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SPIN GLASS I:
A SCALING LAW RESCUED

Philip W. Anderson

The history of spin glass may be the
best example I know of the dictum
that a real scientific mystery is worth
pursuing to the ends of the Earth for
its own sake, independently of any
obvious practical importance or intel-
lectual glamour. If a phenomenon
seems likely to contradict the funda-
mental principles you thought you
understood (that’s what I mean by a
real mystery—so long as you also
believe the experiments!) you should
stick with the phenomenon. This
fundamental dictum of good science is
increasingly neglected by our masters
who provide the money; spin glass is
even less popular with them than
superconducting materials were be-
fore 1987. The pursuit of the spin
glass mystery led, inter alia and aside
from all the good solid-state physics
that resulted, to new algorithms for
computer optimization, a new statisti-
cal mechanics, a new view of protein
structure, a new view of evolution and
new ideas in neuroscience.

But it all started with some very
simple physics. Measuring magnetic
resonance and magnetic properties of
dilute magnetic ions in insulators
(such as Mn in ZnO) to probe magnet-
ic interactions was a very useful game
played in the 1950s and early 1960s by
John Owen, among others. At about
the same time, he and the Berkeley
magnetic resonance group of Arthur
Kip, Walter Knight, Charles Kittel
and others tried diluting manganese
into the nonmagnetic metal copper to
test the proposed Ruderman-Kittel-
Kasuya-Yosida interaction between
spins via free electrons, and to sce
whether the free electrons’ exchange
interaction with the magnetic ions
affected their resonance behavior—
that is, to see if there was an electron
magnetic resonance equivalent to the
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Spedific heat of Cu-Mn alloys at low remperatures is independent of the
rmanganese concentration, and it varies linearly wirth remperarure when
the confribution due to pure copper is subfracted. In the range of
manganese concentrations shown here, the low-remperature properies
of the alloy are dominared by the interaction between magneric
moments on manganese aroms, which leads ro the spin glass behavior.
(Adapted from J. E. Zimmerman, F. E. Hoare, / Phys. Chemn, Solids 17, 52,

1960.)

nmr Knight shift and the Korringa
free-electron relaxation of nuclei.

This simple set of experiments
opened up at least two cans of worms.
The physics of the effect of the free
electrons on the individual Mn ions is,
of course, closely related to the Kondo
problem and the Anderson model, but
this is not our worm-receptacle of
choice. We are interested in what
they saw when the samples contained
0.1-10% manganese and the behavior
was dominated by the ion-ion interac-
tions.

The magnetic resonance effects
were not very instructive at the time,
involving complicated physics that
was actually one of the last areas to be
clarified. I will discuss this physics in
a later column. What first attracted
attention were simple thermodynam-
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ic measurements such as those of
magnetic susceptibility and specific
heat.

The extra specific heat at low tem-
perature was perfectly linear in T,
with a slope about five times that of
the background copper, independent-
ly of concentration, but then the extra
specific heat peaked at a concentra-
tion-dependent temperature T, and
dropped down at a rate one could
imagine to be approximately 1/7%,
(See the figure above.) The suscepti-
bility y rose from a constant value to
an (apparently) broad peak near Tor
then fell off at a good approximation
to the Curie law y = C/T (C is the
Curie constant) with the right Bohr
magneton number for Mn* * with its
£=2,8="7, ground state.

After a bit of to-ing and fro-ing, a
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group at Grenoble showed that for
these “classic spin glasses” (as they
much later came to be known) all of
these data fit onto a single universal
curve with the temperature, energy
and entropy scales all linearly propor-
tional to concentration. We know
now that this is a good confirmation of
the extraordinarily simple underly-
ing physics—that the dominant term
in the Hamiltonian for the magnetic
moments of solute atoms is the RKKY
exchange integrals

Jr,) = Jt,%cos@k ery)

where kp is the Fermi momentum.
These RKKY exchange integrals fall
off slowly with distance and alternate
in sign.

In these random, dilute solutions
this behavior has the effect of ran-
domizing the exchange integrals
(since 1/(2kg) is less than an inter-
atomic distance) and each spin sees
quite a few neighbors with each of
which it has an exchange interaction
that is random in both sign and
magnitude. The probability distribu-
tion of these exchanges has a scale
proportional to (1/r*,,., which is in
turn equal to the density of solute
atoms. The form of the probability
distribution, however, is independent
of the density except for the scale.

A 1987 postscript to this story was
written by Michael Stephen and Eli-
hu Abrahams. The long-range
cos(2kpr)/r® form occurs because of
the sharp drop in occupation of free-
electron states at kp. Pierre-Gilles de
Gennes had proposed, long before,
that scattering of the free electrons by
impurities reduced the range of this
effect by a factor exp( — r/l), where [
is the mean free path of the electrons,
by dephasing the electronic wave-
functions at the Fermi surface; this
unfortunately would ruin the scaling
law for the probability distribution of
the interaction. Until recently this
argument was universally accepted,
but it turns out not to be true, as
Stephen and Abrahams have shown:
The distribution is almost unchanged
by scattering, because scattering
merely shifts the phases of the wave-
functions near the Fermi surface
without changing their relative
phases in any given sample. Thisisa
vital key to the properties of real spin
glasses, and in addition restores the
scaling laws.

But, as you'll see in my subsequent
columns, aside from the scaling law
(which has only just been rescued)
none of the features of these measure-
ments were to be understood for
another 20 years or more, and the real
physics is still a problem. | |
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SPIN GLASS II:
IS THERE A PHASE TRANSITION?

Philip W. Anderson

In the late 1950s and early 1960s Jim
Kouvel, then at GE, and Paul Beck's
group at the University of Illinois
spent a lot of time exploring a phe-
nomenon Paul called mictomagne-
tism. This phenomenon took place in
dilute solutions of Mn atoms in Cu
{and of other magnetic atoms in other
nonmagnetic metals); I discussed
these materials in my column in the
January issue (page 9). These solu-
tions, as I remarked, seemed to have
small linear magnetic susceptibilities
of typically paramagnetic magnitude
{a few times 107" in dimensionless
units). But Kouvel and Beck showed
that the solutions exhibit, at a tiny
scale and at very low temperatures,
and in addition to the linear suscepti-
bility, many of the phenomena typical
of ferromagnetism: hysteresis, re-
manence and so on. In some ways
these solutions are more hysteretic
than ferromagnets, in that they can
remember the sign and direction of
the field they were cooled in, even
when one applies an opposing field
large enough to polarize them in the
opposite direction.

Meanwhile Bernd Matthias and the
rest of us at Bell Labs were very
interested in the possibility that mag-
netism and superconductivity might
coexist. Within the BCS theory the
two should be quite incompatible, and
in many cases they are; but (some 30
vears too soon!) Bernd was deter-
mined to show that in at least some
cases there would be a close relation-
ship. In some of his dilute solutions of
magnetic ions in superconductors
(like Gd in CeRu,) he noted the
presence of the vague susceptibility
peaks and remanences characteristic
of spin glasses, and so he said: “Aha!
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Ferromagnetism and superconductiv-
ity are not incompatible!”

I always tried to listen more care-
fully to what Bernd's results said
than what he said, since he had little
regard for fine distinctions in statis-
tical physics (like that between ferro-
and antiferromagnetism, for in-
stance, or between these and some
vague bump in the susceptibility),
but this is a case where he got to me.
I was so certain that the transitions
he was talking about were not true
ferro- or antiferromagnetism that I
failed to note what he had noted,
that the transitions seemed remark-
ably sharp. I was particularly cer-
tain that a magnetic transition
would involve a significant change in
entropy and hence would certainly
dominate the tiny energies and en-
tropies of the superconducting state.
(This was almost a decade before
1972, when Michael Kosterlitz and
David Thouless, following my work
on peculiar one-dimensional models,
first showed that a phase transition
could show no specific heat singular-
ity at all.) Yet these bumps didn’t
seem to disturb the superconducting
transition very much, which I felt
meant that they were not phase
transitions.

It is a bit ironic that only two or
three years later, in 1965, an obscure
Jjournal called Physics, edited by none
other than Bernd and myself, pub-
lished the first evidence that there
really was a spin glass transition,
without either of us (or possibly even
John C. Wheatley, the author) notic-
ing. Wheatley was interested in test-
ing his then new squiD magneto-
meters in an interesting system and
chose these same dilute solutions of
Mn in Cu. His susceptibilities (mea-
sured, perforce, in a tiny magnetic
field) followed a very precise Curie
law C/T for each solution down to a
temperature T,., which was very ex-
actly proportional to concentration,
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and then, as abruptly as he could
measure, stopped changing with T
and became constant. (Note that
unlike the older measurements,
Wheatley’s did not exhibit a peak,
because he cooled in a fixed magnetic
field; a constant value of the suscepti-
bility is characteristic of spin glasses
when they are cooled in such a field.)

It was not until 1970 that the key
measurements that woke the rest of

- us up to this peculiar transition were

made—by Vincent D. Canella, John
A. Mydosh and Joseph I. Budnick.
This group measured ac magnetic
susceptibilities with sensitive, but
more conventional, methods, and dis-
covered that the key variable is the
magnitude of the measuring field. At
1000 gauss, there is only the conven-
tional vague hump; at 1 gauss, a
sharp, cusp-like peak appears whose
width is less than 1% of T.. Yet 1
gauss is 10~° the magnitude of the
internal field, since 7. is approxi-
mately 10 K. This tremendous non-
linearity is the appropriate character-
ization of the transition; later mea-
surements, by P. Monod and Héléne
Bouchiat, for instance, showed that
the nonlinear susceptibility &y/dH*
diverges as (T'— T.)~ %, where P is
greater than 1. Thus, experimentally
there is no doubt that the transition
exists and is an equilibrium transi-
tion, since the nonlinearity can be
measured above the transition point,
where no one doubts that equilibrium
is established in the system—after all,
its natural relaxation frequency
should be about 10'*-10'* sec '
Nonetheless, no measurement has
ever revealed a specific heat singular-
ity at H=0. As we shall see in the
next column, the theoretical accep-
tance of a true phase transition, as
well as an understanding of its na-
ture, was much slower to come; and
the most striking feature, the nonlin-
earity, is yet to be calculated, even
roughly. ]
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THEORY RAISES ITS HEAD

Philip W. Anderson

Sam Edwards was finishing out his
term as head of the SRC, the British
equivalent of the NSF, during the
winter of 1974-75, after being ap-
pointed to a professorship at Cam-
bridge. (He is now Sir Sam, the
Cavendish Professor, successor in
that chair to James Clerk Maxwell
and four or five Nobel laureates,
including Sir Nevill Mott.) Being
Sam, he was unfazed by the full-time
SRC job and needed research to do on
the train back and forth to London, so
he dropped in every Saturday at the
Cavendish Laboratory for coffee and a
chat with me and the theory group. I
made a point that year of being there
on Saturdays as well as during the
week, and we did a lot of talking about
localization and the “Fermi glass”
(that is, the problem of electrons fro-
zen in place by localization and inter-
actions), the theory of liquids and the
glass transition, and other problems
of mutual interest.

One of these problems was that of
dilute magnetic alloys, which seems
to have acquired the name “spin
glass” in a 1970 paper I wrote with
Wai-Chao Kok (now at Singapore
University) for a 65th-birthday fest-
schrift for Mott in the Materials
Research Bulletin. (See my columns
in the January and March issues of
pHysics Topay.) I described to Sam
the old mystery of continuous, dis-
ordered freezing in these alloys, and
the new mystery of the sharp cusps
and nonlinear behavior that John A.
Mydosh had reported. Sam’s ears
pricked up. He had a notebook full of
methods he had been trying on gela-
tion, the glass transition and various
polymer questions, but had been frus-
trated because these are not clean,
well-posed problems. (He had also
tried the methods on localization; and
later, in the hands of Franz Wegner
and Shinobu Hikami, they did work
reasonably well on that problem—but
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some extra frills were needed.) I was
convinced that the random Heisen-
berg Hamiltonian

H= ;‘;Ju-si -8;
where 8; is a classical spin vector at
site i and J; is the interaction
between the spins on sites i and j, was
almost certainly the proper state-
ment of the spin glass problem. Sam
was overjoyed when he learned this,
because here was a nice clean prob-
lem to work his methods on.

The methodology of the resulting,
justifiably famous paper was almost
entirely his. (That’s why I can make
such an immodest statement.) But
the basic physical concept we worked
out together. We decided that the
thing to do was to ignore the spatial
ordering, that is, to neglect the long-
range ordering of spins in space, if
any, and instead to look for long-
range order in time. Richard Palmer
later named this concept “nonergo-
dicity” because it means, when pres-
ent, that the system does not explore
all possible states in the course of
time. As the measure of long-range
order in time, we introduced g, which
is the average correlation between a
spin S, measured at one time and the
same spin measured a macroscopic
time ¢ later. The equations are

qlt)= <S|(O)S|u)>aw over i
g = lim g(¢)

{—e

First we did a little physical calcula-
tion of the transition temperature
below which g became nonzero. One
separates out one of the sites, say i,
and assumes that all the neighboring
sites have a finite value g, of the “spin
glass order parameter” gq. Then one
calculates the correlation enforced on
site i by the effective fields due to the
other sites, and finally one averages it
over all sites i in the sample. For self-
consistency, the order parameter thus
calculated must have the value g,
initially assumed for sites that are
neighbors of i. The order parameter
we calculated,

Go = (£8,(0)8, (0 Dave ave over i
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had a nonzero solution below a cer-
tain 7.. (The subscript “ave” stands
for the statistical mechanics average
over thermal fluctuations.)

Much more devious is Sam’s so-
called replica method of calculating
thermodynamic properties. To do
thermodynamics properly, one must
average extensive quantities such as
free energy and entropy. These are
all derivable from the logarithm of
the partition function

Z =Tr exple —°")

which grows exponentially with the
size of the system. It is dangerous—in
fact wrong—to average the partition
function in random systems like the
spin glass. This is bécause the parti-
tion function fluctuates too much:
Special configurations, such as re-
gions where all the J;;'s are acciden-
tally positive, will dominate its aver-
age value.

The key point of principle that
makes studies of the spin glass and
similar systems difficult problems is
this: They are “quenched” random
systems, with the values of J; fixed
for all time by the conditions of
preparation of the sample. But we
want to average Over Mmacroscopic
samples, in which many different
configurations of J;;'s occur, in such a
way that the average represents the
behavior of a fypical system and is
the proper “extensive” or “intensive”
thermodynamic quantity that varies
sensibly with the size of the system.
Sam recalled the obvious identity

m—1
o B L =1
m—=0

The necessary average is then that of
the m-th power of Z, not of its log; but
when m is small this is no easier.
Now we do an outrageous thing:
We note that the average of Z™ for
m=1234,...1is calculable because
it is the average of an exponential
containing J. For m an integer,

Zny="Tr J‘exp( -8y z JUSf-Sf)
5% a=1K
X P(J ;)

PHYSICS TODAY  JUNE 1988 9



REFERENCE FRAME

which is the average over m identical
“replicas” of the system. If

P(J;) < expl( — Ju_ﬂ_,‘zﬂ;

this integration is easily done. It
gives rise to the following type of
statistical problem:

- {22 (55

This is no longer a random problem,
but a regular one. It is more difficult,
however, because it is biquadratic in
spins. It can be solved in mean-field
theory—assuming that S¢ and S7 are
uncorrelated (correlation only gives
terms of order m?) but that S7 and S
are correlated. It can also occasional-
ly even be solved by renormalization-
group methods. But one has the
awful problem of extrapolating from
all positive integral values of m to
small m. In principle it is not rigor-
ous to take the limit as m goes to 0
when the function is known only for
integral values of m. In practice,
however, it turns out to be easy since
one keeps only terms of order m.
What is more, so far none of the real
difficulties encountered in the spin
glass theory seem to have come from
failure of the mathematical exten-
sion to m—0! Recently Haim Sompo-
linsky (Phys. Rev. B 25, 6860, 1982)
and Miguel Virasoro (Europhys. Lett,
1, 77, 1986) have given us some ideas
about why that is true.

In the mean-field solution the “Ed-
wards-Anderson order parameter” g
reappears in a new guise, as a replica—
replica correlation function

Gag = <{S7-8f>

Thus in some real sense the different
replicas represent very widely sepa-
rated instants in time at which we
choose to look at the same system.

Sure enough, the mean-field theory
we worked out showed a nice sharp
cusp in the susceptibility, in qualita-
tive agreement with experiment, and
weakly nonlinear behavior, qualita-
tively correct but too small. Unfortu-
nately it also gives a cusp in the
specific heat, which to this day has
never been seen, and which is surely
unphysical for real, finite-dimension-
al spin glasses. Nonetheless the re-
sult, giving a sharp freezing transi-
tion and describing a true nonergo-
dicity, seemed sufficiently promising
that we felt that the replica method-
ology was the doorway into the prob-
lem and that final solutions were just
around the corner.

Little did we know! See next time,
when I reveal the Negative-Entropy
Catastrophe. ]
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SPIN GLASS IV:

GLIMMERINGS OF TROUBLE

Philip W. Anderson

In my last column (June, page 9), it
seemed as though Sam Edwards's
beautiful “replica” scheme had
brought us to a highly satisfactory
resolution of the old problem of mag-
netic systems with random exchange
interactions—what we now call
“spin glasses.” (In the replica meth-
od, one calculates the partition func-
tion of n replicas a of the same
random Hamiltonian, averages over
the randomness and takes the loga-
rithm by studying the formal limit
as n—0: an indirect, shaky but often

useful procedure) In 1975 David

Sherrington, who had been Sam’s
student and is now at Imperial Col-
lege, London, tried applying the
methods and ideas of the Edwards-
Anderson paper to an especially sim-
ple model in which the “mean field”
version should certainly be exact. In
Sherrington’s model, every spin in &
macroscopic sample of N spins is
connected by a random exchange
integral J;x1/YN to every other
spin. This is precisely the kind of
artificial system for which mean-
field theory is exact in other magnet-
ic models. Sherrington brought the
model with him that summer on a
visit to IBM (Yorktown Heights),
where he worked with Scott Kirkpat-
rick. The model is now famous as
the SK model. Their conclusion was
that the EA method led to a solution
that, while superficially plausible,
was unequivocally nonsense—specifi-
cally, they showed that as the tem-
perature approached zero the calcu-
lated entropy passed through zero
and became negative. Since entropy
is the log of an integer (the number
of states at energy E), its acquiring a
negative value is forbidden in statis-
tical mechanics. The energy near
T = 0 also seemed to be a little lower

Philip Anderson is o condensed marter
theorist whose work has also had impact
on field theory, asrophysics, compurer
science and biology. He Is Joseph Henry
Professor of Physics ot Princeton Universiry.

© 1988 American Irsrinte of Physics

(by about 2 percent) in the SK solu-
tion than the best that Scott could
achieve by simulating the model on
a computer.

Naturally, everyone at first as-
sumed that the replica method itself
was at fault. In fact David Thouless,
Richard Palmer and I set out to
produce a solution directly, without
the replica method. This so-called
TAP theory (1977) adapted the an-
cient cavity-field method of Lars On-
sager and Hans Bethe to include a
local-field correction for the response
of all the spins affected by the fluctu-
ations of a given spin. This correc-
tion, which is absolutely negligible (of
order 1/N) in the corresponding long-
range ferromagnet, is finite here,
changing T, by a factor of 2, for
instance. But we could “prove” that
all further corrections were negligi-
ble. The results agreed with the SK
findings near and above T, where in
fact we now know that both solutions
are right, but they deviated subtly
below T.. One important difference
was that we got rid of the negative

REFERENCE FRAME

entropy of the SK solution.

Again we thought we had the an-
swer, and again we were to be disap-
pointed, though the problem surfaced
in more subtle ways this time. Cen-
tral to the TAP solution is a mean-
field equation,

tanh &
m; = —
¢ 2k T

where
hy =Y dym; = (local field correction)
4

Here m; is the mean magnetization at
site i. Unlike in the simple case of &
ferromagnet, where similar equations
are encountered, looking for a nontri-
vial solution for the magnetization m;
in this equation involves an infinite
random-matrix problem at every T.
Near T, this problem appeared to be
just expressible in terms of the known
statistical properties of the eigenval-
ues of the random matrix J, and near
zero it depends only on properties of
“the” solution at T=0. The former
case we solved in lowest order, and it
seemed to look OK; and for the latter

NIAAT ~ou RANE DORE, GRuD, 1S HELP
(CONTRIBUTE To A DIS-UNIFIED THEORY.™
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case, Richard set out to calculate
“typical” ground state solutions (that
is, solutions at T'=0). The limiting
form of the above set of random
equations at T'=0 is

m; = sign(h,)
hi=3Yd;m;
4

(“Sign” just means that m points in
the same direction as & and has the
maximum possible magnitude.) Both
Richard and Scott had been trying to
solve these equations numerically for
some time.

Both of them gradually came to
the same paradoxical result: They
could find no “the” solution to this
set of equations. Instead, they found
many, many solutions of nearly iden-
tical energy. They also noticed that
it is very difficult, once one's com-
puter has found one solution, to per-
suade it to move to another, even if
the first has a much higher energy
than the optimal one. Incidentally,
both Richard and Scott found that
the easiest way to find a new solu-
tion was to'raise the temperature
nearly to 7, and come back down
again—a procedure that Scott called
“simulated annealing.”

This peculiar feature, enormously
annoying at the time, was the begin-
ning of one of the important discov-
eries of modern theoretical physics,
a discovery comparable to that of
chaos in its broad applicability to
science. But we didn’t quite under-
stand that yet.

Because of this unusual feature,
and also for other reasons—Thouless,
for instance, was unhappy that our
solution near T, might not be quite
stable—the TAP “solution” still did
not satisfy. We also needed to know
why the replica method had failed.
Thouless and a student, Jairo de
Almeida, soon discovered the rather
unexpected reason. Below a certain
line in magnetic field—temperature
space, a solution with “replica sym-
metry”—that is, where every replica
has the same correlation ¢ =g, with
every other replica—is dynamically
unstable to “replica symmetry break-
ing.” This implied that there was
some new structure in q,, that de-
pended on @ and 8: According to the
ideas that underlay the Edwards-
Anderson paper, then, not every time
you tried to compare one specimen of
a system with another specimen of
the same system would you get the
same answer! Looking back, it seems
obvious that this was closely related
to the simulation problem, but it was
a few years before we caught on to
that. In my next column I'll try to
explain the final resolution. |
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REAL POWER BROUGHT TO BEAR

Philip W. Anderson

Gérard Toulouse had always been
interested in the spin glass problem.
In 1977, subsequent to the work I
discussed in my last column (Septem-
ber 1988, page 9), Gérard, then at the
Ecole Normale Supérieure in Paris,
began to discuss the problem with the
powerful “Cargése” group of theoreti-
cal physicists in Paris and Rome:
Cyrano de Dominicis, Giorgio Parisi
and Miguel Virasoro in particular,
and later Bernard Derrida, Nick
Sourlas and others. Gérard was the
originator of the formal theory of
“frustration” (I believe I introduced
the term originally) as the important
feature of the spin glass problem.
Because the exchange bonds J be-
tween spins have random signs in
most circuits (loops) of spins return-
ing upon themselves, not all the spins
can be made “happy’—hence the
“frustration.” In a square of four
spins, for instance, only if an even
number of the J/'s have the same sign
can one satisfy everybody—that is,
find a unique minimum-energy con-
figuration of the four spins. Since the
world is made up of systems of con-
flicting desires, from game strategies
to a group of people choosing a menu,
one begins to see that the spin glass is
not that bad a model for many aspects
of life.

It was Giorgio Parisi who developed
the replica-symmetry-breaking
scheme that solved the problems,
such as negative entropy, that had
been troubling us. You will remem-
ber from my column of June 1988
(page 9) that Sam Edwards had intro-
duced the “replica” scheme of making
m identical copies 1,...,a,...,m of
the same system and calculating the
average of the product of all m parti-
tion functions. One then schematical-
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Ultrametric tree. This structure is a convenient way to represent
the degree of resemblance between spin glass states (colored dots).
The overlap between any pair of states of the same color is gy; that
between “red’” and “orange” or between “blue” and “‘green”
states is gz < gy. Similarly, the overlap of any of the five states on
the left with any of the four states on the right is g3 <ga- Thus the
overlap between two states depends on how deep into the tree one
has to go to find a node (black dot) that connects them. One may
verify from the figure the amazing property that when any three
states are picked at random at least two of the overlaps are equal.

ly takes the limit m — 0 and uses the
formula

.o Zm -1
lim

m -0 m

=InZ

to calculate the free energy
F= —kT{nZ>,,.

David Thouless and Jairo de Al
meida later showed that not all pairs
of copies gave the same average cor-
relation

Gop = CSE S uveaver

This finding was called “replica sym-
metry breaking.” Giorgio was able to
produce a form of g, that worked, in
the sense that it was a self-consistent
and stable solution of the equations in
this replica formalism. It would not
be wise for me to go through the
complicated mathematical structure
that evolved from this beautiful and
unexpected solution. Instead I shall
try to describe what was eventually
understood about its implications—
with contributions from Toulouse,
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Virasoro, and later Haim Sompo-
linsky, Peter Young, Richard Palmer
and many others.

What Giorgio’s solution means is
that at any temperature below T,
there is no unique locally stable ther-
modynamic state that solves the
“TAP” mean-field equations I de-
scribed in my last column, but rather
many such states, which resemble one
another to different degrees. Each
replica a corresponds to a different
solution of the TAP equations; the
solutions can be thought of as clusters
of states in the N-dimensional config-
uration space of the N spins. The
TAP equations are obtained when the
thermodynamic average is restricted
to these local clusters of states. The
off-diagonal terms in the order pa-
rameter gq.5, which represent the
average overlap between states in the
cluster belonging to replica (solution)
a and those belonging to replica 5, are
a measure of the degree of resem-
blance between clusters a and 8. The
diagonal elements g, which are all
the same, are the average overlaps of
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states within a given replica, or clus-
ter. There is a hierarchy of overlaps,
with g, =g, being the largest. The
next in value is q,, the overlap be-
tween the inequivalent groups of solu-
tions a and S that are closest in the
configuration space. Then there is a
g2 <q, and so on.

At T. the solutions begin to sep-
arate, and the “distance” between
them, measured by the deviation of
their overlaps from unity, increases
until, at T = 0, g, is 1 but the smallest
q.s may be nearly zero. Of course,
the g's have a continuous distribution
in a large (N —= &) system. Toulouse,
Parisi and their collaborators showed
that the distances, or overlaps, be-
tween different states implied by
Parisi’s form for the g, could be
described by what is called an ultra-
metric tree. The figure on page 9
shows such a tree, in which no solu-
tion in the “red” group is any closer
than g, to any in the “orange” group.

It is not at all surprising, then, that
finding the “best” solution by comput-
er simulations had been impossible:
The solutions that separated at T,
became increasingly different as T
was lowered. From thermodynamics
and the extensive nature of the ther-
modynamic variables such as entropy
and energy, one can show explicitly,
as [ did, that the only route from one
set of solutions to another—through
configuration space—passes over en-
ergy barriers whose height grows
with N, the total number of spins.
Thus if you try to get from one
solution to another by flipping spins a
few at a time, you must make flips
that increase the energy by amounts
of order N before you can ever get
to one of the other solutions or, in
particular, to the best one. Thus one
can represent the solutions as deep
valleys connected only by very high
passes in a “rugged energy land-
scape” (to use Stu Kauffman’s terms).
This is a remarkable result—how
truly remarkable and powerful we
are only beginning to understand. It
implies, among other things, a new
thermodynamics—a thermodynamics
of systems that are never in thermo-
dynamic equilibrium. Richard Palm-
er and I called these systems “non-
ergodic.” That one can nonetheless
use statistical mechanical methods to
get not only the quantitative solutions
relevant to such systems but also the
structure of the set of solutions is, to
say the least, fantastic.

Next time I shall begin my discus-
sion of the implications of this work in
fields as far apart as computer sci-
ence, biology and neuroscience, which
normally have been quite outside the
purview of physics. ]
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SPIN GLASS VI: SPIN GLASS AS CORNUCOPIA

Philip W. Anderson

Some attentive readers will recall a
remark I made in my fourth column
(September 1988, page 9), to the effect
that in the difficulties and annoying
features encountered in the study of
spin glasses, we were beginning to
have an inkling of results that would
turn out to be among the most impor-
tant of modern theoretical physics. I
shall now try to make that clear to
you. Iexplained one of the key results
last time (July, page 9): the discovery
by Gérard Toulouse and his collabora-
tors that there are many inequivalent
solutions of the TAP theory of the SK
long-range spin glass and that those
solutions can be arranged in an “ul-
trametric tree” whose branches al-
ready begin dividing as T is lowered
below T.. To remind you what this
jargon means: The TAP theory is the
mean-field theory David Thouless,
Richard Palmer and I constructed.
That theory, we thought, would in
principle be exact because fluctu-
ations about it should be negligible in
view of the many long-range interac-
tions each spin has in the SK spin
glass. “Ultrametric” is an ant's-eye
view of a tree, in which the only way
to get to another leaf is to climb all the
way down to the common branch
point and back up (see the illustration
in my last column).

Scott Kirkpatrick made a second
important connection. Scott observed
that finding the lowest-energy state of
the SK spin glass—in fact, of almost
any spin glass—is a complex optimiz-
ation problem equivalent to one of the
classic examples of what computer
theorists call the NP-complete prob-
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lems. This mysterious class of prob-
lems includes a great many math-

ematical “toys,” such as bisecting

random graphs, setting up mixed-
doubles tournaments and inventing
tours of length N for traveling sales-
men or Chinese postmen; but it also
contains many highly practical prob-
lems, such as routing telephone net-
works to Ncities, designing chips with
N transistors, connecting N chips
together, evolving the fittest animal
with N genes and doing almost any-
thing useful with N neurons. Large
complex optimization problems are
everywhere around us, and almost
anything that can be learned about
them is of immense importance.

An important branch of computer
science is complexity theory, which
classifies such large problems accord-
ing to their “size” N. The size of a
complex problem may be thought of
as the number of bits necessary to
state that problem. For instance, the
size of the SK spin glass problem is
NN — 1)/2, the number of J;;’s. It is
strongly conjectured that the number
of steps it takes a computer to solve an
NP-complete problem cannot be less
than a number proportional to an
exponential of a positive power of the
size. For large N, then, it could take
forever. This is clearly the reason
why Scott, Richard and others had
been unable to find a unique lowest-
energy state.

Each instance of the dozens of
known NP-complete problems can be
converted to an instance of any of the
other problems by an algorithm tak-
ing only N* time steps—that is, the
number of time steps is a polynomial
function of the size of the problem.
This suggests that a statistical me-
chanical “solution” of the spin glass
problem might be of general interest
for all NP-complete problems. But
that is not the case, even if one
assumes that the “polynomial” algo-
rithm that maps other problems to

the spin glass is not more trouble than
it is worth. Our statistical mechani-
cal solution gives average answers for
an ensemble of examples of the given
problem. Such an answer is valid for
a generic, or typical, instance of the
problem. In the case of the spin glass,
the average number describes the
generic instance of the problem in-
volving the given distribution of J;;'s.
But the mapping algorithm might
transform that generic instance into a
special case or vice versa. This issue
was perhaps somewhat clarified in an
exchange between Eric Baum (Prince-
ton), on the one hand, and Daniel
Stein (University of Arizona), G. Bas-
karan (MATSCIENCE, Madras, India)
and myself, on the other, about NP-
complete problems with “‘golf course”
energy landscapes—landscapes that
are flat everywhere except one point!
Furthermore, proofs of NP complete-
ness in computer science often refer
only to the worst possible case, and
some NP-complete problems do not
look very hard in generic terms.
Finally, the computer scientist dis-
cusses—for obvious reasons—the
problem of finding the exact answer
for a particular case, not the average
answer correct to order N for the
generic case.

Nonetheless, specifying exactly the
structure of the landscape of energy
values as a function in the 2" -dimen-
sional space of spins tells us a very
great deal about such problems. For
instance, the existence of a transition
temperature T, tells us that below
some value of energy per site E, the
space bifurcates into regions corre-
sponding to different “solutions,” and
that as we go lower and lower in
energy (or temperature) the space
breaks up more and more. This gives
us a clear reason why such a problem
is “exponentially” hard: If we are in
the wrong region, we have to cross an
energy and entropy barrier of order N
to get a better solution. This kind of
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“freezing” phenomenon had been con-
jectured by computer scientists but
never rigorously proved. To counter
it, they had evolved a number of
heuristic techniques for getting ap-
proximate solutions. We now know
why this was necessary—namely, to
get over the high barriers and sample
the entire space of solutions.

Almost the first effect of the kind of
thinking developed to understand
spin glasses was to provide a new
heuristic algorithm for the solution of
complex optimization problems. That
algorithm is called simulated anneal-
ing, and it was introduced by Scott
and his colleague C. Daniel Gelatt Jr.
Kirkpatrick and Gelatt proposed that
one imitate the procedure the spin
glassers had already been using, of
“warming up” the problem above T,
and slowly cooling it back down, or
“annealing” it. This could be done by
regarding the “cost” for a given prob-
lem—say, the cost of connections on a
chip—as a “Hamiltonian” function C
of the positions to be varied. One
plugs this Hamiltonian into a statisti-
cal mechanics simulator program,
such as the well-known Metropolis
algorithm. Then one chooses an ap-
propriately scaled “temperature” T
and minimizes <e~%Tx .. for in-
creasingly low temperatures. Simu-
lated annealing, it turns out, is the
most effective algorithm only for cer-
tain problems, but where it works it is
very good indeed, and it is already in
regular, profitable commercial use.
The question of why simulated an-
nealing works as well as it does was
approached theoretically by Miguel
Virasoro, who showed that, at least
for the SK model, the lower the
energy of a solution is, the larger is
the entropy associated with it near
T.. That is, deeper valleys have
bigger basins of attraction near T,
and so one is more likely to start out
in such a valley at T,.

To me the key result here is the
beautiful revelation of the structure
of the randomly “rugged landscape”
that underlies many complex opti-
mization problems. Physics, how-
ever, has its own “nattering nabobs
of negativism” (in the immortal
phrase of William Safire), and they
recently have been decrying the im-
portance of the ultrametric struc-
ture, saying that it is a property of
the SK model, not of physical spin
glasses. Such criticism misses the
point: Physical spin glasses and the
SK model are only a jumping-off
point for an amazing cornucopia of
wide-ranging applications of the
same kind of thinking. I will write
about this in the next—and I hope
the last—of these columns. |



SPIN GLASS VII: SPIN GLASS

AS PARADIGM

Philip W. Anderson

In my last column on spin glasses
(September 1989, page 9) I tried to
show you that the exact solutions of a
particular spin glass problem, by
Giorgio Parisi and Gérard Toulouse,
gave us great insight into the theory
of complex optimization problems, as
well as an algorithm for solving some
of them. One such problem, which
has been exhaustively studied by
methods of spin glass theory, is the
graph partition problem. This is the
question of how to divide an arbitrary
graph into two pieces, cutting the
fewest possible bonds. My student
Yao-Tian Fu (now at Washington
University, St. Louis) initiated the
study of the graph partition problem
by replica theory. This classic prob-
lem of complexity theory was difficult
to solve for sparse graphs by those
methods, but another of my students,
Wuwell Liao, seems to have done it.
Even more interesting than these
applications to complexity theory is
the way apparently unrelated areas
of science have been stimulated into
parallel growth by the spin glass
work. John Hopfield (Caltech), who
was instrumental in bringing me to
Princeton in 1975, became interested
in models for neural networks and
brain function about 1979-80. It was
natural for him to realize that com-
plex, interconnected systems of sim-
ple units could have the “rugged
landscape,” multistable properties of
spin glasses. Using, very ingeniously,
an ad hoc and apparently unrealistic
assumption of symmetric coupling
between neurons, John got the follow-
ing results:
> For a given set of coupling synap-
ses (interactions) J;; between neurons
(spins) { and j, the conventional
McCulloch-Pitts model of neuronal
interactions maps onto a “greedy”
algorithm for finding the local ground
state of a corresponding spin glass.
(“Greedy” is the computer scientists’
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self-evident jargon term for jumping
directly to the lowest local energy for
each spin.)

> Modifying the couplings, or choos-
ing the Jy;, in such a way as to form the
so-called Hebb synapses makes the
neural network into a model for
“content addressable” memory: a
memory like our own, which can
reproduce full detail from fragmen-
tary information. A system of N
neurons connected by MN-—1)/2
symmetric synapses can remember
about N/6 N-bit messages in the form
of locally stable “spin” (that is, neuron
firing rate) configurations. (John
made this conjecture about the capac-
ity of a neural network on the basis of
simulations, but it later turned out to
agree with exact analytic theory.)
Thus, in exchange for a capacity
reduction of a factor of 3 relative to the
information-theoretic maximum, one
gets the content-addressable feature.
[> Finally, several other brain func-
tions, such as pattern recognition,
could be modeled with the spin glass
type of neural network.

Many of you may be aware of the
gigantic growth of neural network
science in recent years. In 1979,
however, when I tried to whip up
interest in John's ideas among com-
puter scientists at Bell Labs, there
was little response; and he, Alan
Gelperin and John Conneor got nearly
equally short shrift among neurosci-
entists. Nowadays the neuroscien-
tists and computer scientists like to
point to prior claims for each compo-
nent of John's achievements. I can
hardly believe, however, that such
further developments in neural net-
works as the revival of the perceptron
would have occurred except as a
response to John's beautiful demon-
strations that, after all, one such
system—the Hopfield neural net-
work—does work and has a rigorous,
mathematically respectable basis. In
particular, John's work has generated
a very healthy trend toward rigorous
mathematical demonstrations of lim-
its on capacity, accuracy and so on in
neural networks and perceptron-like
models, using the statistical mechan-
ics methods provided by Toulouse,
Haim Somopolinsky, Miguel Vira-
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soro, John Hertz, Richard Palmer
(who was John’s associate at Prince-
ton in 1975-78) and many others. It
turns out that statistical mechanics
can be applied to realistic, asymmet-
ric networks as well, and that there is
no real difference between the capa-
bilities of symmetric and asymmetric
networks.

I promised I would close my series
on spin glasses with this column, so it
must be descriptive, not detailed. But
I must also mention how the “rugged
landscape” of spin glasses relates to
theories of biological evolution. In
1981 I visited John Hopfield at Cal-
tech and helped with the course on
“physics of information” that he,
Richard Feynman and Carver Mead
were giving. Stimulated by John's
work on neural nets, | came back to
Princeton with the realization that I
could put my own rugged-landscape
ideas into a theory of prebiotic evolu-
tion that Daniel Stein (now at the
University of Arizona) and I were
already working on. The genome of
an organism can be thought of as a set
of Ising spins—two for each base in the
DNA because there are four types of
bases and the Ising spin has two
possible values. The fitness, or repro-
ductive capacity, of the genome can be
modeled by a frustrated, quenched
random function of this list of spins,
and the simplest random function
that satisfies the requisite plus-minus
symmetry is a spin glass Hamiltonian
function. (The plus-minus symmetry
is imposed by the complementarity of
base pairing.) With a senior thesis
student, Dan Rokhsar, Stein and I
made a simple model of primitive
evolutionary processes using this idea.

Related ideas, but without the sta-
tistical mechanics insights, had al-
ready occurred to Gérard Weisbuch at
the Ecole Normale in Paris and to Stu
Kauffman at the University of Penn-
sylvania. Nonetheless the extra un-
derstanding those insights provide
has encouraged us, and especially Stu,
to go on and attack all kinds of
evolutionary—and other—problems
with spin-glass-like random, rugged-
landscape models. This approach has
become an important part of the
program at the Santa Fe Institute, of
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which Stu and I are members. Unfor-
tunately I cannot discuss here the
many other ramifications of this way
of thinking. From my point of view,
its attractiveness lies in that it allows
us to explain simultaneously the con-
tradictory aspects of variety and sta-
bility of certain special forms and
patterns. Life exhibits these contra-
dictory aspects: Among the countless
possible mutations, many lead to sta-
ble species. In the language of spin
glass theory, there are many “basins
of attraction,” but each is stable (or at
least metastable). It is also clear, as
Gérard Weisbuch first pointed out,
that evolution in such a landscape
will exhibit “punctuated equilibri-
um,” or sudden changes from one
deep maximum of fitness to another, a
feature that has been emphasized
recently as characteristic of much of
evolution.

I realize that I never returned to
“real” spin glasses, even though it
was studies of the low-temperature
properties of those dilute magnetic
alloys that led to the theoretical ideas
I have been discussing. There is a
reason: In spite of much beautiful
experimental, computational and
theoretical work, a complete and con-
sistent understanding of those mate-
rials is not yet at hand. Heléne
Bouchiat and Pierre Monod, among
others such as Laurent Levy, have
beautifully demonstrated that real
spin glasses have divergent nonlinear
magnetic susceptibility at Tgg, verify-
ing that there is a real phase transi-
tion, albeit one without a visible
specific heat singularity. Spectacular
simulations carried out on special
purpose machines by Peter Young
(University of California, Santa Cruz)
and Andrew Ogielski (AT&T Bell
Labs) have also verified the existence
of a phase transition in three dimen-
sions. Daniel Fisher (Princeton) and
David Huse (Bell Labs), among others,
speculate, however, that real spin
glasses are really not ultrametric or
replica-symmetry breaking. The the-
ory is still under development. Some
of it was explored in the December
1988 pHYsICS TODAY special issue on
disordered solids.

For further information on random
landscapes and evolution, Stu Kauff-
man's forthcoming book Origins of
Order: Self-Organization and Selec-
tion in Evolution (Oxford U. P., New
York) is perhaps the best source.
John Hopfield has written (with Da-
vid W. Tank) a Scientific American
article on his neural network ideas
(December 1987, page 104). An arti-
cle on neural networks by Haim
Sompolinsky appeared in the Decem-
ber 1988 pHYsICS TODAY (page 70). H
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