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Abstract. - I t  is shown how quasi-particle quantum numbers may be defined and calculated for 
interacting Fermi systems in 2 and 3 dimensions. Exact results are given for charged and 
neutral Fermi systems, both normal and superfluid, in 3 dimensions, and for Cherns-Simons 
implementations of anion theories in 2 dimensions. The latter is applied to the fractional Hall 
effect. In all cases, the local quasi-particle quantum numbers vary continuously with 
interactions and/or temperature. 

There has been great interest recently in the possibility of exotic quasi-particle states in 
%dimensional Fermi systems. Such states are already known to exist in l-dimensional 
systems[1,2], and in the fractional quantum Hall effect (FQHE)[31, and many recent 
theories of high-T, superconductivity depend crucially on the existence of quasi-particles 
with precisely defined fractional quantum numbers [4]. 

However the definition and calculation of these quantum numbers (or <<charges>>) turn out 
to be full of surprises, even for 3-dimensional systems. Here a way of calculating both <<local>> 
and <<global>> charges will be given, along with exact results for a variety of systems. Apart 
from suggesting a number of interesting experiments, these calculations also considerably 
clarify the issues at stake in the discussion of exotic quasi-particles. 

Definition of quasi-particle charges. - Consider some 2- or 3-dimensional system 
composed of interacting fermions, and eigenstates labelled by quantum numbers {Ej}. The 
expectation value of some lpcal operator X(r ,  t )  acting on the system in a stateAI a ) ,  with one 
single quasi-particle, is ( X J r ,  t ) )  = (a lX(r ,  t ) ia ) .  The Fourier transform ( X J Q ) )  of this 
A:(&), the fully renormalized 3-point vertex describing interactions between the normalized 
<<quasi-particles. and the field X(Q)  (here Q = (q, U)). In general we shall deal with quasi- 
particle wave-packets IX)  , which can nevertheless be labelled using the conserved 
quantities {tj} of the system. 
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We now define the functions x z ( t )  for different <(charges. as 

where the system size L >> R, and we require R >> t Aplm, the free-particle wave-packet 
spread after time t (with momentum spread Ap); we also require Ar(t = 0) << R. The 4oca1 
quasi-particle charges, are given by Xkm = Xz( t  + m) (but still keeping R >> t Aplm, in this 
long-time limit), while the .global quasi-particle charges* X$Ob = X,(t + 0). Thus we see that 
#the ghbal charge X:lob refers to the expectation value of X ,  averaged over the entire system 
(or over a small part of it at short times). However the local charge X',.. refers to that part of 
thb charge that .stays together*, in a somewhat distorted and slowly spreading <<packet., 
as%me goes on. Note that the shape and size of this packet (which is really a density matrix) 
is different for each different quantum number (see below). The difference between Xkm and 
X:lob arises solely from interactions. 

3-dimensional systems. - It is very useful to start by considering some familiar 
examples. A neutral 3-dimensional Fermi liquid has l-quasi-particle states I pcr) , for which 

P ' S '  I 
L 

I 

(we consider wave-packets below). Here A:., is the bare 3-point vertex for quasi-particle 
interactions with the field X and T;:(Q) is the r e n o m l i x e d  on-shell quasi-particle T- 
matrix [5]. We assume that our initial quasi-particle energy cp. is considerably less than the 
typical fluctuation energies of the system (note cp. is a complex function of Cp. = ( p  - p;) I$; 
and cp. = &,. for very low cp. 151). 

We may then solve (2) using microscopic Fermi-liquid theory, in terms of the Landau 
parameters Ff, F f .  The techniques are standard [ 5 , 6 ] ,  but the results are actually rather 
surprising. Considering for example the fermion number density n,(Q), and taking only 
1 = 0, 1 parameters (as for 3He liquid), one finds that 

where ?j = w/qvF, and 6, =p.o. This very complex result contains all the details of the 
.decay down. of I p s ) ,  via particlehole and collective mode emission(l). However although 
the Fourier transform is also very unwieldy (it is in fact the generalization of the 1st-order 
calculation of ref. [7] to all orders in perturbation theory), the long- and short-time results 
are very simple. Thus one finds nilob = 1, whilst nkm = 1/(1+ Fi ) ;  and analogous calculations 
for spin and current give S$:b = (1/2) yha, ,Tilob =p/m,  but Sky = (1/2) yha/(l + Ff), and 
J p  =p/m( l  + 1/3F1) =p/m*. The difference between the global and local results describes 
<<charge>, that has escaped to (or been sucked in from) infinity. These fractions differ for each 
charge/quantum number, so that we have, e.g., <<partial spidcharge separation. at long 
times. Lest the reader doubt the applicability of our definitions here, it should be noted that 

(') The details of the calculations of X,(Q) and its Fourier transform XZ(r ,  t )  are technically 
interesting but very lengthy, and will be given in a longer paper. 
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the functions ( n,(Q)) , (Spu(Q)), etc., are nothing but the Landau distribution functions for 
density, spin, etc., since A,,(Q) solves the Landau-Boltzmann equation [61. Thus our 
definitions of local and global quasi-particle charges correspond simply to the local and global 
parts of the relevant Landau distribution functions-which are themselves simply 
expectation values Tr { p X a }  over the reduced density matrix p [5]. 

These results are easily generalized to globally neutral electronic systems, but with one 
subtlety. At very short times, the standard calculation of the 3-point vertex gives 
A,,(Q) = E-'(Q)~,,(Q),  where &(Q) is the .proper 3-point vertex. not containing direct 
Coulomb lines [6].  Now A,,(Q) describes a very localized electronic wave-packet, whose 
electric charge is not locally compensated. But the correct description of the quasi-particles 
at long times is given by A,,(Q), which satisfies the Landau-Silin equation; as is well known, 
this function describes, at long times, fermionic charge spread uniformly, thereby 
preserving local charge neutrality (cf. ref. [6]). Of course if we added electrons to the 
system, uncompensated by neutralizing charge, they would go to the walls [8]; but it is quite 
wrong to associate such excitations with quasi-particles, as usually defined. 

Partial spidcharge separation also occurs-a fraction F$(1+ Ff)- l  of the spin <<escapes to 
infinity,. Ff can be extracted from spin-wave measurements. 

. It is often assumed that the sharpness of quasi-particle charges may be restored if there 
are no gapless excitations. While this is often true in 1 dimension, it is incorrect in 3 
dimensions. Consider, e.g., a general singlet neutral superfluid. For short times one finds 
the usual results %$lob = (IuPI2 - lvPl2), = (1/2) yhu, and straightforward 
generalization of the method given above yields the long-time limits 

=p/m, and 

SE = ; yhuY(T)(l+ Ff Y(T))-1 , I (4) 

where Fij(T) and Y(T) are the matrix and scalar Yosida functions [9] for the appropriate gap 
function (s-wave, d-wave, etc.). Again partial (and only partial) spirdcharge separation 
occurs. Moreover this partial separation is not changed, if we add Coulomb interactions to 
the system-exactly as for the metal described above, quasi-particles are neutral in the 
long-time limit, and Sa: is still given by (4). Thus it is incorrect to regard the quasi-particles 
in 3-d superconductors as spinons [8]. 

In view of these results, one is led to ask how to properly define quasi-particle statistics. 
In 3-d systems this is normally done quite unambiguously via their global commutation 
relations [6]. This is equivalent to the global fermionic charge defined above, which is equal 
to unity for fermionic systems. The local fermionic charge d'," is not the same. In fact it 
corresponds to the Berry phase +, that one would obtain by slowly moving one quasi-particle 
around a second one, on a circle of radius R centered on the second (and with R >> t Aplm). 
The demonstration that q5, = 2mkw is then essentially the same as that in the anion literature 
(see, e.g., Arovas et al. [lo]), since the excess phase accumulated corresponds to the excess 
enclosed fermionic charge. However in 3 dimensions this Berry phase definition is somewhat 
artificial (since we can always deform the circle into a quite different curve, with a different 
+&, so it is best to stick to the definition of nbw given previously. 
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2 dimensions.  - Elementary consideration of the 2-particle scattering matrix for point 
particles shows that in 3 dimensions it is forced by undistinguishability and unitarity to take 
the form K(Q) =f(Q ff(fL2 + 7c). However in 2-d the more general 

m 

K(0) = 2 exp [2ian]f(e + 2xn) 
n=-Es 

is allowed [lo], yielding <<anions,, with statistics and fermionic charge a. This result follows 
for point particles when a # 0 because the diverging centrifugal force (as 1 rl - r2( + 0) 
prevents world lines from crossing. But how do we deal with quasi-particles, which are 
always smeared out in space? 

A common answer to this is to argue that, if the quasi-particles are widely separated, 
then the above argument (or its more rigorous braid group formulation [lo]) is still 
applicable, since world lines will then rarely cross. The argument would then justify a 
posteriori the use of Berry's phase to define quasi-particle statistics in, e.g., the fractional 
Hall effect (FQHE); it gives anions with fractional fermionic charge nl" = v = f 1421 + l), 
where 1 = 1,2, ..., and v is the Landau level filling fraction. At temperature T = 0 this result 
follows from Laughlin's wave function[3], and is easily shown using the methods above, 
since the charge does not spread at T = 0. Hence we find [3,10] that $p = 27rnp = 273. 

However at finite T things are more subtle. It has not yet been possible to generalize the 
Laughlin theory to finite T, but we can resort to the effective action theories that have been 
recently devised [ll]. The simplest versions of these have a Lagrangian density 

1 47: 
K 
2 ( i d ,  - e(Ao + a,)) - -(V - i ( eA  + a))' V' + p 1 ! # I 2  - A I TI4 - e2,~hVou, d,u,, (5 )  

where the fields Y(r ,  t )  can be interpreted, following Read [l l] ,  as the amplitude for finding 
a particle at (r,  t). At T = 0 the vortices in the <<statistical gauge field. uh(r, t ) ,  of form 
aA(r, t )  - (2 x ?)/er, collect a local charge nl" = v around themselves (note that AJr, t )  is the 
e.m. field). 

Now it might be assumed that, because there is an energy gap A = /3/A in this theory, the 
charge is bound to the vortex cores in <<sub-gap. states, as in superconducting vortices. But 
this is quite wrong. The eigenfunctions for (Y, Y+) in the presence of a single vortex are 
easily found, and have the form (for 7j! >> 1; = h/eB): 

where p = Ak, the quasi-particle energy E, 3 A ,  and m = 0, f 1, k 2, ... (we assume v < 1). 
Then there are no bound states, for any T (if v < l), and n'" arises entirely from continuum 
states. The situation is the same as that prevailing in (2 + 1)-dimensional QED [121, and 
indeed we could not have a fractional nl" if the states were bound! 

It is then revealing to calculate doc around a vortex at finite T. A simple Boltzmann 
average then promotes charge higher up these states, and assuming kT << A (the Lagrangian 
(5)  is unlikely to be meaningful otherwise), we find 

n'" = v ( 1 -  exp [- d/2kT]) (7) 

so that some charge has escaped (note that this result could also be obtained [l] by applying 
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trace identities to (5)). In a real FQHE system there will be corrections to this arising from 
other quasi-particles or quasi-holes-these have long-range interactions. Nevertheless (7) 
clearly shows that the T = 0 Berry phase definition of doc will eventually fail at finite T 
(although if we had a finite-T microscope generalization of Laughlin’s theory, presumably 
we could recover (7) as a Berry phase at finite T). 

Experimental tests. - Let us briefly examine what is possible here. Recent 
experimentsr131 have indicated how one may measure doc in the FQHE, and similar 
experiments should be capable of checking (7), thereby testing the effective action theories. 
A good way of testing the 3-d results in normal and superfluid 3He would be via ballistic 
quasi-particles experiments involving thin wires [14], since these experiments see n1OC (not 
npglob) for a quasi-particle <<wave-packet.. Similar experiments involving spin could be done 
by spin wave transmission (in metals or normal 3He). In superconductors a convenient 
method would be to make a ballistic point contact spectroscopic measurement (using a 
polarized tip, if one is interested in Sa-). Detailed discussion of such experiments will be 
given elsewhere. 

Thus, to conclude, we see that the useparation. of quasi-particle charges (i.e. the 
sometimes quite large differences between the local values of, e.g., spin and fermionic 
charge) is a quite general phenomenon in both 2 and 3 dimensions-as is the distinction 
between the local and global values of each charge. This phenomenon arises because of 
interactions in 3 dimensions, at any temperature; and in 2 dimensions, even if there are 
topological terms in the effective action which may enforce quantized local charges a t  T = 0, 
these constraints break down at finite T. These local charges are often accessible 
experimentally, in both 2 and 3 dimensions. 

* * *  
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