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This paper gives a systematic review of a field theoretical approach to the fractional
quantum Hall effect (FQHE) that has been developed in the past few years. We first
illustrate some simple physical ideas to motivate such an approach and then present a
systematic derivation of the Chern-Simons-Landau-Ginzburg (CSLG) action for the
FQHE, starting from the microscopic Hamiltonian. It is demonstrated that all the
phenomenological aspects of the FQHE can be derived from the mean field solution and
the small fluctuations of the CSLG action. Although this formalism is logically independent
of Laughlin’s wave function approach, their physical consequences are equivalent. The
CSLG theory demonstrates a deep connection between the phenomena of superfluidity and
the FQHE, and can provide a simple and direct formalism to address many new
macroscopic phenomena of the FQHE.

1. Introduction

The remarkable discovery of the integer and the fractional quantum Hall effect
(IQHE and FQHE)' opened an exciting new chapter in condensed matter
physics. Since then, tremendous progress has been made in understanding this
spectacular effect. The theoretical concept? developed in this field not only gives
a complete explanation of the experimental facts, but also serves as a paradigm
in understanding other kinds of strongly correlated systems.

The first successful theory of the FQHE was developed by Laughlin,® who
proposed a variational wave function to describe a correlated, incompressible

electron liquid at filling factors v = 5 kl+ T It was later shown that this class of wave

functions are exact for a certain type of short ranged interactions.*> The
incompressibility of the Laughlin state leads to plateaus of Hall resistivity Py at

V= , while the absence of gapless excitations leads to vanishing longitudinal

1
2k + 1
resistivity p,, at zero temperature. The Laughlin state also supports novel quasi-
particle excitations which carry fractional charge and obey fractional statistics.
Haldane,* Halperin® and recently Jain’ have constructed hierarchical wave

functions which explain the FQHE at other filling factors as well.

* Based on lectures given at the Kathmandu summer school, the China Center for Advanced Science
and Technology and the Trieste workshop on strongly correlated systems.

25



26 S. C. Zhang

Even though the wave function approach gives a satisfactory description of the
phenomenon, many theorists feel the urgency to understand FQHE in a general
context of other strongly correlated phenomena. In particular, identifying an
order parameter of the FQH state would significantly deepen our theoretical
understanding and, a Landau-Ginzburg-like field theoretical description would
not only capture the basic essence of the phenomenon in all its simplicity and
beauty, but might also lead to new experimental predictions which are
inaccessible in the wave function approach. This point of view was especially
emphasized by Girvin.2 The possible existence of a Landau-Ginzburg-like
description of the FQHE is also suggested by the cooperative ring exchange
theory of the FQHE,® in which the FQHE is understood in a similar fashion as
Feynman’s theory of the A transition in the Bose superfluid.

An important first step towards this direction is made by a deep observation
of Girvin and MacDonald.® Performing a singular gauge transformation on the
Laughlin’s wave function, they obtain a bosonic wave function and show that it
has algebraic off-diagonal-long-range-order (ODLRO) in the quantum Hall liquid
(QHL) phase. They argue that this ODLRO property captures the fundamental
correlation of the Laughlin wave function and it should be viewed as an order
parameter of the QHL. They also gave heuristic arguments about the possible
form of a Landau-Ginzburg theory. Although their action was later shown'? to
be inappropriate in describing the phenomenology of the FQHE, the ideas
presented in this work plays an important role for later developments.

A complete and first principle construction of the Landau-Ginzburg theory is
given by Zhang, Hansson and Kivelson'? and later extended by Lee and Zhang.""
Starting from the microscopic Hamiltonian of interacting electrons in an external
magnetic field, they mapped the problem exactly onto an interacting boson
problem which has an additional gauge interaction described by the Chern-
Simons term. From the mean field solution of this Chern-Simons-Landau-
Ginzburg (CSLG) theory, they show that (1) stable uniform mean field solu-
tions are obtained only at filling factor v=ﬁ and the solutions describe an
incompressible liquid. (2) Near these filling factors there are Hall plateaus in Pys
and p,, vanishes. (3) The cyclotron mode is described by the topologically trivial
phase fluctuations, while the magnetoroton excitations are described by the
topological vortices of the theory. (4) The vortices carry fractional charge and
obey fractional statistics. A full quantum theory of the vortices can be
constructed by performing a duality transformation of the original model. (5)
Neglecting the vortex contribution to the ground state, one can derive Laughlin’s
wave function and Girvin-MacDonald’s ODLRO directly from this approach.
(6) A hierarchy scheme similar to that of Halperin can be easily constructed to
explain other fractions. Therefore, this approach constitutes a complete descrip-
tion the FQHE. Although this theory is logically independent of the Laughlin’s
wave function theory, they lead to the same physical consequences.
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In parallel to that, Read'? constructed an order parameter of the Laughlin’s
wave function which is a composite of an electron creation operator and 1/v
Laughlin quasi-hole operators, and showed that this operator has a non-vanishing
expectation value between the Laughlin ground states. Subsequently, Rezayi and
Haldane'? computed this order parameter numerically and found that it is only
finite in the QHL phase and vanishes when the QHL becomes unstable. In this
sense, similar to the ODLRO of Girvin and MacDonald, this order parameter
correctly captures the basic correlations in the Laughlin’s wave function, although
their equivalence is not obvious since the former correlation decays algebraically
while the latter has a finite expectation value. The construction of a Landau-
Ginzburg theory based on this order parameter is met with one serious difficulty.
Since the order parameter is a composite of an electron and 1/v quasi-hole, it is
electrically neutral, therefore, it does not couple minimally to the external
electromagnetic field, in sharp contrast to the CSLG action of Zhang, Hansson
and Kivelson. Read’s action was derived under the condition of constant external
fields, and it is not known at present how it generalizes to the case of time
dependent and spatially varying external fields. Therefore, the electromagnetic
response and the QHL phenomenology cannot yet be addressed systematically in
this formalism.

The plan of this review is to summarize the basic ideas of the CSLG theory
in terms of simple physical pictures in Sec. 2. We give a detailed microscopic
derivation of the CSLG action in Sec 3 and discuss the mean field solutions and
the quantum Hall phenomenology in Sec. 4. Section 5 is devoted to a discussion
of the cyclotron mode, Kohn'’s theorem and the collective excitation of the CSLG
theory, while the vortex excitations, duality transformations and the magneto
roton excitations are discussed in Secs. 7 and 8. We give a derivation of
Laughlin’s wave function and the Girvin-MacDonald ODLRO from the CSLG

theory in Sec. 6. In the conclusion, we address some of the open problems in
FQHE and CSLG theory.

2. The Basic Physical Picture of the CSLG Theory

Consider a system of two-dimensional electron gas subjected to an external
magnetic field B in the - 2 direction, and assume that the Zeeman splitting is
large enough so that the electrons spins are all polarized. The basic starting point
of the CSLG theory'® is to map the interacting electron gas into a bosonic
problem with additional gauge interaction.'® In this representation, an electron
is viewed as a composite of a charged boson and a flux tube with odd number
of fundamental flux unit ¢ =/hc/e attached to it (see Fig. 1). This can be
accomplished by introducing a statistical gauge field a(x) which is determined by
the particle density p(x) by the relation:

Vxa(x) = (2k + 1) ¢yp(x) 2.1)
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Fig. 1. A two-dimensional electron system subjected to a uniform external magnetic field. Each
electron can be viewed as a boson which carries an odd number of flux quanta.

where & is an integer. (V x a(x) is a vector always pointing in the Z directions, for
discuission of two-dimensional physics, it can be viewed as a scalar). From (2.1)
we see that a unit charge at the origin induces a statistical flux of odd multiples
of the flux quanta.

%a-dh Qk+ 1), - 2.2)

As one interchanges two of these boson-flux-tube composites, a Bohm~Aharonov
phase factor of

e |7 2k + 1
explgfoa-dl%" D

is obtained, which correctly reproduces the original statistics of the electron. With

this representation, it is straightforward to see why filling factor v = 3 k1+ .

Each boson not only “sees” the external magnetic field whose flux density p, is %

is special.

times the particle density, i.e., p, = %p, but also “sees” the statistical gauge field
a(x) due to the flux tubes carried by other bosons. Since the statistical flux density
is p, = (2k + 1)p from (2.1), it cancels the effect of the external field on the average,
if v=pip, =ﬁl— , in which case the boson “sees” no net field and can form a
Bose-Einstein condensate. The Meissner effect of this charge Bose condensate in
turn leads to the incompressibility of the original electron system. To see this, one
notices that from (2.1), any change in the local density would necessarily induce a
change in the statistical gauge field, resulting in a net flux in the same region.
However, it is not possible for a net flux to penetrate a charged Bose superfluid
because of the Meissner effect. Consequently the particle density has to be kept
uniform, or the fluid is incompressible.

While this “bosonic picture” naturally explains the incompressibility at the

special filling factors of v = ﬁi—l , it seems to lead to a puzzle about the Hall effect.
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According to our previous reasoning, due to the cancellation of the statistical
field and the external magnetic field, the bosons see no net field. Consequently,
there is no Lorentz force acting on it. How does the Hall effect arise in this
picture? This puzzle can be intuitively explained as follows. Each boson carries
both a charge ¢ and flux quanta of (2k+ 1)¢y. As such a composite object
moves, it not only carries a charge current /.= eij , but also a vortex current
of I,=(2k+1) ¢o 7 (see Fig. 2) Such a vortex current induces a transverse volt-

age drop of Vy; =- (2k+ 1)¢0 =2k + ) accordmg to Faraday’s law. The

resulting Hall res1stance is therefore glven by Ry = Vil = 2k + V)h/e?, just as
one observes in the FQHE experiments. However, this “explanation” only serves
as a pictorial illustration, the detailed derivation of the Hall conductivity is given
in Sec. 4.

The analogy of the FQHE and boson superfluidity can be pursued even
further. In a two-dimensional superfluid, there are topological excitations in the
form of a vortex where the phase of the order parameter twists by 2zm as one
encircles the origin of the vortex (see Fig. 3). In a neutral 2-D superfluid, such a
vortex would cost logarithmically divergent energy. However, the vortex energy
is finite in a charged 2-D superfluid. The finite energy requirement uniquely fixes
the gauge flux associated with the vortex to be integer multiples of the flux
quantum, i.e., $ a-d/ = m¢,. The same arguments apply to the system of charged
bosons interacting with Chern—Simons gauge fields. From (2.1), one sees that the
quantization of the statistical gauge flux immediately implies that the vortices

with unit vorticity m = +1 carry fractional charge iz—kl—— the same as one

deduces from the Laughhn s wave function approach. Since each vortex carry
one unit of flux ¢, and Tl unit of charge, the Bohm—AharonOV phase factor

associated with 1nterchang1ng a pair of such vortices is exp (l
obey fractional statistics.®'?

1) , 1.e., they

~

&)

J

Fig. 2. The boson-flux-tube composite not only carries a charge current 7, but also a vortex current.
The vortex current induces a transverse voltage drop V;, which leads to the Hall effect.
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Fig. 3. Schematic illustration of a vortex, the phase of the order parameter twists by 2z around the
origin,

These fractionally charged vortices play a crucial role in explaining the plateaus
of the Hall conductance. We recall that the magnetic field in a type-II supercon-
ductor penetrates the system in the form of a regular or disordered vortex lattice.
The supercurrent still flows without dissipation as long as these localized vortices
are pinned by the impurities. An analogous situation happens in the FQHE. As
one changes the filling factor from the ideal values of v = Tln , the system accom-
modates the density excess (deficiency) in the form of localized vortices, in a
similar way a type-1I superconductor accommodates excess magnetic field. These
localized vortices also form a regular or disorder lattices pinned by the impurities.
Therefore, the low energy transport properties in a state with pinned vortices is
identical to that in a state without vortices, i.e., at v=ﬁ. In particular, this

leads to a plateau in the Hall conductance and the vanishing of p,, in the vicinity

In addition to the analogy between the vortex excitation of a charged
superfluid and the quasi-particles in the FQH liquid, there is also a similar
correspondence between the collective excitations of both systems. The spectrum
of collective excitations of a neutral superfluid consists of a phonon branch for
small momentum and a roton branch for intermediate momentum of the order
of the inverse interparticle spacing (see Fig. 4a). In a charged superfluid, the
phonon mode of the neutral superfluid is pushed to the plasmon frequency w,,
whereas the roton mode is more or less unaffected by the long-ranged Columb
interaction and constitutes the lowest lying excitation of the system. For
momentum much less than the inverse interparticle spacing, the lowest lying
excitations of the system consists of a pair of rotons with nearly opposite
momentum, giving rise to an excitation spectrum as pictured in Fig. 4b. Of
course, such a roton pair also exists in a neutral superfluid, but since there is a
phonon branch lying below in energy, it decays quickly into phonons, and it is
not sensible to think of them as elementary excitations. Only in a charged
superfluid, where the phonon mode is pushed to the plasma frequency, such
roton-pair excitation can maintain their integrity. The collective modes of the
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Fig. 4. Schematic illustration of the elementary excitation of a neutral superfluid, it consists of a

phonon and a roton branch. b) In a charged superfluid, the phonon excitation is pushed to the plasma

frequency, while the roton branch remains unaffected. The dotted line indicates the excitations due
to a pair of rotons with nearly opposite momenta.

quantum Hall liquid is qualitatively the same as in Fig. 4b, where the plasma
frequency w, is replaced by the cyclotron frequency @, and represent the
inter-Landau level transitions, and the lower branch represents the magneto-
roton excitations within the same Landau level.'® The entire branch of the
magneto-roton excitations can be interpreted as composites of vortices in the
CSLG theory,''as we shall see in Sec. 8.

We see from the qualitative arguments given in this section that there indeed
exists a deep analogy between the phenomenon of superfluidity and the FQHE.
In the following sections, we shall build the necessary mathematical formalism to
give a quantitative description of these ideas.

3. Derivation of the CSLG Action

In this section we shall give a microscopic derivation of the CSLG action. The
idea is to perform a singular gauge transformation on the original interacting
electron problem and map it onto a interacting boson problem with Chern-
Simons gauge fields.

We start from the microscopic Hamiltonian of a two-dimensional system of
polarized electrons:

= Tm [p, - g A()cl)]2 + Z edy(x) + 2 V(x,-x) (3.1)
! i 1<y

where A is the vector potential of the external magnetic field, which in symmetric
gauge can be expressed as

A=1

Ay is the scalar potential of the external electric field,

E, - -d,4,
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and V(x) is the interaction between the electrons. We could study a general class
of interactions, but the physically relevant one is the Columb potential

€2

Y=

(3.3)
In this paper, we use i=1,..., N to denote the labels of N electrons, a=1, 2
(or x, y) denotes the 2-dimensional space indices and = 0, 1, 2 denotes the space
time indices.

Since the electrons are assumed to be completely polarized, their space wave
function W(x, ...xy) must be totally antisymmetric, according to the Pauli
principle. The Schrodinger equation

H¥(x,...xy) = E¥Y(x, ... xy) (3.4)

together with this total antisymmetry requirement defines the quantum eigenvalue
problem of our interest.

Now we shall perform a singular gauge transformation to map this problem
into a bosonic one. In order to do this, let us first define a bosonic problem and
then prove its equivalence with the electron problem of our interest. Consider a
new Hamiltonian:

1 -5 L p- A - Sao s Tea e Tz . 09

1<y

Every symbol in H’ has the same meaning as in H, except the new vector
potential a, which describes a gauge interaction among the particles and is given
by

0

where ¢, = Ac/e is the unit of flux quantum, 6 is a parameter unspecified at the
moment and «;; is the angle sustained by the vector connecting particles i and j
with an arbitrary vector specifying a reference direction, say the % axis. The
Hamiltonian H’ defines a Schrédinger’s equation

H¢x;...x)=E"¢(x;...xp) (3.7

and we define ¢(x; ... xy) to be a bosonic wave function, i.e. totally symmetric
under the exchange of coordinates. As defined, the problems (3.4) and (3.7) are
completely different from each other, however, we shall prove the following
theorem to establish their connection:
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Theorem. For 0= (2k+ )7, (3.4) and (3.7) define the same quantum eigenvalue
problem.

Proof. We start from (3.6) and define a unitary transformation

<~1>(xl ox)=Udlx, ... xy); U= exp( - iz %“u) . (3.8)

1<y

it is easy to check that
e e _ e
Ulp-SA0)-Sae)| U -, -SA0)

and consequently, UH’ U ~! = H, where H is nothing but the Hamiltonian deﬁnec~1
in (3.1). Therefore, if ¢(x,...xy) obeys the Schrédinger’s equation (3.7), ¢

(x; . ..Xxy) obeys the Schrodinger’s equation
H(x,...xy)=E ¢(x,...xy) . (3.9)
Furthermore, since ¢(x; ... xy) is a totally symmetric wave function, a(xl e

Xy) is totally antisymmetric, if 8=(2k+ 1)z. This fact can be simply checked
fzom (3.8) and note that «;, = o, + 7, from the definition of the angle «,,. Thus
¢(x; ... xy) obeys the same Schrodinger’s equation as (3.4) and is a totally anti-
symmetric wave function, its eigenvalue spectrum E’ coincide with that of the
original electron problem E. The equivalence of problems (3.4) and (3.7) is thus
established for 8 = (2k + 1)z. Q.E.D.

Now that we have established the exact equivalence between these two
problems, we are going to work directly with the boson representation in all our
subsequent considerations. We take the next step to second quantize the bosonic
Hamiltonian (3.5) by introducing the bosonic field operators

[6(x), $T(1)] = 6(x - »)
and (3.5) becomes

H- f a6 (%) [ ﬁ (7—1’ V-SAm-< a(x))2 + edy() ] 6(%)

v % f d2xd?yp(%) V(x - »)3p () (3.10)

in second quantized notations. Here p(x) = ¢T(x)¢(x) is the density operator,
dp(x) = p(x) - p is the deviation from the average density p, it is introduced in the
last term of (3.9) so that a thermodynamic limit can be defined in the case where
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V(x) is a long-ranged potential. In the second quantized notation, the relation
(3.6) is expressed as

] xP - yf
a®(x) = —*-6"”[{1’2 - 3.11
7 y!x_y|2p(y) (3.11)

which can be considered as the solution of the differential equation
) _o 0 3.12
€% a,a5(x) = ¢y np(X) (3.12)

in the Coulomb gauge 9%a,(x) = 0.

Equation (3.12) specifies the statistical gauge field a(x) at a given time. In order
to obtain its dynamics, we take the time derivative of (3.12) and use the equation
of continuity g, p(x, t) + 9, j,(x, t) =0

) 0 . 0,
9, ag(x, t) = ¢g ;P(X, 1)= -, ;aaf
which gives

. g .
e¥ag(x, 1) = - ¢ 7—{]" (3.13)

up to a constant. Equations (3.12) and (3.13) completely determine the statistical
gauge field a(x, ¢) in terms of the bosonic matter fields ¢(x). These equations can
be viewed as the analog of the Maxwell’s equation which determines the
electromagnetic fields in terms of the matter density and current. The Maxwell’s
equation can be derived from a simple action principle, namely

| G- .
j/”=ZF,w—Auj“ . (3.14)
One can ask the question whether there is an action principle for the statistical
gauge field a,(x) so that Egs. (3.12) and (3.13) can be derived in an analogous
fashion. The answer is indeed yes, and the action is the beautiful Chern-Simons
term!’

1 | .

The three vector a, = (ay, a) contains a time component a, which is introduced
here as a Lagrangian multiplier field and the Chern-Simons term is
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e a,d,a,= % ayd,a5- % a,0,a,+ e a,da, (3.16)

when expressed in terms of the space-time components. Functional variation of
(3.15) with respect of a, gives Eq. (3.12) and the variation with respect of a gives

0 ..
s"‘ﬁ(aﬂao - 0d,ag) = )

which is identical to Eq. (3.13) in the gauge choice of a, = 0.

Although the Chern-Simons term is expressed in terms of the gauge potential
rather than the field strength, it is actually gauge invariant up to a surface term.
To see this, consider the gauge variation da,=9,A(x, ), where A(x,1)is a
space-time dependent gauge parameter. It is easy to see that the variation of the
Chern-Simons term is

mp
0.8 & aﬂ[(avA)a,,]
which is a total derivative and vanishes upon integrating over a closed surface.

From (3.10) and (3.15) one can easily formulate the problem into a path
integral form, with an action given by

S=Sa+S¢=fd3x%+fd3x% (3.17)
where
ey
7 20 ¢08 a,d,a,
and

; 1 h e, ¢ 2
%=¢T(Zhat—e(A0+ao))¢_E;n_ [ (?V—EA_Z'a)d)(

- f Y3 V(x-1)p() . (3.18)

All the thermodynamic properties as well as electromagnetic response of the
system is completely contained in the path integral

Z[4,]- f [da,] [do] exp (iS,[a,] +iS,[4,+a, ¢]) . (3.19)

This completes our microscopic derivation of the CSLG action (3.18) and (3.19).
We note that so far, it is an exact representation of the original electron problem
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(3.1) and (3.4) for 6=(2k + 1)z. In the subsequent sections we shall analyze the
path integral (3.19) within mean field approximation and show that all the
phenomenology of FQHE can be extracted from it.

4. The Mean Field Solution and the Phenomenology of FQHE

In the last section, we derived from the microscopic Hamiltonian the desired
form of the CSLG action. It seems that we have transformed an interacting
electron problem into a rather complicated boson problem with gauge interac-
tions, and at this stage it is unclear what one gains from such a transformation.
However, we shall see in this section that the CSLG action has a great advantage
in that it can be treated within the standard mean field approximation. From this
mean field solution emerges a deep and beautiful connection between the
phenomenology of superfluidity and that of the FQHE.

We shall seek mean field solution of the CSLG action in the presence of an
external magnetic field

e%9,4,= -B . (4.1)
One might guess the simplest form of the uniform mean field solution to be;

() =Vp, a(0)=-AX), a;(x)=0 (4.2)

where p is the average particle density. It can be easily checked that this solution
indeed satisfies all the equations of motion derived from the CSLG action, except
that of a,, which is only satisfied under a special condition. To see this, we note
that the q, equation of motion has the form:

N 0
£ ﬂaaaﬂ=¢0;p . 4.3)

When one substltutes the proposed mean field solution (4.2) into (4.3), one finds
that: B = ¢0 - p. Since the magnetic flux density p, is given by B/¢,, one can write
this equation as

4.4)

Since the value of 6 = (2k + 1)7 is required by the fermion to boson mapping, as
explained in the last section, one therefore sees that the uniform mean field
solution (4.2) is only possible when the filling factor is v = Tlﬁ , precisely as those
fractions where one observes the FQHE! The physical origin for this is explained
in Sec 2. The mean field solution ¢(x) = \/E describes a boson superfluid state.
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Since the bosonic field sees a combination of the statistical gauge field a(x) and
the external field A(x), such a uniform superfluid state is only possible when there
is no net field present, i.e., a + A = 0. On the other hand, a(x) is tied to the particle
density through (4.3), such cancellation occurs only when v =

2k+1°
In order to extract the electromagnetic response of this novel state, we shall

adopt a strategy of “divide and conquer”. From (3.19) we see that the path
integral can be performed in two stages. We first integrate over the bose field ¢,
in order to obtain an effective action for the gauge field da, =4, +a,, ie.,

exp(ifd3)feff(5aﬂ))sj [d¢]exp(ifd3xS¢[5aﬂ,¢]) . 4.5)

This path integral describes the response of a bose superfluid to an ““external”
field oa,,. When the mean field conditions are satisfied, i.e., v= fkl+—1 , the average
of da, vanishes, and only small fluctuations of da, remain. In the spirit of the
linear response theory, we expand £y to quadratic order.

day( - g, - W)my(q, w)day(q, w) + % da,( -4, - W)74(q, w)dagq, w)
(4.6)

[N

e =

where 7y(q, @) and 7,4(q, W) = 7,(q, W)d,4 + 7>(q, W)q, 4, are the response func-
tions of the superfluid. Later we shall obtain these response functions approxi-
mately from our CSLG action, but at this stage we would like to keep our discus-
sion general and demonstrate how the superfluid nature of the bose condensate
describes the phenomenology of the FQHE. The static response of a superfluid is
generally described by a finite compressibility & and a finite superfluid density 7,

I?=—15 lim ny(q, w=0) and p, = —’:iqui_p%nl(q,w=0)=’£

li =0) .
e24q—0 l_{r(l)RZ(qyw )

2
e’ (4.7)

(See, for example, Pines and Nozieres'® and Schrieffer'® for these general
definitions of a superfluid.) The last equality in (4.7) is a consequence of the
gauge invariance.

From the response of the bose condensate ¢, which is characterized by
Za(da,), one can then perform the second path integral over the statistical gauge
field a, to obtain the response of the entire system to external electromagnetic
fields 4, 1e.,

Z[Aﬂ]Eexp(l' f d3xf,;(Au)>= j [a’a#]exp(i f d3x[%(au)+%ﬁ(5aﬂ)]) :
(4.8)
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Since both %, and %g are quadratic in a,, such a Gaussian integral can be
performed exactly. At this moment, we shall only look at the static, i.e., w=0
response. Within the transverse gauge 9,4, =d,4, =0 and set the units A=c=1
one obtains after some algebra

1{e?\? noqz
PITE YR S
A 2128 0 ez 2 , 0

20 q" — Ty

2

1[e*\? mq
*5 (2-0) A (-9 —87—2—2——/1“((1)
G
& ToT )
- 2567 40~ ) g, Ay(q) . (4.9)

2\
20 q -mn

This Lagrangian is the central result of this section, it encodes all the information
about the phenomenology of the FQHE. The electromagnetic response of the
system are derived from the correlation functions

3’s,
OA SA Duv(q) :
(=) d4,(9)

1l

The first term in (4.9) characterizes the density-density response, and yields
information about the compressibility of the system:

~

kq?

1
k=— lim D, = li
5 Jlim Dyo(@) - lim

g% + Qn/vy? I;ﬁAjm

From the behavior of the bose condensate (4.7), one immediately sees that this
quantity vanishes, i.e., k=0, the system is an incompressible liquid! Central to
this conclusion is the finiteness of the superfluid density of the bose system, i.e.,
P # 0. The physical reason why a finite superfluid density of the bose condensate
necessarily lead to the incompressibility of the original electron system was
explained in Sec. 2, and shall not be repeated here. If p; = 0, one sees from above
that a finite compressibility arise in general.

The second term in (4.9) describes the current-current response of the system.
One natural question is whether the superfluidity of the bose system, p;# 0,
would also lead to superfluid behavior of the original electron system. The answer
is no, since D,_(g)ocg?, is a behavior characteristic of an insulator and it vanishes
in the long wavelength limit g — 0.
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The third term in (4.9) describes the quantum Hall effect. Since we are
interested in the current response to a uniform electric field, one can set g=0 in
the denominator of (4.9), and obtain

S, o2 e’
i =_ 2 I b - —PE 4.10
= =265 B0 265" Fs (.10)
from which we conclude that Hall conductivity is
2 2 2
e 1 e 1 .¢ (4.11)

CH= 29 2k+127 2k+1 h

where we set 0 = (2k + 1)7 and restored the units. How the Hall effect arises in this
boson description was explained pictorially in Sec. 2.

In the above discussions, we assumed a most general form of the bose response
(4.6) and showed how the superfluid behavior (4.7) lead to the phenomenology
of the FQHE. To complete this section, we shall now obtain these response
functions directly from the CSLG action by an approximate evaluation of the
path integral (4.4). From the form of .7, given in (3.18), we decompose the bose
field ¢(x) = Vp(xe”™" into an amplitude and a phase part. It can be shown that
the amplitude gradient generally lead to higher derivative terms in the effective
action and shall be neglected in the lowest order. One thus obtains

Zx ~0p(6,0+ edag) - L= (V0 - eda)’ - LHOV-DHO) . (12)

After integrating over the amplitude variation dp one obtains an effective action
purely for the phase degrees of freedom:

L= % qu—) [-iwb(~q, - w)-eday( -q, - w)][iwd(q, w) - eday(q, w))

p

“5m [-iq0(-q, -w)-eda,-q, -w])ligb(-q, -w)-eda,lq, w)] .
(4.13)
From the definitions (4.6) one finds
e’ 62/7( qaq,;)
To(q, w=0)=——; m4(q, w=0)=—"|0,4- . 4.14
0@ 0=0)= i w0, @ 0) =7 8- = (4.14)

Within these approximations, the system indeed has a finite superfluid density
D, = p. Therefore, all the previous discussions about the FQHE phenomenology
is valid.
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From the above discussions, we see that the superfluid phase of the boson field
¢(x) corresponds to the incompressible quantum Hall phase of the original
electron system. This approach provides a basic formalism in addressing the
stability of the FQH phase and the possible transitions into the various insulating
phases. In the CSLG theory, these transitions corresponds to the superfluid to
insulator transition of the ¢ boson. This approach is outlined in a recent preprint
by Lee, Kivelson and Zhang.?°

5. The Cyclotron Mode and Kohn’s Theorem

In the previous section, we studied the static response within the CSLG theory
and showed that it leads to the most important phenomenological aspect of a Hall
liquid: incompressibility and fractional Hall conductivity. In the following, we
shall study the dynamic response within the CSLG theory. For electrons in a
partially filled Landau level, there are two kinds of collective excitations: the
inter-Landau level transition, which has an energy scale of w, = eB/mc, shall be
studied in this section, while the intra-Landau level transition, which has an
energy scale of the Coulomb energy, shall be addressed in Sec. 8.

In a translationally invariant system, the center of mass motion is decoupled
from the relative coordinates and is therefore independent of the interparticle
interaction. When such a system is subjected to a magnetic field, the center of
mass executes a cyclotron motion with frequency w,.=eB/mc. This simple
physical observation can be transformed into an exact theorem, as shown by
Kohn.2!,

Starting from the microscopic Hamiltonian (3.1), with 45 =0 and A4, given by
(3.2), one observes that the operator

naszpf-g,qa(x,) (5.1)

has the following commutator with the Hamiltonian:
[H, n*] = ihw e n* (5.2)

which is independent of the interaction. From this one can construct eigen-
operators

+
n =

| S

1 , + -
\/—5 (xin,+m), [H,n7]=tho.n (5.3)
where /[, = \/—Z—:'; is the magnetic length.

Such operators generate a class of exact eigenstates of the Hamiltonian with

eigenvalues spaced by # w,. Since if |¢) is an eigenstate of H, i.e., H|¢)=E|¢)
with eigenvalue E, then 7™ |y) is also an eigenstate with eigenvalue E+hao,.
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From this argument, one sees that the ground state |y, must obey the constraint

n” 1¥oy=0, and m* |y, is an exact eigenstate with one cyclotron quantum.
The relation (5.3) makes a prediction about the density-density correlation

function of the system. Defining the density operator p, = Zle’q“xfa ,one finds that

. e
Pa= 3 [H: p)] = i4°J (5.4)

where j% = 1y {p* - £ 4° %X} is the current operator. (5.4) implies a relation-
q " gy, crW Pl !
ship between the matrix elements

(n|p,|ONE, - Eg) = hg® (n|j;| 0) (5.5)

where |0 > and |z > are the ground state and the excited states with energies E|,
and E,, respectively. Using (5.5) and the expansion of j,; = % 7+ 0(q) for small
g, one obtains for the time order density-density correlation

[<01pqln><nlp_q10> <Olp-qln><n!ﬂ410>}

P @)=, w-E,+Eg+i0 ~ w+E,-E,-i6

n

thaqﬂ
m (Ey - Ey)’

Oz mxnli? 10y (017, [nxn|jF]0)
w-E, +E+i0 @+ (E,-Ey)-id

2 o B
=Z_2h_qi_2(0|n“|n)<n|nﬂlo>
n M (En—Eo)

X L - L +0(q?)
w-E,+E,+id w+E,-E,-id| °Y

2
I 5] I :
=l [w—hwc+i5 co+hwc—i5]+o(q ) (5-6)

where the last equation is obtained by using the fact that #* is a linear
combination of the eigenoperators ©™ in (5.3), therefore, only the state with
exactly one cyclotron quantum can contribute to the sum over intermediate
states.

Equation (5.6) is the exact content of Kohn’s theorem. It states that to order
g, the density-density correlation function p(g, w) must contain a pole at exactly
w, = fn—i, without any renormalization corrections from the interparticle interac-
tions. Although the physical origin of Kohn’s theorem is extremely simple, it
nevertheless places strong constraints on any approximation schemes. In the
following, we shall compare our CSLG theory with this exact theorem.
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To calculate the dynamical density-density correlation function, one follows
the same strategy as in the previous section, where we calculated the static
response. It turns out that for long wavelength, it suffices to take the static part
of £ as given in (4.14) and combine it with the dynamic Chern-Simons term

£z,

2 2
%+%E=§—eao(—q, —w)s"ﬂiq,,aﬂ(—q, -w)—:—ee""gaa(—q, - w)iw ay(q, W)
e? 1
+—=4da,(-q, - w)—dayq, w
5 9~ 4, ~ ) daga. )
I
ep q.493
~§E5aa(—q, —w)(éaﬂ— . )&zﬂ(q, w) . 5.7)

Integrating out a, and aq,, and restricting to lowest order terms in |q|, one
obtains the following effective action for A

P 2

q
1 2 m
S €Al -q, - w)————Aq, ®) (5.8)
2 0 wz—wfﬁié 0
where
| 5
w- .+ 52V (5.9)

Restoring the units, we see that (5.8) is in exact agreement with expression (5.6)
of Kohn’s theorem. For short range interactions, lim, ., V{(g) = const., we see
from (5.9) that the cyclotron mode disperses quadratically,whereas for the long
ranged Coulomb interaction, V(g) oc é, we see it disperses linearly (see Fig. 5).

This behavior is in perfect agreement with the RPA calculations performed by
Kallin and Halperin.??

The collective mode found in (5.8) and (5.9) is due to the topologically trivial
fluctuations of the bose condensate. It is well known that, while a neutral
superfluid supports gapless phonon excitation, in the presence of long-ranged
interactions, this excitation can be pushed to the plasmon energy w, due to the
Anderson-Higgs mechanism. In the present context, it is precisely the coupling of
the bose field ¢ to the Chern-Simons field a, which is responsible for (5.9). In the
original paper by Zhang, Hansson and Kivelson,'® this mode was misidentified
as an intra-Landau level excitation. This misidentification was and corrected by
Lee and Zhang.!! In Sec 8, we shall find another branch of excitations, due to
topologically non-trivial excitations, which lies below the dispersion curve in
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7
4“\/

L >

-1
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Fig. 5. Schematic illustration of the elementary excitation of a fractional quantum Hall liquid. The
cyclotron mode is due to the inter-Landau level excitations, and has an energy scale of w,. The
magneto-roton branch is due to the intra-Landau level excitations, and has an energy of the order of
the Coulomb energy. In the CSLG theory, the excitations with g </ ! is interpreted in terms of a

quadrupolar configuration of the vortices, while the excitations with g > /; !'is viewed as due to the
vortex-antivortex pair.

(5.9), and are associated with the intra-Landau level excitations. By Kohn’s
theorem proved in (5.6), the contribution due to the intra-Landau level mode to
the density correlation must vanish faster than ¢ in the ¢— 0 limit.

6. Derivation of Laughlin’s Wave Function and Algebraic ODLRO

As we have seen in the previous section, the CSLG theory not only explains well
all the phenomenological aspects of FQHE, it is also in full agreement with
microscopic results like Kohn’s theorem. In this section, we shall further
demonstrate its success by deriving Laughlin’s microscopic wave function and
the algebraic ODLRO of Girvin and MacDonald, directly from the CSLG
theory.?? In order to achieve this goal, we shall first start from the CSLG action
(3.18) and integrate out the statistical gauge field g, to obtain an effective action
for the boson field ¢(x).
First integrating out the g, field in (4.19) yields in the transverse gauge:

20 .54
a (g, @)= e? (g, 0) . (6.1)

q
Inserting this expression into (3.18) gives an effective action for the boson field:

7260, - 0) [0 -5 *]o(a ) -3 (-, -0) V@, )

2m
1q, . i 1
- 2080(- g, - )¢ 2 (g, ) - 2 dp(~ g, - ) = dp(g, ) (6.2)
q m q

where j*(x) = ;—;(¢TV“¢ - ¢V°¢') is the paramagnetic current. In deriving the last
term in (6.2), we neglected a three body contribution. Arguments can be given
that such a contribution is unimportant for long wavelength physics.??
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In order to proceed further we make a crucial approximation that we neglect
vortex like configuration in the boson field ¢(x). It will be shown in the next
section that vortices have finite creation energy, therefore, for the ground state
properties that we are interested in now, their contribution is negligible. Under
such an assumption, the paramagnetic current is purely longitudinal, i.e., j*oc V8,
where 6 is the phase of the boson field 6, the third term in (6.2) vanishes. We
therefore arrive at an extremely simple effective action for the boson field ¢,
which in addition to the V(x) interaction in the original Hamiltonian, also
contains a logarithmic interaction mediated by the statistical gauge field. In the
first quantized language, the last term in (6.2) can be expressed as:

D 27rf ~

m 2 dxdydp(x)In|x-y|dp(y)
11 w1 2

=—— In|x -x|"" - X, 6.3
o AR 7

where we substituted dp(x) = £,6(x - x,) -p and I; * = 2np/v.
We are now in a position to derive the algebraic ODLRO correlation function.

Writing ¢(x) = Vp(x) €’?® in (6.2) and neglect the amplitude variations, one
obtains

F=+p(-q, - w)inb(g, w)—%ﬂ(—q, - w)q*0(g, »)

2
~20(~4,~) [V(q) Ry ] (g, ) . (6.4)
mv© g

Integrating over the amplitude Jd,(¢,w), we arrive at an effective Lagrangian for
the 6 phase field only:

2

| _
-5 0(-4, -0)|———-2 ¢l 6, ) . (6.5)
anp1 M
Vg +——
mv© q

The time-ordered propagator resulting from this quadratic Lagrangian is thus
given by

2n 1

S @5t V(g)

0(-q, -)b(g, w) =—

(6.6)
- &)+ id

where wfl = a)g + ﬁ_qz V(q) is the same as the one given by (6.9).
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From (6.7) one obtains the static correlation function:
. [ dw 1 2n (1)
- =i | 5=(0(-q, - = - - )
O(-9)0(g) = -i f 5 (0~ - @)8(g, @)= -5 2\ (6.7)

and therefore also the order parameter correlation function:

(¢T(x)¢(y)> =/')'(el€(x) - !ﬁ(y)) ~p PCAG)

=plx-y| ", (6.8)

We see that because of the long-ranged logarithmic interaction in the effective
boson Lagrangian (6.4), the conventional ODLRO is modified to an algebraic
ODLRO.

The ODLRO exponent is simply L , unmodified by the interaction V'(g) as one
can see from (6.7). (6.8) is an extremvely important result, first derived by Girvin
and MacDonald from the Laughlin’s wave function. It is quite astonishing that
exactly the same result is obtained from the CSLG theory, which so far has made
no reference to the Laughlin’s wave function.

In the following, we shall show that not only can the ODLRO correlation
function, but also the Laughlin’s wave function itself can be derived from the
effective Lagrangian (6.5). As we see from the previous analysis, ¥'(g) does not
play an important role for the long-range correlations, we shall set it to zero. The
readers can easily convince themselves that restoring ¥(g) does not modify the
following analysis. Defining nq=27f, one obtains the Hamiltonian version of
(6.5) !

1p o [(2my 1 :
=2m§q:[( ) T, +q0q0_q] (6.9)

which can be quantized by the standard canonical commutation rule
[0, 7y 1= —id,, p - (6.10)

In a representation where the operator x, is diagonal, 6, can be represented as a

functional derivative, ie., 6,= —igf— on the wave function ¥[z,]. In this

representation, the ground state wave function takes the form:
1 2r 1
Wlx,] = exp (527?7:‘,7:_4) (6.11)
q

which by inspection can be easily seen to satisfy the functional Schrodinger equa-
tion HY¥Y, = E,¥,, with eigenvalue - %wc. The canonical momentum 7, is in fact
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nothing but the density dp, of the boson system, since it is the canonical conjugate
of the phase field. One can check this by expanding ¢(x) = \p + dp(x) e*®. From
[o(x), ¢T (¥)] = (x - y) it follows [0,,p,]1= -id,,,,as in (6.10). One therefore
identifies 7, with dp, = £ ' —p. Inserting this expression into (5.11) one obtains

\ 1
Wy, = [ I - Y exp(—4—l§z |x,|2) (6.12)
0 1

1<y

which is nothing but the modulus of the Laughlin’s wave function. Since we have
performed a singular gauge transformation (3.8) in order to go from the fermionic
representation to the bosonic representation, performing this transformation
backwards on (6.12) gives precisely the Laughlin’s wave function itself?!

The analysis carried out in this section establishes a connection between the
CSLG theory and the Laughlin’s wave function, and therefore also an interesting
analogy of boson superfluidity and algebraic ODLRO with FQHE. The CSLG
theory not only captures the macroscopic phenomenology of the FQHE, it even
describes microscopic details like the ground state wave function itself!

7. Vortex Excitations and Duality Transformations

A superfluid supports vortex-like configurations as its elementary excitations. The
analogy between superfluidity and FQHE we established in the previous sections
naturally leads us to the search of similar kind of excitations in the CSLG theory.
It turns out that due to the presence of the Chern-Simons term, a vortex does not
only have quantized circulation but also fractionally quantized charge. They are
naturally identified with the Laughlin’s quasi-particle and quasi-hole wave
functions.

In (4.2) we identified the uniform solution to the CSLG action at filling factors
v=2—klﬁ. In addition to this uniform solution, we can find topologically non-
trivial configurations in which the Bose field has a “phase twist” of * 2z about
the origin. The asymptotic (| x| — o) field configuration of a vortex is given by

$(x) = Vp e (7.1)
®o b . x

da(x) = tZZVa(x)= 1'2—7—[2)( | {2 (7.2)

ay(x)=0 (7.3)

where « is the angle of x. In a 2-D neutral superfluid, a vortex cost logarithmically
divergent energy, since
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f d*x|Va| h” f dx— ——’? In(R/ly) (7.4)

where R is the system size and /; is some short distance cut-off. In a charged
superfiuid, however, the asymptotic energy density of a vortex vanishes
exponentially by a suitable choice of the transverse gauge field da as given in (7.2)

|(ﬁiv-§6a)¢|2ao, as |x|— oo . (7.5)

Therefore, just like vortices in a superconductor, the finite energy requirement-
fixes the flux to be quantized, i.e.,

%&-dl: + ¢y . (7.6)

The new ingredient in the CSLG theory is that such quantized flux automatically
lead to quantized charge. To see this, we observe that the charge density in the
CSLG theory is given by

S8 AN oS

a

) = 540 ™ Sag0) ~ ~ dag) ¢0

e—&%d,a, . (1.7)

The excess charge carries by a vortex is therefore

- 2 —e .d] = ¢
0= J'dxép(x)-e¢0§éa d/ i2k+1'

(7.8)

These fractionally charged vortices accommodate excess density of an incom-
pressible fluid in a similar way the vortices in a charged superfluid accommodate
excess magnetic field. As explained in the introduction, the pinning of these
vortices is crucial for explaining the plateaus in the Hall conductance. The
analogy of the vortex dynamics in the superfluid and the FQHE is exploited by
Stone,?* while a full quantum theory of the vortices in the FQHE is developed
by Lee and Zhang,'' using the formalism of the duality transformations
developed earlier by Lee and Fisher.?*

The original CSLG theory is formulated in terms of the charge current j, of the
¢ bosons coupled to the Chern-Simons gauge field a,. The duality transformation
maps this action onto a dual version of the theory which involves the vortex
currentjz coupled to a dual Chern-Simons field b,. If one decomposes the Bose
field ¢(x) in terms of an amplitude part, a topologically trivial phase part ¢**
and a topologically non-trivial part ¢,
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$(0) = Vp(x) e ¢,(x) (7.9)

where ¢I (x) ¢,(x) = 1, then the vortex 3-current J, is defined as

T = 561 8,819 8,8,00) (7.10)

For a vortex located at the origin,¢,(x) = e***™, (7.10) indeed gives the correct
total vorticity

Qx) = fdzxﬁ(x)= + 2—i—{§d1-(Va)= 1. (7.11)

In general, for a collection of vortices with vorticity {g,} and locations {x,}, ]L(x)
is given by

pO)= D qdx-x) and ()= ¢ x0(x-x,) . (7.12)

Substituting the decomposition (7.9) into the CSLG Lagrangian (3.18) one
obtains
Z=ipiaf+e)o, ¢v)-ep5ao_2’#m(va0-i¢j V., - eda,)?

-3 BOIV(x - D) (7.13)

where we neglected the spatial derivative of the amplitude field p(x). Next one
introduces a Hubbard-Stratonovich field J, to decouple the kinetic term in (7.13):

- % (V,0- 9]V, ¢, - eda) — - J(V.0- g}V, ¢, - eda)+ T T .

2p (7.14)

Substituting (7.14) into (7.13), one sees that the Lagrangian contains the
Gaussian field &(x) in a linear fashion, so that one can easily integrate it to obtain
the constraint

3,p+V,J =0 . (7.15)
This constraint is easily solved by introducing a new gauge field b, =(by, b,):

P =¢,50,bp and J, =¢,435b, ~ dpby) . (7.16)
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(7.16) determines b, up to a gauge transformation, i.e., b, —b,+d, A, this
freedom can be fixed by choosing a particular gauge, say the Coulomb gauge
a.b,=0.

Substituting (7.16) into (7.13) and (7.14), one obtains

¥, = —eday e d,bg +eda, e (8gbo — pbg)

+ ;”— (8,by - 34b,)* - % (e%9,0b)(x) V(x - )&= * 3,,6b, )¥)
]

+1by &0, (@) 50,) + i b, €¥[5(0]9,0,) - 0o(0]50,)] . (7.17)

From the definitions of the vortex current ]; given in (7.10), one sees that the last
two terms of (7.17) is precisely of the form of covariant coupling of b, to the

vortex current j,: 2z b, j,. Combining %, and .7, and integrate out the original
gauge field a,, one arrives finally at the dual Lagrangian:

T v, >
L= _;8,‘ pbu av bp— ee pAﬂ 6V bﬂ+ 2n bﬂ]ﬂ

+ zm (3,bo — 9b,)* - %(G“ﬂaaébﬂ)(x) V(x -y #8,0b,)») . (7.18)
D

As promised, we have transformed the original CSLG Lagrangian with a,
coupled to the current j, of the Bose field to a dual Lagrangian containing b,
coupled to the vortex current Ju

To proceed further, one can integrate out the b, field in (7.18) to obtain an
effective action for the vortices. First integrating out b, in the Coulomb gauge,
one obtains

#2b,- 2 [27z p-22 aﬂaaab,,] (7.19)

and
L= -edyeg0,by+2mb, i+ n (3,0,
2p

LE[ 5_ 2T oot ] [ 52T ]
“anm 2 7p - S ¢ 9,0bg|In|x-y||2np- S € d,.0by

_ % (6%0,0b)V (x - Y& #d,,0by) . (7.20)

From (7.20) one readily obtains the Laughlin’s quasi-hole wave function, in a
similar way one derives the Laughlin’s ground state wave function in the last
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section. To do this, consider a static vortex, p(x) = — &x), j(x) = 0, located at the
origin. From (7.16), one sees that €,40,0bg = dp(x) is identified with the density of
the fluid. Under these conditions, the Hamiltonian version of (7.20) becomes:

p P ~ 2n 1 ~ 27 1
Zngqe-“_?n‘[z”p-q‘T‘s”-q] E[anq—Tépq] +§5p_qV(q)czq21)

where 6, and dp, are canonically conjugate variable, and can be represented by

a functional derivative 0,= ~ i#. As was done in the last section, we shall

treat the last terms perturbatively. gl‘hen (7.21) differs from (6.9) only by a shift
of dp,, the ground state wave function of (7.21) is therefore given by:

¥, [dp,] = exp( z m{p q —6p ] [pq éq]) (7.22)

with the same eigenvalue —gwc as before. Written explicitly in coordinates,
(7.22) becomes

WX, ... xy) = H | x; | H | x, - xl”"exp( 411 z | x, | ) (7.23)

! i<y 0o i

which is precisely the modulus of Laughlin’s quasi-hole wave function. As we
have seen, the energy of ¥, is the same as ¥, for the case V' =0. Restoring the
interaction term, we get the perturbative energy associated with the quasi-hole

A= N(N 1) f dxl de Z’ V(x )C) { I ¥ (xl xN) l 2 | lI’O(xO XN)(|7}24)

Clearly, A is only dependent on ¥(x), and it remains finite in the limit hw,— .
One can carry out a similar analysis for the quasi-particle, with p(x) = + &(x).
The corresponding wave function is given by

o= [ ] - x|"”exp( 4llel) (1.25)

1<y 0 !

Although this wave function describes the correct asymptotic behavior far away
from the vortex, it is singular at the origin. This signals a breakdown of the
harmonic approximation employed by our analysis, near the origin. While it is
necessary to include the non-linear effect to obtain the correct core profile of the
quasi-particle, the long distance property remain unmodified.
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After the detailed discussion of a single vortex excitation, we now turn to the
multivortex configuration and their interactions. In order to do that, we integrate
out b, in (7.20) to obtain an effective action for the low energy dynamics of the
vortices only. This can be done simply by setting the fourth term in (7.20) to zero,
ie.,

£8,0by=v-p=v Y. :6(x~Xx) . (7.26)

Since we learned from previous sections that derivation from (7.26) describes
density oscillation at the energy scale of 7w, and can therefore be neglected in the
discussion of the low energy dynamics of the vortices. Here x, denotes the
location of the vortices, not to be confused with x; in (7.23)—(7.25), which
denotes the location of the particles. Inserting (7.26) into the first term in (7.20)
one obtains

- f Aot 0,0bd% = —ev Y. g A|(%) . (7.27)

This term describes the coupling of the vortices to the external scalar potential,
and we see that the vortices carry fractional charge ev = 2ki T The second term
can be split into two pieces. The first contribution is

f27tl_)a12d2x= —2n§fd2xaaﬂxﬁ2q,)€f5(x—x,)
=-ap Y qetiext (7.28)

This term describes the kinetic energy of the vortices, and we see that the vortices
obey Euler dynamics rather than Newtonian dynamics. We shall return to its
consequence later in detail. The second contribution is

_ B_ 8
f d2x2mb, Fo=v f d*xd’y p(x)et f—y—j’f(y)
X

-y
B_ B
X - x
=vg“ﬂ2qqu)&;" R 5 - (7.29)
t#£J "xz_x],

This term describes the fractional statistics of the vortices. To see this, one can
simply take a path where vortex i rotates around vortex j by #, and find that the

contribution to the action S= [ dr (7.29) is nv = 2kﬂ o
+
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The last term in (7.20) simply gives the interaction between the vortices

> Vg4, Vix,-x) . (7.30)

1<y

As we argued in the previous discussion about the single vortex, the combined
effect of the third, fourth and the last term in (7.20) is to give a self-energy (7.24)
to the vortices, 1.e.,

> Alg) - (7.31)

Collecting all these terms, we finally arrive at the effective Lagrangian for the
vortices

=2 va,Agx) - 2 M) +np Y, g, e % xf
1 [ i

X xP

+vef z a4, Xy ——— — - 2 VZCI.‘I; Vix,-x) . (7.32)

1#] I z—le 1<y

(7.32) describes a collection of fractionally charged particles, which obey
fractional statistics and vortex dynamics, interacting via a two-body potential
V(x). It is independent of w, and contains all the low energy physics of the
FQHE.

8. Magneto-roton Excitations

In the FQHE system, where the lowest Landau level is partially filled, there are
two kinds of collective excitations. The inter-Landau level transition has an
energy scale of hw,; it is discussed in detail in Sec. 5. In addition to that, there
exists intra-Landau level transition, with an energy scale given by the Coulomb
interaction V(x). This situation is quite similar to the collective excitations in a
superfluid. The phonon mode is pushed to the plasma frequency w, in a charged
superfluid, and the roton represents the low energy excitation. In Feynman’s
picture, a roton is visualized as a drifting smoke ring in three dimensions, or a
vortex-antivortex pair in two dimensions. As we shall see, the intra-Landau level
transition, or the magneto-roton excitation of the FQHE is also naturally
explained in terms of the vortex-antivortex pairs of the CSLG theory. One severe
constraint on this interpretation is the Kohn’s theorem proved in Sec. 5. We saw
that the cyclotron mode saturate the dipole oscillator strength, the contribution
from the magneto-roton to the density-density correlation must therefore vanish
like ¢* in the long wavelength limit.
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We first discuss the quantization of the vortex dynamics. The equation of
motion derived from (7.32) has the form
aV(x,-x)

o
1

2npefxf = - v? Z q, 8.1)

J# 0x
Here we have neglected the effect of the fractional statistics for the moment since
it does not enter the equation of motion. This equation of motion can also be
derived from a Hamiltonian

H-v'Y 44, V(x,-x)+ 2 Ag) 82)

1<J !

if one postulates the following commutation relation for the particle coordinates:

[x&, xP) = i6,6% %p . (8.3)
Using the Heisenberg equation of motion for the operatorsx,” = - i[x,,H], one
easily recovers (8.1) from the Hamiltonian approach. In fact, similar procedures
of quantizing the vortices was first introduced in the context of superfluid.?®
From (8.1) a sum rule can be derived for the density correlation function. For
small ¢, the vortex density operator

pla)= > g™ (8.4)

can be expanded in powers of g as

- . 1
Pa)=Q+ig"D*~54°¢" Qo+ - - - (8.5)

where Q = Z g, is the total charge andD* =X g x* the total dipole moment. Both
quantities are conserved by the equations of motion (8.1) and their contribution
to the density fluctuations therefore vanish. Q%=X g, x*x/ is the total

quadrupole moment of the system, its contribution to the density fluctuation
vanish like g* in the small g limit, i.e.,

(5@, D)7~ 2, 0 = (Q(OQ(O) +5 XD () D*(O)

+ 3@ QPP O+ - - -
~gtee . (8.6)

From (8.6) ones sees that the interpretation of the intra-Landau level excitations
in terms of the vortices is indeed consistent with the Kohn’s theorem, since their
contribution to the density fluctuation vanish faster than g°.
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The form of the magneto-roton dispersion can be studied directly with the
vortex Hamiltonian (8.2). Since the vortices have finite creation energy, we can
first restrict ourself to the low energy sector of a vortex-antivortex pair. Denote
their coordinates by (x;,y;) and (x,,y,), from (8.3) we see that the only
non-vanishing commutators are

[x, y,1=il3/v and [xy, y,]= —il2/v . 8.7)

In terms of the relative coordinates x = X, — X,, ¥ = ¥, — ¥, and the center of mass
coordinates X = %(xl +X;), Y= %(yl +5), (8.7) becomes

[x, Y]=ilg/v and [y, X]= -il}/v . (8.8)

In quantum mechanics, the total momentum P, is identified with the canonical
conjugate variable of the center of mass coordinate X, i.e., [P,,X] = - i, and is the
generator of the center of mass translation. From (8.8), one sees that in the
present case, P, is naturally identified with the relative y coordinate of the
vortex-antivortex pair, i.e.,

Py=yvlg? and similatly P,= -xvi} . (8.9)

This rather peculiar expression for the total momentum in fact has a classical
counterpart. Classically, a charge dipole drifts in a magnetic field with constant
velocity, the Lorentz force on the drifting pair is balanced by the electrostatic
attraction. The drifting velocity is therefore uniquely determined by their
separation.

Because of (8.3), each vortex has an intrinsic size of the order of /,, a picture
of the vortex-antivortex pair only makes sense as long as their relative separation
is larger than their intrinsic size, which according to (8.9) gives a center of mass
momentum Py or Py larger than /;'. For this range of total momentum, the
energy of the vortex-antivortex pair is simply given by (8.2), since the
Hamiltonian is diagonal in terms of the relative coordinates. For the case where
total momentum is in the x direction

2,2 3,2
w(g)=E(y=q /i =20-"2 -0 25 (8.10)
Y qxIO

which gives a dispersion of the intra-Landau level excitation as pictured in Fig. 5
for g.> Iy '. g, denotes the eigenvalue of P,.

For g, <l I' the vortex-antivortex picture breaks down, since their separation
would be less than their intrinsic size. A configuration of the vortices with a total
dipole moment smaller than /, necessarily involves a quadrupole-like configura-
tion, see Figs. 6a and 6b. This interpretation has two consequences, first, it
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Fig. 6. Schematic illustration of the vortex configurations giving nse to the magneto-roton
excitations. a) A quadrupolar arrangement of the vortices with no net dipole moment. It contributes
to the g = 0 excitation. b) A distorted quadrupolar arrangement, with a small net dipole moment. It
contributes to the excitations in the momentum range 0 <g </ 1. ¢) A vortex-antivortex pair
separated by /; '. It contributes to the excitations around the roton minimum. d) Far separated
vortex-antivortex pair, which contributes to the excitations with g > ly !

naturally explains the fact that the vortex contribution to the density correlation
vanish like ¢* in the small ¢ limit because of the vanishing dipole moments of
these configurations. Secondly, since there are four vortices involved, the energy
at g = 0 is of the order of 4A plus a correction due to their mutal Coulomb energy,
which should be roughly twice the energy at the roton minimum. The spectrum
obtained from the numerical diagonalization indeed supports this observation.?’
To summarize, at ¢,=0, the vortex configuration involves a quadrupolar
arrangement (see Fig. 6a) and the energy is of the order of 4A. As g, increases,
the quadrupole configuration distorts to acquire a net total dipole moment in the
y direction (see Fig. 6b), and the Coulomb energy decreases. For g, ~ 10" , one
pair of vortex-antivortex annihilate and disappear into the vacuum (see Fig. 6c).
Within this range of q,, the energy decreases monotonically. As g, increases
further, so does the dipole moment of the remaining vortex-antivortex pair. The
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energy increases according to (8.10). The dispersion curve for the entire
momentum range is pictured in Fig. S, and is in qualitative agreement with the
single-mode approximation '® and the exact diagonalization.?’

9. Conclusions

In this paper, we intended to give a self-contained review of the CSLG theory of
the FQHE, and communicate the most basic ideas to the readers. Due to the
limitation of the space, many important further developments was not reviewed
here. Here we summarize the relevant references for the convenience of the
readers.

This review mainly concentrated on the FQHE at the filling factors v = ﬁ .
hierarchy scheme similar to that of Halperin can be easily constructed. This was
done by Zhang, Hansson and Kivelson,?®and by Lee and Fisher.?®> A hierarchy
scheme similar to that of Jain can also be constructed, as was done by Shapere and
Wilczek,?%and also by Lee, Kivelson and Zhang.3® The relationship between these
two schemes was explained by Read.?'Lee and Kane,?? Balatsky and Fradkin?3
extended the spinless CSLG theory to the case of singlet FQHE. Wen and Niu,**
Frohlich and Zee,* discussed various global topological aspects of the CSLG
theory. Stone?* and Haldane3® studied the detailed dynamics of the vortex exci-
tation. Sakita, Sheng and Su?’ applied the collective coordinate formalism to the
CSLG theory. Lopez and Fradkin>® used the fermionic representation to construct
a Chern-Simons theory for the FQHF. Wen,? Haldane,*° Stone,*! Lee and Wen*?
applied the CSLG theory to the edge states of the FQHE. Recently, Lee, Kivelson
and Zhang?® constructed a formalism to relate various phase transitions in the
two-dimensional electron gas in a magnetic field to the superfluid to insulator
transition in a two-dimensional Bose gas.

We hope to have demonstrated in this review that the CSLG theory is a
complete, first principle theory of the FHQE. While it is logically independent of
Laughlin’s wave function approach, it leads to the same phenomenological
consequences. In fact, a direct connection of these two theories can be
established, as we have shown in Sec. 6. CSLG theory demonstrates a deep
connection of the FQHE with superfluidity, and it possesses an appealing
mathematical structure through the introduction of the Chern-Simons term.
CSLG may have a great advantage in the study of macroscopic phenomena
associated with the FQHE, like the transition between the FQHE phase, the
Wigner crystal phase and the localized glasslike phase. It is also naturally suited
for addressing various transport properties at the finite temperature. Some of
these questions have been investigated recently,>®2° but it is clear that these
directions are still wide open. The interesting mathematical structure that
emerges from the CSLG theory may also help us in understanding other problems
in the strongly correlated electron systems.
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