Chapter 10

Overview of Phase Transitions

10.1 Thermodynamic Phases

In this chapter, we develop the beginnings of a description of thermodynamic phases and
the transitions that occurs as the system changes from one phase to another. Before the
beginning of science, people classified the materials in the world about them according
to their properties. They saw gases, and liquids, and solids and their distinct behaviors.
More recently, scientists have distinguished normal materials from superfluids, and studied
a whole variety of magnetic materials, of liquid crystals, of ferroelectrics, and many ad-
ditional phases of matter. One can make the distinction between the phases in question
by observing the qualitative difference among the phases or alternatively by observing the
phase transition which takes the system from one phase to another. Qur prototype system,
the Ising model, shows several distinct thermodynamic phases. Some of these are depicted
in Fig. 10.1. On the left, we see a paramagnetic phase. There is a considerable randomness
to the arrangement of spins and no long-ranged order appears. In contrast, in the right
hand panel we see a system with the long-ranged order characteristic of the ferromagnetic
phase. Through the entire system the spins tend to point upward with only a few islands of
‘wrong’ behavior, caused by fluctuations. The center panel depicts a situation intermediate
between the ferromagnetic and the paramagnetic. In this so-called ‘critical phase’ there are
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Fig. 10.1. Three different phases for an Ising model. The pictures show spins on a lattice. Spins
pointing up are indicated by dots; those pointing down by blanks. The left hand picture shows a
paramagnetic phase, the middle one a critical phase, and the right hand picture shows a ferromag-
netic phase.
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210 Chapter 10. Overview of Phase Transitions

correlations among the different spins. Over large regions of the system, like spins tend to
group together. However, one spin direction does not predominate over the other as in the
ferromagnetic case. In the following chapters, we shall have much more to say about this
critical phase.

10.2 Phase Transitions

The world would indeed be a dull place if there were no distinction among the different
phases of matter. No separation of oil and water, no distinction between stream-bed and
stream, none between sky and earth, no difference between airy snowflake and sitting water.
But it is far from obvious why such distinctions and changes between phases should exist.
If a phase transition is to occur, it must be true that two different thermodynamic phases
can both exist under the same external thermodynamic conditions. Thus for example a
dilute fluid, water vapor, and a dense fluid, liquid water, can be in contact with one another
under identical conditions of temperature and pressure. Here the phases are different in
character. Each phase of water has its own free energy which depends on number, volume,
and temperature. When the free energies of the different phases are different, then the
phase with the smaller free energy is the more stable. (This is part of a general rule which
states that the relative probafbility of observing configurations of the system with different
free energies is proportional to an exponential of the free energy difference divided by kT
Thus when two configurations differ by a macroscopic energy difference, in a situation of
thermodynamic equilibrium, only the phase with the lower free energy will be observed.) "\

Thus if two phases are in equilibrium, they must have the same free energy per particle.
So coexisting water vapor and liquid water have equal free energy per particle. In fact,
the line of coexistence is computed by calculating the free energy as a function of density
and temperature in each phase, and then finding the density in which the free energy per
particle is equal in the two phases. In this case, the equality of the free energy is viewed as
just an accidental occurrence.

But, sometimes there is some symmetry relation which defines the behavior of the
system. In that case, there will often be some kind of symmetry connecting the coexisting
phases. In a magnetic material, for example, the magnetism is produced by spins and other
magnetic moments which can line up spontaneously to produce a natural magnetism. A
magnetic moment is a special kind of vector, one which changes sign under the operation
of time reversal. (Change the direction of every velocity in a system. The electromagnetic
currents will all change sign, and with them all magnetic moments and magnetic fields.) In
the absence of a magnetic field applied from outside the material, the system will always
have a natural degeneracy: If there is a state in which the average magnetization points in
a given direction, then there will be an equivalent state in which it will point is exactly the
opposite direction. In the simplest kind of magnetic material there is one ‘easy axis’ and
the natural magnetism will occur with the spins lining up parallel or antiparallel to that
axis. Call the spin in the direction of that axis ¢ or ¢,. Then phase transition involves a
magnetization density, m, proportional to the average of this spin (o). Notice that at the




10.3. Two Kinds of Transitions _ 211

first order phase transition, the system thus has to choose between two thermodynamically
equivalent states, with different values of the magnetization density, m. The two phases
have values of m’s which differ by a sign. Furthermore, the value of the magnetization
density is same throughout a very large region of the sample, one containing many, many
spins.! The system spontaneously chooses a particular phase, based upon its history or some
weak residual magnetic fields. And after this choice is made and the system has a single
thermodynamic phase, then (o) will have the same sign and the same value throughout
the material. One of the most interesting question about this situation is: How can a huge
number of atoms, perhaps 10?3 of them, can chooses one of the possible phases, and apply
the choice across the entire system?

10.3 Two Kinds of Transitions

In nature there are two different kinds of phase transitions. The first kind, observed when
we boil water at home, involves a discontinuous change in some intensive thermodynamic
quantity. This discontinuity is observed, for example, in the density expressed as a function
of pressure and temperature. In a magnet, the direction of magnetization might suddenly
change so that the magnetization density vector will change discontinuously. These changes
are called discontinuous phase transition or first order phase transitions. Thermodynamic
variables, like this density or magnetization, which exhibit the discontinuity, are called order
parameters, since their value reflects the strength and kind of ordering in the system. Our
two examples of first order transitions are the boiling of water or having a domain of iron
jump from one direction of magnetization to another. In either case, if we increase the
temperature the jump or discontinuity will become smaller. In the fluid, the vapor density
will approach the liquid density. In the magnet, the magnitude of the magnetization will
get closer to zero. In both cases, at some critical temperature, T, the discontinuity will
vanish and the phase transition will change its character. At this special point, we say there
is a continuous or second order phase transition.

All of this is illustrated in Figs. 10.2 and 10.3. These figures plot the magnetization
density as it is determined by an approximate theory of the ferromagnetic behavior, called
mean field theory. We describe this theory in this chapter and the next. For now, we wish
to look at results. Figure 10.2 plots dimensionless magnetization, (o) versus dimensionless
magnetic field, h, for various values of the temperature. Notice how there is a discontinuity
in (o) at zero values of the field for T' < 1. — reflecting a first-order transition. This
h = 0 discontinuity disappears at T' = T, — producing a second order transition at that
point. This discontinuity in m as we pass through vanishing values of h reflects one kind

'In what is called a single-domain ferromagnet, the magnetization is uniform throughout the same. But
most ferromagnets actually have a tendency to split up into different domains, each with its own direction of
the magnetization. This splitting occurs because of weak but long ranged magnetic forces. Magnetic energies
are minimized by the splitting into different domains. The domains are usually quite large, containing many
atoms. So the ferromagnet is well-represented as a system with long-ranged order over wide regions. In
other kinds of ordered phases, the domains can be even larger — extending sometimes over microns or even
centimeters.
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Fig. 10.2. Magnetization plotted as a function of magnetic field. The curves are plotted for three
values of R = T, /T, corresponding to above, at, and below the critical temperature. Notice how the
curve for T' > T, appears smooth while the one for T' < T, shows a discontinuity at zero field. For
T' =T, the discontinuity disappears and is replace by an infinite slope in the magnetization versus
field curve. The upper part shows a larger region of field, the lower is a blowup for small values of
the magnetic field.

of singularity in this system. This singularity disappears if T' > T, where magnetization is
a smooth function of field. Exactly at the critical temperature, we see an infinite slope of
m versus h, showing us that the mathematical singularity remains present at this second
order transition.

This same data is plotted in a different way in Fig. 10.3. Here we look at m as a function
of T. This figure contains several curves each for a different value of the applied magnetic
field. The most interesting is the curve marked ‘h = 0’ which shows a magnetization
which is zero for T' > T;. In contrast, for 7' < T, m has two branches, one positive-one
negative.

There is an exact symmetry which involves flipping the sign of both m and h. Thus if the
function m(h,T) gives the magnetization as a function of temperature and magnetic field,
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magnetization

Fig. 10.3. Magnetization plotted as a function of the ratio, R of critical temperature to actual
temperature for different values of the magnetic field. Notice the jump in the zero field magnetization
for temperatures below the critical temperature.

another equally good solution is —m(—h,T"). Each curve with A > 0 has a corresponding
curve — with oppositely signed m — that applies for the magnetic field with flipped sign.
The symmetry is also realized at zero field. At high temperatures, the magnetization
is zero for h = 0. Then the symmetry is trivially realized since changing the sign of
the magnetization changes nothing. However, at low temperatures, for each value of the
temperature, the magnetization can take on either of two possible values. The symmetry
under flipping the sign of the magnetic field is here reflected in the equality of the magnitude
of (¢) in each of these zero-field phases. .

Sometimes we see phase transitions which do not easily fit into the framework given
above. There is an interesting phase transition which involves the dissociation of uncharged
atoms into charged components. When the charges are tightly bound together we call the
material a dielectric. It is an insulator, which may polarize in an electric field but certainly
does not conduct electricity. When the atoms dissociate, the charged components may
move in opposite directions in response to an electric field. This kind of matter is called
a plasma, and can conduct electricity. In general, one does not know whether this metal
to insulator transition is first order or higher. There is a realization of this transition in
three-dimensional condensed matter systems.? A very similar transition occurs in the early
universe in which quarks bind together to form the hadrons and mesons we see today. In the
Chapters 15 and 16, we shall discuss the two-dimensional version of this phase transition.
Of course this transition also occurs in three-dimensional systems.

Transitions into and out of the glassy state, provides other examples in which the basic
nature of the transition is unknown. A ordinary glass is a liquid in which some of the
molecular motions are very substantially slowed down. The phase transitions become hard

2For a discussion of this transition see the several papers in P. W. Anderson A Career in Theoretical
Physics (World Scientific, Singapore, 1994).
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to see because one has to wait too long. We would like to extrapolate to the phase transition.
But we are not quite sure how that might work.

10.4 Back to the Ising Model

We have already discussed in Chapter 4 the setup of an Ising problem which describes the
simplest ferromagnets. Recall the previous discussion. We can set up a Hamiltonian which
contains a set of spins o, where r is the lattice site defining the location of the spin. Each
oy takes on two values: plus one and minus one. As in Chapters 2 and 3, we work with a
- simple hypercubic lattice

r=a(ng,ng,... ,Ny,... ,Ng), (10.1)

where a is the lattice constant and each of the n’s is an integer. To produce a ferromagnetic
phase transition there must be an interaction between neighboring spins which gives a lower
energy to spin configurations in which spins are aligned. An external magnetic field is taken
into account by saying that there is a lower energy when a spin is aligned along the magnetic
field than opposite to it. This kind of situation can be represented by a Hamiltonian with
two terms

H=-— ZUrB(r),u — Z Folit (10.2)

(r,r’)

Here 2.J is the energy cost for moving a pair of neighboring spins from an aligned con-
figuration to an anti-aligned one while 2B(r)u is the energy cost of moving the spin at r
from being lined up with the field to the opposite. The first sum says that the latter energy
applies to all spins. The notation (r,r’) means include all pairs of nearest neighboring spins.
The number of nearest neighbors of a given lattice site is generally denoted by 2. For the
simple hypercubic lattice, z = 2d. We take both J and Bpu to be positive. The partition
function is obtained by summing an exponential of —3%, which we write as

Wlo] = —H = Z h(r)o, + K Z OrOyr . (10.3)

(r,r’)

Here h(r) is a dimensionless rendition of the magnetic field and K is a dimensionless version
of the coupling strength. Both of these go to zero at infinite temperature and to infinity at
zero temperature. In most of our calculations we shall let the field A(r) be independent of
position. In that case, we shall write it as simply h.

Notice that the Hamiltonian is left invariant if we change the sign of both the magnetic
field, h, and also of each of the spins, o,.

We have already talked about the possibility (and difficulties) of calculating the conse-
quences of the Hamiltonian (10.3) for statistical systems. The calculation can be carried
out for one dimension and at zero field for two dimensions. (See Chapter 4.) Beyond that,
little can be done exactly; it is just too hard. However there is one special case which is
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quite easy: the one in which the coupling among the spins is zero. Then, as we have already
seen, the spin is determined by a single particle Hamiltonian, €, with

—BH = hoy, (10.4)
a simple calculation gives the average magnetization as
(o) = tanhh. (10.5)

But Eq. (10.5) tells us nothing very direct about the phase transition.

10.5 Mean Field Theory of Magnets

But we can get some of the qualitative properties of the phase transition by examining
an approximate theory called ‘mean field theory’. The many variants of this theory work
reasonably well and, in fact, often provide a qualitatively correct theory of phase transitions
and other physical properties. The idea behind this theory is to make the approximation
that each spin behaves as if it were an independent spin sitting in the mean field produced
by all the other spins. To reflect this idea we focus upon the particular spin at r and
consider how the Hamiltonian depends upon that spin alone. We see that

—BH = hoyr + Koy Z 0’,-; + constant . (10.6)

r nntor

The last sum is over all r’ which are nearest neighbors to r. The ‘constant’ represents all
terms which do not depend upon the spin o,. Now here comes the approximation. Assume
that one can replace the fluctuating sum in Eq. (10.6) by a sum of the averages values of
all the neighboring spins. Thus, Eq. (10.6) becomes

—BH = o, (h + K Z (cr,.:)) + constant (10.7a)

r nntor

which can be equally well represented as
—BH = orheg(r) + const , (10.7b)
where the effective field has the value

he(r) =h(r) + K Y (o). (10.8)

r nntor

As we see, the mean field, h.g, is composed of two parts, first the externally applied
field h, and second the internally generated field. Since the spin at r has its probabilities
determined by this effective field, its average is given by equation in this approximation the
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average is given by Eq. (10.5) with h replaced by heg. Thus, the mean field theory implies
that

(or) = tanh heg(r). (10.9)

In the special case in which the system is translationally invariant, we write (¢) for (o)
and find that Eq. (10.9) is the statement:

() = tanh heq (10.10)
where heg is given by Eq. (10.8) as
het = h+ Kz(o). (10.11)

In this expression, z is, as we have mentioned, the number of nearest neighbors of a given
site. In the hypercubic lattice, z = 2d, where d is the dimension of the system.

We might expect Eq. (10.10) to be accurate in the limit as z becomes very large. For,
when z is large, we have an effective field which is a sum of many terms. The fluctuation
in this field gets smaller and smaller as z gets larger and larger. In the limit, the spin in
question sees the summed effects of many, many different spins and one might expect to
replace the sum by its average. Thus, in particular, we might expect the mean field theory
to be particularly accurate for systems in very high dimensions. Notice that K is inversely
proportional to the temperature. Therefore, Kz can be thought of as T./T, which T} is
some kind of characteristic temperature for the problem. As we shall see that temperature
is, in fact, the critical temperature at which we have a continuous transition. We thus can
write the effective field for the problem as

1c

het = b+ (o) 5 - (10.12)

10.6 The Phases

Equations (10.10) and (10.11) constitute the mean field theory for the equilibrium properties
of this Ising model. Now ‘we are ready to get the thermodynamic properties of the system
by solving Eq. (10.10). Take first the case in which h and (o) are both quite small. Then
we can expand Eq. (10.10) in a series in both. To first order we find

(o) =heg=h+ (0)K=. (10.13)

Here 2 is a symbol for the number of nearest neighbors, which is 2d for a hypercublic lattice.
Since Kz is inversely proportional to the temperature, we can write it as 7./ and solve
Eq. (10.13) to find

h

(o) = =TT (10.14)
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Equation (10.14) shows a singularity at T' = T.. Therefore we interpret 7. = T Kz as the
critical temperature.

From Eq. (10.14), so long as the temperature is above Ti, (o) and h point in the
same direction while, according to Eq. (10.14), when the temperature is below the critical
temperature, (o) and h are antiparallel. However the latter is an impossible result. To
see its impossibility use Eq. (10.14) to find that the magnetic susceptibility, which is the
derivative of magnetization with respect to field, has the value

_9o)| _ 1
T Oh | 1-T. /T’

Equation (10.15) was derived from the mean field theory (10.10) using as the sole assumption
that (o) and h were both sufficiently small so that one can do an expansion in them.

However for T' < T, Eq. (10.15) must be nonsense. Recall our discussion of operators and
field in Chapter 7. The total magnetization operator M = ) o is the operator conjugate
to the field h. As a result, we know that

(M) = % InZ = N{o,). (10.16a)
Here the derivative is to be calculated at fixed coupling, K and constant number of sites,
N. A higher order calculation is done in which the same way. We see that the derivative
of the average spin is exactly the susceptibility
| _ 0, _ M- (M)
X=gplon="—x

(10.15)

Since the last expression is certainly positive, so is the susceptibility. Equation (10.15),
then, must fail as soon as T falls below the critical temperature, 7. — since it then gives
the wrong sign of the susceptibility. We thus derive a wrong result in this region.

This incorrectness should not be a great surprise to us. If T' is far enough below T, the
magnetization and (o) are never very small. Hence one can never expand in them. To see
the difficulty, let us try to solve Eq. (10.10) for {(¢) at b = 0. To do this, we use a graphical
method. We generate graphs for two functions of (¢) = z. The first is just f(z) = «. This
will represent the left hand side of Eq. (10.10). The second is g(z) = tanh(zT./T). This
will be the right hand side. When f crosses g we have a solution for the magnetization.
Figures 10.4 and 10.5 show this graphical calculation. The first one, Fig. 10.4, is for T' > T
and shows the one expected root at z = (o) = 0. The second panel, Fig. 10.5, is for T' < T
and shows three roots! One of these is (o) = 0 — which has given us trouble. We might
suspect that this root is not physically realized. There are two additional roots at nonzero
values of the spontaneous magnetization. Because the problem is symmetric under the
operation of changing the sign of both ¢ and h, the two roots are equal in magnitude and
opposite in sign.

Somehow the system must choose one of these roots. Which one? We shall see.

A graphical understanding is a beginning. But analytical work often gives us a richer un-
derstanding than can be obtained from pure numerics. Therefore, we now turn to obtaining
an analytical understanding of the mean field theory for low temperatures.
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Fig. 10.4. Graphical method of equation solving. Two curves give respectively the left and right
hand sides of Eq. (10.9), We calculate the magnetization for zero magnetic field and T. /T = 0.5,
using Eq. (10.9). The X-value is (o). We draw two curves as a function of X. In one curve, the
Y-value is the right hand side of Eq. (10.9) expressed as a function of (o) for fixed values of K. For
the other it is (o) itself. Where these cross we have solutions to Eq. (10.9).
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Fig. 10.5. Another graphical calculation of magnetization. Just like Fig. 104, except that T is
one half of T.. We follow the same method of equation solving. As in the last figure, the X-axis
represents (o) while the Y-axis plots (o) and the mean field approximation to that quantity. Now
there are three solutions: zero magnetization, and the two values of the spontaneous magnetization.

10.7 Low Temperature Result

The quantity (0)T./T as the interpretation of being the portion of the effective magnetic
field induced by the interaction among the spins. For low temperatures, this induced field
tends to be very large in magnitude. Let us assume that both this field and the usual
magnetic field h, are positive. Thus the induced field is lined up with the applied field. In
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this case, the argument of the hyperbolic tangent in Eq. (10.10) is very large and one can
use the expression:

tanhz =1 — 22 (10.17)

which is true for large z. Then Eq. (10.10) becomes:

(0) =1—2exp [—2 (h - wf‘“)} .

To lowest order in an expansion appropriate for low temperatures, one can replace the (o)
on the right hand side of this expression by unity and find:

(o) =1—2exp [ﬁz (h+ %)} ) (phase +). (10.18a)

When one calculates the susceptibility from this expression one finds a perfectly positive
(and small) value consistent with everything we know from thermodynamics and statistical
mechanics. We label this phase as + since it has a positive value of the magnetization.
Equation (10.18a) looks like a perfectly acceptable solution even for negative values of .
There is another solution which is constructed from the approximation (o) ~ —1, which we
call phase —. Its magnetization has the form:

(o) ~ —1+ 2exp [—2 (—h+ %H , (;l)"hase -, (10.18b)

and yet a third solution, which we obtained before as Eq. (10.14)

—hT

(o) = T 7 (phase 0) . (10.18c)

All three solutions look OK. In the next section, we shall argue that only one solution at a
time is acceptable. The conclusion as the temperature goes to zero (10.18a) is an acceptable
solution only for A > 0, while (10.18b) is acceptable only for A < 0, and (10.18c) is never
true for low temperatures. This last phase is labeled phase zero since it will have zero
magnetization at zero field.

10.8 Free Energy Selection Argument

Equation (10.18) give us three presumably possible thermodynamic states for the system
when h is small and the temperature is low. Which one(s) of these situation represents a
possible behavior of the real system? To make the right selection we follow a principle that
whatever the thermodynamic state achieved by the system is the one which produces the
minimum of the free energy, F', or the maximum of the quantity

exp(—fF) = Tr exp(~GH). (10.19)
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In writing this expression, we use our convention that the quantum sum over states and
the classical sum over phase space will be represented by the symbol Tr. To find the free
energy we notice that the derivative of the free energy with respect to 3 is given in terms
of the average value of the energy:

opF

B
In mean field theory, to calculate the average energy we start with H and replace each spin
in the Hamiltonian by its average. Thus, Eq. (10.20) becomes

(H) . (10.20)

_ﬁ%ﬁf) - hgw) + K Z (0)? = N (o) {h—l— KZT@} ; (10.21)

- (nr)

Here, N is the number of lattice sites while K z has the physical interpretation of being the
ratio T../T. Now consider the case h = 0. We wish to know how the free energy depends
upon our choice of state. For T' > T, there is no choice. For T' < T¢, in the unmagnetized
state (o) is and remains zero. Then if F¢ is the value of the free energy at the critical point,
Eq. (10.21) reads

F=F, forh=0andalT (phase 0). (10.22)

Then the free energy is F. for this configuration. In the magnetized configuration,
Eq. (10.21) reads

o 2
T (%ﬂ—))h - N%% . (10.23)

All factors in this expression are non-negative.

Notice that Eq. (10.23) describes all three phases at once. To get the actual free energy
at T' < T, one integrates this equation downward in temperature starting at T¢, using the
boundary condition that 8F = (.F, at the critical temperature. One visualizes doing the
integral separately in each of the three phases, in each case stopping the integration at some
temperature, T', below the critical temperature. Then one finds that in phase zero the right
hand side is zero so that BF remains at the critical value S.F;. On the other hand, in the
other two phases, the right hand side of Eq. (10.23) is positive and thus gives a negative
contribution to the downward integral, so that

BF < B.F. for h=0and T < T¢ (phase + and phase —). (10.24)

The general rule is that configurations of lower free energy are more likely. In big
systems, in which the number of degrees of freedom is approaching infinity, a small difference
in free energy per site can results in vastly different probabilities. Here, for T' < T;, we have
a lower free energy for the two magnetized phases. The system will pick one of these two,
and not the unmagnetized phase. A similar argument shows that in a system with a very
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large number of lattice sites, N, if h is positive only the positive magnetization phase will
be realized. Conversely for negative h only phase — will be achieved. There two phases
will be cleanly separated for sufficiently large values of |h|. In homework Problem 10.3 we
ask you to show that the condition ‘|h| is sufficiently large’ gets weaker and weaker as the
number of sites gets larger. Thus, in an infinite system all nonzero values of |h| give us only
one thermodynamically stable phase.

So far, we have not emphasized one essential fact about all these phase transitions.
Phase transitions only occur in infinitely large systems. Phase transitions are signaled by
qualitative differences between two phases of a thermodynamic system. They occur when
there is some kind of mathematical discontinuity in the behavior of the system as a function
of parameters like K and h. For example, in our Ising example as N goes to infinity the
magnetization jumps discontinuously as a function of h. However, it is easy enough to
prove mathematically that such a jump cannot occur for a finite system.®> Thus, somehow,
phase transitions must be linked to the fact that there are an effectively infinite number of
particles in the system. So they are not just a result of mechanics. They are reflections of
the mechanics of large systems.

_17-0.9 Behaviors of Different Phases

It is tautological to say that different phases behave differently. A crystalline solid is different
from a liquid, which is different from a superfluid, and that is different from a ferromagnet.
There is a direct, but deep, reason for the difference. In many, but not all phase transi-
tions, one or more of the phases has a nontrivial set of symmetry properties. In this case
‘nontrivial’ means that the configuration of the system has less than the full symmetry of
the Hamiltonian. For example, a crystalline solid has a Hamiltonian which displays both
a Totational and a translational invariance. However, the produced lattice shows neither
symmetry. Each lattice picks out a set of directions for its crystalline axes. A rotation of
the crystal produces another, equivalent, but different configuration. Similarly every lat-
tice picks out preferred positions, which are the equilibrium position of the constituents.
Displace the entire lattice a little, and you have other equilibrium positions. Thus, the full
translational symmetry is broken. One can often see the broken rotational order. Crys-
talline solids produce crystals, that is pieces of material with surfaces arranged in facets
along directions set by the crystal axes. The translational order cannot be seen with the
naked eye. Nonetheless these ordering priorities have consequences which are immediately
apparent. In contrast to a fluid, a solid is resistant to a shear. It holds its shape. The
difference between the disorder of a fluid and the order of a solid is particularly evident in
its dynamical behavior. A fluid will propagate only one kind of sound, a longitudinal wave.

3The magnetization is the logarithmic derivative of the partition function. Such a derivative can never
show a discontinuity in any region in which Z is analytic in h. But, for a finite system, Z is a finite sum
of exponentials of h. It is analytic. Therefore no discontinuities. Indeed, finite-but-large systems can show
changes which appear quite abrupt. But, in each case, a close examination of the ‘jump’ region will show a
continuous behavior. The abrupt jumps only occur for infinite N.



222 Chapter 10. Overview of Phase Transitions

Typically, a solid will respond to a transient shear by producing a transverse sound wave.
This kind of excitation is directly produced because the shear tries to break the produced
order and then the system responds dynamically to restore the order. It is generically true
that interesting phases show some kind of broken symmetry, by producing a kind of order-
ing. It is further true that when this ordering is locally disturbed, the system will produce
a dynamical response characteristic of the phase in question.

The Bose condensed system provides another example. The superfluid ordering is
achieved by having a macroscopic number of particles fall into a single quantum state.
This state is defined by a complex wave function. The ordering determines the wave func-
tion of this state, defining its magnitude but not its phase angle.? In the Bose condensed
system, the condensate wave function has a phase angle, which defines the thermodynamic
phase, and takes on all possible values between 0 and 27. Thus the thermodynamic phase
has a symmetry under the rotation of the phase angle. This symmetry is called a ‘U(1)’
symmetry. -

In equilibrium the phase angle does not vary in space. The system responds to variations
in the phase angle in two different ways. If there is a fixed spatial variation produced by
external forces, then the system will produce a ‘supercurrent’ in which there is a mass-flow
along the gradient of the phase. This current is entirely different from ordinary mass flow in
that this kind of flow can occur without friction, and without energy losses from heating. In
contrast, if we apply no forces, but start the system in a situation with a spatially varying
phase angle, then it will produce a new characteristic form of sound wave called ‘second
sound’. We should not be surprised if a U(1) symmetry can produce waves, after all photons
are produced in much the same fashion.

One almost always finds that a broken symmetry produces an ordering and that disturb-
ing that ordering produces some characteristic type of dynamical response. This response
is called a ‘Goldstone-Nambu Boson’. Jeffrey Goldstone, now at MIT, and Yoshiro Nambu
from Chicago first made this general argument. The word ‘boson’ appears in the argument
because one important application of the argument is to broken symmetry states in particle
physics. The reader has been prepared, specifically in Chapter 4, for the fact that there is
an intimate connection between statistical physics and particle physics. We shall see more
of this connection in the next few chapters. We start here. The particle physicist is often
interested in understanding the connection between the more ‘fundamental’ short-ranged
and high energy interactions and the more accessible lower energy and longer-ranged be-
havior. The statistical physicist is also interested in relating microscopic interactions to
macroscopic behavior. Most of the richness provided by microscopic interactions are really
present only at the micro scale. However a few effects persist out to the macro scale. These
are:

(1) The effects of inherently long-ranged forces like electromagnetic interactions or gravity.

4Notice that we are in the process of using two different meanings of the word ‘phase’. There is a phase
of a thermodynamic system, e.g. liquid or gaseous. To be more precise, we use the words ‘thermodynamic
phase’ to specify this meaning. But, there is also the phase of a complex number. We refer to the latter as
a ‘phase angle’.
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(2) The special effects of long-ranged correlation produced near the critical point. The
theory of critical behavior, which develops this class of application is the subject of
succeeding chapters.

(3) Long-ranged interaction which occur in broken symmetry states.>

The treatment of long-ranged forces are almost identical in particle physics and statistical
physics. Thus, in recent years, the paths of statistical theory and particle theory have often
run parallel. The discussion of the Higgs particle in high energy physics followed the lines
of the treatment of the Anderson mode in superconductors.® The critical state has formed
the basis for the calculation of the masses and interactions which occur in particle physics.

This chapter has been concerned with the mean field theory of first order phase transi-
tions. This theory neglects fluctuations in the ordering which drives the phase transition.
Of course, in an finite-range, finite-system the fluctuations are always there. Thus, our
analysis has left something out. The neglected fluctuations are important. Sometimes the
system is in the ‘wrong’ phase — that is it is a liquid when, by free energy considerations, it
should be a solid. In another case, its magnetization points opposite to the magnetic field.
In these situations the real system will undergo a dynamical process which will bring it to
the ‘right’ phase. The process starts with a fluctuation. In a transitory process, the system
produces a region within the ‘wrong’ phase that is essentially a small piece of the ‘right’
phase. If that region is large enough it will tend to grow and bring the entire system into
the equilibrium phase. Naturally, in order to understand, the process, we must understand
fluctuations and it is precisely these fluctuations which are left out in mean field theory.
One must go beyond mean field theory to understand some of the most interesting prob-
lems in first order phase transitions: the long-lived existence of states of the wrong phase
(termed metastabilily), the particularly long-lived metastable states called glasses, and the
dynamical processes by which equilibrium is restored. These issues are not fully understood
to this day. So we go on, to the somewhat easier problem of second order phase transitions.

Homework

Problem 10.1 (Magnetization versus T./T). Draw plots of the solutions to the mean
field equation for the magnetization as a function of T./T for h =0, h = 0.1, h = 0.2, and
hi= 1.1,

Problem 10.2 (Anti-ferromagnetism). An anti-ferromagnetic has spins at different
sites lined up in opposite directions, so that the total magnetization is zero. Mean field
theory gives a description of anti-ferromagnetism directly analogous to the ferromagnetism
we discussed. It arises for negative values of the coupling J and hence negative values of K.

SParticle physics is much concerned with showing that long-ranged forces can always be understood in
terms of microscopic mechanism like #2 and #3. The first point is that there are some inherently long-
ranged forces in nature. Statistical physics uses these forces; particle physics must try to explain them,
perhaps in terms of #2 and #3.

®P. W. Anderson, Phys. Rev. 130, 62 (1962).
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(1) Find the appropriate mean field theory for antiferromagnetism.
(2) Calculate the magnetic susceptibility for this system.

Problem 10.3 (Phase Probabilities). Below Eq. (10.24) we discussed a free energy
evaluation for the relative probabilities for the different phases of the system. Imagine
a system with N particles, at h = 0 with a temperature a little below the critical tem-
perature. Using mean field theory, estimate the probability that the system will be in the
unmagnetized phase for N = 100 and N = 10%.

Now apply a small positive magnetic field. For T' < T¢, what is the condition that makes
the phase with negative magnetization have a probability of being observed greater than
one part in 10°.

Problem 10.4 (Magnetic Susceptibility for T' < T¢). Calculate an expression for
the magnetic susceptibility in mean field theory for T < Tc and A = 0. Evaluate this
expression more explicitly for low temperatures and for temperatures close to the critical
temperature.




