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At the same time formula (2.2) is a superposition of plane waves propagating
throughout the crystal. The wave vector k has the same properties as p/# (where
p is the quasimomentum). The index s denotes the type of wave, and the unit vector
of polarization ¢; defines how various atoms oscillate in a single unit cell. If the
unit cell contains z atoms, then the index s takes on 3z various values. The vibration
frequency w depends on k and s.

Formula (2.2) is reminiscent of the wave function of free particles:

(,pr _81‘)
1==—T=x Iy
exp{1°, 1>

The role of the momentum p is played by fik and that of the energy by fiw. Using
this, we can introduce a new physical picture. Usually we deal with real particles,
whose free motion is described by a plane wave. In this particular case we will treat
“expression (2.2) as the wave function of certain fictitious particles, which we call
“quasiparticles”. Since this notion is universal, the quasiparticles that correspond
to lattice vibrations are specifically called “phonons”. The origin of this term 1is
associated with the fact that the quasiparticles in question have the same relation
to elastic waves propagating in the lattice (i.e., to sound) as light quanta have to
electromagnetic waves. Thus, it may be said briefly that usually in quantum
mechanics waves describe the motion of particles and here particles are introduced
for the description of waves.

The meaning of the description by means of quasiparticles becomes clearer if we
consider the energy of a vibrating crystal. The energy levels are expressed by the
formula for a system of noninteracting oscillators:

E—U,=Y ho(k s) (n(k, s)+3). (2.3)
k,s
The numbers n are either equal to zero or positive integers. Let us write expression
(2.3) as the sum of two terms:

E—U,=1Y #o(k s)+Y ho(k,s)n(k,s). (2.4)
Y, ks ks

The first term corresponds to the lowest value of the energy and describes the ground
state of the system. This is the energy of the so-called zero-point vibrations. The
fact that the atoms of the crystal lattice must be vibrating even in the ground state
is associated with the quantum uncertainty principle. According to this principle,
a particle cannot be at rest in the equilibrium position, since in such a case it would
have simultaneously a certain coordinate and a certain momentum.

In an excited state the numbers n(k, s) are different from zero. Formula (2.4)
corresponds in this case to a system of independent particles with energies hw (K, 5).
Since the numbers n(k, s) can take on any positive integer values, it follows that
any number of phonons may be in the same state. This means that they obey Bose
statistics.
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The concept of phonons is valid as long as the vibrational amplitude is small
compared to the lattice period. Otherwise, one has to take into account the terms
in the expansion of the potential energy U in higher powers of the displacement,
and the total energy can no longer be expressed by formula (2.3). However, this
occurs only near the melting point.

According to the idea put forward by Landau, any homogeneous system composed
of a large number of particles has low-lying excited states of the same type as the
vibrating lattice. Namely, the properties of any system may be described in terms
of the quasiparticle model. Quasiparticles may have either an integer (nf) or a
half-integer ((n +3)#) spin, i.e., they may be either Bose particles or Fermi particles.
The statistics of quasiparticles is not related uniquely to the statistics of the particles
that make up the system. For example, as we have seen, phonons always obey Bose
statistics, irrespective of the spin of the atoms that make up the lattice. The energy
of quasiparticles is a function of their momentum. This dependence &(p) is the
main characteristic of the low-lying excited states.

2.2. Quasiparticles in an isotropic Fermi liquid

Electrons have spin 3#. In view of this, the electron liquid is a so-called Fermi
liquid. What are the properties of quasiparticles in such a liquid? According to the
Landau hypothesis (1956), the energy spectrum of such a liquid is very similar to
the spectrum of anideal Fermi gas. The validity of this hypothesis was later rigorously
proved. We do not give this proof here because it by far exceeds in complexity the
level of this book™. |

So, we begin with the ideal gas. The equilibrium distribution function is the
well-known Fermi function™*:

= [e(E*IJ-)/T+ l]fl

Here £ = p°/2m and u is the chemical potential. At T=0 we have f=1if e <u(0),
and f=0 if &> p(0) (fig. 6, solid line). The quantity w(0) is called the Fermi level.
Introducing the Fermi momentum po in accordance with the formula w(0) = po/2m,
we find that at T=0 all the states contained in a sphere of radius p = po (the Fermi
sphere) in momentum space are occupied, all the external states being free. This is
a consequence of the Pauli exclusion principle - only one particle may be in each
of the states, and in this particular case at T =0 the lower states are occupied. The
occupied volume in the phase space of momenta, coordinates and spins divided by
_(2171‘:)3 must be equal to the number of particles. The volume in momentum space

* The proof can be found in the book by Abrikosov et al. (1962).
*# Here and henceforth the temperature is determined in energy units. To convert to degrees, it must

be divided by the Boltzmann constant kg=1.38% 107 erg/ K.
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is the volume of the Fermi sphere. The possibility of the occurrence of two values
for the spin projection is given by the factor 2. In view of this, we obtain:

N =20¢m)piv(@ah)™ or po=Hh(37 N/ AR (2.5)

We now turn to T # 0. The distribution function in this case is given by the dashed
curve in fig. 6. The width of the “smeared-out” region is of the order of T. This is
associated with the fact that some of the particles, after having received an extra
energy of order T, escape from the Fermi sphere. The equilibrium state at T#0
and, in general, any excited state can be generated from the state at T =0 by way
of successive displacements of particles from the interior of the Fermi sphere to the
outside. Each such act results in a particle outside the Fermi sphere and a free site
or an “antiparticle” inside it. These particles and antiparticles represent in this case
the quasiparticles of the excited state®. Their energy must be counted from the
Fermi level w(0). Quasiparticles of particle-type have momenta larger than p, and
their energy is given by

2

Ja 13
2m 2m

fp(P) =

If p—po< po, then

£~ v(p— Po);
where v, = po/ m is the velocity at the Fermi sphere. On the other hand, quasiparticles
of antiparticle-type have momenta smaller than p, and their energy must be counted
in the opposite direction:
2 2
Po P :
ga( Pl = Sec

2m 2m

* The “antiparticles” constitute a full analogy to anti-particles in the theory of elementary particles
(for example, the positron). The term “holes” frequently used for such quasiparticles is unjustified in
our opinion because this term is used to denote another object: vacant sites in an unfilled band (Section
2.3).
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or

£.(p)=v(po—p)

if po—p < po. Such counting-off of the energy is due to the fact that the creation of
antiparticles in the depth of the Fermi distribution requires a larger consumption
of energy than at the Fermi surface.

According to the Landau hypothesis, the spectrum of quasiparticles in an isotropic
Fermi liquid with a strong interaction between the particles is constructed in the
same way as for the ideal gas. This means that there exists a certain value of po,
which is connected, in accordance with the Landau theory, with the density of
particles by the same relation as in the case of the ideal gas (formula 2.5). There
are two types of quasiparticles: “particles” with p> p, and “antiparticles” with

p < po- Their energies for the case | p — Pol < po are, respectively, equal to
fsz(P—Po); fazU(Po_P)- (2.6)

However, in this case v is simply a certain unknown coefficient, which has the
dimension of velocity. Instead of v we may introduce another coefficient with the
aid of the following relation:

9 =pfm ' (2.7)

The constant m* with the dimension of mass is called the effective mass™.

As has been pointed out above, these assumptions of the spectrum have been
verified in a rigorous but rather complicated manner, but we can offer a simpler
reasoning. If the state corresponding to the presence of a quasiparticle is not a true
stationary state of the Fermi liquid, it must attenuate with time due to transitions
to other states. The corresponding wave function will thus have the form

exp[—i g(;;)t*:}iélt}. | (2.8)

We may meaningfully speak of quasiparticles only in those cases when y < |£]. We
have therefore to estimate y. Evidently, it is proportional to the probability of the
transition of the state under consideration to other states.

Let us first define this probability for a weakly interacting gas. If there is a particle
1 outside the Fermi distribution, then the process of first order in the interaction
will be as follows (fig. 7). Particle 1 interacts with particle 2 inside the Fermi sphere,
following which the two particles pass over to states 1’ and 2' outside the Fermi
sphere. Because or the Pauli principle this is the only possibility. The law of
momentum conservation requires that "

pitp.=pitps

* In various books and articles the term “effective mass™ is used for rather diverse quantities with the
dimension of the mass. We shall use this term only for the isotropic spectrum.
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Fig. 7.

and, in accordance with what has been said above,

P11~ Pos P2< Pos P1> Do, P> Po-

The momentum conservation is shown graphically in fig. 8. The planes (p1, p,) and
(pi,py) donot coincide, generally speaking, and in fig. 8 they are simply superposed

by rotation.
The scattering probability is given to within a constant by

WOCI o(e,t+ £,— €4 — £2) d’p, d*pi.

The integration is carried out only over p» and p, since p5 18 determined by the
law of momentum conservation. The angle between the vectors piand p3is actually
specified by the law of energy conservation. The integration over this angle eliminates
the 8-function. It now remains only to integrate over the absolute values of the
vectors. 2 :

Suppose that p, is close to po. Then, all the remaining momenta will also be close
to p, in absolute value, and, consequently, in fig. 8 they will make nearly equal
angles with the horizontal line (with the sum p;+ p»). Hence, from the relationship
between the projections on this axis we can write the relation between the absolute
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values: pi=p,+p,—ph. Since p5> py, it follows that we have p} <p;+p,—po. But
at the same time p} > po, from which it follows that p, + p,—po™> po O p,>2po—p1-
The upper limit for p, is p,. Thus, we have

0>p,—po=po—P1>» 0<pi—po<(pi—po)+(p2—po)

On integration we obtain

J dp, dp} :%(Pl *Po)z-
Hence,

yoc Wee(pr—po)’. (2.9)

The complete formula for y can be obtained from dimensionality considerations.
It must be proportional to the square of the interaction constant and, according to
the above calculation, to the quantity ( p — py)°. Following this, we have to introduce
a further factor made up of p,, m and # in such a manner that the result has the
dimension of en:rgy.
Let us now tarn to a strongly interacting system. As the interaction constant
increases, other processes involving a larger number of particles may, in principle,
become important, but it can be shown that the probabilities of such processes will
contain higher powers of p— p,. Hence, at | p — po| < p, the process in question will
nevertheless preJominate, i.e., we will again have yoc(p— po)°. As for the other
factors, we have to take into account the fact that in the liquid, whose volume is
determined by the forces of particle interaction rather than by the walls of the
container, the density is always such that the average kinetic energy of the particles
and their potential energy of interaction will be approximately equal. It means that
there is only one energy scale - the Fermi energy w(0) or pov. From this it follows

that the quantity with the dimension of energy, which is proportional to (p—po)’,
must be equal to

y=a— (2.10)

where a ~ 1.

As has been said above, the quasiparticle concept is valid at y<|&|. This really
occurs near the Fermi level, i.e., at |£| < u. This justifies the above assumption of
the spectrum in the vicinity of the Fermi level, i.e., for quasiparticles with small
energies &

If we deal with an equilibrium Fermi liquid at T # 0, the quasiparticles in it

~ always have an energy ¢~ T. The attenuation y will be of order T?/u. It follows
" from this that the description of the liquid in terms of quasiparticles will be valid

only as long as T < p.

The quantity p can be estimated using the gas model. For electrons in a metal
the value of #/p, (the de Brogliec wavelength) is of the order of interatomic spacings,
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i.c.. 10°® cm and, hence, po~ 10" g- cm/s. It then follows that p5/2m ~1-10eV
or, dividing by Boltzmann’s constant, we find

T<T,~10*-10° K. (2.11)

This condition shows that the quasiparticle picture can really be applied to solid
metals at all temperatures because T, is appreciably higher than the melting point
in all cases.

Formulas (2.6) for the energy spectrum of quasiparticles may be written in a
unified manner in the following form:

eqp=1é,  E=e(p)—n (2.6")
Here it must be kept in mind that the “antiparticles” have a charge which is opposite
to the charge of the “particles”. However, we may introduce another, more familiar
object. Let us visualize an ideal Fermi gas with a density N /' V, which is composed
of particles with a mass m*. The spectrum of quasi-particles of such a gas is the
same as in the case of the Fermi liquid. Therefore, such an ideal gas may describe
the properties of a real interacting system. However, one has to bear in mind that
the properties of the gas model that depend on the particles located far from the
Fermi level do not correspond to a real Fermi liquid. In what follows, depending
on the convenience, we will make use of both pictures: the gas model or quasiparticles
with the spectrum (2.6").

2.3. The anisotropic Fermi lﬂquid

All the results described above refer to an isotropic Fermi liquid. In order to ascertain
the meaning of the electronic spectra of metals, we first “turn off”” the interaction
of electrons or, more precisely, we will consider a gas composed of noninteracting
electrons placed in an averaged periodic field. The states of one particle in such a
field have been considered in the preceding chapter. It has been shown that the
energy levels form bands separated by forbidden portions (energy gaps). Each band
has 2N states, where N is the number of unit cells in the specimen.

If there are many noninteracting particles, they are distributed in some way
between these states. At T =0 (and in metals practically at all temperatures below
the melting point) all the lower states will be occupied up to a certain maximum
level (the Fermi energy) and all the higher states will be empty. There are two
possibilities here.

(1) The Fermi level coincides with the upper edge of one of the bands, so that
some of the bands are completely filled and the others are quite empty. In this case,
not too strong an electric field cannot produce electric current. This follows from
the fact that in the equilibrium state to each electron with momentum p there
corresponds another one with momentum —p since £(p) is an even function of the
momentum. Therefore, there is no current in the equilibrium state. In order to
produce current, it is necessary to redistribute the electrons between these states.




13
Fermi-liquid effects

! 13.1. Interaction of quasiparticles

In ch. 2, while speaking of the correspondence between a liquid consisting of Fermi i
particles (a Fermi liquid) and an ideal Fermi gas, we deliberately omitted one _
1 important point. According to the Landau theory, there is one important distinction [
between the spectra of the quasiparticles of the Fermi liquid and those of the i
quasiparticles of the Fermi gas. While in the case of the Fermi gas the shape of the
energy spectrum (2.6) is determined by the energy of a free particle alone, in the
Fermi liquid a significant role is played by the interaction with other quasiparticles,
which is not weak, generally speaking.

In ch. 2 we have found out that that this interaction does not lead to a strong
damping if the energy of the quasiparticle is close to the Fermi energy. But this was
associated not with the weakness of the interaction but with the form of the Fermi
spectrum (the presence of an occupied Fermi sphere). The fact that the interaction
is not weak manifests itself, in particular, in that the effective mass of quasiparticles
may be appreciably different from the mass of free particles (for example, in liquid
*He at a low temperature m* = 3m>,,.: in metals this difference is smaller: see ch. 14).

According to the idea expressed by Landau (1956), the interaction of quasiparticles
may be introduced as a certain self-consistent field generated by surrounding
quasiparticles, which acts on a given quasiparticle. But here the energy of the
uasiparticle will evidently depend on the state of other quasiparticles, i.e., in other
words, it will be a functional of their distribution function®.

In such a case, the following questions arise. First, how can this energy be
etermined ? Second, what is the equilibrium distribution function? Third, how can
nonequilibrium function be found? In other words, strictly speaking, one has
econsider all the derivations and results obtained before, since they have, in
ct, used the gas model without taking account of the dependence of the energy
ectrum on the distribution function.

s will be shown in this chapter, this new circumstance, in effect, does not prove
e important, with rare exceptions. In some cases it leads to numerical differences

n this chapter, the term “quasiparticles” is used to describe particles of the gas model of the Fermi

But, in contrast to the preceding chapters, the interaction of quasiparticles will be taken into
t.
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264 Fermi-liquid effects [Ch.13

but does not alter the order of magnitude of the result. But there are phenomena
which occur exclusively due to the dependence of the spectrum on the distribution
function. Such phenomena are known as Fermi-liquid effects. For the sake of
simplicity, we shall consider the isotropic model in the following.

In this chapter we shall use a different notation for the distribution function,
namely n(p, r). This is because the letter f in the theory of the Fermi liquid always
denotes the Landau function (see below) and the use of another symbol for the
latter seems to be unreasonable.

We begin with the energy of quasiparticles. Let the total energy of the system be
E[n], where [n] signifies the functional dependence on the distribution function.
It is natural to define the energy of quasiparticles as follows.

With a small change in the distribution function Sn the variation of the total
energy per unit volume is given by

3

' p
OE = o) én(p, o) -3
§ j (p, o) dn(p, o) Qah) (13.1)
where ¥ denotes the summation over spin projections. The quantity (p, o) is
naturally regarded as the energy of quasiparticles. Indeed, if one quasiparticle of
momentum p; and spin projection o, appears, then én(p, o) = (27#)>8(p—P1)8oo,-
But in this case 8E =£(p1, o).

Generally speaking, along with the momentum and spin, the coordinate should
be introduced here. However, actually, because of the wavelength of electrons being
of the order of interatomic distances, the inhomogeneities of the distribution function
under consideration, with characteristic dimensions much larger than the interatomic
distances, will not affect the energy of quasiparticles.

It is convenient to write formula (13.1) in a different form. If the spin of the
electron ‘plays a significant role in the problem, then, instead of this distribution
function, one has to employ a so-called statistical operator or a density matrix:
n(p, o). Here, the average value of any quantity, to which the operator A dependent
on the spin and momentum operators corresponds, is expressed by the formula

3

A=8p [An(p, a)(—z;fl—)g. (13.2)

In particular, formula (13.1) may also be written in this form:

i (13.3)
5E=Sp. | e(p, o) én(p, o) ——=3- 13.
The determination of the energy of quasiparticles in accordance with (13.3), as we
shall prove, gives a Fermi distribution in the case of equilibrium. To this end, W€
write the formula for the entropy:

)

S=-Sp, J {nln n+(1—ﬁ) ln(l—n)}—(fﬂ_—::?. - (134)
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The validity of this formula as applied to quasiparticles in a Fermi liquid is proved
by the fact that it is of purely combinatorial origin, and for quasiparticles the Pauli
principle is valid just as for particles of a Fermi gas. Let us now find the maximum
of the entropy, requiring that the number of particles and the total energy be constant.
This can be done by seeking the maximum of the expression

S'=S+aE+ BN,

where a and B are undetermined Lagrange multipliers. By varying this expression

with respect to n, from the condition 8S'=0 we find the equilibrium distribution
function:

no(e) = "F(S):[e(s_#)/T+1]_l, (13.5)

where u and T are expressed in terms of a and B.

; Formulae (13.5) and (13.3) immediately prove the correctness of the definition

of heat capacity in section 2.4. Formula (2.18) corresponds only formally to (13.3).
In fact, there is a distinction between these formulas, since eq. (2.18) ignores the
variation of & upon variation of the distribution function with temperature. However,

-~ this gives only small corrections to the heat capacity, of the order of (T/u)>.

13.2. The Landau function

Although the dependence of the spectrum on the distribution function does not
manifest itself in the heat capacity, it nevertheless does occur. If E is a functional
of n, then this is also valid for &. With a slight variation of the distribution function
he function & acquires a correction, which may be written in the form

3

p
(2mh)*

8e(p, o) =Sp,- jf(p, o;p,a)én(p, o) (13.6)

Since the function f is a second variational derivative of the total energy, it is
ymmetrical with respect to the transpose of the arguments, i.e.,
fp,o;p', 0")=f(p’, 0'; p, o).

The existence of relation (13.6) manifests itself, first of all, in the kinetic equation.
section 3.2 in deriving the kinetic equation we had

‘dn on (an) dr (an) dp
—=—+(=) =+(Z) 2,
~dr o \or/ d: ap/ dt

quantity dp/d¢ was determined by the acting force. It was presumed that the
force that arises comes from the external field. However, in the case under

deration, due to relation (13.6), the energy of quasiparticles begins to depend
coordinate via the distribution function n. This implies the appearance of a
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e action on a given quasiparticle of the self-

potential energy, which describes th
Hence, we must now write

consistent field of the other quasiparticles.

4 dp de
b ST L
dt ar

f

an d’p
= E_S o’ 3 5 17 ¥ o
‘ £ jf(p by’ a)ar (2ah)’

Thus, an additional term appears on the left-hand side of the kinetic equation.
If we assume that n= nol€o) + 11, where g, is the energy at equilibrium at T=0,
and retain only terms linear in n,, then the additional term has the form

ang an, d’p'
—— v 5P, Lo, P, O) T
>, UhP jf(p p.o) 7, k)’
Finally, if we seek m in the form n, = — pdny/ de, then by dividing the entire equation
by dny/de wWe obtain the additional term in the equation for ¢ in the form

r

v i J_a_- r r'L
f(%ﬁfspa-jf(p,ﬂ,p,rr)ardf(r,p,a) o

where the momenta p and p’ are on the Fermi surface.
y be written in the form

Thus, the kinetic equation ma

a9 st , 45
ar+”ar(‘p+5p"'Jf(P’"’P’“W(p"’)v(zwﬁf)

(13.7)

—evE = I(¢).
e term appears on the

In the presence of not
left-hand side of the kinetic equation:

0 ]
E[ﬁ H]J’__
clop ap

In the zeroth approximation this gives zero since Mo depends
approximation one has to take into account the term with ¢ not onl

also in dg/dp. A simple calculation shows that this leads to the appe
(13.7) of the following term:

too strong a magnetic field one mor

only on & In the first
y in an/ap but
arance in €4

s ds’
E[UH] é;(.,l;+Sp,,r j f(p, 8;p,a)V(p' a') W)

The operator (e/ c)[vH19/dp 1s nothing else than 8/ at,, where b is:-sthe.-variable

introduced in section 5.1.
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Consider the collision integral. It is obvious that it vanishes only if n,(e) with a
real energy £ rather than ng(e,) is substituted into it. We may write

an d’p’
n=ny(eo)+n, = ny(e) _8_80 Sp.- J-f n (27 h)3
Substituting here n, = —ysdn,/de, we obtain
_ onl ds’ ]

Since the collision integral vanishes upon substitution of ny(e), it evidently follows
that it will depend on the function

ds’
¢=4+5p. u{gqrﬁ)s | S

in the same way as it was dependent on ¢ at f=0.
Let us now find the expression for the electric current in terms of -
[ de d’p
— 5
Jop (2uh)’

r d3p J J d3p dsp’
. o8,
¢5Po | UMig gy € PPa I ) Qb )

J=eSp,

- B g [ B
=eSp, | vn —eSp,..
J=E5Pe | Bl hy € PP | " 2nh) Qnh)

Finally, substituting n; = —¢an0/ de, we have

ds
—eSpaJ[¢+Spa Jﬂlf 2ah) ]vv(zwﬁ)y (13.9)

- Thus, it turns out that with the f-function taken into account the expression for
he current and the collision integral depend on the combination of ¢ in (13.8) in
¢ same way as they were dependent on ¢ at f=0. It can easily be shown that this
valid for the heat flux as well. If ¢ is independent of the time or @ is much
Kallcr than the characteristic frequency for the problem under consideration, then
€ term 9¢s/dt is absent on the left-hand side of the kinetic equation (13.7). But in
this case too, it contains the same combination of ¢ (13.8). It thus follows that in
he phenomena considered earlier, for which it may be assumed that @ =0 in
dnetic equation, the presence of the f-function plays no role whatsoever.
function f plays a role only in those kinetic phenomena for which the term
in the kinetic equation is important. However, even in this case it does not
s occur. Consider, for example, the anomalous skin effect or cyclotron reso-
(see ch. 7). We have found that the function ¢ 1s almost 8-shaped: ¢y o< 8(v,),
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where v, is the velocity component normal to the surface. Of course, the function
s has also a smooth part, but in the problems under discussion it is not important.
It is not difficult to sec that upon substitution of the s-function into the integral
(13.8) we obtain a smooth function. Hence, the §-shaped parts of the functions ¢
and ¢ are identical. Thus, the difference between ¢ and ¢ may be ignored, which
completely justifies the calculations performed with the function f being neglected.

Finally, in some of the problems discussed earlier in this book the term dys/at is
essential and at the same time the y-function does not exhibit a 5-shaped character.
For example, this refers to the problem of the propagation of magnetoplasmon
waves in an even metal. In this case, the term vay/dr is not essential, but the term
dr/at 1s present. The difference from the case with f=0 consists in the following:
in the current and in the collision integral s 1s replaced by ¢ = Ly, where L is a
real linear integral operator. By order of magnitude L~ 1

From the foregoing it follows that the statement that at o7>1 the kinetic
coefficients will depend on —iw in the same manner as they were dependent on 7!
at wr<1 is still correct in order of magnitude and with respect to the complex
nature of the coefficients. But the quantity 7 itself was determined only by order of
magnitude. Hence, the presence of the function f in this case does not lead to a
qualitative change in the results. However, in concrete calculations with a given
form of the spectrum the function f must be taken into account.

Thus, practically in all calculations where we can apply the concept of the
quasiclassical electron moving along an orbit, the Fermi-liquid effects do not practi-
cally manifest themselves. It is for this reason that in order t0 avoid complications
in calculations and in their interpretation we have not introduced the f-function in

the preceding chapters.

13.3. The role of the interaction of quasiparticles in
paramagnetic susceptibility

In section 10.1 we have considered the simplest quantum phenomenon - spin
paramagnetism. According to formula (10.2), the par_amagnetic susceptibility X
contains a single characteristic of a given metal: the density of states v(p), ie., the
same quantity which, according to formula (2.28), determines the electronic heat
capacity. As has been noted in section 3.1, the formula for the heat capacity is n?t
changed when account is taken of quasiparticle interaction. However, as we Wi

show below, the function £, while not altering the order of magnitude of X; leads

to a change in its particular value®.

% In metals the exact value of x is not of great interest since only the total susceptibility C%“_l."-:

measured, and the calculation of the diamagnetic part presents serious difficulties. But ther_e cmﬁ{ 2
neutral Fermi liquid - liquid 3}e - which exhibits only spin paramagnetism. Then, by companifg X it e
the heat capacity one can extract information about the function f.




