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The phenomenon of quantum number fractionalization is explained. The relevance
of non-trivial phonon field topology is emphasized.

1. Introduction

Discussions of the spatial forms of physical materials use in a natural way
geometrical and topological concepts. It is to be expected that arrange-
ments of matter should form patterns that are described by pre-existing
mathematical structures drawn from geometry and topology. But theoret-
ical physicists also deal with abstract entities, which do not have an actual
material presence. Still geometrical and topological considerations are rel-
evant to these ephemeral theoretical constructs. I have in mind fields, both
classical and quantum, which enter into our theories of fundamental pro-
cesses. These fields φ(x) provide a mapping from a “base” space or space-
time on which they are defined into the field “target” manifold on which
they range. The base and target spaces, as well as the mapping, may possess
some non-trivial topological features, which affect the fixed time description
and the temporal evolution of the fields, thereby influencing the physical
reality that these fields describe. Quantum fields of a quantum field theory
are operator valued distributions whose relevant topological properties are
obscure. Nevertheless, topological features of the corresponding classical
fields are important in the quantum theory for a variety of reasons: (i)
Quantized fields can undergo local (space-time dependent) transformations
(gauge transformations, coordinate diffeomorphisms) that involve classical
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functions whose topological properties determine the allowed quantum field
theoretic structures. (ii) One formulation of quantum field theory uses a
functional integral over classical fields, and classical topological features be-
come relevant. (iii) Semi-classical (WKB) approximations to the quantum
theory rely on classical dynamics, and again classical topology plays a role
in the analysis.

Topological effects in quantum electrodynamics were first appreciated
by Dirac in his study of the quantum mechanics for (hypothetical) magnetic
monopoles. This analysis leads directly to contemporary analysis of Yang-
Mill theory – the contemporary generalization of Maxwell’s electrodynamics
– and has yielded several significant results: the discovery of the θ-vacuum
angle; the recognition that c-number parameters in the theory may require
quantization for topological reasons (like Dirac’s monopole strength); the
realization that the chiral anomaly equation is just the local version of the
celebrated Atiyah-Singer index theorem.

Here I shall not describe the Yang-Mills investigations; they are too
technical and too specialized for this general audience. Rather I shall
show you how a topological effect in a condensed matter situation leads
to charge fractionalization. This phenomenon has a physical realization in
1-dimensional (lineal) polymers, like polyacetylene, and in 2-dimensional
(planar) systems, like the Hall effect.

The polyacetylene story is especially appealing, because it can be told in
several ways: in pictorial terms which only involves counting, or in the first
quantized formalism for quantum mechanical equations, or in the second
quantized formalism of a quantum field theory 1.

2. The Polyacetylene Story (Counting Argument)

Polyacetylene is a material consisting of parallel chains of carbon atoms,
with electrons moving primarily along the chains, while hopping between
chains is strongly suppressed. Consequently, the system is effectively 1-
dimensional. The distance between carbon atoms is about 1Å.

If the atoms are considered to be completely stationary, i.e. rigidly
attached to their equilibrium lattice sites, electron hopping along the chain
is a structureless phenomenon. However, the atoms can oscillate around
their rigid lattice positions for a variety of reasons, like zero-point motion,
thermal excitation, etc. It might be thought that these effects merely give
rise to a slight fuzzing of the undistorted-lattice situation.

In fact this is not correct; something more dramatic takes place. Rather
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Figure 1. (a) The rigid lattice of polyacetylene; (O) the carbon atoms are equally spaced
1 Å apart. (b), (c) The effect of Peierls’ instability is to shift the carbon atoms .04Åto
the right (A) or to the left (B), thus giving rise to a double degeneracy.

than oscillating about the rigid-lattice sites, the atoms first shift a distance
of about .04 Å and then proceed to oscillate around the new, slightly dis-
torted location. That this should happen was predicted by Peierls, and is
called the Peierls instability. Due to reflection symmetry, there is no differ-
ence between a shift to the right or a shift to the left; the material chooses
one or the other, thus breaking spontaneously the reflection symmetry, and
giving rise to doubly degenerate vacua, called A and B.

If the displacement is described by a field φ which depends on the posi-
tion x along the lattice, the so-called phonon field, then Peierls’ instability,
as well as detailed dynamical calculations indicate that the energy density
V (φ), as a function of constant φ, has a double-well shape. The symmetric
point φ = 0 is unstable; the system in its ground state must choose one
of the two equivalent ground states φ = ± | φ0 |= ±.04Å. In the ground
states, the phonon field has uniform values, independent of x.

By now it is widely appreciated that whenever the ground state is degen-
erate there frequently exist additional stable states of the system, for which
the phonon field is non-constant. Rather, as a function of x, it interpolates,
when x passes from negative to positive infinity, between the allowed ground
states. These are the famous solitons, or kinks. For polyacetylene they cor-
respond to domain walls which separate regions with vacuum A from those
with vacuum B, and vice versa. One represents the chemical bonding pat-
tern by a double bond connecting atoms that are closer together, and the
single bond connecting those that are further apart.

Consider now a polyacetylene sample in the A vacuum, but with two
solitons along the chain. Let us count the number of links in the sample
without solitons and compare with number of links where two solitons are
present. It suffices to examine the two chains only in the region where they
differ, i.e. between the two solitons. Vacuum A exhibits 5 links, while the
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Figure 2. Energy density V (φ), as a function of a constant phonon field φ. The sym-
metric stationary point, φ = 0, is unstable. Stable vacua are at φ = +|φ0|, (A) and φ =
-|φ0|, (B).

Figure 3. The two constant fields, ± | φ0 |, correspond to the two vacua (A and B).
The two kink fields, ±φs, interpolate between the vacua and represent domain walls.

addition of two solitons decreases the number of links to 4. The two soliton
state exhibits a deficit of one link. If now we imagine separating the two
solitons a great distance, so that they act independently of one another,
then each soliton carries a deficit of half a link, and the quantum numbers
of the link, for example the charge, are split between the two states. This
is the essence of fermion fractionization.

It should be emphasized that we are not here describing the familiar
situation of an electron moving around a two-center molecule, spending
“half” the time with one nucleus and “half” with the other. Then one might
say that the electron is split in half, on the average; however fluctuations
in any quantity are large. But in our soliton example, the fractionization
is without fluctuations; in the limit of infinite separation one achieves an
eigenstate with fractional eigenvalues.

We must however remember that the link in fact corresponds to two
states: an electron with spin up and another with spin down. This doubling
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Figure 4. Polyacetylene states. The equally spaced configuration (O) possesses a left-
right symmetry, which however is energetically unstable. Rather in the ground states the
carbon atoms shift a distance μ to the left or right, breaking the symmetry and producing
two degenerate vacua (A, B). A soliton (S) is a defect in the alteration pattern; it provides
a domain wall between configurations (A) and (B).

B

A
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Figure 5. (a), (b) Pattern of chemical bonds in vacua A and B. (c) Two solitons inserted
into vacuum A.

obscures the dramatic charge 1
2 effect, since everything must be multiplied

by 2 to account for the two states. So in polyacetylene, a soliton carries a
charge deficit of one unit of electric charge. Nevertheless charge fraction-
ization leaves a spur: the soliton state has net charge, but no net spin, since
all of the electron spins are paired. If an additional electron is inserted into
the sample, the charge deficit is extinguished, and one obtains a neutral
state, but now there is a net spin. These spin-charge assignments (charged

20



June 9, 2006 11:17 Proceedings Trim Size: 9in x 6in Topology˙ws-procs9x6

– without spin, neutral – with spin) are unexpected, but in fact have been
observed, and provide experimental verification for the soliton picture and
fractionalization in polyacetylene.

Notice that in this simple counting argument no mention is made of
topology. This feature emerges only when an analytic treatment is given.
I now turn to this.

3. The Polyacetylene Story (Quantum Mechanics)

I shall now provide a calculation which shows how charge 1/2 arises in
the quantum mechanics of fermions in interaction with solitons. The
fermion dynamics are governed by an one-dimensional Dirac Hamiltonian,
H(φ), which also depends on a background phonon field φ, with which the
fermions intact. The Dirac Hamiltonian arises not because the electrons are
relativistic. Rather it emerges in a certain well-formulated approximation
to the microscopic theory, which yields a quantal equation that is a 2x2
matrix equation, like a Dirac equation. In the vacuum sector, φ takes on a
constant value φ0, appropriate to the vacuum. When a soliton is present,
φ becomes the appropriate, static soliton profile φs. We need not be any
more specific. We need not insist on any explicit soliton profile. All that we
require is that the topology [i.e. the large distance behavior] of the soliton
profile be non-trivial.

In the present lineal case the relevant topology is that infinity corre-
sponds to two points, the end points of the line, and the phonon field in
the soliton sector behaves differently at the points at infinity.

To analyze the system we need the eigenmodes, both in the vacuum and
soliton sectors.

H(φ0)ψv
E = Eψv

E (1)

H(φs)ψs
E = Eψs

E (2)

The Dirac equation is like a matrix-valued “square root” of the wave equa-
tion. Because a square root is involved, there will be in general negative
energy solutions and positive energy solutions. The negative energy so-
lutions correspond to the states in the valence band; the positive energy
ones, to the conduction band. In the ground state, all the negative energy
levels are filled, and the ground state charge is the integral over all space of
the charge density ρ(x), which in turn is constructed from all the negative
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energy wave functions.

ρ(x) =

0∫

−∞
dE ρE (x), ρE(x) = ψ∗

E (x)ψE (x) (3)

Of course integrating (3) over x will produce an infinity; to renormalize we
measure all charges relative to the ground state in the vacuum sector. Thus
the soliton charge is

Q =
∫

dx

0∫

−∞
dE {ρs

E (x) − ρv
E (x)}. (4)

Eq. (4) may be completely evaluated without explicitly specifying the soli-
ton profile, nor actually solving for the negative energy modes, provided
H possesses a further property. We assume that there exists a conjugation
symmetry which takes positive energy solutions of (1) and (2) into negative
energy solutions. (This is true for polyacetylene.) That is, we assume that
there exists a unitary 2x2 matrix M , such that

MψE = ψ−E . (5)

An immediate consequence, crucial to the rest of the argument, is that the
charge density at E is an even function of E.

ρE(x) = ρ−E(x) (6)

Whenever one solves a conjugation symmetric Dirac equation, with a
topologically interesting background field, like a soliton, there always are,
in addition to the positive and negative energy solutions related to each
other by conjugation, self-conjugate, normalizable zero-energy solutions.
That this is indeed true can be seen by explicit calculation. However, the
occurrence of the zero mode is also predicted by very general mathematical
theorems about differential equations. These so-called “index theorems”
count the zero eigenvalues, and insure that the number is non-vanishing
whenever the topology of the background is non-trivial. We shall assume
that there is just one zero mode, described by the normalized wave function
ψ0.

To evaluate the charge Q in (4), we first recall that the wave functions
are complete, both in the soliton sector and in the vacuum sector.

∞∫

−∞
dE ψ∗

E (x)ψE(y) = δ(x− y) (7)
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As a consequence, it follows that
∞∫

−∞
dE [ρs

E (x) − ρv
E (x)] = 0. (8a)

In the above completeness integral over all energies, we record separately
the negative energy contributions, the positive energy contributions, and for
the soliton, the zero-energy contribution. Since the positive energy charge
density is equal to the negative one, by virtue of (6), we conclude that (8a)
may be equivalently written as an integral over negative E.

0∫

−∞
dE [2ρs

E (x) − 2ρv
E (x)] + ψ∗

0 (x)ψ0 (x) = 0 (8b)

Rearranging terms give

Q =
∫
dx

0∫

−∞
dE[ρs

E(x) − ρv
0(x)] = −1

2

∫
dxψ0(x)ψ0(x) = −1

2
. (9)

This is the final result: the soliton’s charge is − 1
2 ; a fact that follows

from completeness (7) and conjugation symmetry (6). It is seen in (9)
that the zero-energy mode is essential to the conclusion. The existence of
the zero mode in the conjugation symmetric case is assured by the non-
trivial topology of the background field. The result is otherwise completely
general.

4. The Polyacetylene Story (Quantum Field Theory)

The quantum mechanical derivation that I just presented does not address
the question of whether the fractional half-integer charge is merely an unin-
teresting expectation value or whether it is an eigenvalue. To settle this, we
need a quantum field theory approach, that is we need to second quantize
the field. For this, we expand Ψ, which now is an anti-commuting quantum
field operator, in eigenmodes of our Dirac equation in the soliton sector as

Ψ =
E∑

(bE ψs
E + d†E ψ

s
−E) + aψ0

Ψ† =
E∑

(b†E ψ
s∗
E + dE ψ

s∗
−E) + a†ψ0. (10)

The important point is that while the finite energy modes ψs
±E enter with

annihilation particle (conduction band) operators bE and creation anti-
particle (valence band) operators d†E , the zero mode does not have a partner
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and is present in the sum simply with the operator a. The zero energy state
is therefore doubly degenerate. It can be empty | − >, or filled | + >, and
the a, a† operators are realized as

a | + >=| − >, a† | + >= 0, a | − >= 0, a† | + >=| + > . (11)

The charge operator Q =
∫
dxψ†ψ must be properly defined to avoid

infinities. This is done, according to Schwinger’s prescription in the vacuum
sector, by replacing the formal expression by

Q =
1
2

∫
dx (ψ†ψ − ψψ†). (12)

We adopt the same regularization prescription for the soliton sector and
insert our expansion (10) into (12). We find with the help of the orthonor-
mality of wave functions

Q =
1
2

∑
E

(b†E bE + dE d
†
E − bE b

†
E − d†E dE) +

1
2
(a†a− aa†)

=
∑
E

(b†E bE − d†E dE) + a†a− 1
2
. (13)

Therefore the eigenvalues for Q are

Q | − >= −1
2
|− >, Q | + >=

1
2
|+ > ! (14)

5. Conclusion

This then concludes my polyacetylene story, which has experimental realiza-
tion and confirmation. And the remarkable effect arises from the non-trivial
topology of the phonon field in the soliton sector.

Many other topological effects have been found in the field theoretic
descriptions of condensed matter and particle physics. Yet we must no-
tice that mostly these arise in phenomenological descriptions, not in the
fundamental theory. In condensed matter the fundamental equation is the
many-body Schrödinger equation with Coulomb interactions. This does
not show any interesting topological structure. Only when it is replaced by
effective, phenomenological equations do topological considerations become
relevant for the effective description. Fundamental (condensed matter) Na-
ture is simple!

Similarly in particle physics, our phenomenological, effective theories,
like the Skyrme model, enjoy a rich topological structure. Moreover, even
the Yang-Mills theory of our fundamental “standard particle physics model”
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supports non-trivial topological structure, which leads to the QCD vacuum
angle. In view of my previous observation, can we take this as indirect
evidence that thisYang-Mills based theory also is a phenomenological, ef-
fective description and at a more fundamental level – yet to be discovered –
we shall find a simpler description that does not have any elaborate math-
ematical structure. Perhaps in this final theory Nature will be described
by simple counting rules – like my first polyacetylene story. Surely this will
not be the behemoth of string theory.
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