90. THE THEORY OF A FERMI LIQUID

A theory of the Fermi liquid is constructed, based on the representation of the
perturbation theory as a functional of the distribution function. The effective mass of
the excitation is found, along with the compressibility and the magnetic susceptibility
of the Fermi liquid. Expressions are obtained for the momentum and energy
flow.

As is well known, the model of a Fermi gas has been employed in a whole
series of cases for the consideration of a system of Fermi particles, in spite
of the fact that the interaction among such particles is not weak. Electrons
in a metal serve as a classic example. Such a state of the theory is unsatis-
factory, since it leaves unclear what properties of the gas model correspond to
reality and what are intrinsic to such a gas. |

For this purpose we must keep in mind that the problem is concerned with
definite properties of the energy spectrum (“Fermi type spectrum ’), for
whose existence it is necessary, but not sufficient that the particles which
compose the system obey Fermi statistics, i.e. that they possess half-integer
spin. For example, the atoms of deuterium interact in such a manner that they
form molecules. As a result, liquid deuterium possesses an energy spectrum
of the Bose type. Thus the presence of a Fermi energy spectrum is connected
not only with the properties of the particles, but also with the properties of
their interaction.

A liquid of the Bose type was first considered by the author of the present
article in application to the properties of He II. It follows from the character
of the spectrum of such a liquid that a viscous liquid of Bose particles necessarily
possesses superfluid properties. The converse theorem that a liquid consisting
of Fermi particles cannot be superfluid, in accord with the above, is in general
form not true.

1. THE ENERGY AS A FUNOTIONAL OF THE DISTRIBUTION
ENERGY

If we consider a Fermi gas at temperatures which are low in comparison
with the temperature of degeneration, and introduce some weak interaction
between the atoms of this gas, then, as is known, the collision probability for
a given atom, which is found in the diffuse Fermi zone, is proportional not
only to the intensity of the interaction, but also to the square of the tempera-
ture. This shows that for a given intensity of interaction, the “indeterminacy
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of the momenta”, associated with the finite path length, is also small for low
temperatures, not only in comparison with the size of the momentum itself,
but also in comparison with the width of the Fermi zone proportional to the
first power of the temperature.

As a basis for the construction of the type of spectrum under consideration,
is the assumption that, as we gradually “turn on” the interaction between
the atoms, i.e. in the transition from the gas to the liquid, classification of
the levels remains invariant. The role of the gas particles in this classification
is assumed by the “elementary excitations®’ (quasi-particles), each of which
possesses a definite momentum. They obey Fermi statistics, and their number
always coincides with the number of particles in a liquid. The quasi-particle
can, in a well-known sense, be considered as a particle in a self-consistent
field of surrounding particles. In the presence of a self-consistent field, the
energy of the particle depends on the state of the surrounding particles,
but the energy of the whole system is no longer equal to the sum of the
energies of the individual particles, and is a functional of the distribution
function. |

We consider an infinitely small change in the distribution function of quasi-
particles n. Then we can write down the change in the energy density of the
system in the form |

8B = [eondr, (1)

where dr = dp,dp, dp,/(2x k). The quantity e(p) is a function of the
derivative of the energy with respect to the distribution function. It corre-
sponds to a change in the energy of the system upon the addition of a single
quasi-particle with momentum p, and it can be regarded as the Hamiltonian
function of the added quasi-particle with given momentum in the self-consistent
field. : , :

However, we have not taken it into account in equation (1) that the particles
possess spin. Since the spin is a quantum mechanical quantity, it cannot be
considered by classical means. We must therefore consider the distribution
function of the statistical matrices in regard to spin, and replace (1) by
the following:

6E=Trf86nd1:, : (2)

where Tr is the trace over the spin states. The quantity e in the general case
is also an operator which depends on the spin operators. If we have an equili-
brium liquid, which is not in an external magnetic field, then, because of
isotropie, the energy cannot depend on the spin operators. We limit ourselves
to the consideration of particles with s = 1. %

We can show that just this energy e enters into the formula for the Fermi
distribution of the quasi-particles. Actually, it is reasonable to determine the
entropy of the liquid by the following way: '

N = —Trf-{nlnn—}—(l—-n)ln(l — n)} dr. | (3)
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By means of a variation, subject to the additional conditions

aN=Trfand-c'=o, S = Trfsé‘mdv:z 0,

we can obtain the Fermi distribution

n(e) = [e€ M0 4 1]-1 @)

from this equation. We note that ¢, being a functional of n, naturally depends
on the temperature also.

In correspondence with (4) the heat capacity of a Fermi liquid at low
temperatures will be proportional to the temperature. It is determined by the
same formula as for the Fermi gas, with one exception, that in place of the
real mass m of the particles therein, we place the effective mass of the. quasi-
particles o '

m* = o
del/dp

(8)

?
P =2D

where p, is the limiting momentum of the Fermi distribution of quasi-particles
at absolute zero.

Not only ¢(p) for a given distribution, but also the change in ¢ produced
by a change in #, is of essential importance for the theory of the Fermi liquid :

de(p) = Tr [ f(p, p') ow’ d . (6)

Being a second variational derivative, the function [ is symmetric relative
to p and p’; moreover, it depends on the spins.

- If the principal distribution = is isotropic, then the function f in the general
case contains terms of the form ¢;;(p, p’) o; 07, where g; is the spin operator,
and if the interaction is exchange, only terms of the form

o(p, )0 - o’)
will appear. ‘ .
We can consider the function f from the following point of view. The number
of acts of scattering of quasi-particles per unit volume per unit time can be
- written in the form "

23! E - r r !
dWw =T|F(P1, Po; P> P2) | 0 (e, + &y — & — &) NNy

X(1 —n)(1 —ny)dr;degdey, (7)

where conservation of momentum is assumed: p; + p, = p; + ps. The quan-
tity f is nothing but — F(p,, p,; p;, p,),i.e. the forward scattering amplitude
(with opposite sign). Generally . speaking, this amplitude is complex, its
imaginary part being determined by the total effective scattering cross-section.
Inasmuch as we assume that the real acts of scattering are highly improbable,
we can neglect the imaginary part.




726 | COLLECTED PAPERS OF L. D. LANDAU

2. RELATIONS WHICH FOLLOW FROM THE PRINCIPLE OF GALILEAN
RELATIVITY

It we deal with a liquid which isnot in an external field, then it follows from the
principle of Galilean relativity that the momentum arriving at a unit volume
must be equal to the density of mass flowt. Inasmuch as the velocity of the
quasi-particle is d¢/dp, and the number of quasi-particles coincides with the
number of real particles, we have :

9
Trfpndv::'l’rfm—g—ndr. (8)
op

Therefore, the variational derivatives with respect to n ought to be the same
on both sides of this equation. Then
1 de J
—Tr|pdédndr=Tr|—dndzr + TrTr —f(p,p)én' ndrd.
m op ap

Since the quantity éz is arbitrary, we obtain

P 8 e on’ s
ﬁz__i_!, Tr’ ‘—Jf—n’dr’ e Tr' | f © dv. (9)
m  op op’ op aip’ ‘

(the left side is understood as the unit matrix in the spins).
If we deal with the isotropic case, then it is sufficient that equation (9) holds
for the traces, i.e. :

—11=-‘?i—iTr,Tr'ff i (10)
m op 2 Coop’ _
We note that this formula determines the function & through the quantity f
with accuracy to within a constant.’ '

Let us consider equation (10) for momenta close to the boundary of the Fermi
distribution. For low temperatures, the function dnjop will differ slightly
from the §-function. For this reason, we can carry out the integration in
(10) over the absolute value of the momentum, leaving only the integration
over the angle. This gives the following relation between the real and ‘the {
effective masses: ' '

1 1 Po -
—_—= Tr Ty 0ds. 11
m m* ¥ 2(2n7h)® ' Jf 608 _ _( _)

Inasmuch as, in this formula, both of the vector arguments in f correspond
to the Fermi surface, the function f depends only on the angle between them.

T This conclusion does not apply in particular to electrons in a metal. For them, p is not the
momentum, but the quasi-momentum. . ‘ ' IS !
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3. COMPRESSIBILITY OF THE FERMI Liquip

Let us express the compressibility (at absolute zero) by the more appro-
priate quantity for us, du/d N. For this purpose, we note that as a consequence
of homogeneity, the chemical potential p depends only on the ratio N {V.
Consequently, we have

p  Vaplov vV ap (g

oN N N oV’

For the square of the velocity of sound, we have

e__ 0P 1(.0n
S amNy m(N aN)' - 13)

Thus the problem reduces to the calculation of the derivative Op/0N. Inas-
much as u = &(p,) = ¢,, the change in the chemical potential du which is
brought about as a result of the change in the total number of particles IV,
will be equal tof

1 - Ogp .
ou =—2—Tr Tr' | fon' dv + —a—épo. (14)

Do

The second term is connected with the fact.tha,‘t for a change d N the limiting
momentum p, changes by an amount ép,. .
For the case of spin 1, 6 N and ép, are connected by the relation

0N = 8z p dp, Vi@ k). (15)

The value of the function under the integral in equation (14) is appreciable only
for values of momentum close to p,. Therefore, we can carry out integration
over the absolute value of p, obtaining

8=V

Tr Tr’jf& ndr = TrTr"[fdo ON. (16)

We get from equation (14), with the help of equations (15) and (16):

do (27 R)®
162V ' Bmpgm* ¥

ou/0N = TrTr f f (17)

Now let us make use of (11) and express the effective mass m* in the
expression that has been obtained by the mass of the particles, m. We have

ou , ' ‘ 2z k)?
= - Tr' f(1 — do + —————.
ON 16z VfTr - cos0) do + BrpymV

T Equation (14) is obtained as a result of taking the trace of the analogous expression which
contains the spin operators.. ‘
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Furthermore, multiplying the resultante quation by ¥ [m = (1/m)8apV[3(27h)3,
we find an expression for the square of the sound velocity:

2
ot o) [ - eosnyao. g

¢ = .
3m? 6m \ 2=k

4. MAGNETIC SUSCEPTIBILITY

We calculate the magnetic susceptibility of a Fermi liquid. If the system is
located in a magnetic field H, then the additional energy of a free particle in
this field is equal to f(0 - H). Moreover, we must also consider the fact that
the form of the distribution function also changes in the presence of a magnetic
field. Consequently, in calculating the magnetic susceptibility, we must keep
in mind that

dc = — B(o-H) + Tr' ffén’ dv, | (19)

Le. it is impossible to neglect the effect of the term containing f. We write f
in the form | ) '

f=9+y(e-0), - (20

where the second term takes into account the exchange interaction between
the particles. Furthermore, in calculating én, which depends on the field,
the change in the chemical potential 6 does not have to be considered. This
change appears as a quantity of second order of smallness relative to the
field H, while d¢ is of first order with respect to the field. Therefore, we can
substitute dn = (9n/de) 8¢ in equation (19). We then have -

a !
® serde. (21)
8 4 .

a.s:-.'_ﬁ(a-HHTr'ffa

We shall look for de in the form

de = — y(o-H). ' (22)
The quantity y is defined by equation (21)t
1 on
-, e : 7 d ’ . 23
Y ﬁ+,2fwas,y T - (23)
Remembering the d-character of dn/de, we than obtain
vt 1 o f8r
S ettt dudll (24)
p=p=- %7’( 66)0 |

Here the index zero indicates that the values of all functions are taken at
P = P,; the bar over the symbol indicates averaging over the angles. On the
other hand, the susceptibility is defined by the relation |

xH::ﬁTI‘an‘dr \

T Here we make use of the relation Tr(0 6')6’ = (1/3) 6 Tr' (6" ¢') = (1/2)0.




THEORY OF A FERMI LIQUID 729

or dt H dz
fH=—-Tr|—y(H-6)6dr=—Fy|—] . (25)
i de 2 de /,
Hence, we get finally,
1 2 2 m 1 (dr (26)
r Bre(ocfoe)y  fdrjde), | 2 "\ de)]
Further, we can replace (d z/d ), by the coefficient « in the linear heat capacity
law. Then
1 _o(4mPk?
— = + Yo - (27)
x 3o :

It is then evident that there does not exist in the liquid the relation between
the heat capacity and the susceptibility that exists in gases. The term with
i, takes the exchange interaction into account and is large for liquids. Thus,
for 3He, analysis of the experimental data! shows that #, is negative and
amounts to about 2/3 of the first term.

5. Tux KixeTic EQUuATION

In the absence of a magnetic field and for a neglect of the magnetic spin-orbit
interaction, ¢ does not depend on the operator ¢ and the kinetic equation in
the quasi-classical approximation takes the form

an on Je on de
(o 2 - (= 25 = 1), (28)
ot ar OJOp op or :
The necessity of caleulation of derivatives of the energy ¢ with respect to the
co-ordinates in the absence of an external field is connected with the fact that
¢ is a functional of n, and the distribution function » depends on the co-ordi-
nates. :
We find the expression for the momentum flux. For this purpose, we multiply,

the left and right sides of the equation above by the momentum p; and
integrate over all phase space. We have

0 7 on 0 '
—Tr|pndr+ Tr| = _ 2 2 g =Tr p; I(n)dz. (29)
ot \ 0%, 0p, Op 0 '

As a consequence of the conservation of momentum for collisions, the right
side of the equation is zero, while the left side yields, after simple transfor-
mations,

0 0 ' d 0
— | prdT + P; O ndt — | p—I|(n s dz=0. (30)

Finally, integrating the three integrals by parts, we get

a d e oe
— o nd ; nd n dz = 0. 31
at ) B T+ax,cfp’° s T+J o, (31)

() v
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The integral Tr f n(0¢/0z;)d T can be represented in the form (see equation (2))

] 0 | d
Tr n———s dt=Tr— |nedr — Tr e——nd'r:——a Tr{nedr — E|.
ox; ox; ox; dx; _

(] (]

Thus we finally obtain the law of conservation of momentum :

o oIT,,
— ;nd —~ =0
Y 'I‘I'J\pt ndr + Py o - (32)
where the tensor of momentum flux is i
.0 o
11, =Trfpigi”df+ 5ik[Trfnadr—E]. (33)
Py ,

In a similar way we obtain the expression for the energy flow. We multiply
the left and right sides of the kinetic equation (28) by & and integrate over all
phase space. We have '

on ‘ on de on Jde .
Trjs—gdr + Trfs[(—b;.%) — (a—p--a)]df = Trjel(n)dr.

As a consequence of the conservation of energy under collisions, the right
side is zero while the left side reduces without difficulty to the form

Taking equation (2) into account, we have finally,

oE
—- +divg =o, | - (34)

where the energy flow is

Q:Trfns—a—edr. - ' (35)

ap :

In the solution of concrete kinetic problems it is necessary to keep.in mind
the following circumstances. For such a solution we usually write down the
function % in the form of a sum of equilibrium functions n, and correction én.
In this case the departure of the tensor of momentum flow I7;; and the vector
of energy flow @ from their equilibrium values will result as a consequence of
the direct change of the function # by the quantity én, as well as from the
change in & which comes about as a result of the functional dependence of ¢
on n (equation (2)). j o=

In conclusion, I express my gratitude to I. M. Khalatnikov and A.A. Abri-
kosov for fruitful discussions. , 3 : ;
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The electron Fermi liquid

2.1. The concept of quasiparticles

We have so far dealt with the behavior of one electron in the averaged field of the
lattice and other electrons. Now we shall consider a real system of interacting
electrons or an electron liquid. The behavior of such a system can be understood
on the basis of the general concept proposed by Landau (1941) concerning the
energy spectra of condensed quantum systems and the Landau theory of a Fermi
liquid.

It is easier to illustrate the general Landau approach by considering as an example
a vibrating crystal lattice. If the vibrations are small, the potential energy of the
interaction of the lattice atoms may be expanded in powers of the displacements
of atoms w. The term of first order in the displacements is absent, since to the
equilibrium position there corresponds the minimum of the potential energy. Thus,
retaining only second-order terms, we have '

U= Uy+s Y ASSubui. (2.1)
The lattice periods are a,. The index j stands for the number of the atom in the
unit cell n. The index a corresponds to the projection of the displacement vector
u; Apo are the expansion coefficients.

Expression (2.1) is none other than the energy of a system of coupled oscillators.
As is known, the quadratic form (2.1) can be diagonalized by means of a linear
transformation of the oscillator coordinates, the vectors u,; in this particular case,
following which we obtain a system of noninteracting linear oscillators. The energy
will in this case be the sum of the energies of individual oscillators.

Since the study of lattice vibrations goes beyond the scope of our treatment™, we
shall give only the results of such an approach. The solution of the equations of
motion gives the following expression for displacements:

uy=Y c(k,s) explika, —io(k 5)1e(k, ). (22)
ks
Each set k, s corresponds to one independent oscillator.

* More detailed information about lattice vibrations can be found in the book by Peierls (1955).
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