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ABSTRACT

We discuss the general theory of effective Lagrangians and Hamiltoni-
ans in molecular physics. The Born-Oppenheimer effective Lagrangian for
the nuclei involves a gauge potential, which may be nonabelian if the elec-
tronic energy levels are degenerate. We develop a systematic procedure for
finding corrections to the adiabatic approximation, both perturbative and
non-perturbative. The former may be incorporated directly into the effective

nuclear Lagrangian.
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1. The Adiabatic Approximation: General Considerations

Berry's original paper on geometric phases emphasized quantum sys-
tems influenced by external parameters [1]. He showed that when these
parameters are slowly taken around a closed cireuit, the wavefunction of the
systermn may acquire a geometric phase. Although the external parameters
were implicitly taken to be classical variables, many interesting applications
of the same basic ideas occur in a fully gquantum mechanical setting. One
can form an effective Born-Oppenheimer Hamiltonian or Lagrangian for the
external parameters, that incorporates the effect Berry's phase through a
gauge-potential-like term (2! [3| [4]. Upon quantization, the presence of
this extra term may lead to significant observable effects, such as shifted
quantum numbers and level splittings.

Berry's phase is only the leading correction to the traditional Born-
Oppenheimer approximation. Higher-order corrections may also be directly
incorporated by adding further terms to the effective Lagrangian [5] 16].

In this paper, we hope to give a relatively unified account of the *mod-
ern” Born-Oppenheimer method. We shall discuss both the Hamiltonian
and Lagrangian approaches, their relationship, and their apparent inequiva-
lence. Our discussion must necessarily include a description of the procedure
for incorporating corrections to the adiabatic approximation, and at the mo-
ment, this subject is far from closed. Accordingly, a significant portion of
the paper is devoted to a discussion of the adiabatic approximation itself.
It covers the Dykhne and Landau-Zener formulas, corrections to them, and
geometric phases in the complex plane.

The Born-Oppenheimer approximation first arose in the context of mo-
lecular physics |7], but more generally applies whenever a system exhibits
two widely separated energy scales. This approximation i= often deseribed
as a separation of “slow™ and “fast™ variables; these are just the variables
associated with the different energy scales. Quantum mechanically, the sep-
aration 18 made possible by the existence of a large energy gap.

In the original application to molecular physics, the gap involved is the
spacing between the electronic energy levels. This gap is typically much
larger than the separation between levels associated with vibrations and ro-
tations of the nuclear degrees of freedom that do not invelve re-arrangement
of electronic orbitals.” Now if we want to describe the spectrum of low-
energy excitations of the molecule, 1.¢., the excitations with energy much less
than the electronic energy gap, then we should be able to form a description
that involves only the nuclear degrees of freedom. Indeed, at such low en-
ergies the electrons have no independent dynamics—they are “enslaved™ to

S —

* Often a small finite number of electronic states are actually or approx-
imately degenerate. The formalism appropriate to this case is discussed
further below. For now, we assume no degeneracy.
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the nuclear degrees of freedom-—because only one state is avallable to them.
Therefore, it is possible to describe the low-energy excitations by an effective
Lagrangian involving the nuclear degrees of freedom alone, with no explicit
reference to the electrons. Of course the value of the numerical parameters
appearing in this Lagrangian will depend implicitly upon the electrons.

We find this way of formulating the Born-Oppenheimer idea much more
appropriate, and easier to generalize, than the usual formulation in terms of
“fast™ and “slow”™ variables. The connection between the two is as follows.
Transitions to states separated by a large energy gap require large changes
in frequency, and are therefore associated with “fast” variables. Rapid os-
cillations in time accompany such transitions, and lead to cancellations in
processes whose characteristic time scale is much longer—that is, in pro-
cesses associated with motion of the “slow”™ variables. Towards the end of
this article we shall discuss the relationship between these two approaches
more precisely. It is appropriate to mention one conclusion from that discus-
sion now, however: we shall find that quantum variables can only be slow in
a very weak sense. For example, in a path integral description the important
space-time paths are not differentiable, and the typical velocity is strictly
speaking infinite even for so-called “slow™ variables. Nevertheless, not being
fussy, we shall freely refer to “fast” and “slow”™ variables throughout this

paper.

In quantum field theories containing heavy particles, there is a large gap
between the ground state of these heavy particles—e.g., the filled Dirac sea
for heavy fermions—and the energy of any excited state. Indeed, to reach
an excited state with the same quantum numbers we must in general supply
at least the energy to produce a particle-antiparticle pair. Suppose now that
the theory contains in addition other fields, describing lighter particles. Then
we should be able to describe slow space-time vanations of these other fields
by an effective Lagrangian that makes no explicit reference Lo the heavy
particles, The usual jargon is to say that we can “integrate out™ the heavy
particle degrees of freedom. Clearly, the formation of effective Lagrangians
in gquantum field theory is fully analogous to the corresponding procedure
in molecular physics [8]. {But notice that in field theory the heavy particles
are the “fast”™ degrees of freedom!)

In the derivation of effective Lagrangians, we should expeci—and will
find—that geometric phases occur. This is particularly clear if we think in
terms of path integrals. Then zlong any particular path the slow degrees
of freedom can be considered as external parameters governing the state of
the fast ones. Therefore, the amplitude for such a path can contain a ge-
ometric phase factor of the classic type. Geometric phases of this sort are
connected with some of the most subtle and interesting phenomena in quan-
tum field theory, including the occurrence of fractional quantum numbers
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and anomalies [9° [10].

2. The Born-Oppenheimer Hamiltonian

We now return to the historical context of the Born-Oppenheimer ap-
proximation, to discuss the derivation of effective Hamiltonians and La-
grangians. In molecular physics, it is useful to treat the electronic and
nuclear degrees of freedom as fast and slow variables, respectively. This is
because the gap between electronic energy levels is typically much larger
than the gap between nuclear levels, by a factor of order [M,-"m}i '7]. In the
Born-Oppenheimer approximation, one solves for the electronic states in a
fixed nuclear background. By the adiabatic theorem, one expects these elec-
tronic states to be approximately stationary with respect to the relatively
slow motions of the nuclei. We can thus obtain an effective description for
the nuclear motion, relative to a fixed electronic orbital, by integrating over
electronic coordinates. We shall find that the effective nuclear Lagrangian
obtained in this way involves both an ordinary potential term due to the elec-
tronic energy levels and a background gauge potential which couples to the
nuclear current |2|. This gauge potential takes into account the Berry phase
accumulated by the electronic wavefunctions when the nuclear coordinates
change adiabatically |31

The Born-Oppenheimer approximation begins with the full Schrodinger
equation

(Tawe + Tet + V)W = EW (2.1)

where T, and Ty, are the electronic and nuclear kinetic energy terms,
V(r. ) contains the potential and interaction energies of the electrons and
nucleons, and r and R are the electronic and nuclear coordinates. The wave
function ¥ is separated into nuclear and electronic components ®,, and ¢,

A%

W(r,R) = ) ®.(R)ou(r, R) (2.2)

where the subscript n labels the electronic energy eigenstates in a fixed
nuclear background. That is, ¢,(r, K) satisfies the electronic Schrodinger
equation at a fixed value of R

To+ Vir,RB)gu(r, R) = en(R)¢n(r, R) (2.3)

In terms of the electronic eigenfunctions, the full Schrodinger equation may
now be rewritten as

D [Toue + ea(R)|®a(R)en(r,R) = B @u(R)gu(r,R)  (2.4)
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We may now integrate out the electronic degrees of freedom to leave a
system of equations for the nuclear wavefunction ¥ alone. Using bracket
notation for the normalized electronic eigenstates, we get

D (Om|Tawc®n 00} + € (R) B, = Ed,, (2.5)

The nuclear kinetic energy operator Ty, = — fwvi (with b = 1) operates on
both the nuclear and electronic wavelunctions, ®,(R) and |@,(r, B)). Thus
the kinetic energy terms in (2.5) are proportional to

(Bm | VE®nl0n) = Y (6mi Vi + (0m|VROE)) (i VR + (84| V Ron)) ©n (2.6)
E

The Born-Oppenheimer approximation applies when the mixing between
different electronic levels is small, so that the off-diagonal matrix elements
in Eq.(2.6) can be neglected. If, furthermore, the electronic states can be
chosen to be real for each R, then (¢, Vgd,) = 0 and Eq.(2.6) reduces to

— 1
gVt 2 gpg (9nlV8e) (86l V) + en(R) | @ = E®,  (2.7)

In this approximation, the nuclei propagate in a background potential

- 1 .
a(R) = enlR)+ ) 527 (énl Vi) (641 Vo)
kdn

The peculiar extra term may be rewritten as follows:

7 2

k#En

(Snl(VH) ) | (2.8)

£ — €k 1

Hence, when the energy splittings between level n and the other levels are
large, this term may be neglected. Berry has pointed out that it is pro-
portional to the trace of the “natural metric” on projective Hilbert space
1.

However, it is not always possible to form a basis of electronic wave-
functions that are everywhere real. Furthermore, corrections to adiabatic
evolution will involve mixings of electronic levels. We introduce the “gauge
potential® notation

Ama = 1(6m|V pon) (2.9)
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to account for both of these possibilities. Putting together Eqgs.(2.4), (2.5),
and (2.9), we can write a complete matrix-valued Schrodinger operator for
the nuclear wave functions

HEE = - oS (6mi Vi ~ iAmi(R)) - (5in V& — i Aen(R)) + G (R)
k

M
(2.10)
which acts on the vector @,

Hf' ¢, = Fo, (2.11)

(The Schrodinger operator is, of course, associated with an effective Hamil-
tonian after the replacement -tV g = pg.)

In the Born-Oppenheimer approximation, the effect of the off-diagonal
matrix elements A, which mix different energy levels is ignored. Sections 4
and 5 will be devoted to a justification of this procedure; for now we simply
state the result that corrections are indeed suppressed, by a factor depending
on the ratio of the typical nuclear and electronic energy splittings. Then for
a nondegenerate electronic level, the effective nuclear Schrodinger operator
in the Born-Oppenheimer approximation is then simply

HEO = — (Y — iAn(R))* + &n(R) (2.12)

where A, = An,.

Eq. (2.12) looks like the Schridinger operator of a charged particle in
the presence of a background magnetic potential. To further strengthen this
analogy, the vector field A, even transforms like a U(1) gauge potential, as
we shall now explain. The phase each of the wavefunctions |¢,(R)) is arbi-
trary, and our description of the dynamics of the nuclei must always respect
this arbitrariness. The effect of a redefinition of phases of the electronic
wavefunctions |¢,(R)) — ¢*=(B)|g_(R)), is to rotate the nuclear wavefunc-
tions oppositely

&, (R) — e =(Blg (R), (2.13)

so that the full wavefunction ¥(r, R) is preserved. From Eq. (2.9), we see
that the gauge potential transforms just as it should:

An(R) — An(R) + Vara(R) (2.14)

and it is easy to see that the overall effect of the phase redefinition is to leave
the nuclear Schrodinger equation invariant (including the term (2.8)).

We conclude that the nuclei behave like charged particles in a magnetic
field B = V x A,. Semiclassically speaking, when the nuclei go around
a closed path, the wavefunction will accumulate a geometrical phase pro-
portional to the enclosed magnetic Aux. (We will be able to see this more
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clearly from the Lagrangian point of view discussed in the following section.)
This phase is nothing but Berry's phase in quantum mechanical clothing—
the phase that the evolving electron wavefunctions accumulate when their
external parameters R are slowly varied has just been passed down to the
nuclear wavefunctions.

The degenerate case is slightly more complicated; the evolution will gen-
erally invelve U( V) rotations among the N degenerate states [12| (provided
there are no selection rules forbidding such rotations). In the adiabatic ap-
proximation, again restricting attention to a single energy level, we obtain an
effective matrix Hamiltonian as in (2.10) with a U/{N) gauge potential A,.,,.
The N electronic eigenfunctions may now be regarded as an N-component
vector; its “phase” is a U{N) matrix.

For example, the effective nuclear Hamiltonian operator for a molecule
with doubly degenerate electronic energy levels (labeled by T and |) contains
a U/(2) gauge potential:

2
1 f A A
HHD:——{v -.( n “)} +e(R 2.15
R A A «(R) (2.15)

Such a Hamiltonian arises in considering the degenerate A-levels of a di-
atomic molecule [3]. For A = %, there is no choice of electronic basis states
for which the ['{2) gauge potential becomes everywhere diagonal.

To close this section, we remark that there is a much bigger symmetry
group that is always present, which mixes states of different energies. The
group in gquestion is the unitary symmetry U{oe) of the electronic Hilbert
space ¥g. It is difficult to see where all this symmetry has gone in the nuclear
Schrodinger equation Eq. (2.7), because in choosing a decomposition of the
total wavefunction in terms of electronic energy eigenfunctions, we have
“fixed the gauge”™ down to a product of U{N) factors (one factor for each N-
foild degenerate level). However, there is an alternative formulation in which
the full symmetry is manifest, involving a different effective Hamiltonian.
We sandwich the time—dependent Schrodinger equation

{Tum: + Ta + F}q' = EW¥ [2-15}
between a complete set of electronic states (not necessarily energy eigen-
states) to obtain a matrix Schrodinger equation analogous to Eq. (2.5)"

i(0; — iAa)® = - ﬁ{vﬂ, LA+ Sppen(R) (2.17)
where Ap = Il{lﬂlmlld.l":', with the time derivative referring to the implicit
time dependence of |¢,(R(t})) (but not on the “dynamical® phase factor

* A similar but not identical nuclear Hamiltonian has been obtained by
Zygelman [13].
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expi [ €,). Under arbitrary R-dependent (and possibly time-dependent)
unitary rotations that preserve (2.2),

¢n{r1 R] = 'ﬁ!ﬂ[r:R}Uan{RJ
O, (R) — Upm(R)®w(R) (2.18)

(where /T = U7 1), Ag behaves like the time—component of a gauge field and
Eq. (2.17) is fully U{ec)-covariant. A, = (A4g, 4,) is thus a 4-component
U/{oc) gauge potential.

3. Lagrangian Formmlation

Often it is more convenient to work with a path-integral description.
Phenomenological models are typically easier to formulate in terms of a
Lagrangian, where symmetries are manifest. Non-equilibrium and non-
perturbative problems, such as calculating tunneling amplitudes, may be
easier to solve in the language of path integrals. In addition, as we shall see,
it is much easier to incorporate corrections to the adiabatic approximation
(which are higher-order in time derivatives) in an effective Lagrangian.

In models of the type we have been considering, effective Lagrangians
(typically matrix-valued) for slow degrees of freedom arise naturally when
one functional integrates over the fast variables. Generally, functional inte-
gration of a matrix-valued integrand requires extra care, to order the opera-
tors correctly |14]. But in the adiabatic approximation, if the fast variables
are locked into a non-degenerate state, the effective Lagrangian is a scalar,
and there is no time ordering to worry about.

As in the previous section, it is convenient to split the Lagrangian into
slow and fast parts as follows

L= Lnut + Lel {3-1]

with
Luuc(R) = IMR? (3.2)
Lalr, R) = lmf?* - V(r, R), (3.3)

The full time-evolution kernel which connects states at time £; to states at
time { can be written as a Feynman sum over all paths from configuration
(ro, Rg) to configuration (r, K):

Ry pry ty
Ko Rastsi 1o, Bovte) = [ [ DIRIDI) exp i [ dt (e + LalR.r)

(3.4)
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To form an effective Lagrangian for the nuclei, we now want to integrate
(3.4) over the electron coordinates. The first step is to perform a Born-
Oppenheimer separation on the molecular wavelunction, as we did in the
last section:

Y(r,R)= Y ®.(R)éa(r, R) (3.5)

rI

As before, the electronic eigenstates ¢, (r, i) are solutions of the electronic
Hamiltonian at nuclear configuration K, and the vector-valued nuclear states
., are solutions of the matrix-valued nuclear Schrodinger equation (2.10).

In order to isolate the evolution of the nuclear wavefunctions, we now
reorder the general path integral, separating the nuclear and electronic in-
tegrations:

K = DIH] -f‘:.,.u[m.uf Dire O i T (3.6)
Ra ]

With respect to the decompostion of Eq.(3.5), we can express the result of
the electronic path integral for a given nuclear path Kt} in terms of an
electronic time evolution kernel:

f , E'Ifl*’"rm Ll = ™ (s, Rysta) K2 Salro, Rosta)  (3.7)

where

K =T exp (-.' f:' @t [embn + .'m,,,m,.:-])
= T exp (—;L dt |embmm + Amnl R{)) - Ru}]) (3.8)

is the evolution kernel for the electronic eigenstates. (The notation conveys
that we are to take the time ordered exponential of the operator whose
mn matrix element is displaved in brackets.) This expression for the kernel
comes from integrating the electronic Schrodinger equation for |én{ (1))

d D . , g
|E|¢ﬂ.| = |E["F‘n}' + ilén} = €nlPn) + 1R(t] - Vg|on)
= 3 [enbmn + i(6m|VRsa) - B] [6m) (3.9)
with respect to t. K*® just gives the usual dynamical evolution of the elec-

tronic energy eigenfunctions with an additional piece coming from the time-
dependence of the eigenfunctions through R(t). In the adiabatic limit, the
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kernel effectively diagonalizes, and the nth electronic eigenstate obeys the
evolution equation

fy i

#alts)) = K2 (b1, o) [dn(to)) = exp (—:' f dt [(en + -'wnm.n]) 6 (t0))
o

(3.10)

The second term in the exponent is immediately recognized as Berry's phase.

With the electronic motion solved for, the nuclear kernel can now be
extracted from the path integral:

" DR Texp:'S[R]} ®,.(Ro) (3.11)

T

&) = {

My

where the exact effective nuclear action 1s

s IR = [i HME’EN — iAmaR(t)) - R(t) — cm[mam} dt

= LF dt (3.12)

As with the exact effective nuclear Hamiltonian (2.10), the electronic ener-
gies €. [ B) contribute an effective potential for the nuclei, and the velocity-
dependent potential term containing Ap,, modifies the nuclear kinetic en-
ergy. In fact, L7 can be obtained directly from H®® by a Legendre transfor-
mation, provided one orders the matrix-valued canonical momenta correctly.

When the electronic levels are nondegenerate, the effective action (3.12)
diagonalizes in the Born-Oppenheimer approximation and the time ordering
in Eq. (3.11) is unnecessary. For electrons in the nth energy level, the

approximate effective action 15

SBO|R| = f' {%Mfr? iAL(R(1) - R(t') - :,.,[R}}dt’ (3.13)

to

(see also [4]). Curiously, this is not the effective action we would have ob-
tained after a Legendre transformation of {2.12), because it does not include
the term (2.8). Order by order, the Hamiltonian and Lagrangian formula-
tions of the Born-Oppenheimer approximations are not equivalent.

There are at least two ways one might directly try to incorporate super-
adiabatic corrections in an effective Lagrangian framework. (The prefix
“super-" indicates that we are looking for corrections to the adiabatic ap-
proximation; we are still concerned with the adiabatic regime.) The first is
to take, in place of the scalar effective action (3.13), a matrix effective action
including a small number of electronic levels, presumably those which are
closest in energy to the particular level of interest. The problem with this
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scheme is that one still must deal with path-ordered exponentials of matri-
ces, and operator ordering makes the quantization of the nuclear degrees of
freedom quite tricky. Another approach is to expand the {ull time-ordered
exponential (3.11) out to some finite degree, and to incorporate this expan-
sion directly into an effective Lagrangian for the nth level, by adding extra
terms to (3.13). We shall see how to do this to the lowest super-adiabatic
order in the next section.

4. Classical Corrections to Adiabatic Evolution

We now embark on a detailed study of corrections to adiabatic the adi-
abatic approximation. In this section, our focus will be on corrections to
the evolution of electronic wavefunctions with respect to smooth, classical
nuclear motions. In Section 5, from the vantage point of the electronic path
integral, we briefly discuss why the quantization of the nuclei fundamentally
alters the nature and size of these corrections.

The total evolution of a wavefunction which begins in an energy eigen-
state is best split into two parts—the amplitude to remain in that eigenstate,
and the amplitude to have a transition to another eigenstate. The first part
of the problem has been beautifully treated by Berry 15| by means of an
iterative procedure. The essential idea is, for a given Hamiltonian H{t}, to
perform an iterative sequence of time-dependent unitary transformations.
At each step, the transformations

$¥)(t) = Ui(t) o 1 (1)
H = Uf-H.-lﬂ',f _ I'U.ﬂ‘.-f (4.1)

(with H# = Hy) are supposed to be chosen in such a way that the evolution of
the transformed wavefunction with respect to the new Hamiltonian 1s more
adiabatic than the last. The phase evolution of the original energy eigenstate
¢ 15 obtained by evolving

¢ = Uiy - Uptn (4.2)

with respect to H; in the adiabatic approximation, and then transforming
back to the original basis. This scheme 15 expected to converge rapidly, at
least until the ith successive correction becomes comparable in magnitude
to the typical amplitude for a transition to another level. At this point,
the sequence of iterations begins to diverge—the expansion is asymptotic.
(A similar scenario occurs in quantum field theory, where the perturbation
expansion is an asymptotic series, which begins to diverge when tunneling
processes become important.) Berry's procedure only gives the evolution of
the phase of ¢,; changes in the magnitude of ¢, come from transitions to
other levels, which are willfully ignored in this approximation.
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In what follows, we shall consider two very different methods for cal-
culating super-adiabatic transition amplitudes. The more straightforward
approach iz a version of time-dependent perturbation theory (TDPT), that
explicitly separates adiabatic from super-adiabatic evolution. The other is
essentially non-perturbative and involves analytic continuation into the coms-
plex time plane. The perturbative approach will enable us to give a proof of
the adiabatic theorem and to find corrections. However, it is not very useful
as a calculational tool, and indeed, not always very reliable. On the other
hand, the non-perturbative method, embodied in Dykhne's formula and its
generalizations, turns out to be guite powerful and accurate. [If some of the
following material seerns too abstract or technical, the reader may wish to
refer to the example beginning with Eq.(4.21) for orientation.)

Adiabatic Perturbation Theory. Our discussion of time-dependent per-
turbation theory begins with the exact equation lor evolution of the elec-
tronic wavefunction according to a time-dependent Hamiltonian. From
Eqs.(3.8) and (3.9), we have

(1) = ) [0m(R(1))} Upnn(t, —00) ($n(R(—00)} | $(R{-~o0)))

FriFu
t
Ui, o) = Texp - l'f di’ leadan + t{dg | P}l (4.3)
- g
where for convenience we have taken {; = —oo. In the nondegenerate case,

the adiabatic approximation to it is

6l = 3 | al RO fexp =i [t fen+ i(6n | dull}

i

(Bl R{-00)) | ¥(R{-00))) (4.4)

We expect this adiabatic wavefunction to be a better and better approxima-
tion to the exact wavefunction, as the time dependence of the parameters
Rt} becomes slower and slower. To quantify this, we write

Rit,r) = Rt/r})

and let v, (f(t)] be the solution of the Schrodinger equation when the in-
ternal parameters vary as K{t, 7). Thus, the larger 7 is, the more slowly the
parameters K are changing. Note that replacing R(1) — R(t/r) in Eq.(4.3)
15 equivalent to rescaling time t — rf everywhere except inside of B(t).

To compare the exact evolution to the adiabatic approximation, it is
convenient to use the following general formula for untangling the time-
ordered exponential integral of the sum of two operators:

Texp]{ﬁrf+ N} = Texpf;'-’f -Texp[h”

N' = [Texij]"~N~Texpr (4.5)
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which is easily proved by differentiating both sides. In our example, we wish
to take

Mﬂb = _1‘u ab T {¢¢ | 'ﬁn.:hﬁlll
Nay = {(tba | d'h:'“ ~ bas) “ﬁ}

so that the true evolution & governed by M + N, and the adiabatic evolution
by M. By means of these manipulations, the corrections to the adiabatic
evolution operator in Eq.(4.3) are isolated into a compact formal expression,

that is:

= =]

T expf_ di' N'(t') = T expj: dt"{{¢,.|$q,'+{l ~ &pg)
- eXp ft dt” [ (o — €g) = WﬂH‘P ¢u|'ﬁ‘w}]} (4.7)

where we have used the fact that M is diagonal to get rid of some of the
time ordering.

Our task iz now to see how this expression approaches the identity op-
erator as r — oo. Note first that rescaling the time variable does nothing to
the integrals over (gy|¢p) and (g, |d,), since the scale factors coming from
the di" in the measure and from the time derivative in the integrand cancel.
As we have seen in other contexts, these integrals have a purely geometric
character. So, if we rescale the time, the only modification to Eq. (4.7) is
to replace (¢p — ¢5) by r{¢p — €;). In other words, the slowness parame-
ter appears only in an oscillatory exponential factor, which we expect will
make the total integral very small as r — oo, 4 la the Riemann-Lebesgue
lemma [16]. To get an idea of just how small, we expand the time-ordered
exponential to first order:

o
Ty =T expj dt’ N'(t")
-8

= bt [ {0,181~ 4

:l

L exp dt” [":'EF — €g) = (Gpldp) + ':'#qwq}] } +

=00

= Bpg + j:“ dt' g (1) exp edpg(t') + - - (4.8)

To simplify this, let us redefine the phases of the wavefunctions |¢,( K(t)})
for each { so that the _wavefunct.inun are always real along the contour of
integration; then (é.|¢.) = 0. We now make three crucial assumptions,
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that e, # ¢ for all times, that 4., and ¢ - ¢, are infinitely differentiable,
and that as t — +oo, all derivatives of 4, and ¢, — ¢, approach zero with
sufficient rapidity. (If K(t) is cyclic, the last assumption is not necessary.)
Then integrating by parts, we may ignore all surface terms, and we find for
the first-order term in (4.8)

= d
(1) _ . P 9 Try
Toe Lf_mrit ™ (fp

from which it follows that
o)
— af 'rp - 'E‘

The right-hand side scales like 7! when we scale t — rt, so Tlﬂl goes to
zero at least as fast as ', After n repeated integrations by parts, we obtain
an expression that vanishes like r =", In other words, T,ﬂj goes to zero faster
than any power of r. By a similar procedure, one may also show that the
same is true for all off-diagonal higher-order terms in the expansion (4.8).
This completes the proof of the adiabatic theorem.

The diagonal terms in (4.8) need not vanish so fast; indeed, they only
vanish like powers of r. For example, the pp component of the second -order
term contains the non-oscillating piece

j’ ' qu[i ) 1ap(t') (4.11)
gEP

fu) exp :‘ftrdt" (ep — €4 (4.9)

ITiH| < (4.10)

which vanishes only like r~!, This first-order correction to purely adiabatic
evolution may be incorporated directly into the effective Lagrangian (3.13)
&8 a counterterm

I‘I. i . -
s g =f dt’ Z ""‘J“ R:R; bmn. (4.12)
o
It modifies the metric on parameter space—which we have taken to be §;—

L
4t A'T
F|_l' — E‘} + H E v {"!IE}

Mot surprisingly, Eq.{4.11) is the same expression we would have ob-
tained by expanding the first-order phase approximant from Berry’s itera-
tion scheme in powers of . When Berry's nth-order phase approximant is
rearranged as an expansion in r, it must agree with the TDPT expansion
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through the nth order in !, Both schemes diverge asymptotically. The
difference with TDPT is that in principle, we might hope, it may give us
information about super-adiabatic transitions,

Unfortunately, the expansion we have presented above is not very useful
for actually computing off-diagonal corrections to adiabatic evolution, due
to the presence of rapidly oscillating phases and the multiple integrations
required to go beyond first order. And even when, say, the first order term in
Eq.(4.8) can be evaluated, there may be no guarantee that the second—order
term will be smaller—indeed, we shall discuss a specific example below where
the higher-order corrections are larger. The moral of the story is that, in the
adiabatic regime, transitions between levels are by nature non-perturbative,
and attempting to treat them perturbatively is misguided,

Super-adiabatic transittons: Dykhne’s formula. Much of what is known
about transitions in the adiabatic limit is summarized by an elegant non-
perturbative result known as Dykhne's formula [17], relating the amplitude
for a transtion between two nondegenerate energy levels to the location of
their common crossing point in the complex time plane. Suppose that H(t)
is a nondegenerate 2 x 2 Hamiltonian matrix, E,(t) and E3(t) are its two
instantaneous energy levels, and E; > E; for all real times. If Eq{¢) and
E;(t) are extendable into the complex time plane, there will typically be
a point t. where they cross. Dykhne's formula states that the transition
probability to go from E, to E; as t runs from —oc to +oo is approximately

Piz ~ exp - 2Im (Ey ~ E,)dt (4.14)
i

In general, Dykhne's formula is a good approximation when the crossing
points are located far away from the real time axis. This will be true if the
energy splittings and/or the typical time scale r over which H(t) changes
are large. The relevant dimensionless expansion parameter 1=

1
rAFE

€ (4.15)

and Dykhne’s formula states that super-adiabatic transition amplitudes are
of order O(exp — A/¢) for some positive constant A. This is the canonical
form for non-perturbative corrections to an asymptotic expansion.

It is somewhat ironic that Dykhne's formula for super-adiabatic tran-
sitions may be proved by using a version of the adiabatic theorem in the
complex time plane [18]. Like the real-time adiabatic theorem, this theo-
remm describes the approximate evolution of the projection of a wavefunction
onto an energy eigenstate, along a contour in the complex plane. The idea
behind the proof of Dykhne’s formula (which we shall only sketeh here) is to
find an appropriate contour in complex time such that continuation along
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the contour connects the two energy levels. For a non-degenerate two-level
system, the crossing point will typically be a branch point of square root
type lor the function (E; - Ey)(t). (If E2 > Ey on the real axis, we will take
the branch point in the upper-half plane.) So if a wavefunction is initially
in the eigenstate ¢,(—oc) with energy E)(oc), and if it is evolved along a
contour €3y which goes over the branch point and across the cut, then one
may compute its component in the direction ¢2(+oc) (see Fig. 1). This will
be related directly to the transition amplitude.

Figure 1. A contour Oz that connects iwo elecironic eigensiates with
energres £y at £ = oo and E5 at £ = +oo. The funchion E,(t] - Ez(t)
typically has a square-root branch point in the complex time plane. When
the contour passes over the cui, the electron wavelunction crosses over from
the £ to the B level surface.

To be more explicit, let us choose a smooth basis of eigenstates ¢, 1(t)
along the real time axis, and analytically continue our choice into the com-
plex plane. Along the contour 3y, we also must have a smooth basis of
elgenstales !51,3}. Since ¢, and @; get interchanged in crossing the cut,
it will generally not be possible to take |$1.z} = |#1,3) evervwhere. In-
stead, our choice along 3y will be as follows: to the left of the cut, we take
Iy aft)) = idy2(t)), but to the right, we take |l£l'1|?{t}:|' = e'*21 gy 1 (1)}, where
€™ is a phase needed to make the choice of basis continuous across the cut.
We shall likewise denote the energy levels along the real time axis by E; 5(t)
., and along Cy; by E-'L:[t}; again because of the cut, E} 3(+o0c) = Ez 1(+00).

Finally, let ¥({t) be a wavefunction evolving according to H(t), initially
in an eigenstate Y(-o0) = ¢y(~oc). If H(t) is analytic in a strip 5, then
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w(t) will also be analytic and single-valued in S [19). We may now state the
result of the adiabatic theorem for evolution along 4

@i(rooglroo)) = exp =i | [Ea(t) +ildria) ] d (1.16)

This is precisely of the same form as Eq.(4.4), sandwiched on the left by
(¢n]. Just as Eq.(4.4) said nothing about the “transition™ components of ¢,
so Eq.(4.16) is silent about the gs(+00) = e*=¢;(+ac) component (which in
fact is quite large). The big difference here is that the “energies” E need no
longer be real. Hence, the norm of {4.16) need not be equal to 1; in fact, in
the adiabatic limit, it will be exponentially small.

We now wish to evaluate the transition probability

Py = [{¢2(+00)iv(+ac))|? (4.17)

The only part of (4.16) contributing to Fy; comes from the imaginary part
of the energy integral. We can put this into a convenient form by deforming
the contour so that it {ollows along the real axis up to § = 0, then heads
upward to the branch point, then returns to zero and continues along the
real axis to infinity. The result is

Py = exp — 2Im (Ey — E;)dt (4.18)
1]

The transition probability is only part of the story; the phase of the
transition amplitude is also of interest. From Eq.(4.16), the phase of the
total amplitude is

Phw{{hHm}hﬁHuﬁ}H
_ E:iﬂ" exXp — l,j: [.E-'] + t{lﬁ-]llﬁﬂ] elt

*‘ 1 -
cexp - i fﬂ [Re(E, -~ E2) +ilildn) - ilgalda)| at
o+ .
cexp - .'f [£=+ :'.:¢=|¢1}] dt (4.19)
1]

The total phase contains, as usual, both a dynamical and a geometric com-
ponent. The geometric phase itself splits into two pieces, an adiabatic phase
and a super-adiabatic phase associated specifically with the tunneling process

expiti = exp [ ((#aldn) - (éalén)) (4.20)
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We shall compute this phase below in the particular case of a Hamiltonian
linear in i—the answer will turn out to be independent of any of the param-
eters appearing in H(t).

The Landau-Zener formula. As an example, we now consider a Hamil-
tonian H(t) in the vicinity of an avoided crossing, as originally studied by
Landau and Zener 20| [21]. We focus upon the two levels whose energies
cross, and study the equation governing their mixing in time:

ey
f—— = H 4.21
" W (4.21)

- fat b
H(t) = ( b —at) = atey + boy (4.22)
Here H is the Schrodinger operator in the two-level subspace. We have
located the crossing at { = 0 and linearized around il:z thrown away a possible
constant term in the energy, and assumed b = (4|4} is real; none of these
simplifications entails a loss of generality.

The eigenvalues of H(t) are

Eya(t) = +vb? + a¥e? (4.23)

and the crossing (a square-root branch point) is located in the upper-half
t-plane at t, = tb/a. Hence, according to Eq.(4.18),

fe
Pgl"_-'exp—ﬂlrnf 24/ 0% + attt dt
0

52
= exp - x-— (4.24)

Dykhne's formula works amazingly well here; in fact, this is the eract result
obtained by Zener after a much more involved analysis. Incidentally, TDPT
is worse than useless here: the first—order term in Eq.(4.8) differs from the
correct amplitude by a factor of =,

To find the phase of the transition amplitude requires a little more
work. First we need an explicit basis of eigenfunctions: with eigenvalue

—/'b* + a*t? we have

é) (4.25)

1
- J.I'I ( ?)
Vi (@)
and with eigenvalue +v/'b* + a?t?

sl 4 I (o 2
ﬁ:m('i (%) ) (4.20)
1
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Figure 2. The same contour, from a different vantage point. This figure
emphasizes that there is no discontinuity in the evolution of the electron

wavefunction along the contour.

For real {, the eigenfunctions may be taken to be real, and the geometric
phase receives no contribution from the integration along the real axis. For
complex t, we choose the normalization Ny = lff"f We want to evaluate
the integral

fut. ((#1161) — (#2lda) ) dt = L{&lﬁl}d: (4.27)

along the contour shown in Fig. 2. It is important to be sure that the
eigenfunctions ¢; and ¢3 match up precisely at t.; for this to occur, it is
necessary to take Ny to be i /2. Extending this choice of phase downwards,
we find that ¢9 1s imaginary along the real t-axis. The actual computation
of the geometric phase (4.20) is straightforward; the result is

Tz = —5% (4.28)

for a total phase of —¢. This phase is precizely what is needed to cancel the
i picked up in matching the wavefunctions at the branch point; it makes the
non-dynamical part of the wavefunction real for all real times.

It is curious that the geometric phase we just computed is completely
independent of @ and b. In fact, we can argue that this sort of phase will
arise quite generally, for Hamiltonians that are real on the real time axis.
Whenever the energies cross at {., they will also cross at the conjugate point
t:. Let us join these two branch points by a cut draw contours above and
below the cut, in such away that the images of the two contours are complex
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conjugate (see Fig. 3). It is easy to see that the total phases obtained
by integrating along either contour must also be conjugate, and since the
wavefunction must be single—valued, the two phases must be equal to £1.
Furthermore, if the contour is chosen so that the total dynamical phase
vanishes, then the geometric part of the wavefunction must be real, as we
found in our example above. (This argument of course does not apply to
complex Hamiltonians, and in general we can obtain complex geometric
phases for such processes. )

TR LIS LR LSRR LR L

vV
Yy

te

+I+I+l+l+ll LERE R LR L Rl L

Figure 3. Real Hamiltonians will have crossings at conjugate points. The
results of evolution along the lower and upper contours are conjugate, and
equal.

Corrections o tunneling. We would briefly like to discuss corrections
to Eqs.(4.18) and {4.19). The simplest types ol corrections will come from
crossing points farther from the real time axis. These will be of the same
form as before, with a sum over all of the other erossing points.

Less straightforward are corrections to adiabatic evolution along a con-
tour, modifying a super-adiabatic tunneling amplitude. To handle these, one
may follow a similar prescription to the above perturbative expansion for di-
agonal corrections to adiabatic evolution. As in Eq.(4.7), one may separate
off the adiabatic part and expand the residual path- ordered exponential; the
result will be a series expansion in powers of r. The zeroth-order term, as
we have seen, is a pure geometric phase, but higher—order terms will correct
both the phase and norm of the transition amplitude.
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5. Quantum Corrections

In the preceding section, we discussed perturbative and non-perturbative
corrections to classical adiabatic evolution. We found that corrections to
the phase evolution of an energy eigenstate could be put into the form of an
asymptotic expansion in powers of 7!, and that transitions could be cal-
culated by analytically continuing a smooth nuclear path into the complex
time plane.

Now we would like to understand how these conclusions are affected
when the nuclear degrees of freedom are quantized. In the previous section,
we assumed that the nuclear motions were infinitely differentiable, in order
to derive our expansion (which involved performing successive integrations
by parts) and to prove that tunneling corrections to adiabatic evolution van-
ish faster than any power of r~!. The delicate argument breaks down when
we Lry to integrate over nuclear paths in quantum mechanics, because a typ-
ical path in the measure is generically nowhere differentiable [22|. Needless
to say, for such a path, our analytie continuation method for calculating tun-
neling amplitudes does not apply. Furthermore, in a quantum mechanical
context, there is no reason to expect the individual terms in our perturba-
tion series to converge. Indeed, each successive term added to tne effective
Lagrangian, being higher-order in time derivatives than any of the preced-
ing terms, represents a singular perturbation and diverges for a typical path.
How is all this consistent with the successful use of the Born-Oppenheimer
approximation in quantum mechanics? Two questions need to be asked: Do
we still have a useful perturbative expansion in powers of i (and higher time
derivatives) for the evolution of an eigenstate? Are tunneling processes still
exponentially suppressed?

In general, this will only be true if we take matrix elements between par-
ticularly nice states. The point is the following. In passing from our effective
Lagrangian to a Hamiltonian, the powers of It are converted into powers of
the momentum p. (The procedure here is to treat the higher-derivative
terms as perturbations, ignoring their effect on the canonical momenta, and
to re-express them in terms of p= MR.) Now p is an unbounded operator,
and so our expansion *typically”™ diverges. However, for suitable initial and
final states, p may have small matrix elements, and in that case our adia-
batic expansion is useful. Similar remarks apply to semiclassical expansions
around smooth tunneling paths.

To conclude, the validity of the adiabatic approximation in situations
where the external parameters are themselves quantized is far from obvious,
and should be studied on a case—by—case basis. Nevertheless, in many useful
cases, Lhe corrections are expected to be small,
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