfect non-
stabilizer states to perform UQC originates with Knill [7].
Shortly after, Bravyi and Kitaev [10] showed that most
nonstabilizer qubit states (when sufficiently many copies
are available) can be purified (‘‘distilled’’), using only
stabilizer operations, towards a pure nonstabilizer state (a
‘‘magic state’’). Since a universal gate set can be created
from perfect stabilizer operations and a supply of magic
states [10], we see that allowing access to a supply of
appropriate (possibly impure) nonstabilizer qubit ancillas
promotes the power of stabilizer operations from classi-
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cally simulable to UQC. The conditions on the ancillary
qubits to enable UQC is that they are sufficiently close to
being one of the 20 so-called magic states that lie on the
surface of the Bloch sphere. The two classes of magic state
(see Fig. 1) are the jHi type and jTi type, where all jHi
type states can be derived by applying a Clifford operation
to some canonical representative jHi ¼ ðj0i þ ei�=4j1iÞ=ffiffiffi
2

p
, and similarly for jTi-type states like jTi¼ cosð#Þj0iþ

ei�=4 sinð#Þj1i, where cosð2#Þ ¼ 1=
ffiffiffi
3

p
. The routines used

in [10] were unable to distill qubit states just outside the
edges and faces of the octahedron of Fig. 1. Reichardt [11]
subsequently proposed an improved routine that closed the
gap in the jHi direction (along the edges of the octahe-
dron). Virmani et al. [12] suggested using the convex hull
of Clifford operations in order to find gates’ robustness to
various types of noise. In particular, they considered gates
that are diagonal in the computational basis. Plenio and
Virmani [13] subsequently extended this idea by analyzing
cases where noise was allowed to affect the stabilizer op-
erations too. Buhrman et al. [2] used a similar idea (that
noise causes non-Clifford gates to eventually become able
to be implemented via Clifford gates only) to find the non-
Clifford gate that is most resistant to depolarizing noise—a
�=8 rotation about the Z axis (or the same gate modulo
some Clifford operation). Reichardt [14] showed that this
particular gate enabled UQC right up to its threshold noise
rate (about 45%), as well as considering in detail the pro-
cess of reducing multiqubit states to single-qubit states us-
ing postselected stabilizer operations. Our current result
here generalizes this tightness result to all possible single-
qubit gates.

Preliminaries and notation.—Let us parameterize an
arbitrary single-qubit SU(2) gate as follows

Uð�; �; �Þ ¼ ei� cosð�Þ �ei� sinð�Þ
e�i� sinð�Þ e�i� cosð�Þ

� �
: (1)

The representation of this rotation in SO(3) is denoted by

Rð�; �; �Þ. Implementing a rotation R while suffering de-
polarizing noise (with noise rate p), means that this noisy
operation is represented by the rescaling M ¼ ð1� pÞR, a
fact that we will need later.
Often we will apply the unitary Uð�; �; �Þ to one half of

an entangled Bell pair, j�i ¼ 1ffiffi
2

p ðj00i þ j11iÞ, yielding
� ¼ ðI �UÞj�ih�jðI �UÞy: (2)

If we use the two-qubit Pauli operators as a basis for the
density matrix � then we can find the 16 real coefficients
cij ¼ Trð�ð�i � �jÞÞ so that

� ¼ 1

4

X
cijð�i � �jÞ; i; j 2 fI; X; Y; Zg: (3)

Since we have applied a local unitary to a maximally
entangled state, the coefficients (cIX, cIY , cIZ, cXI, cYI,
cZI) are always zero. Comparing the 9 coefficients
fcXX; cXY; . . . ; cZZg one can see that these are the same as
the entries of the SO(3) matrix Rð�; �; �Þ. More precisely,

Rð�; �; �Þ ¼
cXX �cYX cZX
cXY �cYY cZY
cXZ �cYZ cZZ

0
@

1
A; (4)

where the cij are obviously also functions of (�, �, �).

If we represent the 24 single-qubit Clifford operations as
SO(3) matrices, then they are simply signed permutation
matrices with unit determinant (they are a matrix repre-
sentation of the elements of the chiral octahedral symmetry
group or, equivalently, the symmetry group S4). We label
these operationsCi and so the convex hull of the Ci (the so-
called Clifford polytope) is given by

P ¼
�X24

i¼1

piCi

�������� with pi�0 and
X24

i¼1

pi¼1

�
: (5)

Geometrically, the Clifford polytope is a closed polyhe-
dron in R9 that has 24 vertices (each vertex representing
one of the Ci). This polytope can also be defined by the
bounding inequalities of its 120 facets. The concise de-
scription of these facets used by Buhrman et al. [2] is given
by the set

F ¼ fCiFCjji; j 2 f1; . . . ; 24g; F 2 fA; AT; Bgg; (6)

where

A ¼
1 0 0
1 0 0
1 0 0

0
@

1
A and B ¼

0 1 0
1 0 �1
1 0 1

0
@

1
A: (7)

At times we will have reason to refer to different subsets of
the set of facets F so we use the obvious notation F ¼
F A [F AT [F B. It is useful to note that all the facets
derived from A comprise a single column with �1 entries
and zeros elsewhere, and similarly for the row facets
derived from AT; hence, jF Aj ¼ jF AT j ¼ 3� 23 ¼ 24.
There are jF Bj ¼ 72 ‘‘B-type’’ facets, which can be con-
structed as follows: (i) Pick one position in a 3� 3 matrix
F, e.g., row i and column j and put �1 there (9� 2 ¼ 18

FIG. 1 (color online). Magic states and the octahedron: Some
of the single-qubit magic states: jHi type states are designated
with black arrows, jTi type states with white arrows. The
octahedron defined by jxj þ jyj þ jzj � 1 depicts the single-
qubit states that can be created by stabilizer operations.
Reichardt [11] showed that distillation techniques work right
up to the edges of the octahedron (i.e., tight in the jHi direction).
Current distillation techniques are unable to distill states just
outside the faces of the octahedron (i.e., not tight in the jTi
direction).
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choices), (ii) Fill the remaining entries not in row i or
column j with �1 such that detðFÞ ¼ �2 (4 choices).

To determine whether or not an operationM is inside the
Clifford polytope P we take the elementwise inner product
(or Frobenius inner product) betweenM and the facets F 2
F of the polytope

M � F ¼ X3

i;j¼1

Mi;jFi;j ¼ TrðMTFÞ: (8)

Using the above notation, a 3� 3 matrix M is inside the
polytope P if and only if for all F 2 F we haveM �F�1.

Interpreting the facets of the Clifford polytope.—Our
proof will involve applying some non-Clifford gate to
one half of a Bell Pair [as in Eq. (2)] and then postselecting
on the outcomes of various stabilizer measurements. After
some further stabilizer operations, this measurement ulti-
mately has the effect of taking our two-qubit state � to a
single-qubit state �0 (times some stabilizer state that we do
not care about), which we then distill using magic-state
distillation (see [14] for a more general discussion of these
kinds of techniques). For example, performing a YX mea-
surement on � and postselecting on a ‘‘þ1’’ outcome (i.e.,
projecting with � ¼ 1

2 ðIIþ YXÞ) leads to a single-qubit

state �0 with a Bloch vector given by

~rð�0Þ ¼
�
0;
cXZ � cZY
cII þ cYX

;� cXY þ cZZ
cII þ cYX

�
: (9)

The form of this vector means that it lies in the YZ plane
(see Fig. 1), where we know that distillation techniques
work right up to the edge jyj þ jzj ¼ 1 of the octahedron.
We can check if ~r is outside the octahedron by simply
comparing the L1 norm of ~r with 1. Rearranged, the
condition k~rk1 > 1 for being outside the octahedron is

jcXZ � cZYj þ j � ðcXY þ cZZÞj> jcII þ cYXj: (10)

Given the correspondence between the coefficients cij and

the elements of R [see Eq. (4)] we can rewrite the above
condition (dropping the absolute value operators) as a facet
inequality

R � F > 1 where F ¼
0 1 0
�1 0 �1
1 0 �1

0
@

1
A: (11)

This facet is a legitimate ‘‘B-type’’ facet and a little
thought shows that, had we applied the single-qubit Pauli
operations [as SO(3) rotations] X, Y or Z to ~rð�0Þ above, we
would arrive at three other ‘‘B-type’’ facets

0 1 0
1 0 1
�1 0 1

0
@

1
A;

0 1 0
1 0 �1
1 0 1

0
@

1
A;

0 1 0
�1 0 1
�1 0 �1

0
@

1
A; (12)

respectively. Note that all four facet inequalities combined
could be simplified to the form Eq. (10) above. We omit the
details, but it is straightforward to show that all 72
‘‘B-type’’ facets correspond to postselecting on some
(weight two) Pauli operator, and possibly performing a
single-qubit Pauli rotation on the resulting �0.

It is somewhat more straightforward to see the geomet-

rical interpretation of the ‘‘AðTÞ-type’’ facets. For example,
the canonical A given in Eq. (7), merely returns the sum of
the elements of the Bloch vector ~r, arising from a rotation
applied to the X ‘‘þ1’’ eigenstate.

R � A ¼ X3

i¼1

ri where ~r ¼ R
1
0
0

0
@

1
A: (13)

In general, an operationM having an inner product greater
than one with some ‘‘A-type’’ facet simply means that M,
applied to some initial vector corresponding to a stabilizer
state, brings that vector to a final position outside the
octahedron.
The preceding discussion shows us that if magic-state

distillation were possible everywhere outside the octahe-
dron, then every unital operation outside the Clifford poly-
tope would be distillable—either straightforwardly or by
using postselection, depending on which facet it violated.
Using current (not tight) distillation routines however, we
would be unable to deal with some operations violating an
‘‘A-type’’ facet by a fairly small amount. In the next
section we show that, for depolarizing noise, any noisy
rotation violating an ‘‘A-type’’ facet also violates a
‘‘B-type’’ facet. Since ‘‘B-type’’ facets correspond to jHi
state distillation, the results we obtain are tight.
Tight threshold for depolarizing noise.—The claim we

shall prove is that, anytime a matrix M ¼ ð1� pÞR, rep-
resenting a depolarized rotation, is outside some ‘‘A-type’’
facet then there exists a ‘‘B-type’’ facet that M also lies
outside. In fact, we will prove the slightly stronger state-
ment that for all R 2 SOð3Þ
8A2F A [F AT ; 9B2F B such that R � ðB�AÞ � 0:

(14)

To simplify the proof we will repeatedly make use of the
symmetries of the problem [see Eq. (6)]. We will pick a
canonical ‘‘A-type’’ facet and assume that this gives the
largest inner product with R of all the F 2 F A. If there was
a larger inner product with some F 2 F AT , then we could
just relabel RT as R. We can assume that the facet with ones
in the first column [the A in Eq. (7)] gives the biggest inner
product since Tr½RTðCiACjÞ� ¼ TrðCjR

TCiAÞ ¼
Tr½ðCkRClÞTA�, which shows that the inner product of R
with a different F 2 F A is the same as the inner product
between a different (but related via Clifford operations)
rotation and the canonical ‘‘A-type’’ facet.
The proof will hinge on an entry of R, outside of the first

column, being larger than the rest of the elements outside
the first column. As such, let us define 12 matrices closely
related to A and call them A0

i

A0
1¼

1 �1 0
1 0 0
1 0 0

0
@

1
A A0

2¼
1 1 0
1 0 0
1 0 0

0
@

1
A ��� A0

12¼
1 0 0
1 0 0
1 0 1

0
@

1
A

(15)
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such that the index i of the largest inner product R � A0
i tells

us the sign and location of the largest magnitude element
outside the first column. Once again, symmetry allows us
to assume that A0

1 yields the largest inner product because
the rest of the A0

i can be derived from A0
1 via Clifford

rotations

fA0
ig¼

8<
:

0 0 1
1 0 0
0 1 0

0
@

1
A

j

A0
1

1 0 0
0 0 1
0 �1 0

0
@

1
A

k��������
j2f1;2;3g
k2f1;2;3;4g

9=
;:

(16)

For a matrix R to be an SO(3) rotation there are con-
straints on the signs of the elements Ri;j; i.e., there are eight

choices for the first column, 6 choices for the second
column and 2 for the third. Given that A is the maximum
facet for R, we have fixed the signs positively in the first
column, reducing the number of types of rotation to 6�
2 ¼ 12. Since A0

1 gives the maximum inner product with R
of all A0

i we have that R1;2 < 0, which reduces the number

of rotation types further to 3� 2 ¼ 6. It can be shown that
R1;2 having larger magnitude than the rest of the elements

Ri;jði 2 f1; 2; 3g; j 2 f2; 3gÞ restricts the type of rotation

further to one the following four types

R 2
8<
:

þ � þ
þ þ �
þ þ þ

0
@

1
A;

þ � �
þ þ �
þ þ þ

0
@

1
A;

þ � �
þ þ �
þ � þ

0
@

1
A;

þ � þ
þ � �
þ þ þ

0
@

1
A
9=
;: (17)

This should not be surprising if one considers that R1;2 ¼
�ðR2;1R3;3 � R2;3R3;1Þ because of the structure of SO(3)
matrices, and the sign patterns listed above ensure jR1;2j is
as large as possible.

We claim that the B 2 F B of Eq. (9) will suffice to
prove the desired inequality R � ðB� AÞ � 0, which reads
in matrix form

þ � �
þ � �
þ � þ

0
@

1
A

�1 1 0
0 0 �1
0 0 1

0
@

1
A � 0: (18)

Using the relevant entries of R we define a pair of 2 vectors
~u and ~v as ~u ¼ ðR1;1; R1;2Þ, ~v ¼ ðR2;3; R3;3Þ so that we can

rewrite the above inequality Eq. (17) as

k ~vk1 � k ~uk1 � 0: (19)

The L2 normalization of all the rows and columns of the
rotation matrix R means that ~u and ~v have the same L2

norm. With reference to Fig. 2, it should be clear that
because ~u has an L1 norm at least as big as that of ~v
(because jR1;2j � jR2;3j; jR3;3j), it holds that the L1 norm of

~v is automatically at least as large as the L1 norm of ~u, as
desired.

Summary.—We showed that for any unitary one-qubit
gate undergoing depolarizing noise with rate p it holds that

if its SO(3) representation M ¼ ð1� pÞR lies outside the
Clifford polytope P , then it must be the case that there is a
facet B 2 F B such thatM � B> 1. In turn, this means that
if this noisy gate is applied to a Bell pair j�i ¼ 1ffiffi

2
p ðj00i þ

j11iÞ and an appropriate stabilizer measurement is per-
formed, then, conditionally on the outcome of the mea-
surement, one obtains a state that can be transformed using
Clifford gates into a single-qubit state with jyj þ jzj> 1 in
the Bloch ball representation. By the result of Reichardt
[11] such states enable stabilizing operations to perform
universal quantum computation.
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FIG. 2. Proof of Eq. (19): For any pair of two vectors ~u and ~v
with the same L2 norm, the vector with greater L1 norm has
smaller L1 norm. A vector pointing towards the black dot has
simultaneously minimal L1 norm and maximal L1 norm.
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We present a scheme of quantum computation that consists entirely of one-qubit measurements on a
particular class of entangled states, the cluster states. The measurements are used to imprint a quantum
logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus
one-way quantum computers and the measurements form the program.
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A quantum computer promises efficient processing of
certain computational tasks that are intractable with clas-
sical computer technology [1]. While basic principles of a
quantum computer have been demonstrated in the labora-
tory [2], scalability of these systems to a large number of
qubits [3], essential for practical applications such as the
Shor algorithm, represents a formidable challenge. Most
of the current experiments are designed to implement se-
quences of highly controlled interactions between selected
particles (qubits), thereby following models of a quan-
tum computer as a (sequential) network of quantum logic
gates [4,5].

Here we propose a different model of a scalable quan-
tum computer. In our model, the entire resource for the
quantum computation is provided initially in the form of
a specific entangled state (a so-called cluster state [6]) of
a large number of qubits. Information is then written onto
the cluster, processed, and read out from the cluster by
one-particle measurements only. The entangled state of
the cluster thereby serves as a universal “substrate” for any
quantum computation. Cluster states can be created effi-
ciently in any system with a quantum Ising-type interaction
(at very low temperatures) between two-state particles in
a lattice configuration.

We consider two- and three-dimensional arrays of
qubits that interact via an Ising-type next-neighbor in-
teraction [6] described by a Hamiltonian Hint ! g!t" 3
P

#a,a0$
11s

!a"
z

2
12s

!a0"
z

2 % 2 1
4g!t"

P
#a,a0$ s!a"

z s!a0"
z [7] whose

strength g!t" can be controlled externally. A possible
realization of such a system is discussed below. A qubit at
site a can be in two states j0$a & j0$z,a or j1$a & j1$z,a,
the eigenstates of the Pauli phase flip operator s!a"

z
's!a"

z ji$a ! !21"iji$a(. These two states form the compu-
tational basis. Each qubit can equally be in an arbitrary
superposition state aj0$ 1 bj1$, jaj2 1 jbj2 ! 1. For
our purpose, we initially prepare all qubits in the su-
perposition j1$ ! !j0$ 1 j1$")

p
2, an eigenstate of the

Pauli spin flip operator sx 'sxj6$ ! 6j6$(. Hint is
then switched on for an appropriately chosen finite time
interval T , where

RT
0 dt g!t" ! p, by which a unitary

transformation S is realized. Since Hint acts uniformly on
the lattice, entire clusters of neighboring particles become
entangled in one single step. The quantum state jF$C ,

the state of a cluster !C " of neighboring qubits, which is
thereby created provides in advance all entanglement that
is involved in the subsequent quantum computation. It has
been shown [6] that the cluster state jF$C is characterized
by a set of eigenvalue equations

s!a"
x

O

a0[ngbh!a"
s!a0"

z jF$C ! 6jF$C , (1)

where ngbh!a" specifies the sites of all qubits that inter-
act with the qubit at site a [ C . The eigenvalues are de-
termined by the distribution of the qubits on the lattice.
The equations (1) are central for the proposed computation
scheme. As an example, a measurement on an individual
qubit of a cluster has a random outcome. On the other
hand, Eqs. (1) imply that any two qubits at sites a, a0 [ C
can be projected into a Bell state by measuring a subset of
the other qubits in the cluster. This property will be used to
define quantum channels that allow us to propagate quan-
tum information through a cluster.

We show that a cluster state jF$C can be used as a sub-
strate on which any quantum circuit can be imprinted by
one-qubit measurements. In Fig. 1 this scheme is illus-
trated. For simplicity, we assume that in a certain region
of the lattice each site is occupied by a qubit. This re-
quirement is not essential as will be explained below [see
(d)]. In the first step of the computation, a subset of
qubits is measured in the basis of sz which effectively
removes them. In Fig. 1 these qubits are denoted by “ Ø.”

quantum gate

information flow

FIG. 1. Quantum computation by measuring two-state parti-
cles on a lattice. Before the measurements the qubits are in the
cluster state jF$C of (1). Circles Ø symbolize measurements of
sz , vertical arrows are measurements of sx , while tilted arrows
refer to measurements in the x-y plane.
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The state jF$C is thereby projected into a tensor prod-
uct jm$CnN ≠ jF̃$N consisting of the state jm$CnN of
all measured particles (subset CnN ) on one side and an
entangled state jF̃$N of yet unmeasured particles (subset
N , C ), on the other side. These unmeasured particles
define a “network” N corresponding to the shaded struc-
ture in Fig. 1. The state jF̃$N of the network is related
to a cluster state jF$N on N by a local unitary transfor-
mation which depends on the set of measurement results
m. More specifically, jF̃$N satisfies Eqs. (1)—with C
replaced by the subcluster N —except for a possible dif-
ference in the sign factors, which are determined by the
measurement results m.

To process quantum information with this network, it
suffices to measure its particles in a certain order and in a
certain basis. Quantum information is thereby propagated
horizontally through the cluster by measuring the qubits
on the wire while qubits on vertical connections are used
to realize two-bit quantum gates. The basis in which a
certain qubit is measured depends in general on the results
of preceding measurements. The processing is finished
once all qubits except the last one on each wire have been
measured. At this point, the results of previous measure-
ments determine in which basis these “output” qubits need
to be measured for the final readout. We note that, in the
entire process, only one-qubit measurements are required.
The amount of entanglement therefore decreases with ev-
ery measurement [8] and all entanglement involved in the
process is provided by the initial resource, the cluster state.
This is different from the scheme of Ref. [11], which uses
Bell measurements (capable of producing entanglement)
to realize quantum gates.

In the following, we show that any quantum logic circuit
can be implemented on a cluster state. The purpose of this
is twofold. First, it serves as an illustration of how to im-
plement a particular quantum circuit in practice. Second,
in showing that any quantum circuit can be implemented
on a sufficiently large cluster we demonstrate the univer-
sality of the proposed scheme. For pedagogical reasons we
first explain a scheme with one essential modification with
respect to the proposed scheme: before the entanglement
operation S, certain qubits are selected as input qubits and
the input information is written onto them, while the re-
maining qubits are prepared in j1$. This step weakens the
scheme since it affects the character of the cluster state as
a genuine resource. It can, however, be avoided [see (e)].
Points (a) to (c) are concerned with the basic elements of a
quantum circuit, quantum gates, and wires, point (d) with
the composition of gates to circuits.

(a) Information propagation in a wire for qubits. A qubit
can be teleported from one site of a cluster to any other
site. In particular, consider a chain of an odd number of
qubits 1 to n prepared in the state jcin$1 ≠ j1$2 ≠ · · · ≠
j1$n and subsequently entangled by S. The state that was
originally encoded in qubit 1, jcin$, is now delocalized
and can be transferred to site n by performing sx mea-

surements (basis *j1$j ! j0$x,j , j2$j ! j1$x,j+) at qubit
sites j ! 1, . . . , n 2 1 with measurement outcomes sj [
*0, 1+. The resulting state is js1$x,1 ≠ · · · ≠ jsn21$x,n21 ≠
jcout$n. The output state jcout$ is related to the input state
jcin$ by a unitary transformation US [ *1, sx , sz , sxsz+
which depends on the outcomes of the sx measurements
at sites 1 to n 2 1. A similar argument can be given for an
even number of qubits. The effect of US can be accounted
for at the end of a computation as shown below [see (d)].
It is noteworthy that not all classical information gained
by the sx measurements needs to be stored to identify the
transformation US. Instead, US is determined by the val-
ues of only two classical bits which are updated with every
measurement.

(b) An arbitrary rotation UR [ SU!2" can be achieved
in a chain of five qubits. Consider a rotation in its
Euler representation UR!j, h, z " ! Ux!z "Uz!h"Ux!j",
where Ux!a" ! exp!2ia sx

2 ",Uz!a" ! exp!2ia sz

2 ". Ini-
tially, the first qubit is in some state jcin$, which
is to be rotated, and the other qubits are in j1$;
i.e., their common state reads jC$1,...,5 ! jcin$1 ≠
j1$2 ≠ j1$3 ≠ j1$4 ≠ j1$5. After the five qubits are
entangled by S they are in the state SjC$1,...,5 !
1)2jcin$1j0$2j2$3j0$4j2$5 2 1)2jcin$1j0$2j1$3j1$4j1$5 2
1)2jc!

in$1j1$2j1$3j0$4j2$5 1 1)2jc!
in$1j1$2j2$3j1$4j1$5,

where jc!
in$ ! sz jcin$. Now, the state jcin$ can be rotated

by measuring qubits 1 to 4, while it is teleported to site 5 at
the same time. The qubits 1, . . . , 4 are measured in appro-

priately chosen bases Bj!aj" ! * j0$j1eiaj j1$jp
2 , j0$j2eiaj j1$jp

2 +
whereby the measurement outcomes sj [ *0, 1+ for j !
1, . . . , 4 are obtained. Here, sj ! 0 means that qubit j is
projected into the first state of Bj!aj". The resulting
state is js1$a1,1 ≠ js2$a2,2 ≠ js3$a3,3 ≠ js4$a4,4 ≠ jcout$5
with jcout$ ! Ujcin$. For the choice a1 ! 0 (measur-
ing sx of qubit 1) the rotation U has the form U !
ss21s4

x ss11s3
z UR'!21"s111a2, !21"s2a3, !21"s11s3a4(. In

summary, the procedure to implement an arbitrary
rotation UR!j, h, z ", specified by its Euler angles
j, h, z is (i) measure qubit 1 in B1!0"; (ii) measure
qubit 2 in B2!!!!21"s111j"""; (iii) measure qubit 3 in
B3!!!!21"s2h"""; (iv) measure qubit 4 in B4!!!!21"s11s3z """.
In this way the rotation U 0

R is realized: U 0
R!j, h, z " !

ss21s4
x ss11s3

z UR!j, h, z ". The extra rotation US !
ss21s4

x ss11s3
z can be accounted for at the end of the com-

putation, as is described below in (d).
(c) To perform the gate CNOT!c, tin ! tout" !

j0$cc#0j ≠ 1!tin!tout" 1 j1$cc#1j ≠ s
!tin!tout"
x between a con-

trol qubit c and a target qubit t, four qubits, arranged
as depicted Fig. 2a, are required. During the action
of the gate, the target qubit t is transferred from tin
to tout. The following procedure has to be imple-
mented. Let qubit 4 be the control qubit. First, the state
ji1$z,1 ≠ ji4$z,4 ≠ j1$2 ≠ j1$3 is prepared and then the
entanglement operation S is performed. Second, sx of
qubits 1 and 2 is measured. The measurement results
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(a)
1 2 3

4

target in target out

control

target in target out

control in control out

(b)

FIG. 2. Realization of a CNOT gate by one-particle measure-
ments. See text.

sj [ *0, 1+ correspond to projections of the qubits j into
jsj$x,j , j ! 1, 2. The quantum state created by this proce-
dure is js1$x,1 ≠ js2$x,2 ≠ U

!34"
S ji4$z,4 ≠ ji1 1 i4 mod2$z,3,

where U
!34"
S ! s!3"s111

z s!3"s2

x s!4"s1

z . The input state is thus
acted upon by the CNOT and successive sx and sz rota-
tions U

!34"
S , depending on the measurement results s1, s2.

These unwanted extra rotations can again be accounted
for as described in (d). For practical purposes it is more
convenient if the control qubit is, as the target qubit,
transferred to another site during the action of the gate.
When a CNOT is combined with other gates to form a
quantum circuit it will be used in the form shown in
Fig. 2b.

To explain the working principle of the CNOT gate we,
for simplicity, refer to the minimal implementation with
four qubits. The minimal CNOT can be viewed as a wire
from qubit 1 to qubit 3 with an additional qubit, No. 4,
attached. From the eigenvalue equations (1) it can now be
derived that, if qubit 4 is in an eigenstate ji4$z,4 of sz , then
the value of i4 [ *0, 1+ determines whether a unit wire or
a spin flip sx (modulo the same correction U

!3"
S for both

values of i4) is being implemented. In other words, once
sx of qubits 1 and 2 have been measured, the value i4 of
qubit 4 controls whether the target qubit is flipped or not.

(d) Quantum circuits. The gates described — the CNOT
and arbitrary one-qubit rotations — form a universal set
[5]. In the implementation of a quantum circuit on a clus-
ter state the site of every output qubit of a gate overlaps
with the site of an input qubit of a subsequent gate. Be-
cause of this, the entire entanglement operation can be
performed at the beginning. To see this, compare the
following two strategies. Given a quantum circuit im-
plemented on a network N of qubits which is divided
into two consecutive circuits, circuit 1 is implemented on
network N1 and circuit 2 is implemented on network
N2, and N ! N1 < N2. There is an overlap O !
N1 > N2 which contains the sites of the output qubits
of circuit 1 (these are identical to the sites of the input
qubits of circuit 2). The sites of the readout qubits form a
set R , N2. Strategy (i) consists of the following steps:
(1) write input and entangle all qubits on N ; (2) mea-
sure qubits [ N nR to implement the circuit. Strategy
(ii) consists of (1) write input and entangle the qubits on
N1, (2) measure the qubits in N1nO . This implements
the circuit on N1 and writes the intermediate output to

O ; (3) entangle the qubits on N2; (4) measure all qubits
in N2nR. Steps 3 and 4 implement the circuit 2 on N2.
The measurements on N1nO commute with the entangle-
ment operation restricted to N2, since they act on differ-
ent subsets of particles. Therefore the two strategies are
mathematically equivalent and yield the same results. It
is therefore consistent to entangle in a single step at the
beginning and perform all measurements afterwards.

Two further points should be addressed in connection
with circuits. First, the randomness of the measurement
results does not jeopardize the function of the circuit.
Depending on the measurement results, extra rotations
sx and sz act on the output qubit of every implemented
gate. By use of the relations UR!j, h, z "ss

zss0
x !

ss
zss0

x UR!!!!21"sj, !21"s0h, !21"sz """, and CNOT!c, t"s!t"st

z

s!c"sc

z s!t"s
0
t

x s!c"s
0
c

x ! s!t"st

z s!c"sc1st

z s!t"s
0
c1s0t

x s!c"s
0
c

x CNOT!c, t",
these extra rotations can be pulled through the network to
act upon the output state. There they can be accounted
for by adjusting the measurement basis for the final
readout. The above relations imply that for a rotation
UR!j, h, z "—different from the CNOT gate— the accu-
mulated extra rotations US at the input side of UR need to
be determined before the measurement bases that realize
UR can be specified. This introduces a partial temporal
ordering of the measurements on the whole cluster.
Second, quantum circuits can also be implemented on
irregular clusters. In that case, qubits may be missing
which are required for the standard implementation of the
circuit. This can be compensated by a large flexibility in
shape of the gates and wires. The components can be bent
and stretched to fit to the cluster structure as long as the
topology of the circuit implementation does not change.
Irregular clusters are found in lattices with a finite site
occupation probability 0 , p , 1. In such a situation,
the possibility of universal quantum computation is
closely linked to the phenomenon of percolation. For p
above a certain critical value pc, which depends on the
dimension of the lattice, an infinitely extended cluster
exists that may be used as the carrier of the quantum
circuit. In two dimensions, for example, exactly one
such cluster C exists. Suppose this cluster is divided
into two subclusters C1 and C2 by a one-dimensional cut
O ! C1 > C2. It can be shown, e.g., by using Russo’s
formula [12] from percolation theory that, for any cut O ,
jO j ! `. Therefore there is no upper bound, in principle,
to the “capacity” of the cluster, i.e., to the number of
qubits that can be processed across such a cut.

(e) Full scheme. It is important to note that the step
of writing the input information onto the qubits before
the cluster is entangled was introduced only for peda-
gogical reasons. For illustration of this point consider
a chain of five qubits in the state Sj1$1 ≠ j1$2 ≠ · · · ≠
j1$5. Clearly, there is no local information on any of the
qubits. However, by measuring qubits 1 to 4 along suitable
directions, qubit 5 can be projected into any desired state
(modulo US). What is used here is the knowledge that the
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resource has been prepared with qubit 1 in the state j1$1
before the entanglement operation. By the four measure-
ments, this qubit is then rotated as described in (b). In
order to use qubit 5 for further processing, the five-qubit
chain considered here should, of course, be part of a larger
cluster such that particle 5 is still entangled with the re-
maining network, after particles 1 to 4 have been mea-
sured. The method of preparing the input state remains the
same, in this case, as explained in (d). In a similar man-
ner any desired input state can be prepared if the rotations
are replaced by a circuit preceding the proper circuit for
computation. In summary, no input information needs to
be written to the qubits before they are entangled. Cluster
states are thus a genuine resource for quantum computa-
tion via measurements only.

For a cluster of a given finite size, the number of compu-
tational steps may be too large to fit on the cluster. In this
case, the computation can be split into consecutive parts,
for each of which there is sufficient space on the cluster.
The modified procedure consists then of repeatedly (re)en-
tangling the cluster and imprinting the actual part of the
circuit —by measuring all of the lattice qubits except
the ones carrying the intermediate quantum output — until
the whole calculation is performed. This procedure has
also the virtue that qubits involved in the later part of a
calculation need not be protected from decoherence for a
long time while the calculation is still being performed at
a remote place of the cluster. Standard error-correction
techniques [13,14] may then be used on each part of the
circuit to stabilize the computation against decoherence.

A possible implementation of such a quantum computer
uses neutral atoms stored in periodic micropotentials
[15–18] where Ising-type interactions can be realized
by controlled collisions between atoms in neighboring
potential wells [16,18]. This system combines small
decoherence rates with a high scalability. The question
of scalability is linked to the percolation phenomenon,
as mentioned earlier. For a site occupation probability
above the percolation threshold, there exists a cluster
which is bounded in size only by the trap dimensions.
For optical lattices in three dimensions, single-atom site
occupation with a filling factor of 0.44 has been reported
[19] which is significantly above the percolation threshold
of 0.31 [20]. As in other proposed implementations for
quantum computing, the addressability of single qubits
in the lattice is, however, still a problem. (For recent
progress, see Ref. [21]). Recently, it has also been shown
that implementations based on arrays of capacitively cou-
pled quantum dots may be used to realize an Ising-type
interaction [22].

In conclusion, we have described a new scheme of
quantum computation that consists entirely of one-qubit
measurements on a particular class of entangled states,
the cluster states. The measurements are used to imprint a
quantum circuit on the state, thereby destroying its entan-
glement at the same time. Cluster states are thus one-way
quantum computers and the measurements form the
program.
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Quantum computation and quantum-state
engineering driven by dissipation
Frank Verstraete1*, Michael M.Wolf2 and J. Ignacio Cirac3*
The strongest adversary in quantum information science is
decoherence, which arises owing to the coupling of a system
with its environment1. The induced dissipation tends to destroy
and wash out the interesting quantum effects that give rise
to the power of quantum computation2, cryptography2 and
simulation3. Whereas such a statement is true for many
forms of dissipation, we show here that dissipation can also
have exactly the opposite effect: it can be a fully fledged
resource for universal quantum computation without any
coherent dynamics needed to complement it. The coupling to
the environment drives the system to a steady state where
the outcome of the computation is encoded. In a similar
vein, we show that dissipation can be used to engineer a
large variety of strongly correlated states in steady state,
including all stabilizer codes, matrix product states4, and their
generalization to higher dimensions5.

The situation we have in mind is shown in Fig. 1. A quantum
system composed of N particles (such as qubits) is organized in
space according to a particular geometry (in the figure, a one-
dimensional lattice). Neighbouring systems are coupled to some
local environments, which are dissipative in nature and tend to
drive the system to a steady state. Our idea is to engineer those
couplings, so that the environments drive the system to a desired
final state. The coupling to the environmentwill be static, so that the
desired state is obtained after some time without having to actively
control the system. Note that the role of the environments is to
dissipate (or, more precisely, evacuate) the entropy of the system,
and by choosing the couplings appropriately we can use this effect
to drive our system.

We will show first how to design the interactions with
the environment to implement universal quantum computation.
This new method, which we refer to as dissipative quantum
computation (DQC), defies some of the standard criteria for
quantum computation because it requires neither state preparation,
nor unitary dynamics6. However, it is nevertheless as powerful as
standard quantum computation. Thenwewill show that dissipation
can be engineered7 to prepare ground states of frustration-free
Hamiltonians. Those include matrix product states4,8,9 (MPSs) and
projected entangled pair states5,9 (PEPSs), such as graph states10
and Kitaev11 and Levin–Wen12 topological codes. Both DQC and
dissipative state engineering (DSE) are robust in the sense that,
given the dissipative nature of the process, the system is driven
towards its steady state independent of the initial state and hence
of eventual perturbations along the way.

Here, we will concentrate first on DQC, showing how given
any quantum circuit one can construct a locally acting master
equation for which the steady state is unique, encodes the outcome
of the circuit and is reached in polynomial time (with respect to
the one corresponding to the circuit). Then we will show how

1Fakultät für Physik, Universität Wien, 1090Wien, Austria, 2Niels Bohr Institute, 2100 Copenhagen, Denmark, 3Max-Planck-Institut für Quantenoptik,
85748 Garching, Germany. *e-mail: fverstraete@gmail.com; ignacio.cirac@mpq.mpg.de.

to construct dissipative processes that drive the system to the
ground state of any frustration-free Hamiltonian. In the Methods
section, we will prove that MPS (ref. 9) and certain kinds of
PEPS (ref. 9) can be efficiently prepared using this method, and
in Supplementary Information we will give details of the proofs.
In this letter we will not consider specific physical set-ups where
our ideas can be implemented. Nevertheless, the Methods section
will provide a universal way of engineering the master equations
required for DQC and DSE, which can be easily adapted to current
experiments13 based on, for example, atoms in optical lattices14
or trapped ions15. Thus, we expect that our predictions may be
experimentally tested in the near future.

Let us start with DQC by considering N qubits in a line and a
quantum circuit specified by a sequence of nearest-neighbour qubit
operations {Ut }Tt=1. We define |ψt 〉 :=UtUt−1 ...U1|0〉1⊗ ...|0〉N, so
that |ψT 〉 is the final state after the computation. Our goal is to find
amaster equation ρ̇ = L(ρ)with a Liouvillian in Lindblad form16

L(ρ)=
∑

k

LkρL†
k − 1

2
{
L†
kLk,ρ

}
+ (1)

where the Lk acts locally and has a steady state, ρ0: (1) that is unique;
(2) that can be reached in a time poly(T ); (3) such that ψT can be
extracted from it in a time poly(T ). As in Feynman’s construction
of a quantum simulator3, we consider another auxiliary register
with states {|t 〉}Tt=0, which will represent the time. We choose
the Lindblad operators

Li = |0〉i〈1|⊗ |0〉t 〈0|

Lt =Ut ⊗ |t +1〉〈t |+U †
t ⊗ |t 〉〈t +1|

where i= 1,...,N and t = 0,...,T . It is clear that the L terms act
locally except for the interaction with the extra register, which can
be made local as well. Furthermore,

ρ0 = 1
T +1

∑

t

|ψt 〉〈ψt |⊗ |t 〉〈t |

is a steady state, that is, L(ρ0)=0.Given such a state, the result of the
actual quantum computation can be read out with probability 1/T
by measuring the time register. In Supplementary Information, we
show that ρ0 is the unique steady state and that the Liouvillian has
a spectral gap #=π2/(2T +3)2. This means indeed that the steady
state will be reached in polynomial time in T . Note that this gap is
independent ofN as well as of the actual quantum computation that
is carried out (that is, independent of the Ut ). It is also shown that
the same gap is retained if the clock register is encoded in the unary
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Figure 1 | Schematic representation of the set-up.We consider a collection of N quantum particles, locally coupled to a set of environments. The
couplings are engineered in such a way that the system reaches the desired state in the long-time limit.

way proposed by Kitaev and co-workers17, making the Lindblad
operators strictly local. A sketch of the proof is as follows. First, we
do a similarity transformation on L that replaces all gatesUi with the
identity gates, showing that its spectrum is independent of the actual
quantum computation. Second, another similarity transformation
is done thatmakes L Hermitian and block-diagonal. Each block can
then be diagonalized exactly leading to the claimed gap.

In some sense, the present formalism can be seen as a robust
way of doing adiabatic quantum computation18 (errors do not
accumulate and the path does not have to be engineered carefully)
and implementing quantum randomwalks19, and itmight therefore
be easier to tackle interesting open questions, such as the quantum
probabilistically-checkable-proofs theorem, in this setting20. In
addition, it seems that the dissipativeway of preparing ground states
is more natural than to use adiabatic time evolution, as nature itself
prepares them by cooling.

Let us now turn to DSE and consider again a quantum system
with N particles on a lattice in any dimension. We are interested in
ground statesΨ , of Hamiltonians

H =
∑

λ

Hλ

that are frustration-free, meaning that Ψ minimizes the energy of
eachHλ individually, and local in the sense thatHλ acts non-trivially
only on a small set λ ⊂ {1, ... ,N } of sites (for example, nearest
neighbours). We can assume the terms Hλ to be projectors and
we will denote the orthogonal projectors by Pλ = 1−Hλ. States Ψ
of the considered form are, for example, all PEPS (including MPS
and stabilizer states21).

We will consider discrete time evolution generated by a trace-
preserving completely positive map instead of a master equation.
These two approaches are basically equivalent22 as every local
completely positivemap T can be associated with a local Liouvillian
through L(ρ)=N [T (ρ)−ρ], which leads to the same fixed points
and spectrum.We choose completely positivemaps of the form

T (ρ)=
∑

λ

pλ

[

PλρPλ + 1
m

m∑

i=1

Uλ,iHλρHλU †
λ,i

]

(2)

where the pλ terms are probabilities and Uλ,1,...,Uλ,m is a set of
unitaries acting non-trivially only within region λ. They effectively
rotate part of the high-energy space (with support of Hλ) to the
zero-energy space, so that tr[T (ρ)Ψ ] ≥ tr[ρΨ ] increases. As for
Liouvillians (1), we could similarly take Lλ,i = UiHλ, or the ones
associated with the completely positive map.

We show now that for every frustration-free Hamiltonian,
the completely positive map in equation (2) converges to the
ground-state space if we choose the unitaries Uλ,i to be completely
depolarizing, that is, T (ρ) ∝ ∑

λ PλρPλ + 1λ ⊗ trλ[Hλρ]/tr[1λ].
For ease of notation, we will explain the proof for the case of a

one-dimensional ring with nearest-neighbour interactions labelled
by the first site λ = 1,...,N . Assume ρ is such that its expectation
value with respect to the projector Ψ onto the ground-state space
ofH is non-increasing under applications of T , that is, in particular
tr[ρΨ ]= tr[T N (ρ)Ψ ]. Expressing this in the Heisenberg picture in
which T ∗(Ψ)=Ψ +∑

λHλtrλ(Ψ)/(d2N ), we get

tr[ρΨ ] ≥ tr[ρΨ ]+ 1
(d2N )N

tr

[

ρ
N∑

µ=1

N∏

λ=1

(
Hλ+µtrλ+µ

)
(Ψ)

]

≥ tr[ρΨ ]+ νN

(d2N )N
tr[ρH ]

where the first inequality comes from discarding (positive) terms in
the sum and the second one is due to bounding all partial traces
of Hλ from below by the respective smallest eigenvalue ν. Note
that the latter is strictly positive unless H has a product state as
the ground state (in which case the statement becomes trivial).
Hence, we must have tr[ρH ] = 0; that is, ρ is a ground state of H .
It is easily seen that the same argument applies for more general
interactions on arbitrary lattices.

Once we have shown that the steady state after the application
of the completely positive map lies within the desired subspace
(the ground-state space of the frustration-free Hamiltonian), the
next question to be addressed is how efficient the process is. This
depends on the spectral gap, δ, of the completely positive map (or,
equivalently, of the corresponding Liouvillian), as the time to reach
the steady state, τ = O(1/δ). Thus, the above procedure will be
efficient as long as the gap vanishes only polynomially with the
number of systems, N . Similarly to what occurs with many-body
Hamiltonians, the determination of such a gap is, in general, very
complicated. For a wide range of interesting models, however, it
can be proved that this gap scales favourably. This is the case for
all MPS as well as for a rich subfamily of PEPS that includes all
stabilizer states (such as Kitaev’s toric code11 and the Levin–Wen
states12). In the Methods section, we characterize such a subfamily
of states, and in Supplementary Information we give the technical
proofs of our statements. Here, we will qualitatively explain how
our method works efficiently for some families of states. For that
we note that the action of the completely positive map (2) can
be interpreted as randomly choosing a region λ (according to pλ,
which we may set equal to 1/N ), then measuring Pλ and applying
a correction according to the unitaries if the outcome was negative.
We denote by Rn the set of regions λ where ϕ satisfies the condition
Hλ|ϕ〉 = 0. If we measure now in one of those regions, we will
obviously obtain a positive result, and thus Rn will remain the
same. If we measure in another region, we may have a positive or
negative result, something that may change the set Rn. By imposing
certain conditions on the operators Hλ and Uλ,i, we can make sure
that in each step Rn cannot be reduced and that the probability of
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being enlarged is non-vanishing. This automatically ensures that
the τ scales only polynomially with the number of systems. In
one dimension, however, one can get rid of all those restrictions
and show that any MPS can be prepared in a time that also scales
favourably with N . The fact that all MPS states can be prepared
with our method, together with the results reported in refs 23, 24,
automatically implies the existence of phase transitions driven by
dissipation in the following sense. By changing the parameters of
the operators Hλ appearing in the completely positive map (2), we
change the steady state of that map. It is possible to choose models
for which that state changes abruptly at some particular value of
that parameter in such a way that the correlation length diverges
and an order parameter appears (an example can be found in the
Supplementary Information).

We have investigated the computational power of purely
dissipative processes, and proved that it is equivalent to that of
the quantum circuit model of quantum computation. We have
also shown that dissipative dynamics can be used to create ground
states (such as MPS or PEPS) of frustration-free Hamiltonians of
strongly correlated quantum spin systems. We believe that these
newmethods can be experimentally tested using atoms or ions with
current set-ups (see theMethods section).

Let us stress that we have been concerned here with a proof-
of-principle demonstration that dissipation provides us with an
alternative way of carrying out quantum computations or state
engineering. We believe, however, that much more efficient and
practical schemes can be developed and adapted to specific
implementations. We also think that these results open up
some interesting questions that deserve further investigation: for
example, how the use of fault-tolerant computations can make
our scheme more robust, or how one can design translationally
invariant completely positive maps that prepare MPS more
efficiently, or the importance and generality of the set of commuting
Hamiltonians (see the Methods section), which is intimately
connected to the fixed points of the renormalization group
transformations on PEPS (as it happens with MPS; ref. 25).
Furthermore, themodel of DQCmight well lead to the construction
of new quantum algorithms, as, for example, quantum random
walks can more easily be formulated within this context. Finally,
other ideas related to this work can be easily addressed using the
methods introduced; for example, thermal states of commuting
Hamiltonians can be engineered using DSE because the Metropolis
way of sampling over classical spin configurations can be adopted
to the case of commuting operators. Similar techniques could be
applied to free fermionic and bosonic systems, and, more generally,
it should be possible to devise DSE schemes converging to the
ground or thermal states of frustrated Hamiltonians by combining
unitary and dissipative dynamics.

Note added. Concurrently with the submission of this paper,
refs 26 and 27 appeared in which a similar quantum-reservoir
engineering was used to prepare many-body states and non-
equilibrium quantum phases.

Methods
Engineering dissipation. Here we show how to engineer the local dissipation that
gives rise to the master equations (1) and completely positive maps (2). They are
composed of local terms, involving few particles (typically two), so that we just have
to show how to implement those. To simplify the exposition, we will treat those
particles as a single one and assume that one has full control over its dynamics (for
example, one can apply arbitrary gates).

Let us start with the completely positive maps. It is clear that by applying a
quantum gate to the particle and a ‘fresh’ ancilla and then tracing the ancilla one
can generate any physical action (that is, completely positive map) on the system.
Furthermore, by repeating the same process with short time intervals one can
subject the system to an arbitrary time-independent master equation. This last
process may not be efficient. An alternative way works as follows. Let us assume
that the ancilla is a qubit interacting with a reservoir such that it fulfils a master

equation with Liouville operator La =
√

Γσ−, where σ− = |0〉〈1|. Now, we couple
the ancilla to the system with a Hamiltonian H = *(σ−L† +σ

†
−L). In the limit

Γ * *, one can adiabatically eliminate the level |1〉 of the ancilla28 by applying
second-order perturbation theory to the Liouvillian (albeit for non-Hermitian
operators). In this way we obtain an effective master equation for ρ describing
the system alone, with Liouville operator */

√
ΓL. By using several ancillas

with Hamiltonians H = *(σ−Li +σ
†
−L

†
i ) and following the same procedure we

obtain the desired master equation. Although we have not specified here a physical
system, one could use atoms. In that case, the ancilla could be an atom itself with
|0〉 and |1〉 an electronic ground and excited level, respectively, so that spontaneous
emission gives rise to the dissipation. The coupling to the system (other atoms)
could be achieved using standard ideas used in the implementation of quantum
computation using those systems13.

Efficient state preparation. We have shown that it is possible to engineer
dissipative processes that prepare ground states of frustration-free Hamiltonians in
steady state. In the proof, the time for this preparation scales as NN , which may be
an issue for experiments with large number of particles. Here we give much more
efficientmethods for certain classes of frustration-freeHamiltonians.

We consider first frustration-free Hamiltonians for which [Hλ,Hµ] = 0 and
show that, under certain conditions, the corresponding ground states can be
prepared in a time that scales only polynomially with the number of particles. The
corresponding set of ground states contains important families, such as stabilizer
states (for example, cluster states and topological codes), or certain kinds of PEPS,
namely, those that have (commuting) parent Hamiltonians with the injectivity
condition (as defined in refs 8, 29). Note that there was no known way of efficient
preparation for the latter.

Loosely speaking, we will consider two classes of Hamiltonians.
(1) Hamiltonians for which all excitations can be locally annihilated. In this case the
time of convergence scales as τ = O(logN ). (2) Interactions where excitations have
to bemoved along the lattice before they can annihilate and τ = O(N logN ).

To see how the first case can occur notice that, when iterating T , the
correction on λ does not change the outcome of previous measurements on
neighbouring regions because

∀λ ,= λ′: [Uλ,i,Hλ′ ] = 0 (3)

In fact, this can always be achieved by regrouping the regions into larger ones
having an interior I (λ)⊂ λ on which only Hλ acts non-trivially and letting the
Uλ,i solely act on I (λ). Denote by q the largest probability for obtaining twice a
negative measurement outcome on the same region λ. The energy tr[HT M (ρ)]
afterM applications of T decreases then as N (1− (1−q)/N )M such that it takes
O((N logN )/(1−q)) steps to converge to a ground state. The relaxation time of the
corresponding Liouvillian is thus τ = O(logN 1/1−q). Clearly, this is a reasonable
bound only if q<1, a condition possibly incompatible with equation (3).

Note that for all stabilizer states we can achieve q= 0, because there exists
always a local unitary (acting on a single qubit) so that HλUλHλ = 0. A class of
stabilizer states where this is compatible with equation (3) are the so-called graph
states10. In this case, λ labels (with some abuse of notation) a vertex of a graph and
Hλ = (1−σ (λ)

x
∏

(λ,µ)∈E σ (µ)
z )/2, where σ (λ) is a Pauli operator acting on site λ and

E is the set of edges of the graph. Obviously, Uλ = σ (λ)
z does the job. In this special

case, we can get even faster convergence when using the Liouvillian

L(ρ)=
(∑

λ

UλHλρHλU
†
λ

)
− 1

2

{
H ,ρ

}

+

The corresponding relaxation time can be determined exactly by realizing
that the spectrum of L equals that of −(H ⊗1+1⊗H )/2 so that τ = 1 (see
Supplementary Information).

For the second type of commuting Hamiltonians, equation (3) and q< 1 are
incompatible. However, we can still prove fast convergence by relaxing equation (3)
such that within each region λ the Uλ acts on a site closest to a predetermined
site (say the origin) on the lattice and thus commutes with all terms Hλ that are
further away (see Supplementary Information for details). In this way excitations
are moved over the lattice before they can annihilate. As this requires extra time
proportional to the system’s size, we get τ = O(N logN ).

We turn now to another family of ground states of frustration-free
Hamiltonians, namely MPS (ref. 9). For the sake of clearness, we will consider
here translationally invariant Hamiltonians, although the analysis can be
straightforwardly extended to systems without that symmetry. We will specify a
completely positive map to prepare states of the form

|Ψ 〉 =
d∑

i=1

tr(Ai1 ...AiN )|i1 ...iN〉

where the A terms are D×Dmatrices. We assume the injectivity property29, which
implies that Ψ is the unique ground state of a nearest-neighbour frustration-free
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‘parent’ Hamiltonian that has a gap. Denoting by ρ the reduced density operator
corresponding to particles k and k + 1, Hk and Pk = 1−Hk will denote the
projectors onto its kernel and range, respectively. Note that tr(Pk)=D2. We
take N = 2n for simplicity, but this is clearly not necessary. We construct the
channel T in several steps. We first define a channel acting on two neighbouring
particles k,k+1, as follows

Rr,c (X) := PkXPk + Pk

D2
tr(HkX)

Here, k = 2r−1(2c −1), where r = 1,...,n and c = 1,...,2n−r . The action of these
maps has a tree structure, where the index r indicates the row in the tree, whereas c
does it for the column. Now we define recursively,

Sr,c := (1−εr )
2

(Sr−1,2c + Sr−1,2c+1)+εr Rr,c

Here, r = 2,...,n, c = 1,...,2n−r , S1,c := R1,c and εr+1 = 1/Mr , whereM =CN 2

and C * 1 (see Supplementary Information). Note that Sr,1 acts on the first 2r
particles, Sr,2 on the next 2r and so on.We finally define

T := (1−εn+1)Sn,1 +εn+1Rn,2 (4)

In the Supplementary Information, we show that this map achieves the fixed point
(up to an exponentially small error in C) in a time O(N log2(N )). The intuition
behind the completely positive map (4) is that the channels S1,c , which are the ones
that most often applied, project the state of every second nearest neighbour onto
the right subspace. Then S2,c do the same with half of the pairs that have not been
projected. Then S3,c does the same on half of the rest, and so on.

Received 11 March 2008; accepted 18 June 2009; published online
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Entanglement, Decoherence, and the fate of Jimmy Hoffa 
 
 
Charles Bennett 
 
 
Quantum information theory provides a coherent picture of the emergence and obliteration of 

correlations, even in macroscopic systems exhibiting few traditional quantum hallmarks. It helps 

explain why the future is more uncertain than the past, and how decoherence causes information 

to become classical by becoming redundantly replicated throughout a system’s environment, a 

process Zurek nicknamed “quantum Darwinism”. The most private information, exemplified by 

which path a particle takes through an interferometer, evades this replication, and so is 

evanescent in the sense that after the experiment is over even God does not remember what 

“happened”.  Less private kinds of information include classical secrets, facts known only to a 

few, or information—like the lost literature of antiquity—that once was public but has been 

forgotten over time. Finally there is information that has been replicated and propagated so 

widely as to be infeasible to conceal and unlikely to be forgotten. Modern information 

technology has caused a proliferation of such information, eroding personal privacy while at the 

same time deterring crime and tyranny.  At a fundamental level, one might hope that whenever 

information is amplified to the point of becoming macroscopic and classical, it becomes 

permanent and ineradicable. However, by comparing entropy flows into and out of the Earth 

with estimates of the planet’s storage capacity, we conclude that most macroscopic information 

about the past—for example the pattern of drops in last week’s rainfall or rice grains in last 

night’s dinner—is impermanent, soon becoming nearly as ambiguous, from a terrestrial 

perspective, as the which-path information of an interferometer. Depending on the diligence and 

forgetfulness of their enemies, the fate of mysteriously disappeared persons such as US labor 

leader Jimmy Hoffa, thought to have been murdered in 1977, may by now have acquired this 

ambiguous epistemological status. Finally we discuss prerequisites for a system to accumulate 

and maintain in its present state, as our world does, a complex and redundant record of at least 

some features of its past. Not all Hamiltonians and initial conditions lead to this behavior, and in 

those that do, the behavior itself tends to be temporary, with the system losing its memory as it 

relaxes to thermal equilibrium.   
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Entanglement and coherence in biological systems 
 
 
Hans J. Briegel 
 
 
We discuss the possibility of the existence of entanglement in biological systems. Our arguments 

center on the fact that biological systems are thermodynamic open driven systems far from 

equilibrium. In such systems error correction can occur which may maintain entanglement 

despite high levels of decoherence. We also discuss the possibility of cooling (classical or 

quantum) at the molecular level.  

 
Joint work with Sandu Popescu and Jianming Cai.  
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Abstract

We discuss the possibility of existence of entanglement in biological
systems. Our arguments centre on the fact that biological systems are
thermodynamic open driven systems far from equilibrium. In such
systems error correction can occur which may maintain entanglement
despite high levels of de-coherence. We also discuss the possibility of
cooling (classical or quantum) at molecular level.

1 Introduction

The notion of entanglement plays a central role in quantum physics. It is a
key concept in quantum information theory, with applications in quantum
computation and communication [1, 2], and considerable effort has been
devoted to identifying physical systems in which entanglement can be cre-
ated and exploited for information processing purposes [3]. From a broader
perspective, entanglement and the concepts of quantum physics play a fun-
damental role for our understanding of Nature: The occurrence of entan-
glement in any system indicates that we are on a terrain of Nature where
classical concepts are likely to be quite insufficient for its proper understand-
ing.

Experience shows that entanglement - other than the one that is there
because it is a property of the ground state of a system and protected by
brute force via an energy gap - is extremely fragile and easily destroyed by
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noise. Laboratories work very hard to produce such entanglement, e.g. by
isolating single ions in traps and by cooling them close to their motional
ground state or, more generally, by complete control and manipulation of
matter on the atomic level. Hence most researchers believe that entangle-
ment will be hard to find in natural (i.e. uncontrolled) systems outside the
laboratories, not to mention biological systems, which operate at room tem-
perature and which are complex, noisy and “wet” (for a recent review see
e.g. [4]). Here however, we would like to make the case that contrary to
the standard view, entanglement might actually exist and play a role also
in biological systems; one should be aware of this and look for signatures of
entanglement in such systems.

In fact, possible evidence for quantum coherence (though not entangle-
ment) in photosynthetic systems has been recently reported in [5, 6] and
studied theoretically in a number of papers [7, 8, 9, 10].

We want to emphasize from the outset that this is not a research paper in
the sense that we do not have any concrete results to prove that persistent,
controlled entanglement exists in biological systems. We will however try
and present circumstantial evidence for it.

Our main point is that the intuitions about the fragility of entanglement
that are used for dismissing the possibility of entanglement in biological
systems are misleading because they generally ignore a fundamental fact,
namely that biological systems are open driven systems. This opens many
possibilities that, as far as we know, have not yet been carefully considered.

Since the issue is so important, we feel that it would be a great mistake
to dismiss the possibility of biological entanglement without a much more
careful investigation. The scope of our paper is to call for such a vigorous
program of research.

Related to the problem of biological entanglement is possibility of intra-
molecular cooling, that is, the possibility that parts of a molecule are actively
cooled relative to the environmental temperature. This process is in fact
much more general than the generation of entanglement. In fact intra-
molecular cooling might occur also in instances when there is no quantum
coherence whatsoever. As such, the probability that intra-molecular cooling
actually takes place in biological systems is far larger than the probability
of existence of controlled quantum coherent phenomena and entanglement
that form the main subject of the present paper.
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2 Live or dead entanglement?

To start with, we should discuss more carefully what kind of entanglement
are we looking for.

That entanglement, and, more generally, coherent quantum effects al-
ways exist - at some level - in all systems (including biological ones) is quite
clear. After all the laws of quantum physics enter on the level of quantum
chemistry, determining the structure and energy spectra of the molecules
and their interactions. Coming to biology, most scientists would probably
share the view that quantum mechanical effects play a role, but only an in-
direct one: Quantum mechanics would thus be responsible for the molecular
basis or substrate, while the biological functionality of the molecules can
be explained by classical statistical physics, combined with the principles of
molecular Darwinism [11].

This makes it clear that, even before asking whether entanglement exists
or not, we need to better define what we are actually talking about, that is:
what kind of entanglement? In the following, we would like to distinguish
three different kinds of entanglement that we expect to play a role in biology;
the same classification holds also for any quantum coherent processes that
may occur in biological systems.

One has to say from the beginning that the boundaries between theses
different types of entanglement are fuzzy. The classification of some phe-
nomena is clear-cut, while for others one may argue whether it is of type
1 or type 2, etc.; nevertheless, we believe this classification to be essential
when proceeding to study the possibility of biological quantum effects.

The three types of entanglement are:

� entanglement of basic constituents

� dead entanglement

� live entanglement.

Entanglement of basic constituents. Think of any atom or molecule;
these elementary systems contain a lot of entanglement. Indeed, all their
electrons are entangled, the protons and the neutrons in the nucleus are
entangled, and so on. The existence of this sort of entanglement is obvious
and in most cases trivial.

As always the boundary cases may be more interesting. For example,
while the existence of a delocalized electron state in a benzene molecule is
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also quite trivial, finding delocalized states that extend over much larger
molecules may have important consequences.

A similar situation occurs in condensed matter systems, in which the
ground state is typically highly entangled, too. The role of this entanglement
e.g. in quantum magnets or super-conducting materials has attracted a lot
of attention recently [12]. The phenomenon of entanglement is thus not
restricted to the microscopic domain of very few particles, but it occurs also
in macroscopic bodies and even at finite temperatures.

The entanglement in these systems (which could be called “static entan-
glement”) has many interesting facets. In any case, this is not the type of
entanglement we are concerned with in the present paper.

Dead entanglement. Dead entanglement occurs in molecules that have
biological origin or occur in biological cells. However the occurrence of this
kind of entanglement does not require metabolic processes to function. As
such, these molecules can be taken out of the cell, and they will continue to
work.

Here we are talking about systems that are generally in thermal equilib-
rium. When some appropriate external perturbation comes, it takes them
out of equilibrium, some coherent phenomenon takes place and it quickly
dies out. A paradigmatic example of this, outside the biological context,
would be a piece of an optical fiber. When a photon comes it propagates
through the optical fiber and gets out at the other end. However, during the
rest of the time, the piece of optical fiber just stays there, say on an optical
table, and nothing happens to it. A similar example, taken from biology,
would be the more complicated molecule of chlorophyll, which absorbs en-
ergy (in form of a photon) that then propagates (in form of an exciton) from
one centre/part of the molecule to another part, until it reaches the reaction
center. Again, in the absence of the photon, the molecule is at equilibrium
and nothing interesting happens to it.

There are some key words and properties that we generally expect to
be associated with this type of entanglement: Incidental, Side effect, Short
time, May have biological functionality, and May be evolutionary selected.

Incidental: The main characteristic of the process may not require en-
tanglement, or coherence, but in a particular implementation of the process
they may just occur. For example, when a photon propagates through an
optical fiber, maintaining polarisation coherence is not necessary. It so hap-
pens however that present day optical fibers are so good that polarisation
coherence is maintained. But as far as functionality is concerned, which is
transmitting the light, this is not important.
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Side effect: Entanglement may be just some sort of side effect of the
process. That is, it may always accompany a given process, but not play
any role.

Short time: Generally these phenomena are short time because this ex-
ternal perturbation produces some modification but then the environment
immediately brings it down to equilibrium. These are phenomena that may
typically take pico- or femto-seconds. As a matter of fact, if you work on a
very short time scale, there is always some quantum coherence, because it
requires some time to die out, to de-cohere.

On the other hand, one must also be aware that although the absolute
time scales involved in these phenomena are very short, this doesn’t neces-
sarily mean that entanglement/coherence does not play a significant role.
Indeed, a relevant time scale is that of the duration of the process itself.
If entanglement/coherence is present during the whole process, then it may
plays a significant role; otherwise its role is most probably irrelevant.

Biological functionality and evolution: In some instances, the entangle-
ment may have some biological functionality, and it may have been that
this type of quantum coherence was evolutionary selected. It is also possible
that the although the entanglement is just a side effect without biological
functionality, the primary effect that leads to it was biologically selected.
That is, other, important, things were selected and evolved, and with them
the entanglement, but just as an accompanying effect. As an example, we
can give here photosynthesis again.

The key word here is “may”. That is, in the case of this type of en-
tanglement/quantum coherence, while evolution may occur, it is not a sine-
qua-non condition for its very existence.

By no means are “dead” entanglement/quantum coherence non-interesting
phenomena. On the opposite. They are extremely interesting and very com-
plicated: Although conceptually they are the same, there is an enormous
difference between say, propagation of a photon through an optical fiber
and propagation of an exciton through chlorophyll. Showing that even such
“simple” quantum effects actually take place in biological systems is a great
challenge. In fact at present all the experimental work on biological quantum
effects is focussed exactly on this type of processes.

Live entanglement. The defining property of this type of biological en-
tanglement is that it exists only while metabolic processes take place. In
other words, it exists only as long as the system is actively maintained far
from thermal equilibrium, i.e. in open, driven systems far from equi-
librium. When the metabolism stops and the system reaches equilibrium,
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this type of entanglement disappears.
The key properties that we expect this class of phenomena to posses are:

It is persistent, It is dynamically controllable, It has biological functionality,
It is evolutionary selected.

Persistency: By their very nature, these processes are such that as long
as they are active, entanglement/coherence is maintained. This is in fact the
purpose of the entire process. From this point of view they are fundamentally
different from dead-entanglement phenomena, in which the entanglement
appears only as a transitory phenomenon.

Dynamical control: In the case of dead entanglement, such as, if con-
firmed, propagation of an exciton through a chlorophyll molecule, the details
of the process are governed by the structure of the molecule itself. This is a
structural and therefore relatively static parameter. On the other hand, in
processes that are driven far from equilibrium, changes in the way in which
the process is driven can immediately alter the characteristics of the process,
and hence of the entanglement.

Biological functionality and evolutionary selection: These are, of course,
much more complicated processes than the ones that give rise to dead entan-
glement. Unless the live entanglement has biological functionality, evolution
most probably could not have arrived at it.

Again, all the above are properties that we expect this class to posses.
This is not to say, of course, that there could be no exceptions. For example
it is not impossible that some process leads to persistent entanglement as a
side effect with no biological functionality. All we say is that this seems to
us highly improbable.

To conclude this section, we want to emphasize once more that we do not
have any (experimental) evidence, at present, that this type of entanglement
(or similarly: quantum coherence) exists. The very scope of this paper is to
investigate the possibility that such entanglement actually exists.

We would also like to mention that we are by no means suggesting the
possibility of entanglement at very large scale - such as super-positions of
brain states leading possibly to quantum computation in the brain, etc..
This seems to us virtually impossible and here we fully agree with the scep-
tical view expressed in Ref. [4] (see also [13]). What we are interested
in is persistent and controllable entanglement with presumably biological
function, at the level of bio-chemical processes.

6



3 Why should we look for entanglement in biolog-
ical systems?

At first sight, biological systems, which are warm and wet, seem very unlikely
places to look for entanglement. It is our claim however that if entanglement
(of the type we described above) is to be found anywhere in Nature outside
physics labs, it is inside living beings.

To stabilize entanglement is generally difficult and requires complex se-
tups - obtaining and maintaining entanglement in a laboratory is not an easy
task. Of course, some instances of naturally occurring entanglement could
exist in nature, such as a piece of nonlinear crystal that in sunlight may
produce entangled photons by down-conversion. But such occurrences are
purely accidental and probably very rare. On the other hand, biology itself
could be a driving force: if entanglement turns out to be useful, biological
evolution could select for this. In fact it is quite probable that entangle-
ment offers advantages. The point is that the number of possible entangled
states is so much larger than that of non-entangled ones that it is, in fact,
inconceivable not to find entangled states that will offer advantages. Indeed,
the possibilities offered by entanglement are much richer than those offered
by non-entangled mixtures: If the efficiency of a certain biological process
depends on the state that occurs in the system, the state space over which
evolution can optimize that process is much larger if one allows entangled
states. This is essentially a probability argument. To conclude, from this
perspective, if entanglement is to be found anywhere in Nature, then in
biological systems. Incidentally, the only place where we have non-trivial
entanglement, i.e. in some laboratories, it is of ultimate biological origin!
It is only at the end of a long evolution that the required complexity for
producing controlled entanglement has been achieved.

On the other hand, there is a caveat: Evolution takes a long time and
it is quite possible that even though entanglement is useful, nature has not
succeeded yet in exploiting it.

4 Open driven systems and entanglement

Living organisms depend on permanent consumption of energy in the form
of food (or photons, as in plants). Different from e.g. some solid-state
material, a living cell cannot be described as an isolated system. It contin-
uously exchanges particles with its environment, and with them energy and
entropy. In the language of thermodynamics, biological systems are open
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driven (quantum) systems, whose steady state is far away from thermody-
namic equilibrium. As we mentioned in the introduction, this fact has major
implications for the issue of the presence of entanglement.

To begin with, the fact that in open driven systems entanglement can
exist at room temperature is absolutely clear, once one realizes that every
quantum physics laboratory is such a system. So, having established that,
as a matter of principle, controllable entanglement can exist in room tem-
perature systems, the question is only one of scale and complexity. Do we
need sophisticated lasers and large fridges (which work at room temperature
but cool a subpart of them) or can they be present in the small scale of a
living cell? After all, there are numerous studies that show that analogues
of large scale, man-made machines (ratchets, rotors, etc.) do actually exist
on a bio-molecular level (for a review see e.g. [14]). In what follows, we will
give a number of specific examples that seem suitable to be scaled down.

Before going to specific examples however, it is important to understand
why open driven systems make a difference. The reason is that such systems
can perform error correction. Decoherence introduces noise into systems and
increases their entropy. On the other hand, open driven systems have, by
definition, access to a source of free energy and can use it to get rid of
the errors. In fact for the issue we consider, namely merely producing and
stabilizing a particular entangled state, one doesn’t even need full quantum
error correction, i.e. an error correction protocol that can stabilize any
arbitrary superposition of states (in a given Hilbert subspace) [15, 16]. The
error correction we require here is, computationally speaking, trivial - the
stabilization of a single state. Nevertheless, entropically the task is similar,
i.e. the entropy continuously produced by noise has to be removed from the
system.

Coming back to biology, we note that probably the most striking char-
acteristic of biological systems is that they are error correcting systems -
a dead animal starts decomposing in a matter of hours so it must be that
while living there are continuous error correction processes going on which
maintain the body. So once we realize that error correction takes place in
any living organism, whether or not it is enough to stabilize entangled states
becomes a matter of scale not one of principle.

4.1 Toy models I

As a first example, consider the famous procedure used to produce entangle-
ment in present day optical labs, namely parametric down conversion. A typ-
ical parametric down-conversion experiment uses a laser to produce a stream
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of photons that are directed towards a nonlinear crystal. Upon imping-
ing onto the crystal, some of these photons generate pairs of polarization-
entangled photons.

The entanglement in the experiment described above is totally dependent
on the fact that we are dealing with an open driven system: The laser is
powered by a power source; when the source is turned off the entanglement
disappears.

The parametric down-conversion experiment discussed above requires
complex equipment including a laser and a power source. Is such compli-
cated equipment necessary? The answer is no - there is no fundamental
principle of nature that requires complex equipment. The following simple
device (see Fig. 1) could do the same thing.

Suppose we have a thermo-electric element - two simple wires, each made
of a different metal - that is connected to a simple light-emitting-diode LED.
The LED itself is a very simple device as well - two semiconducting crystals,
each with a different impurity, joined together (a so called “n-p junction”).
If one of the joints of the thermo-electrical element is heated relative to the
other, e.g. by a simple flame, the LED will produce a light-beam. When
the output of the LED is directed to a non-linear crystal entangled photons
are produced by parametric down-conversion.
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Note that there is something quite remarkable about this simple device.
(a) It is quite robust and has no moving parts. (b) The entire system is
entirely driven by a temperature difference, thus, the source of free energy
is not coherent, and neither is the transmission of current in the wires a
coherent process (see also [17]). Furthermore, (c), the junction and the
crystal are both at room temperature. This simple device is able to create
something highly quantum mechanical, such as entanglement! How can that
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be? Of course, it has to do with the (coherent) interaction that goes on inside
the crystal, when a photon is absorbed and converted into a pair of photons
with lower energy. The main point to be observed is that this process is
embedded into a hot and rather noisy environment, and it is only due to
the continuous pumping of the system that the entanglement generating
interaction in the crystal can be exploited.

We may further imagine that the photons in the entangled pair are fur-
ther directed to two atoms that absorb them. Upon absorbing the photons,
the atoms become entangled. If the atoms are subjected to noise, the en-
tanglement could be subsequently destroyed; whether any entanglement can
survive for a longer time is a question of how quick is the decoherence ver-
sus the rate of pumping new entanglement into the atoms by subsequent
entangled photon pairs.

A molecular analogue (see Fig. 2) would be a chemical process where a
large molecule (such as a protein) serves as a catalyzer for an exothermic
chemical reaction. We assume that the chemical reaction takes place at a
certain functional centre (“docking site”) of the catalyzer molecule. The
chemical process may lead to a transfer of free energy along the molecule;
the free energy transfer may be conveyed by various channels, for example by
excitons, phonons, or electric current (electron displacement). This energy
transport over the molecule need not be coherent and the molecule may
be at room temperature. What matters is that, at some other site of the
catalyzer molecule, the energy may be converted by some nonlinear process,
similar to the one that occurs in the non-linear crystal of the parametric
down-conversion, into two entangled modes that pump entanglement into,
say, some receiver atoms.

 

   

Figure 2: Hypothetical molecular device that is capable of creating entan-
glement by a molecular pumping process.
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The important point is here that the two atoms, depicted in blue in
Fig. 2, will not be entangled if we stop driving the system, i.e. if we stop
the supply of the reactant chemical. This emphasizes the difference between
passive (static) entanglement, as between electrons in an atom, and the
dynamic equilibrium entanglement.

4.2 Toy models II. Conformational changes and time-dependent
Hamiltonians.

In the previous section we emphasized that set-ups that produce entan-
glement need not be very complex, As a matter of fact however biological
processes are actually very complex and sophisticated. A very important
process that occurs in many instances is that of controlled conformational
changes in proteins [18]. These processes could lead to controlled time-
dependent Hamiltonians, with obvious implications for possible coherent
quantum processes and existence of entanglement.

A conceivable process is the following.

 

   

Figure 3: Entanglement of two atoms (blue) in a molecule, induced by a
stream of reactant chemicals which dock to the catalyzing molecule, leading
to a conformation change (see text).

A chemical process that occurs at one binding site of a protein can lead
to a configuration change of another site of the same protein [28]. This
conformation change may then lead to an interaction e.g. between two
atoms that would otherwise be in a shielded site of the molecule (see Fig. 3).
The two atoms depicted in blue in Fig. 3 are not interacting in the “rest”
state of the protein; they are at thermal equilibrium and non-entangled.
When the conformation change occurs they are brought together and start
interacting. The interaction takes the atoms out of their equilibrium state
and may entangle them. The entanglement survives until de-coherence kills
it and the atoms reach a new thermal equilibrium state. Then protein
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reverts to the rest conformation and the atoms revert to the rest mode and
then the process starts again. The point here is that although both thermal
equilibrium states may be non-entangled, the state of the atoms during
the transition time (which may be relatively long) may well be entangled.
Again, to complete the cycle the protein needs to be supplied with free
energy; if we stop driving the system, i.e. if we stop the supply of reactant
chemicals then the atoms simply reach thermal equilibrium and remain there
and entanglement is lost. As in the previous section, this emphasizes the
difference between passive (static) entanglement, as between electrons in an
atom, and dynamic entanglement that exists due to the (non-equilibrium)
process of conformational changes.

In the above example we described a very simple cycle. It is conceiv-
able however that more complicated cycles could exist, with many different
conformational changes occurring sequentially. Such a process may then
implement a more intricate time-dependent Hamiltonian corresponding to
what in quantum information is called a “sequence of gates”.

4.3 Toy models III. Intra-molecular cooling.

Thinking of different ways of obtaining controllable entanglement in the
laboratory, with an eye to possible biological implementation has led us to
the idea of intra-molecular cooling. This process is far more general than the
generation of entanglement and needs not be associated with entanglement
at all. In fact intra-molecular cooling might occur also in instances when
there is no quantum coherence whatsoever. As such, the probability that
intra-molecular cooling actually takes place in biological systems is far larger
than the probability of existence of controlled quantum coherent phenomena
and entanglement that form the main subject of the present paper.

Cooling, if it could actually be achieved at molecular level, would have
obvious benefits. One example is when there are many possible reaction
channels and, when the site is cooled, a preferred channel is selected. An-
other example is increased efficiency of catalysis: Many proteins act as cat-
alyzers with very high specificity. They have active sites in the shape of
cavities, which bind only molecules have that fit precisely into the cavity
like a hand in a glove. At high temperature the protein vibrates stronger
and the shape of the cavity is deformed which leads to a decline in the effi-
ciency of catalysis. Obviously, if the active site could be cooled this would
be a benefit.

Regarding the potential role of cooling in biological systems, it should
be realized that many organisms have indeed the ability of cooling parts of
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their body. For example our body temperature is kept largely stable at a
temperature around 37 �, even when we live in hot climate. This is only
possible since our body has a built-in cooling system. The only question
is therefore not whether or not cooling exists in biological organisms but
at which scale. Does it exist only at large scale - at the scale of the whole
organism, or at scale of internal organs - or is it present all the way down to
molecular level? Given the potential advantages for intra-molecular cooling,
it is not inconceivable that such mechanisms were evolutionary selected. In
fact, it is even possible that cooling at molecular level is much stronger than
at the scale of the whole body. The reason for this is two fold. First in
smaller systems, the coupling of parts of the system with the environment
may be much weaker than of other parts so some parts, the “inside of the
fridge” could be rather well isolated from the environment. Second, there
may be a lot of free energy available (from chemical reactions), which will
be channeled preferentially within the molecule.

Set-ups that allow cooling can be surprisingly simple. An explicit exam-
ple is the so called “algorithmic cooling” [19, 20, 21] which could be realized
even on a molecular level. In algorithmic cooling, we have in mind that
some atoms at a given site, presumably an active but protected site, might
be cooled. A very simple example of algorithmic cooling [20] involves only
three qubits (i.e. two-level systems). In their original example Brassard
et al. [20] considered the qubits to be nuclear magnetic moments, but any
other physical system (such as vibrational levels of atoms) could be used. In
this example one qubit can be cooled while the two other qubits get warmer
- very much like the back spiral of an ordinary refrigerator. From these
two warmer qubits heat is dissipated into the environment and the process
continues, achieving persistent cooling of the first qubit.

In the algorithmic cooling process, the interactions between the qubits
are time dependent, driven by an external mechanism. Essentially, this can
be realized by a (short) sequence of pair wise couplings between the qubits.
In practice, this could be realized by, say, changing the relative position
of atoms according to a predetermined sequence, something that could be
realized by a sequence of conformational changes in a protein. Consider for
example a protein molecule with two active sites, similar to the one in Fig. 3.
The active site on the left is where we supply free-energy (by some catalytic
reaction) which is required for driving the cooling process. The active site
on the right (where the blue atoms in Fig. 3 are) is the “main active site”
that we want to cool. The chemical reaction at the active site on the left
drives the cooling process at the active site on the right.

Of course, it is impossible to measure directly the temperature of an
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active site of a protein. However one possible signature for the presence of
a cooling process would be the following: As mentioned above the typical
rate of reaction for biological catalytic processes is the following. At low
temperature the reaction is slow because the reactants move slower. Then
the rate increases with the temperature. However, after a certain temper-
ature the reaction rate starts decreasing because the reaction site becomes
deformed due to vibrations and the reactants don’t fit in it anymore.

Consider now the activity of the site subjected to cooling, described in
Fig. 4. The temperature axis of the graph represents the temperature of the
environment of the molecule (the temperature of the cell, or of the liquid that
surrounds the cell. The two curves describe the rate of this reaction in two
cases - when the protein is supplied with free-energy and when not. Recall
that we supply free-energy in the form of chemical reactants that react on the
active site at left. When there are no reactants to drive the cooling process,
the main active site is at the same temperature as the environment. On the
other hand, when there is a supply of reactants the main active site is cooled
relative to the environment and the rate of the reaction it catalyzes remains
high at higher environmental temperatures. Note however that there should
be no difference between the two cases at low temperatures because then
the rate is simply limited by the slow movement of the molecules of interest,
i.e. they enter less frequently in the main active site.
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Consider now the activity of the site subjected to cooling, described in Fig. 4. The 
temperature axis of the graph represents the temperature of the environment of the 
molecule (the temperature of the cell, or of the liquid that surrounds the cell.  The two 
curves describe the rate of this reaction in two cases - when the protein is supplied 
with free-energy and when not. Recall that we supply free-energy in the form of 
chemical reactants that react on the active site at left. When there are no reactants to 
drive the cooling process, the main active site is at the same temperature as the 
environment. On the other hand, when there is a supply of reactants the main active 
site is cooled relative to the environment and the rate of the reaction it catalyses 
remains high at higher environmental temperatures. Note however that there should 
be no difference between the two cases at low temperatures because then the rate is 
simply limited by the slow movement of the molecules of interest, i.e. they enter less 
frequently in the main active site. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temperature 

Rate 

Figure 4: Potential control of enzyme activity through intra‐molecular 
cooling (see text). 

Figure 4: Potential control of enzyme activity through intra-molecular cool-
ing (see text).

Of course, there could be many reasons why the rate of reaction at the
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main active site increases when a reaction occurs at the other site of the
molecule - the molecule’s configuration could simply be optimized for the
case when both reactions occur simultaneously. However, the very specific
temperature dependence described above could be a good indicator.

4.4 Toy models IV. Reset mechanisms.

Our last example is not derived from a macroscopic device, but from the
study of another instance of an open driven quantum system away from
thermal equilibrium. This is a gas-type system - specifically a spin gas -
that was studied in [22]. This particular system is relatively simple and it is
accessible to quantitative analysis. The reason why it is instructive to study
this example has to do with the role of de-coherence in such a system, which
couples to the individual gas particles and thus quickly destroys any tran-
sient entanglement. It is thus clear that no static entanglement can occur in
such a system. Let us consider a simple gas cell, where gas particles move
on classical trajectories, but have some internal structure which is described
by quantum mechanics (see Fig. 5). The interaction between these particles
is capable of entangling their internal degree of freedom. As a concrete re-
alization, we may e.g. imagine ultra-cold atoms with two internal hyperfine
states |0〉 and |1〉, or molecules carrying a nuclear spin with two possible
states. For the sake of the argument, suppose that we have full knowledge
about the entire interaction history of the gas particles. As was found in
a series of studies, the quantum states generated under such a simple dy-
namics, can already display a number of interesting and highly non-trivial
entanglement properties. These include states with a high persistency of
entanglement and states that are universal resources for quantum computa-
tion. This illustrates that even a system as simple as this (toy-model of a)
gas can exhibit highly non-trivial and complex quantum effects.

Consider now that, as in any real scenario, these states will be exposed
to de-coherence, which will quickly destroy the entanglement. A possible
mechanism for de-coherence could be collisions of the gas particles with the
environment consisting e.g. of other species of particles - a “buffer gas” -
within the gas cell (see Fig. 5). The effect of such additional interactions,
even if they are weak, will be devastating and in general no entanglement
will survive in steady state.

However, as was shown in [23], there is a simple mechanism that can in
principle sustain the entanglement in the gas in the presence of de-coherence,
without introducing entanglement by itself! Imagine that, when particles
enter a certain region in the cell, indicated by a red spot in Fig. 6, they are
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b) Decoherence , e.g. 
due to collisions with 
other molecules 

a) Entanglement generation
while system particles interact 

Figure 5: a) Illustration of a spin gas (blue): Particles move on classical
trajectories, but each particle carries an internal quantum mechanical degree
of freedom, such as a spin. Upon collision, the spin degrees of freedom get
entangled. b) Collisions of the gas particles with other particles (buffer gas,
green) lead to de-coherence.

reset in some pure state |χ〉 = α|0〉+β|1〉. This could be realized by various
mechanisms, for example by an interaction with some local structure in the
cell.

Such a reset mechanism will have two effects. It destroys existing entan-
glement between this particle (i.e. its spin) and the other particles in the
gas, but it also destroys this particle’s entanglement with the environment!
On first sight, this does not appear to be very constructive, but it has the
effect that the particles that leave the light spot are in a pure state, and,
if two of such particles collide later on (e.g. in the vicinity of the spot),
they are capable of creating fresh entanglement! A detailed analysis shows
indeed that, for a specific choice of parameters this (toy-model of a) gas can
have a steady state, where entanglement persists in the cell. Depending on
the mean free path of the particles, the regions of persisting entanglement
may be confined to the vicinity of the reset region or they may extend over
the entire gas cell.

While the details of this process are not of interest here, it should be men-
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Figure 6: Particles that pass through the reset region indicated by a red
spot will be reset in some standard internal state of low entropy. Particles
that cross the spot will thus leave the spot in a pure state |χ〉 = α|0〉+β|1〉.
As a consequence, entanglement will build up around the spot and persist
– in dynamic equilibrium – despite of de-coherence.

tioned that there are two regimes, one of vanishing and one of non-vanishing
entanglement, and there is a sharp transition between them. Entanglement
can be sustained if both the coherent interaction strength and the reset rate
are sufficiently large. Furthermore, the particles need not be reset to a pure
state; it suffices if they leave the region in a mixed state of sufficiently low
entropy/high purity.

The main purpose of the preceding discussion of the spin gas was to
demonstrate that the possibility of entanglement is not confined to highly
controlled systems at very low temperatures: Simple reset processes allow
entanglement to persist also in a hot and noisy environment! Even though
this is a simple model, it is conceivable that similar processes could play a
role also in biological systems, where various analogues of reset processes
exist.

5 Conclusions

Biological systems are of extraordinary complexity and diversity. As such,
at the moment we don’t know where to start searching for entanglement
and/or molecular cooling, be it an experimental search or a theoretical one.
Furthermore, the specific toy models presented here are almost surely with
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very little direct relevance in biology. However, our goal here is far more
limited - it is to argue that the presence of controlled entanglement with bi-
ological functionality cannot be discounted automatically, without a careful
study. Indeed, although our specific toy models may well have very little
direct relevance, we are confident that the processes we described (entan-
glement pumping, resetting, etc.) are to be found in a way or another; the
same applies to the idea of molecular cooling. Ultimately, the power of bi-
ological evolution coupled with the fact that biological organisms are open,
driven systems, may open the door for many unexpected quantum phenom-
ena. Similarly, they also open the door to highly non-trivial thermodynamic
phenomena.

Note added: Since the first version of this paper was put on ArXiv, a
number of preprints have appeared which investigate the role of quantum en-
tanglement in specific biological scenarios, including e.g. photosynthesis [24]
and the chemical compass mechanism for magnetoreception [25, 26]. The
possibility of dynamic entanglement generated by conformational changes
of molecules, as described in Sec. 4.2, has in the meantime been studied
quantitatively in [27].
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Abstract 
 
Theoretical and experimental aspects of testing the quantum superposition principle for relatively 
massive objects will be presented. In collaboration with Prof. R. Penrose a specific experiment 
for achieving this was proposed [1]. The motivation for Prof. R. Penrose to consider such an 
experiment stems from his prediction that gravitational effects play a role in the reduction of a 
quantum superposition to a single “branch” of the superposition. There are two levels of 
reasoning that led Penrose to his prediction [2]. The highest level is related to the evolution of the 
universe; starting from the Big Bang the universe appears to evolve into a collection of black 
holes that evaporate into zero-mass fields. In order to reconcile this observation with the notion 
that entropy increases, Penrose concludes that there must be a physical process by which state-
space reduces (in order to counterbalance the increase of entropy). He then identifies this with 
quantum measurements in which a state-space reduction (collapse of the wave-function) seems to 
take place. The second level of reasoning is based on the observation that a quantum wave 
function  describing a spatial superposition of a massive object is simply 
inconsistent with the theory of relativity; a spatial superposition of a massive object implies two 
different space time structures (space-time curvature is determined by the position of the mass) 
and can therefore not be described by a single set of coordinates x, y, z, t.  Penrose has estimated 
the energy associated with a superposition of two space-time structures resulting from a spatial 
superposition of a massive object, and argues that this amount of excess energy is allowed for a 
certain amount of time, invoking the Heisenberg uncertainty relation for time and energy. Based 
on this argument one can estimate that objects observed in quantum superpositions to date (such 
as atoms, BECs, superconducting currents and C60 molecules, and even the mechanical resonator 
recently investigated by A, Cleland [Nature 2010]) had much too small mass to observe the 
reduction of the wave function within the time scale of the performed experiments. It will, 
according to Prof. R. Penrose, require objects of about 10-12 kg (approximately corresponding to 
the objects considered below) to witness the collapse of the wave function on a time scale of the 
order of a second.  The designed experiment [1] should bring a tiny mirror in a quantum 
superposition for several microseconds, thus approaching the regime of interest to test Penrose’s 
predictions. 

( tzyx ,,,Ψ )

 
The experiment envisioned in 2003 has received a lot of attention and the challenge to design, 
fabricate and test such opto-mechanical systems that can display quantum-mechanical behavior is 
currently a strongly emerging field of science and technology. The reason for this huge interest is 
partly the fundamental importance, partly the application of optical cooling (an active cooling 
scheme will be presented [3]), partly the interest in quantum information processing where 
quantum mechanical resonators can couple to other quantum systems, and partly the potential for 
metrology applications in weak force and momentum detection. A good overview of state-of-the-
art research in this field can be found in [4].  
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We propose an experiment for creating quantum superposition states involving of the order of 1014

atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality
mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson
interferometer. By observing the interference of the photon only, one can study the creation and
decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that
the experiment is within reach using a combination of state-of-the-art technologies.

DOI: 10.1103/PhysRevLett.91.130401 PACS numbers: 03.65.Ta, 03.65.Yz, 42.50.Ct
FIG. 1. The proposed setup: a Michelson interferometer for a
single photon, where in each arm there is a high-finesse cavity.
The cavity in arm A has a very small end mirror mounted on a
micromechanical oscillator. The single photon comes in
through I. If the photon is in arm A, the motion of the small
photon on the mirror. The initial superposition of the
photon being in either arm causes the system to evolve

mirror is affected by its radiation pressure. The photon later
leaks out of either cavity and is detected at D1 or D2.
Introduction.—In 1935 Schrödinger pointed out that
according to quantum mechanics even macroscopic sys-
tems can be in superposition states [1]. The associated
quantum interference effects are expected to be hard to
detect due to environment induced decoherence [2].
Nevertheless, there have been proposals on how to create
and observe macroscopic superpositions in various sys-
tems [3–7], as well as experiments demonstrating super-
position states of superconducting devices [8] and large
molecules [9]. One long-term motivation for this kind of
experiment is the search for unconventional decoherence
processes [5,10].

In several of the above proposals a small quantum
system (e.g., a photon [4–6] or a superconducting island
[7]) is reversibly coupled to a large system (e.g., a move-
able mirror [4–6] or a cantilever [7]) in order to create a
macroscopic superposition. The existence of the quantum
superposition of the large system is verified by observing
the disappearance and reappearance of interference for
the small system, as the large system is driven into a
superposition and then returns to its initial state. The
challenge is to find a feasible implementation of this idea.

Our proposal develops on the ideas in Refs. [4,5]. We
also use results from Ref. [6], which relies on coupling
between atoms and photons in a microcavity to create
and detect superposition states of a moveable mirror. In
particular, the formalism used in Ref. [6], based on
Refs. [11,12], is applicable to our case. The main purpose
here is to show that our purely optical proposal has the
potential to be performed with current technology.

Principle.—The proposed setup, shown in Fig. 1, con-
sists of a Michelson interferometer which has a high-
finesse cavity in each arm. The cavity in arm (A) contains
a tiny mirror attached to a micromechanical oscillator,
similar to the cantilevers in atomic force microscopes.
The cavity is used to enhance the radiation pressure of the
0031-9007=03=91(13)=130401(4)$20.00 
into a superposition of states corresponding to two dis-
tinct locations of the mirror. The observed interference of
the photon allows one to study the creation of coherent
superposition states of the mirror.

The system can be described by a Hamiltonian [6,11]

H � �h!ca
ya� �h!mb

yb� �hGaya�b� by�; (1)

where !c and a are the frequency and creation operator
for the photon in the cavity, !m and b are the frequency
and phonon creation operator for the center of mass
motion of the mirror, and G � �!c=L�

�����������������������
� �h=2M!m�

p
is

the coupling constant, where L is the cavity length and
M is the mass of the mirror.

Let us suppose that initially the photon is in a super-
position of being in either arm A or B, and the mirror is in
2003 The American Physical Society 130401-1



FIG. 2. Time evolution of the interference visibility V of the
photon over one period of the mirror’s motion for the case
where the mirror has been optically cooled close to its ground
state ( �nn � 2, solid line) and for T � 2 mK, which corresponds
to �nn � 100 000 (dashed line —see also inset). The visibility
decays after t � 0, but in the absence of decoherence there is a
revival of the visibility after a full period. The width of the
revival peak scales like 1=

���
�nn

p
.
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its ground state j0im. Then the initial state is j �0�i �
�1=

���
2

p
��j0iAj1iB � j1iAj0iB�j0im. After a time t the state

of the system will be given by [6,12]

j �t�i �
1���
2

p e�i!ct
j0iAj1iBj0im

� ei�
2�!mt�sin!mt�j1iAj0iB

� j��1� e�i!mt�im�; (2)

where � � G=!m, and j��1� e�i!mt�im denotes a coher-
ent state with amplitude ��1� e�i!mt�. In the second term
on the right-hand side the mirror moves under the influ-
ence of the radiation pressure of the photon in cavity A.
The mirror oscillates around a new equilibrium position
determined by the driving force. The parameter � quan-
tifies the displacement of the mirror in units of the size of
the ground state wave packet.

The maximum interference visibility for the photon is
given by twice the modulus of the off-diagonal element of
the photon’s reduced density matrix. By tracing over the
mirror one finds from Eq. (2) that the off-diagonal ele-
ment has the form 1

2 e
��2�1�cos!mt�ei�

2�!mt�sin!mt�. The first
factor is the modulus, reaching a minimum after half a
period at t � �=!m, when the mirror is at its maximum
displacement. The second factor gives the phase, which is
identical to that obtained classically due to the varying
length of the cavity.

In the absence of decoherence, after a full period, the
system is in the state �1=

���
2

p
��j0iAj1iB � ei�

22�j1iAj0iB� �
j0im, such that the mirror is again disentangled from the
photon. Full interference can be observed if the photon is
detected at this time, provided that the phase factor ei�

22�

is taken into account. This revival, shown in Fig. 2,
demonstrates the coherence of the superposition state
that exists at intermediate times. For �2 * 1 the super-
position involves two distinct mirror positions. If the
environment of the mirror ‘‘remembers’’ that the mirror
has moved, then, even after a full period, the photon will
still be entangled with the mirror’s environment, and thus
the revival will not be complete. Therefore the setup can
be used to measure the decoherence of the mirror.

Here we have assumed that the mirror starts out in its
ground state. We will argue below that optical cooling
close to the ground state should be possible. However, in
Ref. [6] it was shown that this is not necessary for ob-
serving the revival, although for a thermal mirror state
with an average phonon number �nn � 1=�e �h!m=kT � 1� the
revival peak is narrowed by a factor of

���
�nn

p
, leading to

stricter requirements on the stability; see Fig. 2 and the
discussion below. We now discuss the experimental re-
quirements for achieving a superposition of distinct mir-
ror positions and for observing the revival at t � 2�=!m.

Conditions for displacement by ground state size.—We
require �2 * 1, which implies the momentum imparted
by the photon has to be larger than the initial quantum
uncertainty of the mirror’s momentum. Let N denote the
number of round-trips of the photon in the cavity during
130401-2
one period of the mirror’s motion, such that 2NL=c �
2�=!m. The condition �2 * 1 can be written

2 �hN3L

�cM�2
* 1; (3)

where � is the wavelength of the light. The factors enter-
ing Eq. (3) are not all independent. The achievable N,
determined by the quality of the mirrors, and the mini-
mum mirror size (and hence M) both depend on �. The
mirror’s lateral dimension should be an order of magni-
tude larger than � to limit diffraction losses. The thick-
ness required in order to achieve sufficiently high
reflectivity depends on � as well.

Equation (3) allows one to compare the viability of
different wavelength ranges. While the highest values for
N are achievable for microwaves using superconducting
mirrors (up to 1010), this is counteracted by their longer
wavelengths. On the other hand, there are no good mir-
rors for highly energetic photons. The optical regime is
optimal, given current mirror technology. We propose an
experiment with � around 630 nm.

The cavity mode needs to have a sharp focus on the tiny
mirror, which requires the other cavity end mirror to be
large due to beam divergence. The maximum cavity
length is therefore limited by the difficulty of making
large high-quality mirrors. We propose a cavity length of
5 cm, and a small mirror size of 10� 10� 10 �m,
leading to a mass of order 5� 10�12 kg.

Such a mirror on a mechanical oscillator can be fab-
ricated by coating a silicon cantilever with alternating
layers of SiO2 and a metal oxide. The best current optical
mirrors are made in this way. A larger silicon oscillator
has been coated with SiO2=Ta2O5 and used as part of a
high-finesse cavity in Ref. [13].
130401-2
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For the above dimensions the condition Eq. (3) is
satisfied for N � 5:6� 106. Correspondingly, photon
loss per reflection must be smaller than 3� 10�7, about
a factor of 4 below reported values for such mirrors [14]
and for a transmission of 10�7, consistent with a 10 �m
mirror thickness. For these values, about 1% of the pho-
tons are still left in the cavity after a full period of the
mirror. For the above values of N and L one obtains a
frequency !m � 2�� 500 Hz. This corresponds to a
spread of the mirror’s ground state wave function of order
10�13 m.

The fact that a relatively large L is needed to satisfy
Eq. (3) implies that the creation of superpositions follow-
ing the microcavity based proposal of Ref. [6] imposes
requirements beyond current technology. A large L is
helpful because, for a givenN, it allows a lower frequency
!m, and thus a more weakly bound mirror that is easier to
displace by the photon.

Decoherence.—The requirement of observing the re-
vival puts a bound on the acceptable environmental deco-
herence. To estimate the expected decoherence we model
the mirror’s environment by an (Ohmic) bath of har-
monic oscillators. The effect of this can approximately
be described by a decoherence rate �D � �mkTEM��x�2=
�h2 governing the decay of off-diagonal elements between
different mirror positions [2]. Here �m is the damping
rate for the mechanical oscillator, TE is the temperature of
the environment, which is constituted mainly by the
internal degrees of freedom of the mirror and cantilever,
and �x is the separation of two coherent states that are
originally in a superposition. This approximation is
strictly valid only for times much longer than 2�=!m
and for �x large compared to the width of the individual
wave packets. Here we assume that the order of magnitude
of the decoherence is well captured by �D. If the experi-
ment achieves �2 * 1, i.e., a separation by the size of a
coherent state wave packet, �x

���������������������
� �h=M!m�

p
, the condi-

tion �D & !m can be cast in the form

Q *
kTE
�h!m

; (4)

whereQ � !m=�m is the quality factor of the mechanical
oscillator. For Q * 105, which has been achieved [15] for
silicon cantilevers of approximately the right dimensions
and frequency, this implies that the temperature of the
environment has to be of the order of 2 mK, which is
achievable with state-of-the-art dilution refrigerators.

Optical cooling.—Cooling the mirror’s center of mass
motion significantly eases the stability requirements for
the proposed experiment. A method for optical cooling of
a mirror via feedback was first proposed in Ref. [16]. By
observing the phase of the output field of a cavity, its
length can be measured with high precision. This can be
used to implement a feedback mechanism that cools the
center of mass motion of the mirror far below the tem-
perature of its environment. A variation of the original
130401-3
scheme was experimentally implemented in Ref. [17],
where a vibrational mode of a macroscopic mirror was
cooled using a feedback force proportional to the natural
damping force, but larger by a gain factor g. The size of g
determines the achievable final temperature for a given
TE. For a tiny mirror, large gain values are realistic using
the radiation pressure of a second laser beam to imple-
ment the feedback force. To analyze cooling to the quan-
tum regime, one has to take into account the fact that
measurement and feedback introduce noise, Ref. [18].

For our proposed experiment the constant component
of the feedback laser has to balance the force from the
measurement field, since otherwise the mirror would start
to oscillate when the light is turned off. Adapting
Ref. [19], the final energy of the cooled mirror is given by

Ec �
�h!m

2

1

2�1� g�

�
4kBTE
�h!m

� 2# �
g2

$#

�
; (5)

where TE is the temperature of the mirror’s environment,
# � �64�cP=M�m!m��2

cL2�, with P the light intensity
incident on the measurement cavity and �c the cavity
decay rate, and $ the detection efficiency. The first term
in Eq. (5) comes from the original thermal fluctuations,
which are suppressed by the feedback. The second term is
the back action noise from the measurement and feedback
light. It differs from the formula of Ref. [19] by a factor of
2 to include the noise from the feedback laser. The third
term is the noise due to imperfect measurement.
Increasing the light intensity in the cavity improves the
measurement precision, but also increases the back action
noise.

The energy of the mirror can be made very close to its
ground state energy choosing realistic parameter values;
Ec � �h!m can be achieved with g � 6� 105, TE �
2 mK, P � 10�8 W, �c � 3� 107 s�1, � � 800 nm, $ �
0:8, �m � 0:03 s�1, and M;!m; L as before. The neces-
sary feedback force for such a high value of g can be
achieved with a feedback laser intensity modulation of
�Pfb � 10�6 W. To balance the measurement field, the
constant component of the feedback laser should be
�PPfb � 4� 10�6 W. The relatively large value of �c can
be achieved in the cavity used in the superposition ex-
periment by working at a wavelength away from where
the mirrors are optimal.

Once the mirror has been cooled close to its ground
state, which is reached in a time of order 1=��mg� [20],
the measurement and feedback laser fields should be
turned off simultaneously. Then the experiment proceeds
as described above. Reheating of the mirror happens at a
time scale of 1=�m [20] and thus is not a problem for a
high-Q oscillator. After every run of the experiment, the
mirror has to be reset to its initial state by the optical
cooling procedure.

Stability.—The distance between the large cavity end
mirror and the equilibrium position of the small mirror
has to be stable to of order �=20N � 0:6� 10�14 m over
130401-3
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the whole measurement time, which is determined as
follows. A single run of the experiment starts by sending
a weak pulse into the interferometer, such that on average
0.1 photons go into either cavity. This probabilistically
prepares a single-photon state as required to a good
approximation. The two-photon contribution has to be
kept low because it causes noise in the interferometer.
Considering the required low value of !m and the fact
that approximately 1% of the photons remain after a full
period for the assumed loss, this implies a detection rate
of approximately 10 photons per minute in the revival
interval. Thus we demand stability to of order 10�14 m
over a few minutes. Stability of order 10�13 m=min for an
STM at 8 K was achieved with a rather simple suspension
[21]. Gravitational wave observatories using interferome-
ters also require very high stability in order to have a
length sensitivity of 10�19 m over time scales of a ms or
greater, for arm lengths of order 1 km [22]. If the mirror
is in a thermal state, the revival peak is narrowed by a
factor

���
�nn

p
[6], leading to lower count rates in the revival

interval and thus making the stability requirements
stricter by the same factor, cf. Fig. 2.

The experiment also requires ultrahigh vacuum con-
ditions in order to ensure that events where an atom hits
the cantilever are sufficiently rare not to cause significant
errors, which is at the level of about 5=s. Background gas
particle densities of order 100=cm3 have been achieved
[23] and are sufficient for our purposes.

Outlook and conclusions.—In principle the proposed
setup has the potential to test wave function reduction
models, in particular, the one of Ref. [5]. We estimate that
the ratio Q=T needs to be improved by about 6 orders of
magnitude from the values discussed in this Letter (Q �
105 and T � 2 mK) to make the predicted wave function
decoherence rate comparable to the environmental deco-
herence rate. However, temperatures as low as 60 �K
have been achieved with adiabatic demagnetization [24],
whileQ is known to increase with decreasing temperature
[15] and through annealing [25].

We have performed a detailed study of the experimen-
tal requirements for the creation and observation of quan-
tum superposition states of a mirror consisting of 1014

atoms, approximately 9 orders of magnitude more mas-
sive than any superposition observed to date. Our analysis
shows that, while very demanding, this goal appears to be
within reach of current technology.
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LETTERS

Sub-kelvin optical cooling of a micromechanical
resonator
Dustin Kleckner1 & Dirk Bouwmeester1

Micromechanical resonators, when cooled down to near their
ground state, can be used to explore quantum effects such as
superposition and entanglement at a macroscopic scale1–3. Prev-
iously, it has been proposed to use electronic feedback to cool a
high frequency (10 MHz) resonator to near its ground state4.
In other work, a low frequency resonator was cooled from room
temperature to 18 K by passive optical feedback5. Additionally,
active optical feedback of atomic force microscope cantilevers
has been used to modify their response characteristics6, and cool-
ing to approximately 2 K has been measured7. Here we dem-
onstrate active optical feedback cooling to 135 6 15 mK of a
micromechanical resonator integrated with a high-quality optical
resonator. Additionally, we show that the scheme should be appli-
cable at cryogenic base temperatures, allowing cooling to near the
ground state that is required for quantum experiments—near
100 nK for a kHz oscillator.

Using a laser tuned to the resonance fringe of a high finesse optical
cavity, it is possible to observe very small fluctuations in the length of
the cavity due to brownian motion of one or both of the end mirrors.
We have developed an optical cavity with one rigid large mirror,
6 mm in diameter and with a 25 mm radius of curvature, and one
tiny plane mirror, 30 mm in diameter, attached to a commercial
atomic force microscope cantilever of dimensions 450 3 50 3 2mm
with a fundamental resonance of 12.5 kHz (Fig. 1b). An optical fin-
esse of 2,100 and a mechanical quality factor of 137,000 have been
achieved with the system8. The motion of the tiny mirror/cantilever is
monitored by measuring the transmission of the cavity at a frequency
on the side of an optical resonance peak. To do this, we use about
1 mW from a 780 nm tunable diode laser which is locked to the
resonance fringe using the integrated signal from a photo-multiplier
tube which monitors the light transmitted through the cavity
(Fig. 1a). The time derivative of this signal is proportional to the
velocity of the cantilever tip and is used to modulate the amplitude
of a second, 980 nm, diode laser focused on the cantilever less than
100 mm away from the tiny mirror. The radiation pressure exerted by
this feedback laser counteracts the motion of the mirror and effec-
tively provides cooling of the fundamental mode.

The effective feedback gain can be varied over several orders of
magnitude by sending the feedback laser through a variable neutral
density filter. The average power in the feedback beam when it
reaches the cantilever is of the order of 1 mW at the highest gain
settings and proportionally lower otherwise. The mean modulation
depth of the feedback beam varies from nearly 100% to less than 5%
as gain is increased. The vibration spectrum of the cantilever as a
function of gain is shown in Fig. 2. The r.m.s. thermal amplitude of
the cantilever without feedback is 1.2 6 0.1 Å. From this value,
one can calculate that the spring constant of the cantilever is
0.15 6 0.01 N m21, in agreement with the manufacturer-specified

range, and the effective mass of the cantilever fundamental mode is
(2.4 6 0.2) 3 10211 kg.

To determine the effective gain of the feedback loop and the tem-
perature of the fundamental mode, we fit a lorentzian plus a constant
background to the vibration spectrum of the cantilever for each value
of feedback gain. The temperature is determined from the area under
the lorentzian without the background, while the gain is determined
by the width of the resonance. The linewidth provides a good mea-
sure of gain because it is directly determined by the damping rate
whereas the cantilever amplitude may be affected by other sources of
noise in the feedback loop. Cooling is observed over more than three
orders of magnitude. The lowest temperature we are able to measure
is 135 6 15 mK, or a cantilever r.m.s. amplitude of 0.023 6 0.002 Å,
with a gain (the ratio of feedback to mechanical damping) of
g 5 2,490 6 90 (Fig. 2b). The lowest trace in Fig. 2b, indicating an
even lower temperature, cannot be reliably fitted owing to the laser
noise floor. Since the optical finesse is not the current limiting factor,
we operate the opto-mechanical system at a finesse of only 200,
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Figure 1 | The experimental system. a, Diagram of the feedback
mechanism: a 780 nm observation laser (Obs.) is frequency locked to the
optical cavity (shown magnified at bottom) with an integrating circuit (via
the laser frequency modulation input, f. mod), using the signal from a
photomultiplier tube (PMT). This signal is also sent through a 1.25 kHz
bandpass filter at 12.5 kHz and a derivative circuit (d/dt) to provide an
intensity-modulating signal (I. mod.) for the 980 nm feedback laser (Fb.).
The feedback laser is attenuated with a variable neutral density (ND) filter to
adjust the gain of the feedback. The feedback force is exerted on the
cantilever via this laser’s radiation pressure. b, Scanning electron microscope
image of the tip of the cantilever with attached mirror.
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produced by slight cavity misalignment, which makes the system less
sensitive to transient vibrations.

The amplitude of the mirror motion can be calculated in the pres-
ence of feedback by assuming that the Langevin force—the effective
thermal force that maintains brownian motion—remains constant
while the mechanical susceptibility of the mirror is reduced by the
dissipation due to the radiation feedback pressure. It suffices to con-
sider only the fundamental mode of the mirror motion, represented
by a damped harmonic oscillator. In this approximation, the power
spectrum of the mirror’s motion in the presence of feedback
becomes9:

Sfb
x ½V�~

2C0kBT0

M

1

(v2{V2)2z(1zg)2C2
0V2

ð1Þ

where V is the observation frequency, v is the resonator frequency,
C0 is the mechanical damping factor, M is the effective mass of the
resonator mode, kB is Boltzmann’s constant, T0 is the bulk temper-
ature of the resonator and g is the gain. g 5 0 corresponds to the
vibration spectrum in the absence of feedback. The motion of the
oscillator in the presence of feedback is the same as that of an oscil-
lator with lower temperature and a higher damping constant:

Tfb~(1zg){1T0 ð2Þ

C fb~(1zg)C0 ð3Þ

The optical feedback scheme, when analysed in terms of noiseless
classical light fields, can be seen as a virtual viscous force, which
unlike a real viscous force creates dissipation without introducing
fluctuations. As discussed below, the cooling temperature as demon-
strated here is limited by laser frequency fluctuations. Ultimately,
optical cooling should be limited by the balance of residual heating
and quantum noise in the observation and feedback laser signals.

For a signal-to-noise ratio of one in spectral density at the peak of
the mechanical resonance, the temperature of the cantilever would be
(as can be derived from equation (1)):

Tmin%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0Mv3Snoise

2kBQ

s

ð4Þ

where Snoise is the equivalent position noise in the interferometer
measurement and Q~v=C0 is the mechanical quality factor. For
higher values of gain, the feedback signal is mostly noise and lower
temperatures can not be conclusively demonstrated. For our experi-

ment, the equivalent noise level is
ffiffiffiffiffiffiffiffiffiffi
Snoise

p
< 1023 Å Hz21/2. This

corresponds to the expected noise due to the frequency fluctua-
tions of a free running tunable laser diode, which are of order
103 Hz Hz21/2 at the resonance frequency of 12.5 kHz (ref. 10).
With the system in vacuum at pressures of 1026 mbar, so as to max-
imize the mechanical quality factor of the cantilever, this noise level
corresponds to a minimum temperature of the order of 100 mK, in
good agreement with the experimental data.

An alternative approach to study the cooling is to analyse the
temporal response of the system by gating the signal to the feedback
laser. The characteristic time constant for the system to reach equi-
librium after the cooling is turned on is given by:

tfb~C{1
fb ~(1zg){1C{1

0 ð5Þ
To observe this behaviour, we monitor the cantilever over many 10 s
periods during each of which the cooling is on for 3 s. Data for
cooling to 1.8 6 0.2, 4.0 6 0.2 and 6.4 6 0.1 K and returning to ther-
mal equilibrium are shown in Fig. 3. The cooling times are measured
to be 9.0 6 0.5, 19 6 1 and 27 6 1 ms, respectively. The reheating
time is found to be indistinguishable for all three gains with an
average of t0 5 1.30 6 0.05 s. This is in agreement with the linewidth
of the cantilever measured without feedback, C0 5 680 6 50 mHz. In12.45 Frequency (kHz)
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Figure 2 | Single-sided thermal vibration spectrum of the cantilever as it is
cooled. g is the dimensionless gain factor, which is the ratio of feedback to
mechanical damping. a, Spectrum at low to moderate gains. b, Spectrum
near the background noise level for large gains. The blue curves correspond
to experimental data, and the black curves to fits of a gaussian function plus a
background. The lowest trace cannot be reliably fitted.
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Figure 3 | Temporal response of the cantilever to cooling pulses. The
temperature is determined by calculating the total vibrational amplitude of
the cantilever between 12 and 13 kHz in 1 ms bins and subtracting the
background. Each data set is the average of 1,000 samples. The three sets in
the left panel correspond to cooling to 6.4, 4.0 and 1.8 K (solid lines, top to
bottom). Heating is shown (right panel) for only one data set (1.8 K), as all
three are nearly coincident. The dashed lines are fits to exponential decays,
used to determine the cooled temperature and the cooling and reheating
times. Fb. refers to the feedback system.
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accordance with theory, the ratio of the reheating to the cooling
times, t0=tfb, and the corresponding ratio of the spectral linewidths
from the earlier measurements, C fb=C0, are found to be the same as
the cooling factor, T0=Tfb, within statistical uncertainties.

In experiments where optical feedback is used on cantilevers with
non-uniform composition, radiation pressure is typically over-
whelmed by the photothermal force, which is an effective force due
to thermally induced bending5,6. Although this is not the case for
single-crystal silicon cantilevers, the addition of a tiny mirror on
the tip of our cantilever should produce a weak photothermal force.
This force can be distinguished from radiation pressure by its
dependence on the intensity modulation frequency of the feedback
laser. Whereas radiation pressure is independent of modulation fre-
quency, the photothermal force is not, because it has a characteristic
response time, t, related to the thermal relaxation time of the can-
tilever. A simple model for the frequency dependence of the photo-
thermal force, Fpt(V), gives:

Fpt(V)%
ð ?

0

Fpt(0)

t
e{t

te{iVt dt~
Fpt(0)

1ziVt
ð6Þ

where e{iVt corresponds to the input power modulation, and e{t
t is

due to the thermal relaxation. This is consistent with the frequency
dependence of the photothermal force as described in previous
work6. To test for the presence of photothermal force in our res-
onator, the feedback laser was modulated at a range of frequencies
from 100 Hz to 20 kHz and the mechanical response of the cantilever
was measured as before (Fig. 4). The power in the feedback laser
reflected from the cantilever was determined to have a mean of
2.7 6 0.5 mW and a modulation amplitude of 1.0 6 0.2 mW, inde-
pendent of the modulation frequency. This results in a radiation
pressure force of Frad~2Pmod=c~6:7+1:3 pN(where Pmod is the
amplitude of the power modulation and c is the speed of light) at
the modulation frequency.

If the driving frequency is sufficiently far from the cantilever res-
onance, the mechanical damping constant can be ignored and the
amplitude of the cantilever’s motion should be of the form:

A(V)~

Apt

1ziVt
zArad

1{ V=v

� �2

�������

�������
ð7Þ

where V is the driving frequency, v is the resonance frequency, t is
the photothermal characteristic time, and Arad and Apt are the mag-
nitudes of the motion due to the radiation pressure and photother-
mal force alone, at zero frequency. The term in the denominator is
due to mechanical amplification by the cantilever resonance. This
equation fits well to the measured response (Fig. 4), resulting in

Arad 5 0.470 6 0.005 Å, Apt 5 26.3 6 0.2 Å and t 5 30 6 2 ms. At
frequencies greater than 5 kHz, radiation pressure is observed to be
the dominant force mechanism, whereas the photothermal force is
relevant only at lower frequencies.

Assuming the constant force background described by Arad is
entirely due to radiation pressure, one can calculate the spring con-
stant of the cantilever at the position where the feedback laser is
focused to be k 5 Frad/Arad 5 0.14 6 0.03 N m21, in agreement with
the value for the spring constant obtained earlier. Near the fun-
damental resonance of the cantilever, the radiation pressure is calcu-
lated to be almost 5 times larger than the photothermal force.
Additionally, the two forces should be nearly 90u out of phase at this
frequency, given that the time constant of the photothermal force is
found to be 30 6 2 ms. Thus the radiation pressure is responsible for
almost all of the demonstrated feedback cooling; in the absence of
photothermal force, the total feedback force would be reduced by less
than 3%.

When optical cooling is active, the cantilever’s motion is strongly
damped, making it undesirable for many types of measurements. In
some cases this problem can be overcome with a stroboscopic cooling
scheme, where measurements are only made in the periods when the
cooling is off. In addition to being of direct importance for the
aforementioned massive superposition experiment, this scheme has
already been theoretically shown to be useful for high sensitivity
measurements of position and weak impulse forces11. Because the
cooling is faster than the heating by a factor (1 1 g), a low temper-
ature can be maintained even when the cooling is off the majority of
the time. However, maintaining low temperatures requires that the
measurement window be short; if it is, for example, one oscillation
period long, the temperature of the oscillator will have increased by
DT < 2pT0/Q by the end of each measurement window, meaning
that cooling past this point results in marginal improvement.

We now evaluate the potential for reaching even lower tempera-
tures for the purpose of studying quantum effects in similar systems.
Reference 3 proposes an experiment: putting a mechanical oscillator
in a quantum superposition of vibrating and not-vibrating by inter-
action with the light pressure of a single photon in an optical cavity of
which one end mirror is attached to the oscillator. Appropriate for
such a scheme would be a 250-mm-long silicon cantilever with a 20-
mm-diameter dielectric mirror on the tip and a resonance frequency
of 1 kHz. Because of the constraints of environmentally induced
decoherence12,13, the bulk temperature must be less than
TEID 5 Q"v/kB 5 8 mK for the cantilever to remain coherent over
one period, given Q < 150,000. This temperature is achievable by
conventional means; nuclear adiabatic demagnetization of PrNi5

(ref. 14) could be employed as the final, vibration-free, cooling stage,
as it is able to be started from temperatures previously demonstrated
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Figure 4 | Response of the cantilever to an external intensity-modulated
laser. a, The amplitude of the cantilever’s motion at the driving frequency.
b, The force on the cantilever, calculated by dividing the amplitude by the
mechanical amplification of the cantilever. In both graphs the magnitude of

the contributions (ignoring phase differences) of the photothermal force and
radiation pressure are shown as dashed and dotted lines, respectively. The
slight deviation of the fit from the data at higher frequencies is due to higher-
order flexural modes.
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for vibration-isolated cold stages (,100 mK)15,16. The observation
period for a massive superposition experiment is one oscillation long,
thus the maximum useful cooling factor is Q/2p< 25,000 as dis-
cussed above. This corresponds with a temperature of 300 nK or a
mean oscillator quantum number of only 2p.

It has been shown theoretically that optical feedback still works in
the quantum regime, allowing cooling to the ground state17.
Experimentally, cooling to the quantum regime requires the capabil-
ity to accurately monitor the position of the cantilever without intro-
ducing significant heating. With an optical finesse F 5 5 3 105, which
should be technologically achievable8, an observation beam power of
1 aW, or about 5,000 photons per second, is enough to reduce shot
noise to the appropriate level. Assuming the thermal conductivity of
the cantilever is reduced to the one-dimensional quantum limit, the
cantilever’s thermal resistivity will be roughly 30 mK aW21 (ref. 18).
The heating from the feedback laser can be reduced by use of a
sufficiently long wavelength laser so that absorption is negligible; this
is not possible for the readout beam, which must be resonant with the
optical cavity. Thus as long as the observation laser has relatively low
absorption in the cantilever/mirror, it should not significantly affect
the bulk temperature. This implies that cooling a kHz oscillator to
near its ground state should be possible, drastically simplifying the
experimental requirements to observe quantum phenomena in this
system.

We have demonstrated active laser feedback cooling of a micro-
mechanical oscillator, using only radiation pressure, from room tem-
perature to 135 mK. Furthermore, we have shown that this cooling
method could be used in addition to traditional cryogenics to reach
much lower temperatures, even near the ground state of a kHz oscil-
lator. This in turn would significantly aid the realization of proposals
to create and investigate massive quantum superpositions.
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Cavity Optomechanics:
Back-Action at the Mesoscale
T. J. Kippenberg1*† and K. J. Vahala2*

The coupling of optical and mechanical degrees of freedom is the underlying principle of many
techniques to measure mechanical displacement, from macroscale gravitational wave detectors to
microscale cantilevers used in scanning probe microscopy. Recent experiments have reached a
regime where the back-action of photons caused by radiation pressure can influence the
optomechanical dynamics, giving rise to a host of long-anticipated phenomena. Here we review
these developments and discuss the opportunities for innovative technology as well as for
fundamental science.

The reflection of a photon entails momen-
tum transfer, generally referred to as “radi-
ation pressure,” with the resulting force

called the scattering force. Besides this scattering
force, the spatial variation of an intensity distri-
bution can give rise to a gradient or dipole force.
Interest in radiation pressure was first generated
by the trapping of dielectric particles using laser
radiation (1). This technique is widely adapted
today in the biological and biophysical sciences
and is known as the “optical tweezer.” In atomic
physics, the ability to cool atoms with the use of
radiation pressure (2, 3) has enabled many ad-
vances (4), including the realization of exotic quan-
tum states such as Bose-Einstein condensates.

Radiation pressure can also have an effect on
macroscale mechanical masses (such as on an
optical interferometer’s mirror) and has been
considered theoretically for decades (5, 6). The
mutual coupling of optical and mechanical de-
grees of freedom in an optical resonator (or op-
tical cavity) has been explored in laser-based
gravitational wave interferometers, in which radi-
ation pressure imposes limits on continuous posi-
tion detection. Beyond setting detection limits,
radiation pressure can also influence the dynam-
ics of a harmonically boundmirror. A discernable
effect on mirror motion was first demonstrated in
the optical bistability resulting from the static elon-
gation of cavity length caused by radiation pressure
(7), and later, in work demonstrating the opti-
cal spring effect (a radiation-pressure–induced
change in stiffness of the “mirror spring”) (8). These
phenomena, however, donot rely on the cavity delay;
rather, each results from an adiabatic response of
the cavity field to mechanical motion. Phenomena
of a purely dynamical nature were predicted (5, 9)
to arise when the decay time of the photons inside
the cavity is comparable to or longer than the me-

chanical oscillator period. Creating such delays
through an electro-optic hybrid system was later
proposed and demonstrated to induce radiation-
pressure “feedback cooling” of a cavity mirror
(10, 11), also known as cold damping.Whereas in
subsequent attempts dynamic radiation-pressure
phenomena were masked by thermal effects (12),
recent advances in micro- and nanofabrication

made it possible to access the regime where the
effects of cavity-enhanced radiation pressure alone
dominate the mechanical dynamics. Demonstra-
tions of mechanical amplification (13, 14) and
cooling (14–16) via dynamical back-action sig-
nal that a paradigm shift (17) in the ability to
manipulate mechanical degrees of freedom is
now under way, which has long been anticipated
(18, 19). Central to all current work is the role of
back-action in setting dynamical control and per-
formance limits. This review is intended to pro-
vide context for these recent accomplishments
and also to present an overview of possible and
anticipated future research directions.

Dynamical Back-Action Versus Quantum
Back-Action
Photons at optical frequencies are uniquely suited
to measure mechanical displacement for several
reasons. First, because of the high energy of op-
tical photons (~1 eV), thermal occupation is neg-
ligible at room temperature.Moreover, present-day
laser sources are available that offer noise perform-
ance that is limited only by quantum noise. To
measure displacement, a commonly used exper-
imental apparatus is a Fabry-Perot interferometer,
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Fig. 1. (A) Schematic of the cavity
optomechanical interaction of a cav-
ity field (red) and a moveable mirror.
(B) Transduction mechanism for the
laser resonantly probing the cavity.
Themechanical motion (green) causes
the reflected field to be phase modu-
lated around its steady-state value.
This occurs because the mirror motion
changes the total cavity length and
thereby changes the resonance fre-
quency of the cavity by w0

dx
L , where

L is the separation between the two
mirrors and dx is the mirror displace-
ment. Owing to the high Finesse of the
cavity (Fp, which describes the number
of reflections a photon undergoes on
average before escaping the cavity),
the conversion of mechanical ampli-
tude to the phase of the field is en-
hanced (i.e., dϕ ≈ F

l ⋅ dx, where dϕ is
the change in the phase of the reflected
laser field and l is the incident wave-
length of the laser), allowing minute
mirror displacements to be detected.
The reflected amplitude is left un-
changed. (Right) Fourier analysis of
the reflected phase reveals the me-
chanical spectrum of the mirror mo-
tion. Mechanical resonance frequency
(Wm), quality factor (Qm), and temper-
ature (Teff) can be determined using
this spectrum. (C) Sensitivity of the

interferometer measurement process for the case of a zero-temperature mechanical oscillator mirror and for
finite temperature T. For low-input laser power, detector noise due to the quantum shot noise of the laser
field dominates, whereas at higher laser power the quantum fluctuations of the light field cause themirror to
undergo random fluctuations (quantum back-action). At the optimum power, the two sources of fluctuation
contribute equally to the measurement imprecision, constituting the SQL. At finite temperature, the
mechanical zero-point motion is masked by the presence of thermal noise.
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whose purpose is to determine differential changes
in distance between the two end mirrors (Fig. 1A).
To account for the mirror suspension or the internal
mechanicalmodes of amirror, it is assumed that the
end mirror is free to oscillate. This harmonic
confinement can be either intentional or intrinsic,
as we will discuss later. The high-reflectivity end
mirrors enhance the number of roundtrips photons
undergo (by a factorF /p, whereF is
the cavity Finesse) and enable very
sensitive measurement of the end
mirror position (Fig. 1B). For a laser
resonantwith the cavity, small changes
in cavity length shift the cavity res-
onance frequency and, enhanced by
the cavity Finesse, imprint large
changes in the reflected phase of the
laser field. To date, the best displace-
ment sensitivities attainedwith optical
interferometers [such as those at the
Laser Interferometer GravitationalWave
Observatory (LIGO) or Fabry-Perot
cavities (20)] are already exceeding
10–19 m/

ffiffiffiffiffiffi
Hz
p

, which implies that a
displacement equivalent to 1/1000 of
the radius of a proton can be mea-
sured in 1 s.

This extremely high sensitivity,
however, also requires that the dis-
turbances of themeasurement process
itself must be taken into account. The
ultimate sensitivity of an interferom-
eter depends on the back-action
that photons exert onto the mechan-
ically compliant mirror, caused by
radiation pressure. In terms of mirror-
displacement measurement, two fun-
damental sources of imprecision
exist (Fig. 1C). First, there is the
detector noise that, for an ideal laser
source (emitting a coherent state)
and an ideal detector, is given by the
random arrival of photons at the
detector; i.e., shot noise. The detec-
tor signal-to-noise ratio increases
with laser power, thereby improving
the measurement precision. Increas-
ing power, however, comes at the
expense of increased intracavity opti-
cal power, causing a back-action
onto the mirror. This leads to a sec-
ond source of imprecision: The result-
ing random momentum kicks of
reflected photons create a mirror-
displacement noise. This random force
causes the mechanical oscillator to be
driven and thus effectively heated.
Although this noise can also contain a
contribution due to classical sources
of noise (excess phase or amplitude
noise), it is ultimately, under ideal cir-
cumstances, bound by the quantum
nature of light and is termed quantum
back-action (21, 22). Taking into ac-
count both contributions, the opti-

mum sensitivity of an interferometer is achieved
at the standard quantum limit (SQL). At the SQL,
detector noise and quantum back-action noise con-
tribute each a position uncertainty equal to half of
the zero-point motion of the mirror, where the lat-
ter is given by x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mWm

p
[ℏ is Planck’s

constant divided by 2p, m is the effective mass
(23) of the mirror, and Wm is the mirror’s har-

monic frequency]. Much research in the past
decade has also focused on ways of circumvent-
ing this limit. For example, the use of squeezed
light (24) can enable surpassing this limit. So far,
however, experiments with mechanical mirrors
have not observed the radiation-pressure quantum
back-action because it is masked by the random,
thermal motion of the mirror (Fig. 1C). Fluctua-

tions of the radiation-pressure force
have been observed in the field of
atomic laser cooling (25), where they
are responsible for a temperature
limit (the Doppler limit).

The optical cavity mode not
only measures the position of the
mechanical mode, but the dynamics
of these two modes can also be
mutually coupled. This coupling
arises when the mechanical motion
changes the intracavity field ampli-
tude, which thereby changes the
radiation-pressure force experienced
by the mirror. For small displace-
ments, this occurs when the laser is
detuned with respect to the cavity
resonance (Fig. 2A). This mutual
coupling of optical and mechanical
degrees of freedom can produce an
effect called dynamic back-action
that arises from the finite cavity delay.
This delay leads to a component of
the radiation-pressure force that is
in quadrature (out of phase) with
respect to the mechanical motion.
The component is substantial when
the cavity photon lifetime is compa-
rable to, or larger than, themechanical
oscillator period and creates an
effective mechanical damping of
electromagnetic origin. This is the
essence of dynamic back-action (5),
which, like quantum back-action,
modifies the motion of the object
being measured (the mirror). Unlike
quantumback-action,which effectively
sets a measurement precision (by
causing the mirror to be subjected
to a stochastic force resulting from
quantum fluctuations of the field),
the effect of dynamic back-action is
to modify the dynamical behavior of
the mirror in a predictable manner.
Two consequences of this form of
back-action in the context of gravi-
tational wave detection have been
identified. With a laser field blue-
detuned relative to the optical cavity
mode, the mirror motion can be de-
stabilized (5) as a result of mechan-
ical amplification (13). Similar to the
operation of a laser, the onset of this
instability occurs when the mechan-
ical gain equals the mechanical loss
rate and could thus create an effec-
tive limit to boosting detection sen-
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amplitude da or in phase, depending on the detuning), allowing measurement of
mechanical position. This transduction is not instantaneous on account of the finite
cavity lifetime. For a detuned laser, the amplitude change caused by this measure-
ment process feeds back to the mechanical oscillator through the radiation-
pressure force, closing the feedback loop. The sign of the feedback depends on the
cavity detuning and can produce either damping (red-detuned pump) or ampli-
fication (blue-detuned pump). In a quantum description, this feedback branch is
not noiseless but is subjected to quantum noise of the optical field (dain), which
yields a random force due to the quantum fluctuations of the field (i.e., the
quantumback-action). Althoughdynamic back-action can beprevented by probing
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quantum back-action nevertheless feeds into themechanical oscillators’ input (and
thereby reinforces the SQL. daout are the amplitude fluctuations of the reflected
laser field; dFRP are the fluctuations in the radiation pressure force. (C) Analogy of
dynamical back-action cooling to the laser cooling of harmonically bound ions. In
both the case of a harmonically trapped ion and a harmonically oscillating end
mirror of a cavity, a dissipative force arises because of the Doppler effect. V(x)
denotes the trapping potential of the mirror and ion.

www.sciencemag.org SCIENCE VOL 321 29 AUGUST 2008 1173

REVIEW

 o
n 

A
pr

il 
23

, 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


sitivity by increasing optical power in interfer-
ometers. On the other hand, a red-detuned pump
wave can create a radiation component ofmechan-
ical damping that leads to cooling of the mechan-
ical mode; i.e., a reduction of the mechanical
mode’s Brownian motion (9, 26).

One description of this process is given in
Fig. 2B, wherein a feedback loop that is inherent
to the cavity optomechanical system is described.
The elements of this loop include the mechanical
and optical oscillators coupled through two dis-
tinct paths. Along the upper path, a force acting
on the mechanical oscillator (for instance, the
thermal Langevin force or a signal force) causes a
mechanical displacement, which (for a detuned
laser) changes the cavity field due to the opto-
mechanical coupling (the interferometric mea-
surement process). However, the amplitude
fluctuations, which contain information on the
mirror position, are also coupled back to the
mechanical oscillator via radiation pressure
(lower path), resulting in a back-action. A blue-
detuned pump wave sets up positive feedback
(the instability), whereas red detuning introduces
negative feedback. Resonant optical probing
(where the excitation frequency equals the cavity
resonance frequency, w = w0) interrupts the
feedback loop because changes in position only
change the phase, not the amplitude, of the field.
As described below, this feedback circuit also
clarifies the relation between “feedback cooling”
and cooling by dynamic back-action.

Experimental Systems
Systems that exhibit radiation-pressure dynamic
back-action must address a range of design con-
siderations, including physical size as well as
dissipation. Dynamic back-action relies on opti-
cal retardation; i.e., is most prominent for photon
lifetimes comparable to or exceeding the me-
chanical oscillation period. Very low optical dis-
sipation also means that photons are recycled
many times, thereby enhancing the weak photon
pressure on the mirror. On the other hand, the
mechanical dissipation rate governs the rate of
heating of the mechanical mirror mode by the
environment, limiting the effectiveness of opto-
mechanical cooling. It also sets the required am-
plification level necessary to induce regenerative
oscillations. These considerations illustrate the
importance of high optical Finesse and mechan-
ical Q in system design.

It is only in the past 3 years that a series of
innovative geometries (shown in Fig. 3) has
reached a regimewhere the observation of radiation-
pressure dynamic back-action could be observed.
These advances have relied on the availability and
improvements in high-Finesse mirror coatings (as
used in gravity wave detectors) and also on micro-
and nanofabrication techniques [which are the
underlying enabling technology for nano- andmicro-
electromechanical systems (27)]. A commonly
used hybrid system consists of a conventional-
input mirror made with a high-reflectivity coating
and an end mirror whose dimensions are meso-

scopic and which is harmonically suspended. This
end mirror has been realized in multiple ways,
such as from an etched, high-reflectivity mirror
substrate (14, 15), a miniaturized and harmonical-
ly suspended gram-scale mirror (28), or an atomic
force cantilever on which a high-reflectivity and
micron-sized mirror coating has been transferred
(29).A natural optomechanical coupling can occur
in optical microcavities, such as microtoroidal
cavities (13) or microspheres, which contain co-
existing high-Q, optical whispering gallery modes,
and radio-frequency mechanical modes. This cou-
pling can also be optimized for high optical and
mechanical Q (30). In the case of hybrid systems,

yet another approach has separated optical and
mechanical degrees of freedom by using a min-
iature high-Finesse optical cavity and a separate
nanometric membrane (31). Whereas the afore-
mentioned embodiments have been in the optical
domain, devices in the micro- and radiowave do-
main have also been fabricated (22, 32), such as a
nanomechanical resonator coupled to a super-
conducting microwave resonator (33).

Many more structures exist that should
also realize an optomechanical interaction in
an efficient manner. In particular, nanopho-
tonic devices such as photonic crystal mem-
brane cavities or silicon ring resonators might
be ideal candidates owing to their small mode
volume, high-Finesse, and finite rigidity. Owing
to their small length scale, these devices ex-
hibit fundamental flexural frequencies well
into the gigahertz regime, but their mechanical
quality factors have so far not been studied,
nor has optomechanical coupling been ob-
served. As described in the next section, such
high frequencies are interesting in the context

of regenerative oscillation and ground
state cooling.

Cooling and Amplification Using
Dynamical Back-Action
The cooling of atoms or ions using radi-
ation pressure has received substantial
attention and has been a successful tool
in atomic and molecular physics. Dy-
namical back-action allows laser cooling
of mechanical oscillators in a similar man-
ner. The resemblance between atomic
laser cooling and the cooling of amechan-
ical oscillator coupled to an optical (or
electronic) resonator is a rigorous one
(34). In both cases, the motion (of the
ion, atom, or mirror) induces a change in
the resonance frequency, thereby cou-
pling the motion to the optical (or cavity)
resonance (Fig. 2C). Indeed, early work
has exploited this coupling to sense the
atomic trajectories of single atoms in
Fabry-Perot cavities (35, 36) and, more
recently, in the context of collective atomic
motion (37, 38). This coupling is not only
restricted to atoms or cavities but also has
been predicted for a variety of other
systems. For example, the cooling of a
mechanical oscillator can be achieved
using coupling to a quantum dot (39), a
trapped ion (40), a Cooper pair box (41),
an LC circuit (5, 32), or a microwave strip-
line cavity (33). Although the feedback
loop of Fig. 2B explains how damping
and instability can be introduced into the
cavity optomechanical system, the ori-
gins of cooling and mechanical amplifi-
cation are better understood with the use
of a motional sideband approach, as de-
scribed in Fig. 4 (13).

Cooling has been first demonstrated for
micromechanical oscillators coupled to

optical cavities (14–16) and, using an electrome-
chanical analog, for a Cooper pair box coupled
to a nanomechanical beam (41). Because the me-
chanical modes in experiments are high Q (and
are thus very well isolated from the reservoir), they
are easily resolved in the spectra of detected probe
light reflected from the optical cavity (Fig. 1B).
Furthermore, their effective temperature can be
inferred from the thermal energy kBT (where kB is
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the Boltzman constant), which is
directly proportional to the area of
detected mechanical spectral peak
(Fig. 1B). In the first back-action
cooling experiments, a temperature
of ~10 K was achieved for a single
mechanical mode. The bath and all
other modes in these experiments
were at room temperature, owing to
the highly targeted nature of cooling
(Fig. 4). Since the completion of
this work, cooling of a wide variety
of experimental embodiments rang-
ing from nanomembranes (31) and
gram-scale mirrors (28) to the modes
of kilogram-scale gravitational bar
detectors (such as Aurega) has been
demonstrated. At this stage, temper-
atures are rapidly approaching a
regime of low phonon number, where
quantum effects of the mechanical
oscillator become important. To this
end, cooling with the use of a com-
bination of conventional cryogenic
technology with dynamical back-
action cooling is being investigated.
Technical hurdles include collateral
reheating of the mechanical mode,
exacerbated by the very high me-
chanical Q, which leads to relatively
long equilibration times.

Quantum back-action sets a fun-
damental limit of radiation-pressure
cooling (34, 42) that is equivalent to
the Doppler temperature in atomic
laser cooling (25). It may also be
viewed as a consequence of the
Heisenberg uncertainty relation in
that a photon decaying from the res-
onator has an uncertainty in energy
given by DE = ħk (where k is the
cavity decay rate), implying that the
mechanical oscillator cannot be cooled
to a temperature lower than this lim-
it. It has been theoretically shown
(34, 42) that ground state cooling is
nevertheless possible in the resolved
sideband regime (also called the good-
cavity limit), in analogy to atomic
laser cooling, where this technique
has led to ground state cooling of
ions (43). This regime is character-
ized bymechanical sidebands that fall well outside
the cavity bandwidth and has recently been dem-
onstrated experimentally (44). Detection of the
ground state could probably prove to be as challeng-
ing as its preparation. Proposals to measure the oc-
cupancy are diverse, but one method is to measure
the weights of the motional sidebands generated
by the mechanical motion (34).

It is important to note that cooling of mechan-
ical oscillators is also possible using electronic
(active) feedback (10, 11, 29, 45). This scheme is
similar to “stochastic cooling” (46) of ions in
storage rings and uses a “pick-up” (in the form of

an optical cavity interferometer) to measure the
mechanical motion and a “kicker” (a radiation-
pressure force exerted by a laser on the mirror) to
provide a viscous (feedback) force. The idea can
also be understood in terms of the feedback loop in
Fig. 2B, wherein the lower right optical-feedback
branch is replaced by an electrical path driving a
second pump laser, which acts as a force actuator
on the mirror.

Finally, although originally conceived as a
potential limitation in gravitational wave detec-
tion, the parametric instability (blue detuned opera-
tion of the pumpwave) can also be understood as

the result of amplification (negative
damping) of the mechanical motion
(13, 17, 47). In this sense, the insta-
bility is simply the threshold condi-
tion in which intrinsic mechanical
loss is compensated by amplifica-
tion. This threshold phenomenon
and the subsequent regenerative
mechanical oscillation have been
studied as a new type of optome-
chanical oscillator (48).Above thresh-
old, the oscillator is regenerative,
and oscillation at microwave rates
(49) has been demonstrated. Addi-
tionally, the phase noise of the oscil-
lator has been characterized and
observed to obey an inverse power
dependence, characteristic of funda-
mental, Brownian noise (48). Quan-
tum back-action is also predicted to
set a fundamental low-temperature
limit to this linewidth (50). The
ability to amplify mechanical mo-
tion is potentially useful as a means
to boost displacements and forces
sensitivity (51). Finally, returning to
the analogywith atomic physics, it is
interesting to note that regenerative
oscillation (i.e., amplification of
mechanical motion) would be ex-
pected to occur for trapped ions
under blue-detuned excitation.

Cavity Quantum Optomechanics
A mechanical oscillator has a set
of quantum states with energies
EN ¼ ðN þ 1

2ÞℏWm, where N is the
number of mechanical quanta, and
N = 0 denotes the quantum ground
state. For a mechanical oscillator in
the ground state, the ground state en-
ergy, E0 ¼ ℏWm=2, gives rise to the
zero-point motion, characterized by
the length scale x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mWm

p
.

As noted earlier, this length scale
sets the SQL of mirror position
uncertainty in an interferometer such
as in Fig. 1. The zero-point motion
for structures shown in Fig. 3 ranges
from ~10−17 m for a macroscopic
mirror to ~10−12 m for the nanome-
chanical beam. Such small motions

are masked by the thermal motion of the me-
chanical oscillator, and to enter the regime where
quantum fluctuations become dominant and
observable requires that the mechanical mode’s
temperature satisfykBT << ℏWm, equivalently a
thermal occupation less than unity. Over the past
decade, cryogenically cooled nanomechanical
oscillators coupled to an electronic readout have
been steadily approaching the quantum regime
(19, 52, 53). Cavity optomechanical systems ex-
hibit high readout sensitivity, in principle already
sufficient to detect the minute zero-point motion
of amesoscopic system. Themain challenge toward
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Fig. 4. Frequency domain interpretation of optomechanical interactions in
terms of motional sidebands. These sidebands are created on the optical probe
wave as photons are Doppler shifted from the mirror surface (which undergoes
harmonic motion driven by its thermal energy). Doppler scattering rates into the
red (Stokes) and blue (anti-Stokes) sidebands are imbalanced when the probe
wave resides to one side of the optical resonance, which can be viewed as a
consequence of the asymmetric density of electromagnetic states (Fig. 2A). This
imbalance favors the Stokes sideband for a blue-detuned pump and the anti-
Stokes sideband for the red-detuned pump, thereby creating a net imbalance in
electromagnetic power upon scattering. This imbalance is the origin of
mechanical amplification (blue detuning) and cooling (red detuning). (Cooling
in this fashion is similar to cavity cooling of atoms.) Only mechanical modes that
produce appreciable sideband asymmetry will experience significant gain or
cooling. Moreover, the degree of asymmetry can be controlled in an experiment
so that a particular mechanical mode can be selected for amplification or
cooling. (A) Dynamic back-action amplification ofmechanical motion via a blue-
detuned laser field. The laser scatters pump photons into the cavity, thus
creating phonons and leading to amplification. (B) Dynamic back-action cooling
via a red-detuned laser. Pump photons are scattered into the cavity resonance,
thereby removing thermal mechanical quanta from the mechanical oscillator.
(C) Two-transducer scheme. By symmetrically pumping the cavity on both upper
and lower sideband, only one of the quadratures of the mechanical motion is
measured with a precision that can exceed the standard limit, thus providing a
route to preparing a mechanical oscillator in a squeezed state of mechanical
motion via measurement-induced squeezing. a.u., arbitrary units.
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observing quantum phenomena in cavity opto-
mechanical systems lies in reducing the mechan-
ical mode thermal occupation. Using conventional
cryogenic cooling, the latter is challenging (1 MHz,
corresponding to a temperature of only 50 mK).
However, in principle, cooling to these temper-
atures and even lower is possible with the use of
optomechanical back-action cooling.

If a sufficiently low occupancy of the me-
chanical oscillator is reached (using, for instance,
a combination of cryogenic precooling and back-
action laser cooling), quantum phenomena of a
mesoscopic mechanical object may arise. For
example, the quantum back-action by photons
could become observable (54) or signatures of the
quantum ground state. Moreover, the interaction of
cold mechanics and a light field can give rise to
squeezing of the optical field (55). This can be
understood by noting that the mechanical oscillator
couples the amplitude and phase quadrature of the
photons. Moreover, the optomechanical coupling
Hamiltonian has been predicted to allow quantum
nondemolition measurement of the intracavity
photon number (56, 57). The coupling afforded
by radiation pressure might even allow the
production of squeezed states of mechanical mo-
tion. These highly nonintuitive quantum states
have been produced for electromagnetic fields
over the past decades, and producing them in the
mechanical realm would be a notable achieve-
ment. Such highly nonclassical states may be pos-
sible to generate using measurement-induced
squeezing. In this method (22), one quadrature
component of the mechanical oscillator motion is
measured (and no information of the comple-
mentary variable is gained) so as to project the
mechanical oscillator into a squeezed state of
motion. This method (Fig. 4C) involves two inci-
dent waves and moreover requires that the me-
chanical frequency exceeds the cavity decay rate
(the resolved sideband regime). A great deal of
theoretical work has also been devoted to the ques-
tion of entangling mechanical motion with an
electromagnetic field, or even entangling two me-
chanical modes. Examples include proposals to
achieve quantum super-positions of a single photon
and a mirror via a “which path” experiment (58) or
entangling twomirrors via radiation pressure (59).

Emerging Cavity Optomechanical Technologies
Cavity optomechanics may also enable advances
in several other areas. First, the ability to provide
targeted cooling of nano- and micromechanical
oscillators (which are otherwise part of devices at
room temperature) bodes well for practical appli-
cations because, in principle, conventional cryo-
genics are unnecessary. Beyond providing a
better understanding of fluctuation and dissipa-
tive mechanisms, the fact that high displacement
sensing is an important element of cavity opto-
mechanics will have collateral benefits in other
areas of physics and technology, ranging from
scanning probe techniques (60) to gravitational-
wave detection. Moreover, the ability to create
all-optical photonic oscillators on a chip with

narrow linewidth and at microwave oscillation
frequencies may have applications in radio
frequency–photonics. Equally important, cavity
optomechanical systems already exhibit strong
nonlinearity at small driving amplitudes, which
offer new functions related to optical mixing
(61). Finally, although all current interest is fo-
cused on radiation-pressure coupling, cavity opto-
mechanical systems based on gradient forces
are also possible. Although aimed at a separate
set of applications, there has been substantial
progress directed toward gradient-force control
of mechanical structures using cavity optome-
chanical effects (62–64).

Summary
The interaction ofmechanical and optical degrees
of freedom by radiation pressure is experiencing
a paradigm shift in control and measurement of
mechanical motion. Radiation-pressure coupling
has opened an extremely broad scope of possi-
bilities, both applied and fundamental in nature.
With the continued trends toward miniaturization
and dissipation reduction, radiation pressure can
become an increasingly important phenomenon
that will probably allow advances, both in terms
of technology as well as in fundamental science.
It may well provide a way to probe the quantum
regime of mechanical systems and give rise to
entirely newways of controlling mechanics, light,
or both. It also seems likely that beyond precision
measurement, there will be new technologies that
leverage cooling and amplification.
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Assuming the universal validity of quantum theory, the quantum-to-classical transition is also of 

crucial importance in cosmology. Firstly, any linear theory of quantum gravity predicts 

superpositions of different metrics even at the macroscopic level. Secondly, primordial 

fluctuations in the early Universe, out of which galaxies and clusters of galaxies are expected to 

develop, are of a genuine quantum nature. In my talk, I shall discuss both cases and show how 

and to which extent classical behaviour emerges through decoherence. The emphasis is on the 

main conceptual aspects rather than on technical issues.  



4 Decoherence in Quantum Field Theory and

Quantum Gravity

C. Kiefer

. . .

4.2 Decoherence and the gravitational field1

4.2.1 Emergence of classical spacetime

According to the Copenhagen interpretation of quantum theory, the existence
of a classical world is needed from the outset in order to interpret quantum
theory. Appropriate classical apparata are assumed to define the occurrence
of quantum phenomena. The presence of such classical measurement agencies
seems to be possible only if spacetime exists as a classical entity.

The discussion of the previous chapters has, however, convincingly demon-
strated that quantum theory has a much wider range of applicability than
the pioneers had imagined. Classical properties are not intrinsic to objects
but emerge through the irreversible interaction with the environment. The
experiments discussed in Chap. 3 are an impressive confirmation of this idea.

What about the structure of spacetime itself? Before the advent of the
general theory of relativity, spacetime was considered to be a given, non-
dynamical background structure. This is also the case in quantum field the-
ories such as QED (Sect. 4.1). In general relativity, however, the geometry
of spacetime is associated with the gravitational field and thereby becomes
dynamical. If the gravitational field is fundamentally described by quantum
theory, then spacetime cannot be a classical entity.

But has gravity to be described by quantum theory? Quite generally, it
does not seem possible to find a fundamental hybrid description that couples
a quantum system to a classical system in a consistent way (Kiefer 2003). This
does of course not mean that there exists no effective theory which couples
quantum to classical systems. For example, one can develop a formalism in
which a decohered (“classical”) system is coupled to a quantum system that
does not exhibit decoherence (Halliwell 1998).

As has already been mentioned, it was important already during the early
discussions between Einstein and Bohr to apply the uncertainty relations to
macroscopic objects (screens, photographic plates etc.) in order to save them

1 Extract from Chapter 4 of Decoherence and the Appearance of a Classical World

in Quantum Theory, by E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and
I.-O. Stamatescu (Springer, Berlin, 2003).
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for microscopic systems. This is reasonable because macroscopic objects are
composed of atoms. Such consistency arguments are at the heart of these dis-
cussions. At the Solvay conference in 1930, Bohr and Einstein had a debate
concerning the time-energy uncertainty relation, ∆E∆t ≥ ~/2. In the discus-
sion, Bohr had to invoke general relativity to counter Einstein’s objections.
But only very little structure from general relativity does in fact enter the
argument; it is only the equivalence principle and therefore the curved nature
of spacetime, from which the redshift of light follows as a consequence. The
redshift may be derived by just applying the energy law to the expression ~ω
for the energy of a photon. One could thus phrase Bohr’s argument in the
way that a violation of the uncertainty relation would entail a violation of
energy conservation.

In fact, the possible violation of conservation laws often plays an impor-
tant role in such consistency arguments. Eppley and Hannah (1977), for ex-
ample, consider the interaction of classical gravitational waves with quantum
systems. They find, as a consequence, a violation of either momentum conser-
vation or the uncertainty relations for the quantum system, or the occurrence
of signals faster than light. Since not many peculiarities of the gravitational
field enter their discussion, these results hold also for other systems such as
the electromagnetic field. This type of arguments is certainly enforced for
the gravitational field due to its coupling to all other degrees of freedom.
Taking then the quantum nature of the gravitational field for granted, one
would expect that efficient decoherence results from this universal coupling
for both the gravitational field and other variables.

In a heuristic example, where quantum theory is applied to Newtonian
gravity, one finds that the gravitational field is decohered by its action with
quantum matter (Joos 1986b). Suppose that a (homogeneous) gravitational
field within a box of side length L is in a quantum superposition of different
strengths, i.e.

|ψ〉 = c1|g〉 + c2|g′〉, g 6= g′. (4.1)

A particle with mass m in a state |χ〉, which moves through this volume,
“measures” the value of g, since its trajectory depends on the metric, yielding
the total state

|g〉|χg(t)〉 . (4.2)

This correlation destroys the coherence between g and g′, and the reduced
density matrix can be estimated to assume the following form after many
such interactions are taken into account:

ρ(g, g′, t) = ρ(g, g′, 0) exp
(

−Γ (g − g′)2t
)

, (4.3)

where

Γ = nL4

(

πm

2kBT

)3/2

,
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for a gas with particle density n and temperature T . For example, air under
ordinary conditions, and L = 1 cm, t = 1 s yields a remaining coherence
width of ∆g/g ≈ 10−6.

One can give quite general arguments that the gravitational field is fun-
damentally of quantum nature (Kiefer 2000, 2003):

• Singularity theorems of general relativity: Under very general conditions,
the occurrence of a singularity, and therefore the breakdown of the un-
quantised theory, is unavoidable. A more fundamental theory is therefore
needed to overcome this breakdown, and the natural expectation is that
this fundamental theory is a quantum theory of gravity. This is simi-
lar to ordinary quantum theory preventing the singularity that classical
electromagnetism would predict for atoms.

• Initial conditions in cosmology: This is related to the singularity theorems
which predict the existence of a “big bang” where the known laws of
physics break down. To fully understand the evolution of our Universe,
its initial state must be amenable to a physical description.

• Unification: Apart from general relativity, all known fundamental theo-
ries are quantum theories. It would thus seem awkward if gravity, which
couples to all other fields, should remain the only classical entity in a
fundamental description.

• Gravity as a regulator: Many models indicate that the consistent inclusion
of gravity in a quantum framework would automatically eliminate the
divergences that plague ordinary quantum field theory.

• Problem of time: In ordinary quantum theory, the presence of an external
time parameter t is crucial for the interpretation of the theory: “Mea-
surements” take place at a certain time, matrix elements are evaluated
at fixed times, and the norm of the wave function is conserved in time.
Since in general relativity, on the other hand, time as part of spacetime
is a dynamical quantity (as defined by the metric), both concepts of time
must be modified at a fundamental level.

But what does the “quantisation” of spacetime mean? In other words, to
which classical structures does one have to apply the superposition principle,
while the rest remains classical? Isham (1994) presents the following hierarchy
of structures where this decision can be made at each level:

Lorentzian manifold
↓

Causal manifold (“light cone”)

↓
Differentiable manifold

↓
Topological space

↓
Set of events
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A straightforward quantisation of general relativity, for example, would
dissolve spacetime as a fundamental classical entity, but would retain a fixed
three-dimensional manifold in the formalism. This canonical approach is briefly
described in the next subsection and will be the basis for the calculations pre-
sented below. Path integration, for example, would entail a superposition of
different manifolds. This should also be true in a “theory of everything” (for
which superstring theory is a candidate) which encompasses all interactions
of Nature in a single quantum framework. In such a fundamental theory it
is probably only very little structure, if any, that remains classical, although
this is not yet clear, cf. Seiberg and Witten (1999).

Quantum effects of gravity are expected to become relevant at the Planck
scale. This is the scale where, for an elementary particle, Schwarzschild radius
and Compton wavelength coincide. The Planck mass is given by

mP =

√

~c

G
≈ 10−5 g , (4.4)

while Planck length and Planck time are given by the following expressions,
respectively,

lP =

√

~G

c3
≈ 10−33 cm , tP =

√

~G

c5
≈ 10−44 s . (4.5)

As we discuss at length in this volume, quantum effects are not a priori
restricted to a particular scale. In Chap. 3 we have demonstrated that it is
not the large mass by itself that provokes classical behaviour for a quantum
object, but its interaction (whose strength of course depends on the mass)
with the environment. Analogously, it is not the smallness of the Planck
length by itself that a priori prevents quantum-gravity effects to occur at
larger scales. The classical appearance of spacetime at larger scales should
again be due to the unvoidable interaction with other degrees of freedom. It
is for this reason that we can restrict ourselves in the following discussion to
canonical quantum gravity, since this should be valid as an effective theory
for scales l ≫ lP , independent of whether this theory is also valid at the
Planck scale itself or not (in the latter case a unified theory such as string
theory must be invoked).

We mention that gravity is assigned a fundamental role also in approaches
which modify the formalism of quantum theory, see e.g. Károlyházy et al.

(1986), Penrose (1986), as well as Chap. 8, but this will not be considered in
this chapter.

4.2.2 The formalism of quantum cosmology

The basic intention in the canonical approach to quantum gravity is to derive
equations for wave functionals on an appropriate configuration space, analo-
gously to the Schrödinger picture in quantum mechanics. Technically, this is
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achieved by foliating, in the classical theory, the classical spacetime into spa-
tial hypersurfaces and choosing the spatial metric as a canonical variable (the
“q”). In the spacetime which is classically constructed by dynamically devel-
oping the initial data on a particular hypersurface, the canonical momentum
is linearly related to the embedding of the hypersurfaces into spacetime. (In
the case of a Friedmann universe, the radius, a, is the configuration vari-
able, while the canonical momentum corresponds to the Hubble parameter.)
The postulate of nontrivial commutation relations between these quantities
in quantum gravity then means that spacetime is no longer a fundamental
concept, since one cannot specify both the spatial metric and the embedding.
The role of spacetime is taken over by the space of all three-dimensional ge-
ometries, which is called superspace and which serves as the configuration
space for the theory. For a detailed physical introduction into these concepts
we refer to Zeh (2001); the details of the canonical formalism are presented,
for example, by Wald (1984). The central kinematical quantity is thus a wave
functional defined on superspace and on matter field degrees of freedom. It
is often labeled Ψ [3G, Φ], where 3G stands for “three-dimensional geometry”
(to express the fact that this wave functional is independent of particular
coordinates on the three-dimensional space, as being guaranteed by the three
“momentum constraints” of general relativity), and Φ symbolically denotes
all non-gravitational fields. The invariance of general relativity (called in-
variance under coordinate transformations or under diffeomorphisms) leads
to the presence of constraints: the total Hamiltonian must vanish.2 In the
quantum theory, the constraints are implemented à la Dirac as restrictions
on physically allowed wave functionals. The wave functional then obeys the
Wheeler-DeWitt equation (DeWitt 1967, Wheeler 1968),

HΨ = 0, (4.6)

where H denotes the full Hamiltonian for gravity and other fields. In classical
general relativity, spacetimes can be parametrised by some arbitrary time co-
ordinates (which have lost their absolute status). Since due to the uncertainty
relations no spacetimes exist anymore on the level of quantum gravity (only
a wave function for spatial metrics), there is no time parameter available to
parametrise them – the Wheeler-DeWitt equation is “timeless”. This gives
rise to the problem of time in quantum gravity which is extensively discussed
in the literature, see e.g. Barbour (1994a,b), Isham (1992), Kuchař (1992),
Zeh (1986, 2001), Kiefer and Zeh (1995), and Kiefer (2000, 2003).

We have to emphasise that this approach at present exists only on a
formal level, since the explicit treatment of (4.6) is unclear.3 In this respect
the discussion in the present section is different from the rest of the book and

2 We consider only the case of spatially closed hypersurfaces. In the asymptotically
flat case, the total Hamiltonian can be written as a surface integral.

3 It is known that (4.6) does not give rise to a unitary evolution in a Fock space
built over three-dimensional slices.
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should be considered of heuristic value only. However, from general arguments
like reparametrisation invariance one would expect the fundamental equation
to be of the constraint form (4.6), although the exact form of H may be
different. Therefore, the main interpretational part of the discussion in this
section would remain unaffected, and only the details of the calculations
would have to be changed.

The main features of the canonical approach can already be recognised in
a simple two-dimensional model – a closed Friedmann universe characterised
by its scale factor a, containing a homogeneous massive scalar field ϕ as
a representation of matter, cf. Kiefer (1988) and Halliwell (1991). Taking
the units 2G = 3π, the classical action for this model is the sum of the
gravitational part and the matter part,

S =

∫

dt L(a, ȧ, ϕ, ϕ̇, N)

≡ 1

2

∫

dt Na3

(

− ȧ2

N2a2
+
ϕ̇2

N2
+

1

a2
−m2ϕ2

)

. (4.7)

This action is invariant with respect to arbitrary reparametrisations of the
time variable t, a fact which is encoded in the presence of the non-dynamical
lapse function N which appears undifferentiated in the action. A characteris-
tic feature of the gravitational field is the occurrence of an indefinite kinetic
term in the action.

The standard canonical formalism proceeds with the definition of the
canonical momenta,

pN =
∂L

∂Ṅ
= 0, pa =

∂L

∂ȧ
= −aȧ

N
, pϕ =

∂L

∂ϕ̇
=
a3ϕ̇

N
. (4.8)

The canonical Hamiltonian is then given by

H = pN Ṅ + paȧ+ pϕϕ̇− L

=
N

2

(

−p
2
a

a
+
p2

ϕ

a3
− a+m2ϕ2a3

)

≡ N

2
GABpApB + V (a, ϕ) . (4.9)

The important point is that pN = 0 is a constraint that should hold at all
times. Therefore, from Hamiton’s equations of motion one gets ∂H/∂N = 0
which gives the constraint

H = 0 ⇔ ȧ2 = −1 + a2(ϕ̇2 +m2ϕ2) . (4.10)

This is nothing but the classical Friedmann equation which is well known
from cosmology. Variation of (4.7) with respect to a and ϕ give the classical
equations of motion. The equation for ϕ, in particular, reads

ϕ̈+
3ȧ

a
ϕ̇+m2ϕ = 0 . (4.11)
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This is the Klein-Gordon equation for a homogeneous field in an evolving
universe, whose effect on ϕ is the second (“friction”) term.

Following Dirac’s procedure, the classical constraint (4.10) is then turned
into the Wheeler-DeWitt equation (4.6). Using a particular factor ordering,4

the explicit form of this equation in the present model reads

Hψ ≡
(

~
2a

∂

∂a

(

a
∂

∂a

)

− ~
2 ∂2

∂ϕ2
+m2ϕ2a6 − a4

)

ψ(a, ϕ) = 0 . (4.12)

Note that the indefiniteness of the kinetic term has led to a hyperbolic equa-
tion for ψ – in contrast to the Schrödinger equation. In the next subsection, a
more complicated model is used in which the variables a and ϕ play the role
of the background, supplemented by additional degrees of freedom (“higher
multipoles”) {fn}. (In the following we set again ~ = 1.)

The Wheeler-DeWitt equation (4.6), (4.12) does not contain a classical
time parameter. This is not surprising, since the classical metric is known
to determine time. An approximate concept of time-dependence of a wave
function can be recovered in a Born-Oppenheimer type of approximation
scheme in which part of the degrees of freedom are semiclassical (given by
WKB wave functions), while the rest is fully quantum. This limit is obtained,
for example, if the full wave functional in (4.6) is of the form

Ψ [3G, Φ] ≈
∑

(n)

C(n)[
3G]eiS

(n)
0 [3G]/G~ψ(n)[3G, Φ] ≡

∑

(n)

ψ
(n)
0 ψ(n), (4.13)

where the S
(n)
0 are solutions to the gravitational Hamilton–Jacobi equations

which are fully equivalent to Einstein’s field equations. The gravitational part
of the total state is thus treated semiclassically. The semiclassical part may
also comprise part of the matter degrees of freedom. In fact, in the discussion
of decoherence in Sect. 4.2.3, the scalar field ϕ will belong to this part. Note
the analogy to Equation (??) discussed in the last section.

The sum in (4.13) runs over a whole set of indices (n) (which may also
be continuous). It turns out that the matter states ψ(n) obey the following
approximate equation in each component,

i∇S(n)
0 · ∇ψ(n) ≈ H(n)

m ψ(n), (4.14)

where H
(n)
m denotes the Hamiltonian for the non-gravitational fields (which

of course depends on the particular solution S
(n)
0 chosen for the gravitational

field). Note the analogy of H
(n)
m to Hφ discussed in the last section. The

expression ∇S(n)
0 · ∇ ≡ ∂/∂t(n) is a directional derivative in the gravita-

tional part of the full configuration space, which parametrises the family of

4 The chosen factor ordering is given by the Laplace-Beltrami operator in the
configuration space spanned by a and ϕ.
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classical spacetimes described by S
(n)
0 . The parameters t(n) are often called

WKB times – they control the “dynamical evolution” of the states χ(n) along
the WKB trajectories. Equation (4.14) is thus nothing but the Schrödinger
equation, while t represents our phenomenological time. Details of the semi-
classical approximation to quantum gravity are described in Kiefer (1994),
see also Kiefer (1993), Giulini and Kiefer (1995).

We note that due to the central input of the Born-Oppenheimer expansion
the situation here is analogous to that of Sect. 4.1.2 only (“measurement” of
fields by charges), since the reverse effect (which would here correspond to
“measurement” of matter by the gravitational field) is too weak to become
important.

4.2.3 Decoherence in quantum cosmology

In quantum cosmology, all variables are fundamentally quantum and there is
no classical spacetime. How does a classical spacetime emerge? It has been
suggested that global degrees of freedom such as the volume of the Universe
appear classical after the interaction with other degrees of freedom is taken
into account (Zeh 1986). The role of such additional variables may be played
by density fluctuations and gravitational waves. All these degrees of free-
dom are of course within the Universe, but they are “environmental” to the
volume-degree of freedom in configuration space. From the viewpoint of a “lo-
cal” observer who can measure the size of the Universe but has no access to
small fluctuations, these other degrees of freedom have to be traced over. In
this sense they are able to produce decoherence for the volume degree of free-
dom. We have emphasised before that the issue of classicality only arises after

a quantum system has been chosen, for which the straightforward applica-
tion of the superposition principle would lead to a macroscopically entangled
state. In a sense, a classical spacetime thus arises by a “self-measurement” of
the Universe.

Calculations for decoherence in quantum cosmology can be done with
the help of the Wheeler-DeWitt equation (4.6), see Kiefer (1987). As a nec-
essary prerequisite, the semiclassical approximation to quantum gravity is
employed, in which an approximate Schrödinger equation is recovered for the
cosmological fluctuations (see Sect. 4.2.2). The time parameter corresponding
to this equation is defined by the semiclassical degrees of freedom (Halliwell
and Hawking 1985). In Kiefer (1987) the relevant system was taken to be the
scale factor (“radius”) a of the Universe together with a homogeneous scalar
field ϕ, cf. the model discussed in Sect. 4.2.2. The field ϕ plays a crucial role
in modern cosmological theories where an exponential, “inflationary”, expan-
sion is assumed to have happened in an early phase of the Universe, starting
about 10−33 s after the big bang. It is in fact the “inflaton field” ϕ itself that
causes inflation. The inhomogeneous modes of the gravitational field and the
scalar field (gravitational waves and density fluctuations) can then be shown
to decohere the global variables a and ϕ.
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An open problem in these early papers was the issue of regularisation; the
number of fluctuations is infinite and would cause divergences, which is why
a cutoff was suggested. The issue was again addressed in Barvinsky et al.

(1999a) where a physically motivated regularisation scheme was introduced.
In the following we shall briefly review this approach.

As a (semi)classical solution for a and ϕ one may use

ϕ(t) ≈ ϕ, (4.15)

a(t) ≈ 1

H(ϕ)
coshH(ϕ)t , (4.16)

where H(ϕ) = 8πV (ϕ)/3m2
P is the Hubble parameter generated by the in-

flaton potential V (ϕ). It is approximately constant during the inflationary
phase in which ϕ slowly “rolls down” the potential. We take into account
fluctuations of a field f(t,x) which can be a field of any spin. Space is as-
sumed to be a closed three-sphere, so f(t,x) can be expanded into a discrete
series of spatial orthonormal harmonics Qn(x),

f(t,x) =
∑

n

fn(t)Qn(x) . (4.17)

One can thus represent the fluctuations by the degrees of freedom fn.
Our intention now is to solve the Wheeler-DeWitt equation (4.6) in the

semiclassical approximation. This leads to the following solution:

Ψ(t|ϕ, f) =
1

√

v∗ϕ(t)
e−I(ϕ)/2+iScl(t,ϕ)

∏

n

ψn(t, ϕ|fn) . (4.18)

The time t that appears here is the semiclassical (“WKB”) time and is defined
by the background-degrees of freedom a and ϕ through the “eikonal” Scl

which is a solution of the Hamilton-Jacobi equation; t is formally identical
with the time that appears in the classical equations (4.15) and (4.16). Since
ϕ is thus determined by a, only one variable (a or ϕ) occurs in the argument
of Ψ . The wave functions ψn for the fluctuations fn obey each an approximate
Schrödinger equation (4.14) with respect to t, and their Hamiltonian Hn has
the form of a (“time-dependent”) harmonic-oscillator Hamiltonian. The first
exponent contains the euclidean action I(ϕ) from the classically forbidden
region (the “De Sitter instanton”) and is independent of t. Its form depends
on the boundary conditions imposed. In the present case the so-called Hartle-
Hawking condition is chosen, see e.g. Halliwell (1991), which amounts to
I(ϕ) ≈ −3m4

P /8V (ϕ). The detailed form is, however, not necessary for the
discussion below. The function vϕ(t) is the so-called basis function for ϕ and
is a solution of the classical equation of motion. In the following we shall
choose units such that G = c = ~ = 1.

For the ψn we shall take – in analogy to (??) – Gaussian states that cor-
respond to the so-called De Sitter-invariant vacuum state (Starobinsky 1979,
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Allen 1985). This is the maximally symmetric state which possesses proper-
ties very similar to the standard vacuum state in Minkowski space. (In the
massless case, this state is invariant only under a subgroup of the De Sitter
group.) It is given by

ψn(t, ϕ|fn) =
1

√

v∗n(t)
exp

(

−1

2
Ωn(t)f2

n

)

, (4.19)

Ωn(t) = −ia3(t)
v̇∗n(t)

v∗n(t)
. (4.20)

The functions vn are the basis functions of the De Sitter-invariant vacuum
state; they satisfy the classical equation of motion

Fn

(

d

dt

)

vn ≡
(

d

dt
a3 d

dt
+ a3m2 + a(n2 − 1)

)

vn = 0 (4.21)

with the boundary condition that they should correspond to a standard
Minkowski positive-frequency function for constant a. In the simple special
case of a spatially flat section of De Sitter space one would have

avn =
e−inη

√
2n

(

1 − i

nη

)

, (4.22)

where η is the conformal time defined by adη = dt. We note that the cor-
responding negative-frequency function enters the exponent of the Gaussian,
see (4.20).

An important property of these vacuum states is that their norm is con-
served along any semiclassical solution (4.15), (4.16),

〈

ψn|ψn

〉

≡
∫

dfn|ψn(fn)|2 =
√

2π[∆n(ϕ)]−1/2, (4.23)

∆n(ϕ) ≡ ia3(v∗nv̇n − v̇∗nvn) = constant . (4.24)

Note that ∆n(ϕ) is just the (constant) Wronskian corresponding to (4.21).
(The corresponding Wronskian for the homogeneous mode ϕ is
∆ϕ ≡ ia3(v∗ϕv̇ϕ− v̇∗ϕvϕ).) We must emphasise that ∆n is a nontrivial function
of the background variable ϕ, since it is defined on full configuration space and
not only along semiclassical trajectories (it gives the weights in the “Everett
branches”.) It is therefore not possible to normalise the ψn artificially to one,
since this would be inconsistent with respect to the full Wheeler-DeWheeler
equation (Barvinsky et al. 1999a).

The solution (4.18) forms the basis for our discussion of decoherence.
Since the {fn} are interpreted as the environmental degrees of freedom, they
have to be integrated out to get the reduced density matrix for ϕ or a (a and
ϕ can be used interchangeably, since they are connected by t). The reduced
density matrix thus reads

ρ(t|ϕ,ϕ′) =

∫

dfΨ(t|ϕ, f)Ψ∗(t|ϕ′, f) , (4.25)
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where Ψ is given by (4.18), and it is understood that df =
∏

n dfn. After the
integration one finds

ρ(t|ϕ,ϕ′) = C
1

√

v∗ϕ(t)v′ϕ(t)
exp

[

− 1

2
I − 1

2
I ′ + i(S − S′)

]

×
∏

n

[

v∗nv
′
n(Ωn +Ω′∗

n )
]−1/2

, (4.26)

where C is a numerical constant. The diagonal elements ρ(t|ϕ,ϕ) describe the
probabilities for certain values of the inflaton field to occur. In an appropriate
model, one can find that these probabilities are peaked at the onset of inflation
around values of ϕ that lead to phenomenologically satisfying results (for
example, with respect to structure formation) without having to invoke the
anthropic principle, see Barvinsky et al. (1999b) and the references therein.

It is convenient to rewrite the expression for the density matrix (4.26) in
the form

ρ(t|ϕ,ϕ′) = C
∆

1/4
ϕ ∆

′1/4
ϕ

√

v∗ϕ(t)v′ϕ(t)
exp

(

−1

2
Γ − 1

2
Γ

′ + i(S − S′)

)

×D(t|ϕ,ϕ′), (4.27)

where

Γ = I(ϕ) + Γ 1−loop(ϕ) (4.28)

is the full Euclidean effective action including the classical part and the one-
loop part. The latter comes from the next-order WKB approximation and is
important for the normalisability of the wave function with respect to ϕ. The
last factor in (4.27) is the decoherence factor

D(t|ϕ,ϕ′) =
∏

n

(

4ReΩn ReΩ′∗
n

(Ωn +Ω′∗
n )2

)1/4
(

vn

v∗n

v
′
∗

n

v′n

)1/4

. (4.29)

It is equal to one for coinciding arguments. While the decoherence factor is
time-dependent, the one-loop contribution to (4.27) does not depend on time
and may play only a role at the onset of inflation. In a particular model with
non-minimal coupling (Barvinsky et al. 1997), the size of the non-diagonal
elements is at the onset of inflation approximately equal to those of the
diagonal elements. The Universe would thus be essentially quantum at this
stage, i.e. in a non-classical state.

The amplitude of the decoherence factor can be rewritten in the form

|D(t|ϕ,ϕ′)| = exp
1

4

∑

n

ln
4ReΩn ReΩ′∗

n

|Ωn +Ω′∗
n |2 . (4.30)
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The convergence of this series is far from being guaranteed. Moreover, the
divergences might not be renormalisable by local counterterms in the bare
quantised action. We shall now analyse this question in more detail.

We start with a minimally coupled massive scalar field. Equation (4.21)
for the basis functions reads

d

dt

(

a3 dvn

dt

)

+ a3

(

n2 − 1

a2
+m2

)

vn = 0 . (4.31)

The appropriate solution to this equation is (Barvinsky et al. 1992)

vn(t) = (coshHt)−1P−n

− 1
2+i

√
m2/H2−9/4

(i sinhHt) , (4.32)

where P denotes an associated Legendre function of the first kind. The ex-
pansion of (4.32) for large masses was derived in Barvinsky et al. (1992). The
corresponding expression for (4.20) is given by

Ωn = a2

[

√

n2 +m2a2 + i sinhHt

(

1 +
1

2

m2a2

n2 +m2a2

)]

+O

(

1

m

)

.(4.33)

The leading contribution to the amplitude of the decoherence factor is there-
fore

ln |D(t|ϕ,ϕ′)| ≃ 1

4

∞
∑

n=0

n2 ln
4a2a′2

√
n2 +m2a2

√
n2 +m2a′2

(

a2
√
n2 +m2a2 + a′2

√
n2 +m2a′2

)2 .(4.34)

The first term, n2, in the sum comes from the degeneracy of the eigenfunc-
tions. This expression has divergences which cannot be represented as addi-
tive functions of a and a′. This means that no one-argument counterterm to
Γ and Γ

′ in (4.27) can cancel these divergences of the amplitude (Paz and
Sinha 1992). One might try to apply standard regularisation schemes from
quantum field theory, such as dimensional regularisation. The corresponding
calculations have been performed in Barvinsky et al. (1999a) and will not be
given here. The important result is that, although they render the sum (4.34)
convergent, they lead to a positive value of this expression. This means that
the decoherence factor would diverge for (ϕ − ϕ′) → ∞ and thus spoil one
of the crucial properties of a density matrix – the boundedness of tr ρ̂2. The
dominant term in the decoherence factor would read

ln |D| =
π

24
(ma)3 +O(m2), a≫ a′ (4.35)

and would thus be unacceptable for a density matrix. Reduced density ma-
trices are usually not considered in quantum field theory, so this problem has
not been encountered before. A behaviour such as in (4.35) is even obtained in
the case of massless conformally invariant fields, for which one would expect
a decoherence factor equal to one, since they decouple from the gravitational
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background. How, then, does one have to proceed in order to obtain a sensible
regularisation?

The crucial point is to perform a redefinition of environmental fields and
to invoke a physical principle to fix this redefinition. The situation is some-
what analogous to the treatment of the S-matrix in quantum field theory:
off-shell S-matrix and effective action depend on the parametrisation of the
quantum fields (Vilkovisky 1984), in analogy to the non-diagonal elements of
the reduced density matrix. In Laflamme and Louko (1991) and Kiefer (1992)
it has been proposed within special models to rescale the environmental fields
by a power of the scale factor. It was therefore suggested in Barvinsky et al.

(1999a) to redefine the environmental fields by a power of the scale factor
that corresponds to the conformal weight of the field (which is defined by the
invariance of the conformally invariant wave equation). For a scalar field in
four spacetime dimensions this amounts to a multiplication by a:

vn(t) → ṽn(t) = a vn(t) , (4.36)

Ω̃n = −ia d
dt

ln ṽ∗n . (4.37)

An immediate test of this proposal is to see whether the decoherence factor
is equal to one for a massless conformally invariant field. In this case, the
basis functions and frequency functions read, respectively,

ṽ∗n(t) =

(

1 + i sinhHt

1 − i sinhHt

)
n

2

, (4.38)

Ω̃n = −ia d
dt

ln ṽ∗n(t) = n . (4.39)

Hence, D̃(t|ϕ,ϕ′) ≡ 1. The same holds also for the electromagnetic field
(which in four spacetime dimensions is conformally invariant). It is interesting
to note that the degree of decoherence caused by a certain field depends on the
spacetime dimension, since its conformal properties are dimension-dependent.

For a massive minimally coupled field the new frequency function reads

Ω̃n =

[

√

n2 +m2a2 + i sinhHt

(

1

2

m2a2

n2 +m2a2

)]

+O(1/m) . (4.40)

Note that, in contrast to (4.33), there is no factor of a in front of this expres-
sion. Since (4.40) is valid in the large-mass limit, it corresponds to modes
which evolve adiabatically on the gravitational background, the imaginary
part in (4.40) describing particle creation.

It turns out that the imaginary part of the decoherence factor has at most
logarithmic divergences and, therefore, affects only the phase of the density
matrix. Moreover, these divergences decompose into an additive sum of one-
argument functions and can thus be cancelled by adding counterterms to the
classical action S (and S′) in (4.27) (Paz and Sinha 1992). The real part
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is simply convergent and gives a finite decoherence amplitude. This result is
formally similar to the result for the decoherence factor in QED (Kiefer 1992).

For a≫ a′ (far off-diagonal terms) one gets the expression

|D̃(t|ϕ,ϕ′)| ≃ exp

[

− (ma)3

24

(

π − 8

3

)

+O(m2)

]

. (4.41)

Compared with the naively regularised (and inconsistent) expression (4.35),
π has effectively been replaced by 8/3 − π. In the vicinity of the diagonal,
one obtains

ln |D̃(t|ϕ,ϕ′)| = −m
3πa(a− a′)2

64
, (4.42)

a behaviour similar to (4.41).
An interesting case is also provided by minimally coupled massless scalar

fields and by gravitons. They share the basis- and frequency functions in their
respective conformal parametrisations:

ṽ∗n(t) =

(

1 + i sinhHt

1 − i sinhHt

)
n

2
(

n− i sinhHt

n+ 1

)

, (4.43)

Ω̃n =
n(n2 − 1)

n2 − 1 +H2a2
− i

H2a2
√
H2a2 − 1

n2 − 1 +H2a2
. (4.44)

They differ only by the range of the quantum number n (2 ≤ n for inhomo-
geneous scalar modes and 3 ≤ n for gravitons) and by the degeneracies of
the n-th eigenvalue of the Laplacian,

dim(n)scal = n2 , (4.45)

dim(n)grav = 2(n2 − 4). (4.46)

For far off-diagonal elements one obtains the decoherence factor

|D̃(t|ϕ,ϕ′)| ∼ e−C(Ha)3 , a≫ a′, C > 0 , (4.47)

while in the vicinity of the diagonal one finds

|D̃(t|ϕ,ϕ′)| ∼ exp

(

−π
2

32
(H −H ′)2t2e4Ht

)

, (4.48)

∼ exp

(

−π
2H4a2

8
(a− a′)2

)

, Ht≫ 1 . (4.49)

These expressions exhibit a rapid disappearance of non-diagonal elements
during the inflationary evolution.

It is interesting that the behaviour of fermions concerning decoherence is
different from the behaviour of bosons (Barvinsky et al. 1999c). Since their
conformal weight is −3/2 in four dimensions, the environmental fermionic
fields are reparametrised by a factor a−3/2. For m = 0 this does, as in the
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bosonic case, render the decoherence factor finite and, due to conformal in-
variance, makes it equal to one. The situation for m 6= 0 is, however, dif-
ferent. In spite of the conformal reparametrisation, the decoherence factor
is divergent. Moreover, dimensional regularisation would again spoil crucial
properties of the density matrix and make it inconsistent. There remains,
however, a freedom of reparametrisation in the fermionic case (Barvinsky et

al. 1999c): this is a Bogoliubov transformation that is analogous to a Foldy-
Wouthuysen transformation in Minkowski space (the decoupling of spinor
components in the nonrelativistic limit). Since it is explicitly n-dependent,
it corresponds to a nonlocal field redefinition. Instead of m one has now an
effective n-dependent mass m̃ depending on the transformation. How can one
fix this field redefinition? In Barvinsky et al. (1999c) the principle was put
forward that decoherence should be minimal in the absence of particle cre-
ation. This is already implemented in the massless case. In the massive case,
it means that decoherence is absent for a stationary spacetime which exhibits
no particle creation. This leads to a decoherence factor

|D̃(t|ϕ,ϕ′)| ∼ exp
(

−C′m2H2a2(a− a′)2
)

, C′ > 0 . (4.50)

While decoherence is thus absent in the absence of particle creation, for
bosons it is minimal in the sense that it is absent in the conformally-coupled
case, but still present in the massive case – the expressions (4.41) and (4.42)
do not depend on H . Formally, this is due to the fact that in the fermionic
case one has m2 instead of m3 in the exponent; since one would expect to
find factors of a in the nominator of the exponent (as is suggested by the
coupling in the action), they have to be accompanied by corresponding fac-
tors of H for dimensional reason. Comparing (4.50) with (4.41) and (4.42)
(which are valid for m≫ H), one recognises that fermions are less efficient in
producing decoherence. In the massless case, there influence is totally absent.
The point that decoherence is linked with particle creation has been made
before (Calzetta and Hu 1994, Hu and Matacz 1995). Using the influence-
functional approach to decoherence, see Chap. 5, one can derive an explicit
formula connecting the decoherence factor with the Bogoliubov coefficients
describing particle creation (Hu and Matacz 1995).5 Given a special initial
state (a “vacuum”), this encodes the irreversible aspect of decoherence. In
the massless bosonic case, (4.47) and (4.49), the effect may be interpreted as
arising from a cutoff at a mode number n ≈ aH , i.e., a cutoff of modes whose
wavelength a/n is smaller than the Hubble scale H−1 (Halliwell 1989). As we
shall see in the next subsection, these are exactly the modes that experience
particle creation.

5 The decoherence factor in the massive bosonic case, (4.41) and (4.42), comes
from the adiabatic part of Ω̃n and is not directly related to particle creation.
This is not in conflict with Hu and Matacz (1995), since there the assumption
is being made that the state separates between system and environment in the
past, which is not the case here.
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The above analysis of decoherence was based on the state (4.18). One
might, however, start with a quantum state that is a superposition of many
semiclassical components, i.e. many components of the form exp(iSk

cl), where
each Sk

cl is a solution of the Hamilton-Jacobi equation for a and ϕ. Decoher-
ence between different such semiclassical branches has also been the subject
of intense investigation (Halliwell 1989, Kiefer 1992). The important point is
that decoherence between different branches is usually weaker than the above
discussed decoherence within one branch. Moreover, it usually follows from
the presence of decoherence within one branch. In the special case of a super-
position of (4.18) with its complex conjugate, one can immediately recognise
that decoherence between the semiclassical components is smaller than within
one component: in the expression (4.29) for the decoherence factor, the term
Ωn + Ω′∗

n in the denominator is replaced by Ωn +Ω′
n. Therefore, the imagi-

nary parts of the frequency functions add up instead of partially cancelling
each other and (4.29) becomes smaller. One also finds that the decoherence
factor is equal to one for vanishing expansion of the semiclassical universe
(Kiefer 1992).

We note that the decoherence between the exp(iScl) and exp(−iScl) com-
ponents can be interpreted as a symmetry breaking analogously to the case
of sugar molecules, see Sect. 3.2.4 and Chap. 9. There, the Hamiltonian is
invariant under space reflections, but the state of the sugar molecules ex-
hibits chirality. Here, the Hamiltonian in (4.6) is invariant under complex
conjugation,6 while the “actual states” (i.e., one decohering WKB compo-
nent in the total superposition) are of the form exp(iScl) and are thus in-
trinsically complex. It is therefore not surprising that the recovery of the
classical world follows only for complex states, in spite of the real nature of
the Wheeler-DeWitt equation (see in this context Barbour 1993). Since this
is a prerequisite for the derivation of the Schrödinger equation, one might
even say that time (the WKB time parameter in the Schrödinger equation)
arises from symmetry breaking.

The above considerations thus lead to the following picture. The Universe
was essentially “quantum” at the onset of inflation. Mainly due to bosonic
fields, decoherence set in and led to the emergence of many “quasi-classical
branches” which are dynamically independent of each other. Strictly speak-
ing, the very concept of time makes only sense after decoherence has occurred.
In addition to the horizon problem etc., inflation also solves the “classicality
problem”. It remains of course unclear why inflation happened in the first
place (if it really did). Looking back from our Universe (our semiclassical
branch) to the past, one would notice that at the time of the onset of infla-
tion our component would interfere with other components to form a timeless
quantum-gravitational state. The Universe would thus cease to be transpar-
ent to earlier times (because there was no time). This demonstrates in an

6 We ignore here alternative approaches which use a complex Hamiltonian from
the very beginning (Kiefer 1993).
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impressive way that quantum-gravitational effects are not restricted to the
Planck scale.

It is interesting that a similar kind of constructive interference would oc-
cur near the turning point of a classically recollapsing universe (Kiefer and
Zeh 1995). This is a direct consequence of the consistent way in which bound-
ary conditions have to be imposed in this case. Again, this demonstrates that
quantum effects are not restricted a priori to a particular scale and that it is
a quantitative question referring to the dynamics when and to which extent
classical properties emerge.

Our analysis has been restricted to the case where the “system” is taken
to be a Friedmann universe containing a homogeneous scalar field. This is jus-
tified from phenomenological grounds, since our Universe appears isotropic
and homogeneous on largest scales. Again, this may be traced back to the
presumed occurrence of an inflationary phase and the validity of the cosmic
no-hair conjecture. In spite of this, one can discuss decoherence in the con-
text of anisotropic models, too (Gangui et al. 1991, Camacho and Camacho-
Galván 1999), and find classical properties for the corresponding scale factors.

We want finally to stress the importance of decoherence for the origin

of irreversibility in our Universe (Zeh 2001; Kiefer and Zeh 1995). Since the
entropy of the present Universe (defined by its “relevant” degrees of freedom)
is still extremely small compared to its maximal possible value (which would
be achieved if the whole mass of the Universe were present in the form a
black hole), the evolution of the Universe must have been started with a
state of almost zero entropy (Penrose 1981). A possible explanation of this
fact must necessarily invoke the fundamental quantum theory of gravity. It
has been argued in the above references that a simple boundary condition at
a→ 0 for the wave function of the Universe may be sufficient to explain the
observed arrow of time, and may even lead to macroscopic quantum effects
near the turning point of a classically recollapsing universe as well as for black
holes. Such a boundary condition was proposed, for example, in Conradi and
Zeh (1991). It roughly states that the wave function for small a depends
only on a itself, but not on further degrees of freedom. This is consistent
with the special form of the potential in the Wheeler-DeWitt equation. The
wave function is thus independent, in this limit, of the “higher multipoles”
introduced in this section. For increasing size of the Universe, the total state
becomes entangled with these further degrees of freedom, and the decoherence
for the “relevant subsystem” can be recognised after the “irrelevant” part is
integrated out. The local entropy connected with the scale factor and other
“relevant” variables, as calculated from the reduced density matrix in the
standard way, S = −kBtr(ρ ln ρ), thus increases and gives rise to the observed
arrow of time in the Universe. An interesting consequence is the occurrence
of recoherence in the case of a classically recollapsing universe (Kiefer and
Zeh 1995).

. . .
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Why do cosmological perturbations look classical to us?
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Université de Montpellier II, 34095 Montpellier, France

According to the inflationary scenario of cosmology, all structure in the Universe can be traced
back to primordial fluctuations during an accelerated (inflationary) phase of the very early Universe.
A conceptual problem arises due to the fact that the primordial fluctuations are quantum, while the
standard scenario of structure formation deals with classical fluctuations. In this essay we present a
concise summary of the physics describing the quantum-to-classical transition. We first discuss the
observational indistinguishability between classical and quantum correlation functions in the closed
system approach (pragmatic view). We then present the open system approach with environment-
induced decoherence. We finally discuss the question of the fluctuations’ entropy for which, in
principle, the concrete mechanism leading to decoherence possesses observational relevance.
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I. INTRODUCTION

It is often emphasized these days that the field of cos-
mology has entered a golden age. There is no doubt that
the main reason for this statement is the accumulation of
observations of ever increasing accuracy. In this way cos-
mological models aiming to describe the evolution of the
Universe from the Big Bang until today are no longer
purely speculative: their predictions can be tested and
some models can indeed be ruled out.

With the advent of inflationary models, according to
which the Universe underwent a phase of accelerated ex-
pansion at a very early stage, we now have at our disposal
theoretical tools to apprehend such fundamental prob-
lems as the origin of cosmological perturbations and the
eventual formation of large-scale structures like galax-
ies. There are many ways in which inflationary models
address fundamental physical theories. As inflation is
supposed to take place at very high energies in the early
Universe, these models offer a unique window on energy
scales of the order of 1015 GeV. Another intriguing as-
pect of these models is that inflationary perturbations
originate from quantum fluctuations though we do not
see this quantum nature in the Universe nowadays. It is
this aspect of inflationary perturbations that we want to
describe in our essay.

We could, of course, as well consider non-inflationary
cosmological models in which perturbations are assumed
to be classical from the beginning on. However, such
models are plagued with problems of causality as dis-
tant points on the last-scattering surface, about 350.000
years after the Big Bang, were never in contact before.
Hence the impressive homogeneity of the Cosmic Mi-
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crowave Background (CMB) would have to be put in by
hand in the absence of an inflationary stage. Inflationary
models are thus much more natural – and they can be
observationally tested.

The main part of our essay consists of four parts. We
shall first give in Sec. II a brief review of inflationary
cosmology and its mechanism for the generation of per-
turbations. We then discuss in Sec. III the quantum-
to-classical transition in the closed system approach (we
call it also the pragmatic view) which focusses on the
indistinguishability of quantum expectation values and
classical stochastic averages. Sec. IV presents the suc-
cessful observational predictions which emerge from this
scenario. Sec. V, then, is devoted to environmental deco-
herence. We discuss the problem of the classical variables
(the pointer basis) as well as the entropy of the fluctua-
tions and its observational significance. We end with a
brief conclusion.

II. INFLATION

We give here a brief review of the way in which infla-
tionary models give an elegant solution to many funda-
mental problems occuring in non-inflationary Big-Bang
cosmology, see, for example,1. As we shall see, these
models do also make characteristic predictions, by which
we mean that in the absence of certain observable signa-
tures most if not all inflationary models would be ruled
out. We shall first describe the evolution of the homo-
geneous background for inflation and then turn to the
generation of perturbations.
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A. Background expansion

The crucial point here is that inflation is a stage of
accelerated expansion. In this stage, proper (physical)
scales are stretched by a huge factor so that scales in-
side the Hubble radius during inflation will eventually
end up at the end of inflation far outside the Hubble ra-
dius. Today these scales can correspond to cosmological
scales, and typically scales corresponding to the Hubble
radius today have exited the Hubble radius during infla-
tion about 65 e-folds before the end of inflation. Typi-
cally, inflationary stages are quasi-de Sitter stages during
which the Hubble parameter is nearly constant. As we
shall see below, inflation provides a mechanism for the
causal generation of perturbations.

It is a basic assumption that our Universe is on large
scales homogeneous and isotropic. The metric is of the
form

ds2 = dt2 − a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

;

(1)
a spatially flat universe corresponds to k = 0, a closed
universe to k = 1, and an open universe to k = −1. (We
set the speed of light c = 1 throughout.) In an expanding
universe, the scale factor a(t) is a growing function of
time, which starts close to zero at the Big Bang about
13.7 billions years ago. The dynamics of the scale factor
is given by the Friedmann equations,

(

ȧ

a

)2

=
∑

i

8πG

3
ρi −

k

a2
, (2)

ä

a
= −4πG

3

∑

i

(ρi + 3pi) , (3)

where the index i stands for any isotropic (comoving)
perfect fluid. For radiation we have pr = ρr/3, for dust
pm = 0. For the recent accelerated expansion caused
by some smooth dark energy component we would have
pDE = wDE ρDE, where wDE < −1/3 is still unknown
and in many models time-dependent. ¿From (3) the ex-
pansion is typically decelerated, ä < 0, unless at least
one of the components satifies ρi + 3pi < 0.

A space-independent scalar field φ(t) can be viewed as
a comoving perfect fluid with

ρφ =
1

2
φ̇2 + V (φ) , (4)

pφ =
1

2
φ̇2 − V (φ) . (5)

Hence, a scalar field φ(t) can induce an accelerated ex-
pansion provided

φ̇2 < V (φ) . (6)

The field φ(t) driving the inflationary stage is called the
inflaton and evolves according to the Klein-Gordon equa-
tion

φ̈ + 3Hφ̇ +
dV

dφ
= 0 , (7)

which is the form taken by the conservation of energy
for a perfect fluid defined by (4) and (5), and we have
introduced the Hubble parameter H ≡ ȧ/a. In most
inflationary models, the inflaton field φ(t) satisfies the

slow-roll conditions φ̈ ≪ 3Hφ̇, and hence

3Hφ̇ ≈ −dV

dφ
. (8)

It is easy to show that the conditions for slow-roll to hold
are

Ḣ ≪ 3H2 ,
d2V

dφ2
≪ 9H2 , (9)

in which case the condition (6) is amply satisfied so that
accelerated expansion – inflation – takes place.

We conclude this brief summary on the background
evolution during inflation by discussing the relative evo-
lution of physical scales. The Hubble radius RH ≡ H−1

defines an important scale in cosmology. If a ∝ tp, we
have RH ∝ t, and it is clear that RH grows faster than
a physical scale λ ∝ a during a decelerated expansion,
which has p < 1. Hence physical scales greater than
the Hubble radius, which we shall call “superhorizon” or
“super-Hubble” scales, will eventually enter the Hubble
radius, by which we mean that they will become smaller
than RH: this is the situation in standard cosmology.
This picture changes dramatically during inflation; to il-
lustrate this we take a purely de Sitter stage, which is
characterized by H = constant and a(t) ∝ exp(Ht). Now
it is clear that physical scales inside the Hubble radius,
which we shall call “subhorizon” or “sub-Hubble” scales
will eventually become larger than the Hubble radius.

If a scale is said to cross the “horizon” 65 e-folds before
the end of inflation, this means that at the end of inflation
(where t = te) one has a = ae = e65ak or Nk = 65 with

Nk =
ae

ak
; (10)

here, ak ≡ a(tk) if tk is the “horizon-crossing” time of
that particular scale with physical wavelength (2π/k)a.
(Sometimes the factor 2π is omitted.) In a pure de Sit-
ter stage this would mean that H(te − tk) = 65. If we
can compute the present physical scale evolving from the
Hubble radius during inflation, we know to which phys-
ical scale today a scale with given Nk corresponds. De-
pending on the details of the model, the Hubble radius
today corresponds typically to a scale with Nk ≈ 65. It
can be shown that in slow-roll models Nk can be com-
puted from the value φ(tk) and that it depends on the
potential V (φ).

In consistent inflationary scenarios, inflation is fol-
lowed by a standard cosmic expansion during which
scales that went outside RH become again smaller than
RH; they “re-enter the horizon”. For a given scale, the
number of e-folds between the first horizon crossing time
tk during inflation and the second horizon crossing time
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during the radiation or matter stage at t = tk,f is given
by the parameter rk,

rk ≡ ln
a(tk,f)

ak
≡ ln

ak,f

ak
. (11)

We shall see in Sec. III that rk coincides with the squeez-
ing parameter for a quantum state2. For typical cosmo-
logical scales today, rk ∼ 100 and even larger. Physi-
cally this corresponds to an enormous expansion of the
universe, while a given scale k was outside the Hubble
radius. As we shall see below, the ensuing huge amount
of squeezing for the quantum state plays a crucial role in
the quantum-to-classical transition of inflationary quan-
tum fluctuations. It also means that the quantum state
originating from inflation is a very peculiar one.

B. Generation of perturbations

During an inflationary stage, quantum field fluctua-
tions evolve according to the general principles of quan-
tum field theory. Inflation is supposed to take place at an
energy scale where space-time can be described as a clas-
sical curved space-time on which the quantum field fluc-
tuations are defined. The inflaton fluctuations δφ(x, t)
can be treated as a massless scalar field. This is an ex-
cellent approximation when the inflaton field satisfies the
slow-roll conditions (9) and it is even exact when we con-
sider primordial gravitational waves.

It is convenient to consider the rescaled quantity aδφ ≡
y(x, t) and to work with conformal time η =

∫

dt/a(t); a
prime will be used to denote a derivative with respect to
η. The formalism presented here is exact for gravitational
waves, but can be extended in a straightforward way to
the primordial density perturbations.

The quantization of the real perturbation y(x, η) pro-
ceeds with the usual canonical quantization scheme. We
start from the classical Hamiltonian describing the per-
turbations,

H ≡
∫

d3x H(y, p, ∂iy, η)

=
1

2

∫

d3k[p(k)p∗(k) + k2y(k)y∗(k) (12)

+
a′

a
(y(k)p∗(k) + p(k)y∗(k))] , (13)

where p is the momentum conjugate to y,

p ≡ ∂L(y, y′)

∂y′
= y′ − a′

a
y . (14)

In (13) we have introduced the (time-dependent) Fourier
transform y(k, η) of the rescaled fluctuation y(x, η). (We
sometimes keep the dependence on η.) In the Lagrangian
formulation, it obeys the following classical equation of
motion:

y′′(k, η) +

(

k2 − a′′

a

)

y(k, η) = 0 . (15)

Upon quantization, the Fourier transforms are promoted
to operators on which we impose the canonical commu-
tation relations,

[y(k, η), p†(k′, η)] = iδ(3)(k − k′) . (16)

(We set ~ = 1.) We can write the Hamiltonian operator
in the following way:

H =

∫

d3k

2

[

k
(

a(k)a†(k) + a†(−k)a(−k)
)

+

i
a′

a

(

a†(k)a†(−k) − a(k)a(−k)
)]

. (17)

The time-dependent annihilation operators a(k) (we of-
ten skip the argument η for conciseness) appearing in
(17) are defined as usual,

a(k) =
1√
2

(√
k y(k) +

i√
k

p(k)

)

, (18)

so that

y(k) =
a(k) + a†(−k)√

2k
, (19)

p(k) = −i

√

k

2

(

a(k) − a†(−k)
)

. (20)

It is easily seen from (16) that a and a† satisfy the com-
mutation relations

[a(k, η), a†(k′, η)] = δ(3)(k − k′) . (21)

Let us consider the time evolution of these operators.
¿From the Hamiltonian (17) we get

(

a′(k)
(a†(−k))′

)

= k

(

−i aH
k

aH
k i

)(

a(k)
a†(−k)

)

. (22)

The second piece of the Hamiltonian (17), which is pro-
portional to a′/a, is responsible for a mixing between
creation and annihilation operators. In the Heisenberg
representation it corresponds to a Bogolubov transfor-
mation; physically it means that particles are produced
in pairs with opposite momenta. For reasons that will
become clear later, this phenomenon is called squeezing
in the Schrödinger picture; the corresponding squeezing
parameter rk turns out to be given by the expression
(11) above. ¿From (22) one can see that mixing of cre-
ation and annihilation operators is efficient when the
off-diagonal terms dominate, in other words, on super-
Hubble scales when aH/k ≫ 1.

Using (20) and (22), one obtains after a little algebra,

y(k, η) ≡ fk(η) ak + f∗
k (η) a†

−k
, (23)

where ak ≡ a(k, η0), and the field modes fk obey Equa-

tion (15) and satisfy fk(η0) = 1/
√

2k. At the initial time
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η0, the field modes are deep inside the Hubble radius.
Equation (23) can be written in the suggestive way

y(k, η) =
√

2k fk1(η) yk −
√

2

k
fk2(η) pk , (24)

where yk ≡ y(k, η0) and pk ≡ p(k, η0), fk1 = ℜfk, fk2 =
ℑfk. We have in an analogous way momentum modes
gk(η), with gk(η0) =

√

k/2,

p(k) =

√

2

k
gk1(η) pk +

√
2k gk2(η) yk . (25)

We shall now address the first step in understanding why
and to which extent these quantum field modes appear
classically.

III. QUANTUM-TO-CLASSICAL TRANSITION:
THE PRAGMATIC VIEW

In the last section we have described the evolution of
the quantum modes in the Heisenberg representation, in
which operators evolve in time and quantum states do
not. While the quantum-to-classical transition is in gen-
eral formulated in the Schrödinger picture, for the in-
flationary perturbations the Heisenberg picture provides
deep insight, too.

To see this, let us assume that there is a limit in which
fk2 and gk1 (or fk1 and gk2) vanish. Then it is clear from
(24) that the non-commutativity of the operators yk and
pk is no longer relevant. What is the physical meaning of
such a limit? Let us consider a classical stochastic system
where the dynamics is still described by equations of the
form (24), but with now y(k, η0) and p(k, η0) representing
random initial values (c-numbers). If fk2 and gk1 vanish,
we get

p(k, η) ≡ pcl(y(k, η)) =
gk2

fk1
y(k, η) . (26)

This is true for the quantum system (in the operator
sense) and for the classical stochastic system (in the
c-number sense). Therefore, for a given realization of
the perturbation y(k, η), the corresponding momentum
pcl(k, η) is fixed and equal to the classical momentum
corresponding to this value y(k, η). Then the quantum
system is effectively equivalent to the classical random
system, which is an ensemble of classical trajectories with
a certain probability associated to each of them3.

This is, in fact, what happens for the primordial fluctu-
ations. The field modes obey (15), and this equation has,
on super-Hubble scales, solutions that become dominant
and solutions that become negligible (so-called “growing”
and “decaying” modes). Eventually the decaying mode
can be neglected and one in left with the growing mode.
It turns out that fk2 and gk1 are decaying modes, and
one is left with (26).

From the Heisenberg representation it follows that the
operational equivalence with the classical stochastic sys-
tem does not depend on the initial state; this was indeed

shown explicitly for a wide class of initial states (and
extended to some gauge-invariant quantities)4.

We now look at the problem in the Schrödinger rep-
resentation where the state evolves in time, while the
operators are fixed. The initial quantum state of the
perturbations is the vacuum state |0, η0〉 satisfying

ak|0, η0〉 = 0 ∀k . (27)

At later times, due to the creation of particles, the time-
evolved state is annihilated by a more complicated oper-
ator,

{

yk + iγ−1
k (η)pk

}

|0, η〉 = 0 . (28)

The corresponding (Gaussian) wave function reads

Ψ[yk, y∗
k
, η] =

1
√

π|fk|2
exp

(

− |yk|2
2|fk|2

{1 − i2F (k)}
)

≡
(

2ΩR(η)

π

)1/4

exp
(

−[ΩR(η) + iΩI(η)]|yk|2
)

. (29)

In (28,29), we have

γk =
1

2|fk|2
[1 − 2iF (k)] ,

F (k) = ℑf∗
kgk = fk1gk2 − fk2gk1 . (30)

At the initial time η = η0, γk(η0) = k, and hence
F (k) = 0; in other words, we have a minimum uncer-
tainty wave function. This is no longer so later, as |F (k)|
becomes very large; the probabilities, however, remain
Gaussian. Another way to exhibit the physical meaning
of our state is to consider the Wigner function, W , which
can be considered as a kind of quasi-probability density
in phase space. For Gaussian wave functions, W has the
property to be positive definite. For the wave function
(29) one obtains

W =
|rk|→∞−→ |Ψ|2 δ(2) (pk − pcl(yk)) . (31)

The dynamics of the fluctuations leads to the large-
squeezing limit |rk| → ∞. One gets a highly elon-
gated ellipse whose large axis is oriented along the line
pk = pcl(yk) and whose width becomes negligible. This is
a direct vizualisation of the classical stochastic behaviour
of our system: the variable yk can take any value with
corresponding probability |Ψ|2, while pk takes the corre-
sponding value pk = pcl(yk). Instead of being essentially
located in phase space around one physical trajectory,
as for coherent states, the system behaves as if it fol-
lowed an infinite number of classical trajectories with a
definite probability to be on each of them. Interestingly,
an analogous situation happens for a free non-relativistic
particle5 possessing an initial Gaussian minimal uncer-
tainty wavefunction. As is well known, F ∝ t and be-
comes very large. At very late times, the position does
no longer depend on the initial position,

x(t) ≃ p0

m
t . (32)
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We get an equivalence with an ensemble of classical par-
ticles obeying (32), where p0 is a random variable with
probability P (p0) = |Ψ|2(p0). This illustrates the kind
of classicality we are dealing with. Moreover, when (32)
holds, position operators at different times approximately
commute (which, in quantum-optical language, corre-
sponds to a quantum-nondemolition situation).

Using the canonical commutation relations, the quan-
tum coherence between the growing and decaying mode
can be expressed as

fk1gk1 + fk2gk2 =
1

2
. (33)

Clearly, when fk2, gk1 are unobservable, this coherence
becomes unobservable as well. This is the case when the
decaying mode is so small that we have no access to it in
observations. For the ratio of the growing to the decaying
mode one has

fk2

fk1
∝ e−2|rk| , (34)

which is why a large squeezing parameter rk in the
Schrödinger picture implies a vanishing decaying mode in
the Heisenberg representation. The width of the Wigner
function is given by

〈(pk − pcl(yk))2〉 = g2
k1 , (35)

which becomes unobservable like the decaying mode. A
further consequence is that the typical phase-space vol-
ume occupied by the system becomes negligible, too.

Let us take the concrete and important example of a
perturbation on de Sitter space a ∝ eHt, with H being
constant. The exact solution of (15) with the correct ini-
tial condition (ground state for initial sub-Hubble modes)
then reads up to an unimportant constant phase factor

fk =
−i√
2k

e−ikη
(

1 − i

kη

)

, (36)

gk = −i

√

k

2
e−ikη , η ≡ − 1

aH
< 0 . (37)

Modes initially inside the Hubble radius become much
larger than the Hubble radius during inflation solely as a
result of their dynamics to satisfy kη ≪ 1: here we have
the limit mentioned above! This can be shown also to cor-
respond to the large-squeezing limit. Actually, this is a
particular case of the general situation when an equation
like (15) has a growing-mode solution and a decaying-
mode solution. Here the decaying mode becomes vanish-
ingly small; when it is neglected we are in the limit of a
random stochastic process. Perturbations are then given
by

δφ(k, η) =
H√
2k3

ek . (38)

We have set here
√

2k yk = ek, which assumes the role
of a classical Gaussian random variable with unit vari-
ance. From (38) we see that the perturbations tend to

a constant value (they become “frozen”). One should
realize that the true reason for the quantum-to-classical
transition in the sense discussed here is that the decay-
ing mode becomes vanishingly small. Primordial gravi-
tational waves follow exactly the behaviour (38) (up to
some factor)6, but after re-entering the Hubble radius
they will start oscillating. They retain their classical ap-
pearance because the decaying mode (which oscillates as
well by then!) is negligible3.

IV. OBSERVATIONAL PREDICTIONS

The perturbations produced during inflation have re-
markable properties which can be confronted with obser-
vations. This confrontation makes essential use of the
effective classical behaviour discussed in the last section.

Primordial inflaton fluctuations generate a primor-
dial Newtonian potential and the corresponding energy-
density fluctuations δρ. A central quantity is the power
spectrum, P (k), of the quantity δ ≡ δρ/ρ,

〈δ(k) δ∗(k′)〉 = P (k) δ(3)(k − k′) . (39)

When the statistical properties are isotropic, the power
spectrum depends only on k ≡ |k|. It can be shown
that the power spectrum is the Fourier transform of the
correlation function (in space), and it can be defined for
any quantity. Deep in the matter-dominated stage, P (k)
has the following expression on “super-horizon” scales in
slow-roll single-field inflation,

P (k) =
1024

75
π3G3

(

V 3

V ′2

)

tk

(aH)−4 k, (40)

where V ′ is the derivative of the inflaton potential with
respect to the inflaton φ, and the fraction has to be eval-
uated at the Hubble-radius crossing time k = a(tk)H(tk)
during inflation. Because of the quasi-exponential infla-
tionary expansion, it depends very weakly on k. Neglect-
ing this dependence, we get

P (k) ∝ k , (41)

which is the scale-invariant “Harrison–Zeldovich” spec-
trum that plays a crucial role in these investigations.
This spectrum is called scale-invariant for the following
reason: if we compute the r.m.s. relative mass fluctua-
tions 〈(δM/M)

2〉 at the time tk when a scale eventually
re-enters the Hubble radius, the same value is obtained
for all scales.

Using the expansion (23) and the commutation rela-
tions (21), it is straightforward to show that

〈δφ2〉 =
1

2π2

∫ ∞

0

dk k2 |δφk(η)|2 , (42)

with fk(η) = a δφk(η). This means that the power spec-
trum of δφ is just given by |δφk(η)|2. However, the aver-
age on the left is a quantum average; it is only by virtue
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of the quantum-to-classical transition mentioned above
that we can consider |δφk(η)|2 as the power spectrum of
a classical random variable, whose time evolution is con-
sistent with probabilities conserved along classical trajec-
tories. In the opposite case this would be impossible due
to quantum interferences. We note also the result in the
limit (38), which gives

d〈δφ2〉
d ln k

=

(

H

2π

)2

, (43)

where the derivative is with respect to some cut-off value.
Primordial fluctuations leave their imprint on the

CMB and this provides the best constraint on their prop-
erties and on the inflationary models in which they were
presumably produced. While the CMB is remarkably ho-
mogeneous with a black body spectrum, perturbations
induce very tiny inhomegeneities of the order 10−5. In
this regime, linear perturbation theory is very accurate so
that precise predictions can be made. The measurement
of the temperature anisotropies angular power spectrum,
the Cℓ’s,

Cℓ = 〈|alm|2〉 ,
∆T

T
(ϑ, ϕ) =

∑

l,m

alm Ylm , (44)

(which are in the isotropic case independent of m) will
culminate with the Planck satellite (ESA). The exquisite
data we have thus far, in particular those collected by
the WMAP collaboration (NASA), show excellent agree-
ment with a flat universe and adiabatic perturbations7,8.
Such perturbations respect the equation of state of the
background; for the baryon–photon plasma this is when
δT
T = 1

3
δnB

nB

, where n is the baryon number density. This
is a natural outcome of single-field inflation.

Before decoupling, the baryon–photon plasma is
tightly coupled and its density oscillates on scales inside
the Hubble radius, yielding oscillations similar to pres-
sure waves. These are often called acoustic oscillations.
The location of the first (Doppler) peak gives roughly the
angular scale of the Hubble radius at decoupling and is
consistent with a flat universe. The pattern of the an-
gular power spectrum is in agreement with primordial
adiabatic fluctuations. After decoupling, the baryons re-
tain the primordially induced acoustic “Sakharov” oscil-
lations, the baryonic acoustic oscillations (BAO); these
were detected in the galaxy power spectrum and are
presently used in order to constrain dark energy mod-
els.

To parametrize the departure from scale invariance,
one introduces the spectral index n with P (k) ∝ kn. Lat-
est CMB data constrain n to be very close, but slightly
lower than one7. Finally we see no clear evidence for
non-Gaussianity in the statistics of the perturbations.
All these data are in surprisingly good agreement with
the simplest single-field slow-roll inflationary models (see
e.g.9).

Let us return in more detail to the acoustic oscilla-
tions. They arise because of the standing-wave behaviour

of the perturbations inside the Hubble radius. There are
always two modes that are solutions to the equations and
they will both oscillate. One of the modes matches the
growing (dominant) mode, and the other the decaying
(subdominant) mode. For modes sufficiently long out-
side the Hubble radius, the decaying mode disappears
and the growing mode will match the corresponding os-
cillating mode inside the Hubble radius. At decoupling,
each mode has a given oscillation phase, and this gives
rise to the acoustic oscillations seen in the Cℓ’s. If we
had a way to generate classical perturbations that would
evolve outside the Hubble radius for very long, just the
same would be true. If these perturbations had random
initial conditions, obeying the same statistics as our ini-
tially quantum fluctuations, both systems would be indis-
tinguishable. Hence the presence of acoustic oscillations
is in no way connected to the quantum nature of the per-
turbations but rather to their primordial origin. But the
quantum-to-classical transition can only take place in a
system where the decaying mode is negligible enough so
that acoustic oscillations do arise. It is interesting that a
similar standing-wave behaviour is present in the primor-
dial stochastic gravitational waves background produced
during inflation. Unfortunately, to detect it in a direct
detection experiment today would require a resolution in
frequency of about 10−18 Hz,3 clearly beyond present or
foreseeable capabilities. The same property yields also
small superimposed oscillations in the power spectra of
the CMB temperature anisotropy and polarization. This
is similar to the acoustic oscillations but with a period
approximately twice as small (solely due to the differ-
ence between the light velocity and the sound velocity in
the baryon–photon plasma at the recombination time)3.
Their observation is very difficult but not hopeless if the
parameter characterizing the tensor-to-scalar ratio in the
CMB temperature anisotropy is not too small, see10 for
detailed estimates of the CMB polarization B-mode pro-
duced by primordial gravitational waves only.

We finally mention that calculations done for the cre-
ation of matter by parametric resonance after inflation
use the description of perturbations in terms of classical
stochastic fields. All the predictions mentioned above
and which were confirmed by observations are done in
the closed-system approach, that is, by taking the per-
turbations as an isolated system. Similar results were ob-
tained in various disguise by several authors11,12,13 and
even extended beyond the linear regime14. In this ap-
proach the system becomes indistinguishable, in an op-
erational sense, from a classical stochastic system solely
by virtue of its peculiar inflationary dynamics.

From a purely pragmatic point of view, the closed-
system approach is sufficient. In astrophysical observa-
tions one measures certain classical correlation functions
for which the above line of thought shows that they are
indistinguishable from the fundamental quantum expec-
tation values. Still, in the next section we shall go be-
yond the closed-system approach by taking into account
the interaction of the modes with other, “environmental”,



7

degrees of freedom. This has several reasons. First, the
environment-induced decoherence process is generally in-
voked in order to explain the appearance of classical be-
haviour in quantum theory15. Second, since an environ-
ment is expected to be present anyway, it is important
to consider whether it does not spoil the successful pre-
dictions from the closed-system approach. It should, in
particular, not erase the acoustic oscillations. Moreover,
invoking large non-linear effects might irremediably mod-
ify the CMB angular power spectrum and induce large
non-Gaussianity. Finally, there is the question about the
entropy of the perturbations which by definition cannot
be addressed inside the closed-system approach.

We shall see that these questions and problems can
be successfully dealt with without spoiling the success-
ful predictions of the closed-system approach including
the quantum-to-classical transition in the pragmatic ap-
proach adopted in this section.

V. QUANTUM-TO-CLASSICAL TRANSITION:
DECOHERENCE

A. Decoherence and pointer basis

In the last section we have described the primordial
fluctuations in cosmology by a collection of independent
quantum states labelled by the wave number k. Since
no interaction between different k or between the fluc-
tuations and other fields have been considered, we deal
with a pure quantum state for each k. The initial con-
dition for each quantum state is the harmonic-oscillator
ground state with respect to k. During inflation, modes
with wavelengths larger than the Hubble scale H−1 as-
sume a squeezed Gaussian state. We focussed atten-
tion on the modes far outside the Hubble scale, which
experience an enormous squeezing. For these highly-
squeezed modes, which are the ones relevant for cosmo-
logical observations, all expectation values containing the
field-amplitudes or their momenta are indistinguishable
from classical stochastic averages3. It is this approxi-
mate coincidence between quantum and classical expec-
tation which is the basis of the pragmatic approach to
the quantum-to-classical transition discussed above for
the primordial fluctuations.

One can, however, adopt a more fundamental point of
view. It is far from realistic to assume that a primordial
fluctuation with wave number k is exactly isolated. We
must take into account its interaction with other degrees
of freedom (called the ‘environment’ for simplicity). The
main reason is the following. As one knows from standard
quantum theory, even a tiny interaction with other de-
grees of freedom can become important, in the sense that
an entanglement of a system with its environment can
form even without direct disturbance of the system. If
the environmental degrees of freedom are inaccessible to
observations (as they usually are), the ensuing entangle-
ment with the system leads to decoherence – interference

terms can no longer be observed at the system itself and
the system appears classical15. This is the fundamental
origin of the quantum-to-classical transition. The phe-
nomenon of decoherence is by now theoretically well un-
derstood and has been experimentally tested with high
precision15,16,17. Decoherence leads to an apparent en-

semble of wave packets for the observable with respect to
which the interferences vanish. A paradigmatic example
is the localization of a quantum particle due to scatter-
ing with photons, air molecules, or other particles15,17,22.
There the position basis of the particle is the approxi-
mate basis distinguished by the scattering process. The
basis distinguished by the environment is generally called
the pointer basis; the corresponding observable is called
pointer observable. Interferences between different mem-
bers of the pointer basis are suppressed by the decohering
influence of the environment.

One would expect, therefore, that decoherence is of
crucial importance for the primordial fluctuations, too.
This expectation is, moreover, supported by the fact that
the system by itself evolves into a highly squeezed state in
which squeezing is in the field momentum and broadening
is in the field amplitude (corresponding to the position
variable in quantum mechanics): one knows from quan-
tum theory that highly squeezed states are extremely sen-
sitive to any environment15. This is the reason why they
are so difficult to generate in the laboratory – it is very
hard to isolate them from any environment. In view of
their huge squeezing, this argument should apply to the
cosmological fluctuations a fortiori.

But could it be imaginable that the cosmological fluc-
tuations, in contrast to a typical quantum-mechanical
situation, are indeed strictly isolated? The answer is def-
initely no.

Firstly, in any fundamental theory (such as string the-
ory) there is an abundance of different fields with dif-
ferent interactions. Among them it will not be difficult
to find appropriate candidates for environmental fields
generating decoherence for the primordial fluctuations.

Secondly, even if one assumes to have no such fields,
there are two processes which cannot be neglected. The
first one is the interaction between modes with differ-
ent k; recall that the full theory is non-linear and that,
therefore, the various modes cannot be treated indepen-
dently of each other. Such non-linear interactions con-
cern both the interaction with the modes of the inflaton
and the perturbations of the metric (containing, in par-
ticular, gravitational waves).

The second process is the entanglement of the modes’
quantum state between different spatial regions: even
if the modes are independent in k-space, the Gaussian
wave functions for the amplitudes in real space are highly
correlated over spacelike regions (as in the Einstein–
Podolsky–Rosen situation). This leads, in particular,
to an entanglement between the regions inside and out-
side the Hubble radius. Famous non-cosmological ex-
amples are the Hawking and the Unruh effects, where
the thermal appearance of the corresponding radiation
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can be understood from the entanglement between in-
side and outside the event horizons and the tracing out
of the correlations into the horizon18. Even for space-
like surfaces which stay outside the horizon, the thermal
nature of Hawking and Unruh radiation can be under-
stood from the entanglement with other fields, leading
to decoherence19.

The process of decoherence is, moreover, needed to jus-
tify the results from the isolated (closed) system in the
first place. Even if the classical and quantum expecta-
tion values are indistinguishable, the presence of a pure
state means that one has a quantum superposition of all
possible field amplitudes, not an ensemble of stochasti-
cally distributed classical values. This situation is similar
to Schrödinger’s cat. In the pragmatic point of view of
Sec. III, the approximate coincidence of the expectation
values suffices. Such a coincidence is, however, not suffi-
cient for a realistic interpretation. Only decoherence can
eventually justify the pragmatic point of view in that it
leads to an apparent ensemble of wave packets for the sys-
tem variables itself (which, in our case, are the field am-
plitudes). The insufficience of approximately equal clas-
sical and quantum expectation values for a fundamental
interpretation has recently been clearly emphasized in a
different context (the quantum mechanics of classically
chaotic systems) by Schlosshauer20. In the presence of a
pure state one can always find an observable for which no
classical counterpart exists, that is, for which the com-
parison of quantum and classical expectation values is
meaningless.

The quantum-to-classical transition happens for the
highly-squeezed modes whose wavelengths exceed the
Hubble scale. It is for these modes where environmental
decoherence is most efficient21. How can this happen?
Would one not expect that no causal interaction can oc-
cur on scales larger than the Hubble scale? This is true
only for a direct disturbance of the system. But the cru-
cial point is that quantum entanglement can form with-
out direct disturbance. And this is all one needs for de-
coherence! In the context of the quantum measurement
process, the sole formation of entanglement is referred to
as an ‘ideal measurement’ or a ‘quantum non-demolition
measurement’: the system remains undisturbed, but the
environment is affected through the formation of entan-
glement. The general mechanism is as follows15.

Consider a quantum system which is initially in the
state |n〉 and a ‘measurement device’ (here: the environ-
ment) which is in some initial state |Φ0〉. (We assume
that |n〉 belongs to a set of eigenstates of a system ob-
servable.) The evolution according to the Schrödinger
equation is in the special case of an ‘ideal measurement’
given by

|n〉|Φ0〉 t−→ exp (−iHintt) |n〉|Φ0〉 = |n〉|Φn(t)〉 , (45)

where Hint denotes the interaction Hamiltonian (assumed
here to dominate over the free Hamiltonians) which cor-
relates the system state with its environment without
changing the system state.

In the general case, the quantum system can be in a
superposition of different eigenstates of the system ob-
servable. Then, due to the linearity of the time evolu-
tion, an initial product state with |Φ0〉 develops into an
entangled state of system plus apparatus,

(

∑

n

cn|n〉
)

|Φ0〉 t−→
∑

n

cn|n〉|Φn(t)〉 . (46)

But this is a highly non-classical state! Since the envi-
ronmental states {|Φn〉} are not accessible, they have to
be traced out from the full quantum state. One thereby
arrives at the reduced density matrix ρS which contains
all the information that is available at the system itself.
Since the environmental states {|Φn〉} can be assumed as
being approximately orthogonal (otherwise they would
not be able to serve as a ‘measurement device’), the re-
duced density matrix is of the form

ρS ≈
∑

n

|cn|2|n〉〈n|, (47)

that is, it assumes the form of an approximate ensemble
for the various system states |n〉, each of which occurs
with probability |cn|2.

In our case, the cosmological fluctuations represent
the system to be decohered. The environmental states
{|Φn〉} can be other fields or inaccessible parts of the fluc-
tuations themselves (see below). The system states |n〉
are given by the field-amplitude states |yk〉. The interac-
tion with the environment can, in the ideal-measurement
case, be described by the multiplication of an initial den-
sity matrix ρ0(y, y′) with a Gaussian factor in y − y′

(omitting here and in the following the index k in yk),

ρ0(y, y′) −→ ρξ(y, y′) = ρ0(y, y′) exp

(

− ξ

2
(y − y′)2

)

.

(48)
Here, the parameter ξ encodes the details of the in-
teraction between the modes and their environment.
Given a specific model with a specific interaction, ξ can
be calculated. The special decoherence process (47) is
typical for the description of localization in quantum
mechanics15,17,22.

One recognizes from (48) that interferences between
different values of the field amplitude y have been sup-
pressed by interaction with the environment. This is de-
coherence. So far we have just assumed without deriva-
tion that |y〉 is the pointer basis, that is, the relevant
robust system basis which is distinguished by the envi-
ronment. This must, of course, be justified. A detailed
derivation for the field-amplitude basis to be the pointer
basis has been presented in21 and25. We review here the
main arguments and refer the reader to these references
for more details.

According to the classical equations, for modes with
very large wavelength one has y ∝ a, that is, the physi-
cal fluctuations δφ are approximately constant (‘frozen’).
In the Heisenberg picture of the quantum theory, this
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means that the operator ̂δφ approximately commutes
with the Hamiltonian. Now comes the crucial point. Ad-
ditional (environmental) fields coupling with the cosmo-
logical fluctuations are expected to couple field ampli-
tudes, not canonical momenta of field amplitudes; that

is, the coupling is expected to involve ̂δφ, not its momen-

tum. Consequently, the fluctuations ̂δφ commute with
the whole Hamiltonian of system plus environment. Such
a variable is a pointer observable par excellence15,16,17. It
is stable (robust) in time because of this commutativity
which holds for the wavelengths much bigger than the
Hubble scale. The phenomenological expectation (48) is
thus fully justified. One must keep in mind, though, that
̂δφ is only an approximate pointer observable: although
the non-diagonal terms in (48) become exponentially sup-
pressed, they never vanish exactly, as would be the case

if the ̂δφ were the exact pointer observable. In fact, the
reduced density matrix can be decomposed into narrow
Gaussians in δφ-space. The whole situation is in strong
analogy to the localization of a massive particle by scat-
tering with the environment15,17,22.

The approximate commutativity of ̂δφ with the full
Hamiltonian means in particular that the kinetic term,
that is, the p2-term, of the system becomes irrelevant in
the large-squeezing limit. If this term were relevant (as it
is for modes with smaller wavelength), the pointer basis
would not be the field-amplitude basis, but the coherent-
state basis25. But this is not the case here. The coherent-
state basis is, in particular, unstable under the time evo-
lution.

So far we have restricted our attention to a special ini-
tial state: the vacuum state. This is, however, not neces-
sary. In25 we have presented a formalism that is general
enough to encompass a wide range of initial states and
interactions. A central role in this formalism is played by
a master equation for the reduced density matrix, which
is of the Lindblad form. More concretely, the density
matrix is assumed to satisfy15

dρ̂

dt
= −i[Ĥ, ρ̂] + L̂ρ̂L̂† − 1

2
L̂†L̂ρ̂ − 1

2
ρ̂L̂†L̂ , (49)

where L̂ is the Lindblad operator. Most of the partic-
ular models discussed in the literature lead to a master
equation of this form. It is thus of interest to study this
equation as general as possible. We have assumed that
the Lindblad operator is linear in our variables p and
y, but kept it general otherwise. The Hamiltonian Ĥ is
given by the expression (17).

The results of our discussion in25 can be summarized
as follows. It turns out that the behaviour of the master
equation is qualitatively different for modes outside the
Hubble radius (as is the case here) and the modes inside.
The decoherence time td for the modes with wavelengths
much bigger than the Hubble radius is during inflation
of the order

td ∼ H−1
I ln

H−1
I

t0
, (50)

where HI is the (approximately constant) Hubble param-
eter during inflation, and t0 is a typical time characteris-
tic for the details of the interaction. We emphasize that
(50) is approximately independent of these details. It
is basically given by the Hubble time, with the details
only entering logarithmically. The time td also gives the
timescale for the Wigner function to become positive.
The reduced density matrix can then be decomposed into
an apparent ensemble of narrow Gaussians for the values
of the field amplitude, cf.26 for a general discussion. For
the large-wavelength modes in the radiation-dominated
phase one obtains instead

td ∼ HIt
2
L

2
, (51)

where tL depends again on the details of the interaction.
One has now a more sensitive dependence on the inter-
action. Moreover, for HItL ≫ 1 one has a much longer
decoherence time than during inflation. This means that,
depending on the interaction, decoherence can be much
less efficient than during inflation.

For modes smaller than the Hubble scale, the situation
is very different25. Taking as a representative example a
photon bath as the environment (realized e.g. by the
CMB), the decoherence time is independent of the Hub-
ble parameter and strongly dependent on the coupling to
the bath. Dissipation now becomes the dominant source
of influence, in contrast to the case of the super-Hubble
modes for which only entanglement occurs.

Decoherence is often connected with symmetry
breaking15, see also27, section 6.1. This is also the case
here. The initial de Sitter-invariant vacuum state for the
fluctuations is highly symmetric. But the observed clas-
sical fluctuations are certainly non-symmetric. This can
easily be understood and does not require new physics
(as e.g. demanded in28). The initial vacuum state devel-
ops into a squeezed vacuum, which can be understood as
a superposition of different field-amplitude eigenstates.
Decoherence then makes this indistinguishable from an
ensemble of (approximate) field-amplitude eigenstates,
each of which is highly inhomogeneous. The situation
resembles the case of spontaneous symmetry breaking in
field theory, where the symmetric initial state evolves into
a superposition of ‘false vacua’. After decoherence one is
left with an apparent ensemble of different false vacua,
one of which corresponds to our observed world.

B. Entropy

In Sec. III the primordial fluctuations were treated as
isolated and thus described by a pure (squeezed) state.
Consequently, they possess zero entropy: all information
is contained in the system itself. But as we have seen,
the primordial fluctuations are an open quantum system;
they are entangled with their environment. Because of
this entanglement, the fluctuations are described by the
reduced density matrix (48). They thus possess positive
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entropy because the information about the correlations
with the environment are unavailable in the system itself.
The local entropy is calculated from the standard von
Neumann formula,

S = −tr(ρξ ln ρξ) , (52)

where ρξ is given in (48), and where we have set kB = 1.
Considering one (real) mode with wave number k, the
maximal entropy, Smax, would be 2rk, where rk is again
the squeezing parameter29 (we skip again the index k
in the following). We have calculated and discussed the
entropy for the fluctuations in23,25. To display the result,
it is convenient to introduce the dimensionless parameter
χ = ξ/ΩR, where ΩR is the width of the Gaussian (29);
it controls the strength of decoherence. (In the case of
pure exponential inflation one has χ = ξ(1+4 sinh2 r)/k.)
Inserting (48) into (52), one gets the explicit expression25

S = − ln
2√

1 + χ + 1
− 1

2

(

√

1 + χ − 1
)

ln

√
1 + χ − 1√
1 + χ + 1

= ln
1

2

√
χ −

√

1 + χ ln

√
1 + χ − 1√

χ
.

(53)

One recognizes that the entropy vanishes for ξ → 0, as it
must for a pure state. In the limit χ ≫ 1 (large decoher-
ence) one gets

S = 1 − ln 2 +
ln χ

2
+ O(χ−1/2) . (54)

This asymptotic value is readily attained.
As we have emphasized above, modes with wavelength

bigger than the Hubble scale can only experience pure
entanglement, not direct disturbance. In such a case the
entropy obeys the bound

S <
Smax

2
= r . (55)

The same bound follows from the general discussion of
the Lindblad equation25. It can also be interpreted in the
following way25: in spite of decoherence, some squeezing
compared to the vacuum state (which has ΩR = k) re-
mains. In the language of the Wigner function it means
that the Wigner ellipse is not smeared out to become
a circle, but still exhibits an elongated and a squeezed
part. And this has important consequences for obser-
vation! If the bound (55) were violated, there would no
longer be any coherences between the field amplitude and
the momentum and, consequently, no coherences in the
coupled baryon–photon plasma (Sec. IV). There would
then not be any acoustic peaks in the anisotropy spec-
trum of the CMB – in contrast to observation! The fun-
damental questions of the quantum-to-classical transition
have thus observational relevance.

The upper bound Smax/2 corresponds to the case when
the pointer basis is the exact field-amplitude basis. (For
S = Smax, the pointer basis would be the particle-number

basis.) As our pointer basis consists of narrow packets
in field amplitudes, the entropy of the fluctuations ap-
proaches the upper bound asymptotically.

The existence of the bound (55) shows, again, how pe-
culiar the case of fluctuations in an inflationary universe
is. According to a theorem by Page30 (see also31), if a
total quantum system with dimension mn is in a ran-
dom pure state, the average entropy of a subsystem of
dimension m ≤ n is almost maximal. But this is not the
case for our system: the situation for the fluctuations
during inflation is very special, and their entropy cannot
exceed half of the maximal entropy, which leaves enough
information for the formation of the acoustic peaks.

Our results for the entropy in23 and25 also yield the fol-
lowing simple formula for the entropy production during
inflation:

Ṡ ≈ ṙ ≈ HI . (56)

For chaotic systems, the entropy production rate is pro-
portional to the Lyapunov parameter. This would corre-
spond in our case to the Hubble parameter HI. However,
our system is not chaotic, but only classically unstable,
so the analogy is not complete.

Using (50), one can find the amount of entropy pro-
duced after the decoherence time td,

S ∼ HItd ∼ ln
H−1

I

t0
. (57)

In the radiation-dominated phase following inflation, a
relation similar to (56) holds, with HI replaced by the
Hubble parameter H ∝ t−1. The entropy thus only in-
creases logarithmically in time, not linearly as in infla-
tion.

C. Specific models

So far, we have kept the discussion as general as possi-
ble. We have reviewed the arguments which lead to the
result that cosmological fluctuations appear like a classi-
cal ensemble of field amplitudes. Necessary requirements
are the inflationary expansion of the universe and the fo-
cus on modes that are highly squeezed. An interaction
with some environment is needed, but the details of it
are unimportant. Still, it is of interest to discuss specific
examples for such interactions. Our paper25 gives an ex-
tended list of references; here we shall restrict ourselves
to some recent examples.

The purely spatial entanglement between the modes
inside the Hubble scale and outside the Hubble scale was
discussed in32, see also33. It was shown there that this
entanglement is, by itself, sufficient to produce the de-
sired decoherence. This is analogous to the black-hole
case where the decoherence from the tracing out of the
modes behind the horizon leads to the thermal radia-
tion of the Hawking effect18,19. The authors of32 also
showed that the entropy scales with the volume inside



11

the Hubble scale and satisfies an upper bound of S ≈ r
per mode, which coincides with the upper bound (55) dis-
cussed above. It is thus not in conflict with the observed
acoustic peaks in the cosmic microwave background.

Instead of pure spatial entanglement one can consider
the entanglement of our strongly squeezed super-Hubble
modes with sub-Hubble modes (which then play the role
of the environment). This was discussed, for example,
in34. The authors take the short-wavelength modes to be
in their ground states and find that decoherence is not
sufficient during inflation. This happens because vacuum
states are usually ineffective to lead to decoherence15.
Our arguments above and in25 can thus only be applied
to this model if at least some modes are not in their
ground states. But such modes can be found: one can
interpret the fluctuations with wavelengths λ & H−1

I
as an appropriate environment; they assume a role in-
termediate between ground state and state with large
squeezing. Ideas similar to the ones in34 have been pur-
sued in35,36, and elsewhere, with results that are con-
sistent with our general discussion above. A variant of
this system-environment split is presented in37 using a
two-field model of inflation. There, the system consists
of curvature perturbations, and the environment consists
of isocurvature modes. Finally, another possible source
of sub-Hubble modes being in non-vacuum states is the
secondary gravitational wave background (“foreground”
in astronomical terminology) emitted by matter after the
end of inflation23.

VI. CONCLUSION

Inflation is a robust scenario which gives an elegant
solution to some oustanding problems of Big-Bang cos-
mology, and its predictions are in agreement with present
observations, in particular the accurate CMB anisotropy
data. It is gratifying that this scenario offers also the pos-
sibility to deal with such fundamental and subtle ques-
tions as to why quantum perturbations produced in the
early Universe give rise to classical inhomogeneities to-
day. We believe that this aspect is no less fascinating
than its other successful predictions.

We expect that models of the quantum-to-classical
transition for the primordial fluctuations will continue
to appear in the literature. But we are convinced that
the general mechanism of this transition presented in this
essay will hold true for all scenarios based on inflation.
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Quantum mechanics is widely regarded as mysterious, even among physicists. Yet

no one has ever proposed a “more sensible” theory, which explains quantum mechanics in

terms that its detractors find more easy to accept. Like special relativity it is a theory

whose conclusions must be accepted because they conform to experimental reality, even

though they seem to violate our intuition. With relativity we’ve come to accept that

our intuitions about how velocities add have no more validity than Aristotle’s ”obvious”

conclusion that matter’s natural state of motion is to be at rest. Quantum mechanics is

harder to accept because it violates the rules of classical logic that we long believed to be

at the basis of all rational thought.

In my experience there are several simple ideas, all long extant in the literature,

which help one to come to terms with the realities of quantum physics. The first is called

quantum logic, a frightening term that obscures a rather simple idea: the mathematical

formulation of the laws of logic, due to George Boole, contains within itself an obvious

generalization. This mathematical formulation is simply the theory of a maximal set of

commuting operators in Hilbert space, and once one has constructed it one cannot avoid

the fact that there are Hermitian operators which do not commute with the chosen set,

and that linear algebra provides us with a formula for a probability distribution for the

eigenvalues of those operators, for each choice of sharp values of the maximal commuting

set.

What is peculiar here is the appearance of probability in a situation which seems

to have no uncertainty. We have measured, with the theorist’s absolute precision, the

maximal amount of information that we can extract from the system. Probability’s original

appearance in physics and gaming, was as a way of estimating the chances of something

happening in a situation where we were ignorant of some of the details of the initial

conditions. It plays a rather different, and much more intrinsic role here.

My main point though is that this mathematics is simply unavoidable. The non-

commuting operators are there, even if one decides not to discuss them. Indeed, Koopman

long ago showed how to reformulate classical mechanics as a special case of quantum me-

chanics. One simply introduces position and momentum as commuting quantum variables,

each with its own canonical conjugate, πp,q = −i∂p,q. If we take the quantum Hamiltonian

to be the Liouville operator on phase space

H = i(∂pE∂q − ∂qE∂p),
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where E is the classical Hamiltonian function of the system, then, as long as we agree not

to talk about measurements of πp,q the predictions of this quantum system agree with the

predictions of classical mechanics, with initial phase space probability density

ρ = ψ∗(p, q)ψ(p, q).

The probabilistic aspect of quantum mechanics here reduces to the conventional uncer-

tainty in initial conditions. The italicized covenant prevents us from finding out about

the behavior of the phase of the wave function. Nonetheless, the theory makes predictions

about hypothetical measurements of operators that do not commute with the phase space

coordinates.

So, the precise, and therefore mathematical, formulation of what we mean by logic,

simply forces quantum mechanics, with its intrinsic probabilities, not tied to the uncer-

tainties of initial conditions, upon our attention. The world has used it, even if we would

rather not. Once one has accepted that quantum mechanics is an intrinsically probabilistic

theory the “mystery of wave function collapse” becomes familiar, rather than mysterious.

Our probabilistic theory of the weather is often unable to tell whether a hurricane will hit

Galveston or New Orleans. Meteorologists routinely solve the equations, and throw out

that part of the solution that predicts a disaster in Galveston, when they see people suffering

in a sports stadium in New Orleans. This is called the method of conditional probabili-

ties. Physical theories are a means for predicting the future. When we are forced to use

probabilities in our equations, some of these predictions are inevitably wrong, because we

consider probabilities for two mutually exclusive macroscopic events. For convenience, we

then incorporate the observations of misery in New Orleans into our equations, by defining

a new probability for future events, conditional upon the fact that the hurricane hit New

Orleans. This is “an artificial rule imposed on the equations”, which ”violates conser-

vation of probability” (because the new conditional probability distribution predicts that

New Orleans was hit with certainty). The “distribution collapses”, and if we regarded the

distribution as a physical field, because it satisfies e.g. the Fokker-Planck equation, we

could expend reams of paper and giga-bytes of tortured prose exploring the philosophical

implications of the conditional probability rule.

Much of the confusion about QM in the literature comes from trying to attribute

the same sort of reality to the quantum wave function that we are used to attributing to

Maxwell’s electromagnetic fields. Real classical fields are coherent states of a huge number
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of bosons, all in the same quantum state. They attain their reality (which means simply

that we can make predictions about them, which have no uncertainties) because they are

collective variables of macroscopic systems, whose quantum fluctuations are negligible for

all practical purposes. Attempts to attribute the same sort of reality to wave functions of

individual particles, as exemplified by sentences like, ”The electron is its wave function,

and satisfies a deterministic equation of motion”, are conceptually wrong, because they

try to hide the intrinsically probabilistic nature of QM.

Apart from the fact that probabilities are not only a consequence of uncertainty in

initial measurements, QM differs from the equations of the weather in an important re-

spect. The rule for computing probabilities involves superposition of amplitudes rather

than of probabilities themselves. Some of the unease with wave function collapse has to do

with the fact that this aspect of QM seems to disappear after a measurement is performed.

Although this has long been understood by experts, the essence of it deserves more pop-

ular recognition. A measurement in QM consists, as von Neumann proposed long ago,

of an interaction that puts a micro-variable like the state of an electron spin, into QM

entanglement with a collective coordinate of a macroscopic system called the measuring

apparatus. The phrase collective coordinate refers to some sort of an average value over a

huge number of micro-states. Roughly speaking, if the system contains N atoms, there are

ecN microstates with the same value of the collective coordinate. In normal circumstances

the microscopic state of the system wanders over this huge space of states, constantly

changing its phase, without in any way altering the value of the collective coordinate. The

wave function overlaps, which lead to the deviation of the quantum laws of probability

from their classical counterparts, are doubly exponentially small (I use the phrase doubly

exponentially small to denote numbers whose natural log is negative and of order 10n with

n > 3.). For even modest values of N 104, the time that it would take to see the quantum

interference effects is essentially the same number when expressed in Planck times, as in

ages of the universe (the two units differ by a mere factor of 1061). We call this effective

erasure of quantum phase interference, decoherence.

In making these statements, we have completely neglected the coupling of the micro-

system plus measuring apparatus to their vast external environment. In practice the

decoherence due to coupling with the environment is an even larger effect, and makes it even

harder to see interference between states of macroscopic collective variables. Environmental

decoherence is one of the practical barriers to building a quantum computer. Only when

the macrosystem is kept in its ground state throughout the course of the experiment, can
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we hope to see quantum interference between states of collective coordinates. This has

been achieved for currents in SQUIDs, for systems consisting of ∼ 108 atoms. Note that

the quantum fluctuations of collective variables in the ground state are still small, but

they vanish like powers, rather than exponentials of the number of atoms. The textbook

explanation of why spreading of the wave function is negligible for basketballs or the moon,

emphasizes these powers, while the exponential suppression due to decoherence is never

mentioned.

As an example consider Schrödinger’s infamous exercise in cruelty to animals. Once

the intrinsically probabilistic interpretation of the wave function, and the simple facts of

decoherence are taken into account, statements like “quantum mechanics predicts that the

cat is alive and dead at the same time”, are revealed to be silly misconceptions. Quantum

mechanics simply predicts a probability that the cat will be found alive or dead in any

given experiment, a prediction that can only be tested by subjecting many poor beasts to

savage and useless experiments. Furthermore, as a consequence of decoherence, quantum

mechanics predicts that once a particular cat is found dead, there is no probability that

future experiments will find it alive. More precisely, that probability is ridiculously small, of

order the probability for the atoms in the dead cat to spontaneously reassemble themselves

to make the live cat.

These simple arguments show that our unease with QM is not so far removed from the

unease Aristotle would have shown when confronted with the principle of inertia invented

by Galileo and Newton. If we accept, following Darwin and Wallace, that the brain

evolved, then the forces that shaped its evolution had to do with the behavior of collective

coordinates of macroscopic systems. Watch that rock! Beware the jaws of that tiger!

Jump for that low hanging fruit, but don’t break your leg! These are the evolutionary

pressures that led to the differential survival probability of those proto-humans who had

the intelligence to formulate intuitions about some of the laws of physics. There was

never a selection pressure for understanding that the distribution of electrons passing

through two microscopically spaced slits, did not follow the same laws of probability that

worked perfectly well for rocks and tigers. Indeed, our considerations above show that

the likelihood that special relativistic corrections to Newtonian physics would come to our

“evolutionary attention”, is doubly exponentially larger than that for quantum mechanics.

Perhaps this accounts for the remarkable longevity of even Nobel prize winning physicists’

unease with the principles of quantum mechanics. About the only way I can think of of

producing selection pressures that could lead to creatures with an intuitive understanding
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of quantum mechanics, is to make the right to reproduce contingent on getting tenure in

a physics department. The obvious political difficulties of such a proposal, are far from its

worst aspect.

In summary, quantum mechanics is a radical departure from all previous physical

theories because it abandons the hitherto sacred principles of classical logic for a more

general, but less intuitive, set of rules. Yet the mathematical formulation of the rules of

logic shows us that quantum mechanics is an unavoidable part of its structure. While

we can artificially construct special systems, which allow one to avoid discussing non-

commutative observables, one should not be surprised if nature has taken another path.

The only puzzle is why our brains are not built to recognize the real quantum rules,

and that is simply explained by the quantum theory of macroscopic objects. Quantum

interference between states of the collective coordinates of such objects is, under almost all

circumstances, an effect which is of order exp(−1020) or smaller. Such doubly exponentially

small numbers defeat even the the most precise experiments we can conceive, and were

certainly irrelevant to the macroscopic events that shaped the evolution of our brains. This

understanding of the mysteries of quantum mechanics does not require us to make any kind

of mystical connection between consciousness and the fundamental laws of physics. It only

requires us to understand that our consciousness is an evolved collective variable of a

macroscopic system, which obeys the rules of local quantum theory.
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1 Classical behavior in the non-relativistic quantum mechanics

of particles

In standard texts on non-relativistic quantum mechanics the classical limit is described via

examples and via the WKB approximation. In particular, one often describes the spreading of

the wave packet of a free particle, and estimates it as a function of time and the particle mass

M . There is nothing wrong with the mathematics done in these texts, but the implication that

these estimates provide the basis for an understanding of why classical mechanics is such a good

approximation for macroscopic objects is not correct and therefore misleading. In particular

it leads one to conclude that the corrections to decoherence for a wave function describing a

superposition of two different macroscopic states is power law in the mass. I would aver that this

mistake forms part of the psychological unease that many physicists feel about the resolution

of Schrödinger’s cat paradox in terms of the concept of decoherence.

These estimates have also led to recent experimental proposals to demonstrate quantum

superposition of states of variables which are “almost macroscopic”. I will argue that no such

demonstration is possible, without extreme care taken to keep the constitutents of the macrosys-

tem in their microscopic ground state. The essence of my argument is that the essential variable

that controls the approach to the classical limit, is the number of localizable constituents of

large quantum system. In a macroscopic material this would be something like the number,

N , of correlation volumes contained in the sample. Away from critical points, the correlation

volume is microscopically small, and we are roughly counting the number of atoms.

Indeed, all previous discussions also identify this number as the crucial parameter. These

discussions identify a variety of collective classical variables, like the center of mass of the

system, and note that the effective Lagrangian for these variables has a factor of N in it.

For the center of mass, this is simply the statement that the mass is large. The traditional

argument simply studies the quantum mechanics of these collective variables and estimates

the corrections to classical predictions, which are typically power law in the large, extensive

parameters. Estimates based on these ideas have led to the suggestion that plausible extensions

of current experiments can reach the limit of quantum coherence for collective coordinates of

systems with dimensions of millimeters. The failure to observe such correlations might be taken

to mean that there is some fundamental error in applying quantum mechanics to macroscopic

systems, as has been proposed by Penrose, Leggett and others.

The essential point of this paper is that “small” corrections to this collective coordinate
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approximation completely invalidate this argument. It is not that the classical dynamics is not

a good approximation to the quantum mechanics of the collective variables. What is not a

good approximation is to neglect the back reaction of the collective variables on the huge set of

other degrees of freedom in the macroscopic object. Locality ensures that external forces acting

on the macroscopic body affect the collective coordinate through collective interactions with

individual constituents, which then give rise to terms in the Hamiltonian coupling the collective

coordinate to the constituents. In effect, different classical motions of the collective coordinate

give rise to different, time dependent, Hamiltonians for the constituents. These extra terms are

small, inversely proportional to powers of extensive parameters.

However, typical macro-systems have a finite microscopic correlation length. The wave

function of the system is a sum of terms which are products of individual cluster wave functions

for a localized microscopic subset of the constituents. This idea is the basis for approximate

variational calculations like the Hartree-Fock or Jastrow approximations. As a consequence of

the small corrections described in the previous paragraph, the individual cluster wave functions

will be modified by a small amount and the overlap between wave functions for two different

classical trajectories of the collective coordinate will be proportional to 1 − ǫ where ǫ is a

measure of the strength of the perturbation that leads to non-uniform motion of the center of

mass. However, because the full many body wave function is a product of o(N) cluster wave

functions, the overlap is of order (1 − ǫ)N , which is exponentially small in the volume of the

system measured in microscopic units. In other words, for a macroscopic body, different classical

trajectories of a collective coordinate divide the system into different approximate super-selection

sectors.

One can argue, using the methods of quantum field theory and statistical mechanics, that

the time that it takes to observe phase correlations between different approximate superselection

sectors is of order 10cN where c is a constant of order one. This is true as long as one is in

a regime where the density of states of the microscopic degrees of freedom is large, i.e. that

the state of the system is a superposition of a densely spaced set of eigenstates, which behaves

in a manner describable by statistical mechanics. Note that the ratio between the current

age of the universe and the Planck time is a mere 1061, so that even for a moderately large

system containing N ∼ 103 correlation volumes, this time is so long that it is essentially the

same number of Planck times as it is ages of the universe. No imaginable experiment can

ever distinguish the quantum correlations between different states of the collective coordinates

of a macro-system. The extraordinary smallness of such double exponentials defeats all of our

ordinary intuitions about ordinary physics. Over such long time scales, many counter-intuitive
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things could happen. For example, in a hypothetical classical model of a living organism made of

this many constituents, or in a correct quantum model, the phenomenon of Poincare recurrences

assures that given (exponentially roughly) this much time,the organism could spontaneously

self assemble,out of a generic initial state of its constituents. So much for Schrödinger’s cat.

Another way of phrasing the same arguments comes from the vast literature on decoherence,

which also introduces an important concept I have not yet emphasized. This is the fact that

an approximate superselection sector is not a single state, but actually a vast ensemble of

order 10cN states, which share the same value of the collective coordinate. In the decoherence

literature, it is argued that rapid changes in the micro-state of a macroscopic environment

wipe out the quantum phase correlations between e.g. states with two different positions of a

macroscopic pointer, which have been put into a Schrödinger’s cat superposition via interaction

with some micro-system. Another way to state the conclusions of the previous paragraph is

simply to say that the constituents of a macroscopic body serve as an environment, which

serves to decohere the quantum correlations between the macro-states of collective coordinates.

Unlike typical environments, which one might hope to eliminate by enclosing the system in a

sufficiently good vacuum, the inherent environment of a macro-system cannot be escaped. The

collective variables exist and behave as they do, because of the properties of the environment

in which they are embedded. It is only when the macroscopic system is held in its ground

state, during experiments in which the dynamics of the collective variables is probed, that

conventional estimates of quantum coherence for the collective coordinate wave function are

valid.

In this introductory section, I will fill in the argument that conventional estimates of

quantum corrections to classical behavior are wrong, using standard ideas of non-relativistic

quantum mechanics. In the remainder of the paper I will discuss the basis for these calcula-

tions in quantum field theory. This will also remove the necessity to resort to Hartree-Fock

like approximations to prove the point directly in the non-relativistic formalism. As noted, the

essential point of the argument is that we must take into account the fact that a macroscopic

object is made out of a huge number, which generally I will take to be > 1020, of microscopic

constituents, in order to truly understand its classical behavior. I will argue that, as a con-

sequence, the overlaps between states where the object follows two macroscopically different

trajectories, as well as the matrix elements of all local operators1 between such states, are of

1In this context local means an operator which is a sum of terms, each of which operates only on a few of the
constituent particles. A more precise, field theoretic, description will be given in the next section.
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order

e−1020

.

Consider then, the wave function of such a composite of N ≫ 1 particles, assuming a

Hamiltonian of the form

H =
∑

−→p 2
i

2mi
+

∑

Vij(xi − xj).

Apart from electromagnetic and gravitational forces, the two body potentials are assumed to

be short ranged. We could also add multi-body potentials, as long as the number of particles

that interact is ≪ N2.

The Hamiltonian is Galilean invariant and we can separate it into the kinetic energy of the

center of mass, and the Hamiltonian for the body at rest. The wave function is of the form

ψ(Xcm)Ψ(xi − xj).

Ψ is a general function of coordinate differences. In writing the Schrodinger equation we must

choose N−1 of the coordinate differences as independent variables. If the particles are identical,

this choice obscures the SN permutation symmetry of the Hamiltonian. One must still impose

Bose or Fermi statistics on the wave functions. This is a practical difficulty, but not one of

principal. We now want to compare this wave function with the internal wave function of the

system when the particle is not following a straight, constant velocity trajectory. In order to do

this, we introduce an external potential U(xi). It is extremely important that U is not simply

a function of the center of mass coordinate but a sum of terms denoting the interaction of the

potential with each of the constituents. This very natural assumption is derivable from local

field theory: the external potential must interact locally with “the field that creates a particle

at a point”. So we assume

U =
∑

ui(xi),

where we have allowed for the possibility, e.g. that the external field is electrical and different

constituents have different charge.

To solve the external potential problem, we write xi = Xcm +∆i and expand the individual

potentials around the center of mass, treating the remaining terms as a small perturbation. We

then obtain a Hamiltonian for the center of mass, which has a mass of order N , as well as a

potential of order N . The large N limit is then the WKB limit for the center of mass motion.

2Or that the strength of k body interactions fall off sufficiently rapidly with k for k > N0 ≪ N .
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The residual Hamiltonian for the internal wave function has small external potential terms,

whose coefficients depend on the center of mass coordinate.

The Schrodinger equation for the center of mass motion thus has solutions which are wave

functions concentrated around a classical trajectory Xcm(t) of the center of mass, moving in the

potential
∑

ui(Xcm)3. These wave functions will spread with time in a way that depends on

this potential. For example, initial Gaussian wave packets for a free particle will have a width,

which behaves like
√

t/Nm for large t, where m is a microscopic mass scale. The fact that this

is only significant when t ∼ N is the conventional explanation for the classical behavior of the

center of mass variable.

In fact, this argument misses the crucial point, namely that the small perturbation, which

gives the Hamiltonian of the internal structure a time dependence, through the appearance of

Xcm(t), is not at all negligible. To illustrate this let us imagine that the wave function at rest

has the Hartree-Fock form, an anti-symmetrized product of one body wave functions ψi(xi), and

let us characterize the external potential by a strength ǫ. In the presence of the perturbation,

each one body wave function will be perturbed, and its overlap with the original one body

wave function will be less than one. As a consequence, the overlap between the perturbed and

unperturbed multi-body wave functions will be of order (1 − ǫ)N . This has the exponential

suppression we claimed, as long as ǫ ≫ 1
N . It is easy to see that a similar suppression obtains

for matrix elements of few body operators. One can argue that a similar suppression is obtained

for generalized Jastrow wave functions, with only few body correlations, but a more general

and convincing argument based on quantum field theory will be given in the next section. Here

we will follow through the consequences of this exponential suppression.

The effect is to break up the full Hilbert space of the composite object in the external

potential, into approximate super-selection sectors labeled by macroscopically different classical

trajectories Xcm(t) (microscopically different trajectories correspond to ǫ ∼ 1
N ). We will argue

that local measurements cannot detect interference effects between states in different super-

selection sectors on times scales shorter than e10
20

(we leave off the obviously irrelevant unit

of time). That is to say, for all in principle purposes, a superposition of states corresponding

to different classical trajectories behaves like a classical probability distribution for classical

trajectories. The difference of course is that in classical statistical physics one avers that in

principle one could measure the initial conditions precisely, whereas in quantum mechanics the

uncertainty is intrinsic to the formalism.

3See [2] for a construction of such wave functions for the Coulomb/Newton potential.
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The argument for the exponentially large time scale has two parts, each of which will be

given in more detail below. First we argue that it takes a time of orderN , for a local Hamiltonian

to generate an overlap of order 1 between two different superselection sectors. Then we argue

that most macroscopic objects are not in their quantum ground state. The typical number of

eigen-states present in the initial state of the object, or that can be excited by the coupling

to the time dependent motion of the collective coordinate is of order ecN . These states are

highly degenerate. The time dependent Hamiltonian induced by the coupling to the collective

coordinate will induce a time dependent unitary evolution on this large space of states, with a

time scale of order 1 (in powers of N). Thus, there is a rapid loss of phase coherence between the

two super-selection sectors, while the Hamiltonian is generating a non-trivial overlap between

them. We would have to wait for the motion on the Hilbert space to have a recurrence before we

could hope to see coherent quantum interference between two states with different macroscopic

motions of the collective coordinate. The shortest recurrence time is of order ecN .

Two paragraphs ago, I used the phrase in principle in two different ways. The first use was

ironic; the natural phrase that comes to mind is for all practical purposes. I replace in practice

by in principle in order to emphasize that any conceivable experiment that could distinguish

between the classical probability distribution and the quantum predictions would have to keep

the system isolated over times inconceivably longer than the age of the universe. In other words,

it is meaningless for a physicist to consider the two calculations different from each other. In yet

another set of words; the phrase “With enough effort, one can in principle measure the quantum

correlations in a superposition of macroscopically different states”, has the same status as the

phrase “If wishes were horses then beggars would ride”.

The second use of in principle was the conventional philosophical one: the mathematical

formalism of classical statistical mechanics contemplates arbitrarily precise measurements, on

which we superimpose a probability distribution which we interpret to be a measure of our

ignorance. In fact, even in classical mechanics for a system whose entropy is order 1020, this

is arrant nonsense. The measurement of the precise state of such a system would again take

inconceivably longer than the age of the universe.

This comparison is useful because it emphasizes the fact that the tiny matrix elements

between super-selection sectors are due to an entropic effect. They are small because a change

in the trajectory of the center of mass changes the state of a huge number of degrees of freedom.

Indeed, in a very rough manner, one can say that the time necessary to see quantum interference

effects between two macroscopically different states is of order the Heisenberg recurrence time
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of the system. This is very rough, because there is no argument that the order 1 factors in the

exponent are the same, so the actual numbers could be vastly different. The important point

is that for truly macroscopic systems both times are super-exponentially longer than the age of

the universe.

The center of mass is one of a large number of collective or thermodynamic observables of a

typical macroscopic system found in the laboratory. The number of such variables is a measure

of the number of macroscopic moving parts of the system. As we will see, a system with a

goodly supply of such moving parts is a good measuring device. Indeed, the application of the

foregoing remarks to the quantum measurement problem is immediate. As von Neumann first

remarked, there is absolutely no problem in arranging a unitary transformation which maps

the state

α| ↑〉 > +β| ↓〉 > ⊗|Ready >,

of a microsystem uncorrelated with the |Ready〉 state of a measuring apparatus, into the cor-

related state

α| ↑〉 > ⊗|+〉 + β| ↓〉 > ⊗|− >,

where |+/− > are pointer states of the measuring apparatus. If we simply assume, in accordance

with experience, that the labels +/− characterize the value of a macroscopic observable in the

sense described above, then we can immediately come to the following conclusions

• 1.The quantum interference between the two pieces of the wave function cannot be mea-

sured on time scales shorter than the super-exponential times described above. The pre-

dictions of quantum mechanics for this state are identical in principle (first usage) to the

predictions of a classical theory that tells us only the probabilities of the machine reading

+ or −. Like any such probabilistic theory the algorithm for interpreting its predictions

is to condition the future predictions on any actual measurements made at intermediate

times. This is the famous “collapse of the wave function”, on which so much fatuous prose

has been expended. It no more violates conservation of probability than does throwing out

those weather simulations, which predicted that Hurricane Katrina would hit Galveston.

• 2.One may worry that there is a violation of unitarity in this description, because if I

apply the same unitary transformation to the states | ↑〉 ⊗ |Ready〉 and | ↓〉 ⊗ |Ready〉,
individually, then I get a pair of states whose overlap is not small. This seems like a

violation of the superposition principle, but this mathematical exercise has nothing to do

with physics, for at least two reasons. First the macro-states labeled by +/− are not
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single states, but huge ensembles, with eN members. The typical member of any of these

ensembles is a time dependent state with the property that time averages of all reasonable

observables over a short relaxation time are identical to those in another member of

the ensemble. The chances of starting with the identical |Ready〉 state or ending with

the same | + /−〉 states in two experiments with different initial micro-states, is e−N .

Furthermore, and perhaps more importantly, the experimenter who designs equipment

to amplify microscopic signals into macroscopic pointer readings, does not control the

microscopic interaction between the atoms in the measuring device and e.g. the electron

whose spin is being measured. Thus, in effect, every time we do a new measurement,

whether with the same input micro-state or a different one, it is virtually certain that the

unitary transformation that is actually performed on the system is a different one.

For me, these considerations resolve all the angst associated with the Schrödinger’s cat

paradox. Figurative superpositions of live and dead cats occur every day, whenever a macro-

scopic event is triggered by a micro-event. We see nothing remarkable about them because

quantum mechanics makes no remarkable predictions about them. It never says “the cat is

both alive and dead”, but rather, “I can’t predict whether the cat is alive or dead, only the

probability that you will find different cats alive or dead if you do the same experiment over

and over”. Wave function collapse and the associated claims of instantaneous action at a dis-

tance are really nothing but the the familiar classical procedure of discarding those parts of a

probabilistic prediction, which are disproved by actual experiments. This is usually called the

use of conditional probabilities, and no intellectual discomfort is attached to it.

It is important to point out here that I am not claiming that any classical probability

theory could reproduce the results predicted by quantum mechanics. John Bell showed us long

ago that this is impossible, as long as we insist that our classical theory obey the usual rules

of locality. My claim instead is that the correct philosophical attitude toward collapse of the

wave function is identical to that which we invoke for any theory of probability. In either case

we have a theory that only predicts the chances for different events to happen, and we must

continuously discard those parts of the probability distribution, which predicted things that

did not occur. The considerations of this paper show that when we discard the dead cat part

of the wave function after seeing that the cat is alive, we are making mistakes about future

predictions of the theory that are in principle unmeasurable.

We are left with the discomfort Einstein expressed in his famous aphorism about mythical

beings rolling dice. Those of us who routinely think about the application of quantum mechanics

9



to the entire universe, as in the apparently successful inflationary prediction of the nature

of Cosmic Microwave Background temperature fluctuations, cannot even find comfort in the

frequentist’s fairy tale about defining probability “objectively” by doing an infinite number of

experiments. Probability is a guess, a bet about the future. What is it doing in the most

precisely defined of sciences? I will leave this question for each of my readers to ponder in

solitude. I certainly don’t know the answer.

Finally, I want to return to the spread of the wave packet for the center of mass, and what

it means from the point of view presented here. It is clear that the uncertainties described by

this wave function can all be attributed to the inevitable quantum uncertainties in the initial

conditions for the position and velocity of this variable. Quantum mechanics prevents us from

isolating the initial phase space point with absolute precision. These can simply be viewed as

microscopic initial uncertainties in the classical trajectory Xcm(t). In the WKB approximation,

the marginal probability distributions for position and momentum are Gaussian, and there is

a unique Gaussian phase space distribution that has the same marginal probabilities.

If we wait long enough these uncertainties would, from a purely classical point of view, lead

to macroscopic deviations of the position from that predicted by the classical trajectory we have

expanded around. The correct interpretation of this is that our approximation breaks down

over such long time scales. A better approximation would be to decide that after a time long

enough for an initial microscopic deviation to evolve into a macroscopic one, we must redefine

our super-selection sectors. After this time, matrix elements between classical trajectories that

were originally part of the same super-selection sector, become so small that we much declare

that they are different sectors.

Thus instead of, in another famous Einsteinian phrase, complaining that the moon is

predicted to disappear when we don’t look at it (over a time scale power law in its mass), we

say that quantum mechanics predicts that our best measurement of the initial position and

velocity of the moon is imprecise. The initial uncertainties are small, but grow with time, to

the extent that we cannot predict exactly where the moon is. Quantum mechanics does predict,

that the moon has (to an exponentially good approximation) followed some classical trajectory,

but does not allow us to say which one, a long time after an initial measurement of the position

and velocity.

Of course, if the constituents of the macroscopic body are kept in their ground state during

the motion, then we must treat the wave function of the center of mass with proper quantum

mechanical respect, and the predictions of quantum interference between different classical
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trajectories should be verifiable by experiment. This is clearly impossible for the moon. In a

later section, I will discuss whether it is likely to be true for mesoscopic systems realizable in

the laboratory.

1.1 Bullets over Broad-slit-way

To make these general arguments more concrete, let’s consider Feynman’s famous discussion of

shooting bullets randomly through a pair of slits broad enough to let the bullets pass through.

The bullet moves in the x direction, and we assume the initial wave function of the center of

mass of the bullet is spread uniformly over the y coordinate distance between the slits. Then

subsequent to the passage through the slits, the wave function of the center of mass is, to a good

approximation, a superposition of two Gaussian wave functions, centered around the two slit

positions. A conventional discussion of this situation would solve the free particle Schrodinger

equation for this initial wave function and compare the quantum mechanical probability distri-

bution a later times, with a classical distribution obtained by solving the Liouville equation for

a free particle, with initial position and momentum uncertainties given by some positive phase

space probability distribution whose marginal position and momentum distributions coincide

with the squares of the position and momentum space wave functions.

In the latter calculation, the term in the initial probability distribution coming from the

overlap of the Gaussians centered at the two different slits is of order e−( L

w )2, where L is

the distance between the slits and w their width. Liouville evolution can lead to uncertainty

about which slit the particle went through in a time of order 2ML
h̄ , just as in the quantum

calculation. However, it gives rise to a different spatial distribution of probability density,

with no interference peaks. Thus, for such times, the interference terms and exact Schrodinger

evolution give a different result from classical expectations with uncertain initial conditions.

Now, let us take into account the fact that the two branches of the center of mass wave

function must be multiplied by wave functions of the internal coordinates, which are in different

super-selection sectors. As long as the micro-state is a superposition of internal eigenstates

coming from a band with exponentially large density of states, it would be highly unnatural to

assume that the micro-state in the top slit is simply the space translation of that in the bottom

slit. The probability for this coincidence is e−cN . It then follows from our previous discussion

that we will have to wait of order a recurrence time in order to have a hope that the interference

term in the square of the Schrodinger wave function is not exponentially small. The difference

between quantum evolution of the center of mass wave function, and classical evolution with
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uncertain initial conditions is completely unobservable, except perhaps at selected instants over

super-exponentially long time scales.

2 Quantum field theory

I will describe the considerations of this section in the language of relativistic quantum field

theory. A fortiori they apply to the non-relativistic limit, which we discussed in first quantiza-

tion in the previous section. They also apply to cutoff field theories, with some kind of spatial

cutoff, like a space lattice. The key property of all these systems is that the degrees of freedom

are labeled by points in a fixed spatial geometry, with a finite number of canonical bosonic or

fermionic variables per point. The Hamiltonian of these degrees of freedom is a sum of terms,

each of which only couples together the points within a finite radius4 In the relativistic case of

course the Hamiltonian is an integral of a strictly local Hamiltonian density.

Let us first discuss the ground state of such a system. If the theory has a mass gap, then

the ground state expectation values of products of local operators fall off exponentially beyond

some correlation length Lc. If d is the spatial dimension of the system,and V is a volume ≫ Ld
c ,

define the state

|φc, V 〉,

as the normalized state with minimum expectation value of the Hamiltonian, subject to the

constraint that

〈φc, V |
∫

V
ddx φ(x)/V |φc, V 〉 = Φc.

Let N = V/Ld
c . One can show, using the assumption of a finite correlation length, that these

states have the following properties

1.The quantum dynamics of the variable Φc is amenable to the semi-classical approximation,

with expansion parameter ∝ 1/N .

2.The matrix elements of local operators between states with different values of Φc satisfy

〈Φc, V |φ1(x1) . . . φn(xn)|Φ′
c, V 〉 ∼ e−cN ,

4Various kinds of exponentially rapid falloff are allowed, and would not effect the qualitative nature of our
results.
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where n is kept finite as N → ∞.

3.The interference terms in superpositions between states with different values of Φc remain

small for times of order N . This follows from the previous remark and the fact that the

Hamiltonian is an integral of local operators. This remark is proved by thinking about which

term in the t-expansion of e−iHt first links together the different superposition sectors with an

amplitude of order 1. One needs terms of order N in order to flip a macroscopic number of local

clusters from one macro-state to another. This term is negligible until t ∼ N in units of the

correlation length. For many systems, there is a technical problem in this argument, because

the Hamiltonian is unbounded, but it is intuitively clear that a cutoff at high energy should not

affect the infrared considerations here.

4. However, there is another important phenomenon occurring, on a much shorter time scale.

The microscopic degrees of freedom are evolving according to the microscopic Hamiltonian,

perturbed by the time dependent term due to the motion of the collective coordinate. In a

typical situation, the macroscopic object is not in its quantum ground state, but rather in some

micro-state that is a superposition of many eigenstates from an energy band where the density

of states is, according to quantum field theory, of order eN 5. The evolution in this subspace of

states is qualitatively like that of a random Hamiltonian in a Hilbert space of this dimension.

It leads to thermalization and loss of quantum coherence, through rapid changes of relative

phase[3]. Initial quantum correlations will reassert themselves only once a recurrence time, and

the shortest recurrence time is o(eN ).

In the language of the previous section, averages of local fields over distances large compared

to the correlation length are good pointer observables, whenever the system is in a typical state

chosen from an ensemble where the density of states is o(eN ). It is only when a macro-system

is in its ground state, and the motion of the collective coordinates is adiabatic, relative to the

gap between the ground state and the region of the spectrum with exponential density of states,

that conventional estimates of power law (in N) time scales for seeing quantum coherence are

valid.

Typical field theories describing systems in the real world contain hydrodynamic modes

like phonons, with very low energies, and one would have to consider frequencies of collective

coordinate motion lower than these hydrodynamic energy scales in order to observe quantum

5In reality, the system is unavoidably coupled to an environment, and is not in a pure state. If nothing else,
soft photon emission will create such an environment. However, since our point is that the macroscopic system
decoheres itself, we can neglect the (perhaps numerically more important) environmental decoherence.
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coherence for the macroscopic observables over power law time scales. Certainly the motion of

the moon is not in such an adiabatic regime.

To define an actual apparatus, we have to assume that the quantum field theory admits

bound states of arbitrarily large size. Typically this might require us to add chemical poten-

tial terms to the Hamiltonian and insist on macroscopically large expectation values for some

conserved charge. The canonical example would be a large, but finite, volume drop of nu-

clear matter in QCD. We can repeat the discussion above for averages over sub-volumes of the

droplet.

Of course, in the real world, the assumption of a microscopically small correlation length

is not valid, because of electromagnetic and gravitational forces. Indeed, most real measuring

devices use these long range forces, both to stabilize the bound state and for the operation of the

machine itself. I do not know how to provide a mathematical proof, but I am confident that the

properties described above survive without qualitative modification6. This is probably because

all the long range quantum correlations are summarized by the classical electromagnetic and

gravitational interactions between parts of the system7 . It would be desirable to have a better

understanding of the modification of the arguments given here, that is necessary to incorporate

the effects of electromagnetism and (perturbative) gravitation. One may also conclude from

this discussion that a system at a quantum critical point, which has long range correlations

not attributable to electromagnetism or gravitation, would make a poor measuring device, and

might be the best candidate for seeing quantum interference between “macroscopic objects”.

Of course, such conformally invariant systems do not have large bound states which could serve

as candidate “macroscopic objects”.

Despite the mention of gravitation in the previous paragraph, the above remarks do not

apply to regimes in which the correct theory of quantum gravity is necessary for a correct

description of nature. We are far from a complete understanding of a quantum theory of

gravity, but this author believes that it is definitely not a quantum field theory. In a previous

version of this article [1] I gave a brief description of my ideas about the quantum theory of

gravitation. I believe that it gets in the way of the rest of the discussion, and I will omit all

but the conclusions.

In my opinion, the correct quantum theory of gravity has two sorts of excitations, something

6In the intuitive physics sense, not that of mathematical rigor.
7Recall that the Coulomb and Newtonian forces between localized sources are described in quantum field

theory as quantum phase correlations in the wave function for the multi-source system.
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resembling conventional particles, and black holes. A given region of space-time supports only

a finite amount of information, and a generic state of that region is a black hole. Black holes

have very few macroscopic moving parts, and do not make good measuring devices. Low

entropy states in the region can be described in terms of particles with local interactions, and

are approximable for many purposes by local field theory. I have explained how the general

principles of field theory lead to an understanding of approximately classical measuring devices.

The exponential approach to the classical limit allows us to understand why these conclu-

sions will not be changed in the quantum theory of gravity. Systems describable by local field

theory over a mere 103 − 104 correlation volumes already have collective variables so classical

that their quantum correlations are unmeasurable. The fact that there exist energy scales or-

ders of magnitude below the Planck scale, when combined with these observations, show us

that practically classical systems can be constructed without the danger of forming black holes.

On the other hand, these same considerations show us that exactly classical observables in

a quantum theory of gravity must be associated with infinite boundaries of space-time. This

observation is confirmed by existing string theory models, and has profound implications for

the construction of a quantum theory of gravity compatible with the world we find ourselves

in.

3 Proposed experiments

3.1 SchrÖdinger’s drum

I was motivated to rewrite this article for publication, by a number of papers, which propose

experiments to observe quantum correlations for the observables of a mesoscopic system[4]. In

its simplest form the system consists of two dielectric membranes, suspended in a laser cavity.

By tuning the laser frequencies, it is claimed that one can cool the motion of the translational

collective coordinates of the two membranes, which are coupled through the laser modes, down

to their “steady state ground state”. The ground state can be engineered to be a superposition of

two different relative positions for the membranes. The system has been dubbed Schrödinger’s

Drum[4]. Although state of the art experiments can not yet reach the ground state splitting, it

is plausible that it can be reached in the near future.

The membranes are about one millimeter square and 50 nano-meters thick. Typical phonon
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energies are thus of order 10−4 eV8. In the analysis of the proposed experiments [5] it is argued

that the collective coordinates of the two membranes in a laser cavity has a pair of classically

degenerate ground states, which are split by 10−10 eV. It is then argued that by tuning the

laser frequencies, one can cool the collective coordinate system down to temperatures below

this splitting. The true ground state is a superposition of two classical values for the collective

coordinates, and it is claimed that one can observe the entanglement of these two states.

At first glance, one might assume that the extremely low temperature of the collective

coordinates means that the considerations of our analysis are irrelevant. However, on closer

scrutiny it becomes apparent that the whole process of laser cooling, depends crucially on the

coupling between the collective coordinates and a source of “mechanical noise”. The latter is

treated as a large thermal system with a temperature (in the theoretical analysis 10−7 − 10−6

eV)9. The analysis of [5] uses a quantum Langevin equation to describe the way in which energy

is drained from the collective coordinates into the reservoir of mechanical noise. This might be10

perfectly adequate for showing that the temperature of the collective coordinates can indeed

be lowered, but it does not give an adequate account of quantum phase coherence.

The very fact that the source of mechanical noise can be modeled as a system obeying

the laws of statistical mechanics, implies that the collective coordinate is coupled to a large

number of other degrees of freedom, in a regime where the density of states of these degrees of

freedom is exponentially large. Our analysis applies, and there should be no phase coherence

between superselection sectors of the noise bath. If we take the correlation length in the

membranes to be 100 nano-meters, then eN ∼ e10
12

, and there is no hope of seeing quantum

coherence. The failure to see quantum correlations in these experiments is not an indication

that quantum mechanics breaks down for macro-systems, but simply a failure to understand that

the approximate two state system of the membrane collective coordinates, suffers decoherence

due to its coupling to the system which cools it down to the quantum energy regime.

Indeed, the collective coordinates are coupled to the the system that provides the mechan-

ical noise. The very fact that it is permissible to describe this system by statistical mechanics

shows that it has a huge reservoir of states through which it is cycling on a microscopic time

8Here I refer to the phonons of internal sound waves on each membrane, rather than the phonons associated
with the relative motion of the two membranes.

9I suspect that when applied to actual experiments with mm. size membranes, the source of this noise is
excitation of sound waves on the membrane, and the temperature is even higher.

10The book [6] referred to in [5] suggests that the quantum Langevin treatment is adequate only when the
noise reservoirs are collections of oscillators with linear couplings to the collective coordinates. It is not clear
to me that this is the case. The collective coordinates are really zero wave number phonons of the individual
membranes, and I would have guessed that they are coupled non-linearly to the shorter wavelength modes.
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scale. The coupling of the collective coordinates to these states, which is necessary for the cool-

ing process, also washes out phase correlations between different classical states of the collective

modes.

3.2 Josephson’s flux

By contrast, an older experiment[7] seems to illustrate the fact that when the microscopic

degrees of a macro-system can be kept in their ground state, the standard analysis of the

quantum mechanics of collective coordinates is correct. This experiment consists of a Josephson

junction, with a flux condensate composed of o(109) Cooper pairs. By appropriate tuning, one

can bring the system to a state where there is resonant tunneling between a degenerate pair

of quantum levels of the Landau-Ginzburg order parameter. The author’s argue, correctly I

believe, that because of the superconducting gap, and because their external magnetic probes

couple directly to the order parameter, they can keep the system in its quantum ground state.

They verify the level repulsion of a two state quantum system, when two classically degenerate

states are connected by a tunneling transition. This experiment truly achieves a quantum

superposition of macro-states. The recurrence time scale e10
9

of a typical state of this many

microscopic constituents is irrelevant to the analysis of this experiment.

There is a hint here of what is necessary in order to approach macroscopic superposi-

tions, and it echoes an insight that has already appeared in the quantum computing literature.

Kitaev[8] has emphasized that topological order parameters may be essential to the construction

of a practical quantum computer. Quantum Hall systems and superconductors have such order

parameters. In the rather abstract language of quantum field theory, what would appear to

be necessary is a system whose low energy dynamics is described by a topologicalfieldtheory .

In plain terms, this is a system whose localized excitations are separated from excitations of

a selected set of topological variables by an energy gap. From a practical point of view, what

we need is a system in which this gap is large enough so that one can carry out experiments,

which do not excite states above the gap.

Macroscopic systems will generically have phonon excitations, with energies that scale

like the inverse of the largest length scale in the macroscopic body. However, as the case

of the Josephson junction shows, it may be possible to devise probes of the system, which

couple directly to the topological order parameters, without exciting mechanical oscillations. If

that is the case, we are in a regime which is properly analyzed by the conventional collective

coordinate quantum mechanics. For appropriately mesoscopic systems, and with sufficient
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protection against decoherence by coupling to a larger environment, we can achieve quantum

coherence for appropriate macroscopic order parameters.

This does not change the main burden of this article, which is that for typical macroscopic

objects, quantum coherence is superexponentially unlikely, and cannot be observed over any

experimentally realizable time scale. It does however, confirm the insight of Kitaev, that there

may be a topological route to practical quantum computation.

4 Conclusions

I suspect the material in this paper is well understood by many other physicists, including most

of those who have worked on the environmental decoherence approach to quantum measurement.

If there is anything at all new in what I have written here about quantum measurement, it lies in

the statement that a macroscopic apparatus of modest size serves as its own “environment” for

the purpose of environmental decoherence. In normal laboratory circumstances, the apparatus

interacts with a much larger environment and the huge recurrence and coherence times become

even larger. Nonetheless, there is no reason to suppose that a modestly macroscopic apparatus,

surrounded by a huge region of vacuum, with the latter protected from external penetrating

radiation by thousands of meters of lead, would behave differently over actual experimental

time scales, than an identical piece of machinery in the laboratory.

The exception to this kind of self-decoherence that we have identified, seems to involve

topological variables of systems like superconductors and quantum Hall materials. These are

systems with an interesting finite dimensional Hilbert space of quasi-degenerate ground states,

separated from the rest of the spectrum by a substantial gap. In addition, one must have

probes which can couple directly to the topological variables, without exciting low energy

phonon degrees of freedom (which are present in any macroscopic object). For such systems,

one might expect to be able to create robust superpositions of states of collective variables of

macroscopic systems. Kitaev has argued that these may be the key to quantum computing.

The essential point in this paper is that the corrections to the classical behavior of macro-

scopic systems are exponential in the size of the system in microscopic units. This puts observ-

able quantum behavior of these systems in the realm of recurrence phenomenon, essentially a

realm of science fiction rather than of real experimental science. When a prediction of a scientific

theory can only be verified by experiments done over times super-exponentially longer than the

measured age of the universe, one should not be surprised if that prediction is counter-intuitive
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or “defies ordinary logic”.

Quantum mechanics does make predictions for macro-systems which are different than

those of deterministic classical physics. Any time a macro-system is put into correlation with

a microscopic variable - and this is the essence of the measurement process - its behavior

becomes unpredictable. However, these predictions are indistinguishable from those of classical

statistical mechanics, with a probability distribution for initial conditions derived from the

quantum mechanics of the micro-system. It is only if we try to interpret this in terms of a

classical model of the micro-system that we realize something truly strange is going on. The

predictions of quantum mechanics for micro-systems are strange, and defy the ordinary rules

of logic. But they do obey a perfectly consistent set of axioms of their own, and we have no

real right to expect the world beyond the direct ken of our senses, which had no direct effect on

the evolution of our brains, to ”make sense” in terms of the rules which were evolved to help

us survive in a world of macroscopic objects.

Many physicists, with full understanding of all these issues, will still share Einstein’s un-

ease with an intrinsically probabilistic theory of nature. Probability is, especially when applied

to non-reproducible phenomena like the universe as a whole, a theory of guessing, and implic-

itly posits a mind, which is doing the guessing. Yet all of modern science seems to point in

the direction of mind and consciousness being an emergent phenomenon; a property of large

complex systems rather than of the fundamental microscopic laws. The frequentist approach

to probability does not really solve this problem. Its precise predictions are only for fictional

infinite ensembles of experiments. If, after the millionth toss of a supposedly fair coin has

shown us a million heads, and we ask the frequentist if we’re being cheated, all he can answer

is “probably”. Neither can he give us any better than even odds that the next coin will come

up tails if the coin toss is truly unbiased.

I have no real answer to this unease, other than “That’s life. Get over it.” For me the

beautiful way in which linear algebra generates a new kind of probability theory, even if we

choose to ignore it and declare it illogical11 , is some solace for being faced with a question to

which, perhaps, my intrinsic makeup prevents me from getting an intuitively satisfying answer.

On the other hand, I believe that discomfort with an intrinsically probabilistic formulation

of fundamental laws is the only “mystery” of quantum mechanics. If someone told me that

the fundamental theory of the world was classical mechanics, with a fixed initial probability

11One can easily imagine an alternate universe, in which a gifted mathematician discovered the non-
commutative probability theory of quantum mechanics, and speculated that it might have some application
to real measurements, long before experimental science discovered quantum mechanics.
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distribution, I would feel equally uncomfortable. The fact that the laws of probability for micro-

systems don’t obey our macroscopic “logic” points only to facts about the forces driving the

evolution of our brains. If we had needed an intuitive understanding of quantum mechanics to

obtain an adaptive advantage over frogs, we, or some other organism, would have developed it.

Perhaps we can breed humans who have such an intuitive understanding by making the right

to reproduce contingent upon obtaining tenure at a physics department. Verifying the truth of

this conjecture would take a long time, but much less than time than it would take to observe

quantum correlations in a superposition of macro-states.
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