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States with fractional fermion charge have been discovered in relativistic field theory_ and 
condensed matter physics. In the latter context they lead to unexpected but experimentally verified 
predictions for one-dimensional electron-phonon systems like polyacetylene. We examine the 
common basis for this fortunate convergence between condensed matter and relativistic field 
theories. 

1. Introduction 

In a study of the spectrum for a one-dimensional, spinless Fermi field coupled to a 
broken symmetry Bose field, Jackiw and Rebbi (JR) [1] noted the occurrence of a 
localized zero-energy, c-number solution +0 to the Dirac equation when a soliton is 
present. Furthermore, they proposed the interpretation that in the soliton-fermion 
system there is a twofold energy degeneracy (beyond the broken symmetry degener- 
acy), and that the two states carry charge --½. In other words, they found that 
introducing the soliton changes the number of fermions present by a fractional 
amount, namely -+-½, depending whether ~0 is occupied or not. 

Independently, Su, Schrieffer and Heeger (SSH) [2], studying a coupled electron- 
phonon model for the quasi one-dimensional conductor polyacetylene (CH),., found 
a dynamical symmetry breaking of the system, which leads to degenerate vacua and 
soliton formation. In the presence of a soliton, there is a c-number solution ~b o of the 
electron field~ localized near the soliton, with energy at the center of the gap. As a 
consequence, one-half a state of each spin orientation is removed from the sea in the 
vicinity of the soliton*. Thus, if one neglects the electron spin, the existence of the 
zero-energy state and fermion number ± ~ are common to the two situations. 

In this paper, we outline the two theories and point out the fundamental reasons 
for similar behavior in different models. We hope that this will stimulate interaction 
between condensed matter and particle physicists. 

t Also at Center for Theoretical Physics, MIT, Cambridgc, MA 02139. 
2 Also at Department of Physics, UCSB, Santa Barbara. CA 93106. 
* See also ref. [31. 
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2. Solitons in a one-dimensional electron-phonon system 

2.1. PRELIMINARIES 

There are materials, such as polyacetylene (CH)x, in which electrons move 
primarily in one dimension. Typically, these materials consist of parallel chains of 
atoms, or groups of atoms, in which electrons hop preferentially along the chains, 

while hopping between the chains is strongly suppressed. This anisotropy renders 
such materials quasi one-dimensional. The structure, called t rans- (CH)x ,  is shown in 

fig. 1. 
In solids, the matrix element t,,,,, giving the probability amplitude of an electron 

hopping from site n to n', depends on the distance between these sites, whose 
average spacing is a. The atoms can be displaced from their perfect crystal lattice 
position for a variety of reasons, e.g. zero-point motions, thermal excitations, broken 
symmetry effects, etc. These displacements alter the matrix elements t,,,,,, leading to 
the so-called electron-phonon (or electron-lattice displacement) interaction. Using 

the mean-field approximation, in which the phonon field u,, is treated as an 
unquantized c-number, Peierls [4] has shown that the one-dimensional electron- 
phonon system is unstable with respect to spontaneous breaking of the reflection 

symmetry u,, ~ - u , , ,  for any non-zero electron-phonon coupling strength. The 
distortion gives rise to a charge density wave (CDW), in which the electron density 
and nuclear displacements oscillate periodically in space, with wave vector x = 2k  F, 

where hk  v is the Fermi momentum of the valence electrons in the undistorted 
system. Bragg scattering of the electrons from the CDW potential opens a gap 2A, at 
the Fermi surface ± k  F, in the electronic energy spectrum E: see fig. 2. For (CH), ,  
there is exactly one electron per site, so k v = ~ r / 2 a .  In the ground state, all 
one-electron states with I ki < k F are doubly occupied (spin up and down) leading to 
an insulator. In this case K = 2k F = v / a ,  and the CDW, with wavelength 2rr/~ - 2a, 
is commensurate with the lattice period. From the invariance of the system under 
discrete translations by + a ,  ± 2 a  .. . . .  it follows that the ground state is twofold 
degenerate. This is so since a translation by ± a  is equivalent to a reflection, but 
reflection symmetry is spontaneously broken. Consequently, states translated by a 
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Fig. 1. Trans configuration of (CH),; a = 1.2 A. The coordinate displacement of thc nth group, the 
phonon field, is denoted by u,,. 
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Fig. 2. Band structure due to the Peierls instability in (CH),. 

are distinct from untranslated states. Furthermore, a soliton is formed by the 
domain boundary between the two ground states. 

A one-dimensional, N-site, lattice hamiltonian for the above physical situation has 
the form 

H= Y~ + V(u , , . , , ,+ l ) -  Z ~,,~, ,,(C+,.,~ .... +*c , , . ,c , , . l . , ) .  (2.1t 
Jl = I n 1 

Here u,, is a real, scalar, Bose field describing the coordinate displacement along the 
symmetry axis of the nth group (see fig. 1): p,, is the conjugate momentum, M being 
the group's mass (CH mass for polyacetylene). The first sum gives the phonon 
energy, kinetic and potential; the second, describes electron hopping from site n to 
site n + 1, with amplitude t,, +1 ,1" The fermion operators c~[~ and c, ..... create and 
destroy electrons of spin s( = __+½) at site n. In the SSH analysis, the potential energy 
is taken in a quadratic approximation. 

_ ) 2  
(2.2) 

and the hopping amplitude is expanded to first order: 

For (CH),,  

t,,+l ,, t o - c ~ ( u , , + t - u , , ) .  (z.3) 

c~ 4.1 eV/,~.  K = 2 1  e V / A  2. t 0 =2 .5  eV. (2.4) 
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Thus the SSH hamiltonian is 

N 2 ) [ p, K .  _ u , ) Z  - =  Z 
n = l  

N 
c t c t --to 2 ( n+~,sCn,s + ,,,C,+1,,1 

n = [  

N 

+ a  ~, (u ,+l-u,)(c*~+l. ,c , , ,+c*, , ,c ,+l ,s) .  (2.5) 
n = l  i 

s = ~ 2  

The first sum in (2.5) is. the harmonic vibrational energy of the free phonons; the 
second describes band electrons moving on a lattice in a tight binding approxima- 
tion; the last sum provides a linear coupling of the phonon field to the electrons, 

In the absence of interactions, c~= 0, the ground state is non-degenerate. It 
consists of the phonon vacuum and a Fermi electron sea, with all states doubly 
occupied up to k = Ikv]. In this limit the gap parameter  vanishes, A----0. 

2.2. B R O K E N  S Y M M E T R Y  G R O U N D  S T A T E  

To understand the symmetry breaking, it is convenient to introduce a staggered 
displacement field 

gO, = ( - 1 ) " u , .  (2.6) 

The ground state is determined by making an adiabatic (Born-Oppenheimer) ap- 
proximation: the phonon's  kinetic energy is ignored, and ~n is set to a constant value 
u. The ground-state energy is determined as a function of u, and one finds 

E o ( u ) =  Eo( -U) ;  finally, Eo(u ) is minimized with respect to u. A non-vanishing 
minimization value for u signals spontaneous breaking of the reflection symmetry; 
thus, if u o is one such value, so is - u  0. The adiabatic approximation is justified a 
posteriori by noting that in the broken symmetry ground state, the typical phonon 
energy f K - / M  is much smaller than the gap 2A in the electron spectrum, for 
interesting values of c~, A straightforward calculation gives [2] 

E ° ( u ) -  4t--° I( 1 4c~2u2 )+ 2Ku 2 (2.7) 
N ,a" t 2 ' 

where 1 is the elliptic integral. Eo(u ) is plotting in fig. 3. Two minima are seen at 
u ~ ± u  o, corresponding to doubly degenerate ground states, A and B; while u = 0 is 
a local maximum, thus verifying Peierls' theorem. With numerical values for the 
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Fig. 3. Born-Oppenheimer  energy per  CH group, plotted as a function of the staggered displacement 
field u = if,, - ( - 1 )" u,. The two stable minima correspond to A( + u0) and B( - uo) phases. 

parameters appropriate to (CH)x, one finds u 0 = 0.042 ,k. Because of the periodic 
spatial variation of the electron hopping matrix element when u 4:  0, the electronic 
plane wave k of the undistorted chain mixes with the state k - x (or k + K if k < 0), 
leading to a gap 2A in the electron spectrum, as shown in fig. 2, where x = ~r/a is the 
first reciprocal lattice vector of the broken symmetry lattice. One finds 

2x = 4 ~ l u o l .  (2.8) 

2.3. S O L I T O N  E X C I T A T I O N S  

As a consequence of the ground state's twofold degeneracy (@,,-  ± u 0 ) ,  there 
exist topological solitons, which act as boundaries between domains having different 
ground states. It is convenient to work with a chain formed as a large ring, having an 

even number of atoms; see fig. 4. Let the staggered field be plotted radially, with 
@, > 0 outside the ring and ,~ < 0 inside. For ~, to be single valued, it must change 
sign an even number of times, in going around the ring. Thus when ~ interpolates 
between the two vacua, we are led to consider a soliton S and an antisoliton S, 
located at sites n l and n2, respectively, and we take them to be widely separated. To 
find the shape of ~ which describes the solitons, we need to minimize the adiabatic 

energy, subject to the constraint that @,, approaches the A vacuum ( + u 0 )  and the B 
vacuum ( - -u0)  far from S and S, as illustrated in fig. 4. A numerical calculation 
yields [2] 

q5 = u 0 t a n h [ ( n -  n l ) / l  ] - uo tanh[ (n - -  n 2 ) / l  ] - u0, (2.9) 

where the soliton width I is approximately 7 for (CH)x. Near  the solitons, the above 
reduces to the familiar topological kink, with hyperbolic tangent profile, which is 
appropriate for a double-well potential of the q~4 field theory [see (3.3)]. The energy 

of this solution, interpreted as the soliton creation energy, is found to be E s = 0.42 
eV "-~ 0.6//. 
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Fig. 4. Soliton S and antisoliton S occurring in a ring with an even number of atoms. The staggered field 
~,, is plotted radially. 

In a continuum version of the SSH model, Takayama, Lin-giu and Maki (TLM) 
[5] have shown that the hyperbolic tangent exactly satisfies the coupled mean field 
equations (M--~ ~c). They find E s = 2A/~r ~--0.63A, in good agreement with the 
results of the discrete calculation. If the coupling constant a is increased, the soliton 
width l decreases and discrete lattice effects become increasingly important. 

The electronic spectrum in the presence of S and S can be readily determined, 
both in the lattice and in the continuum models. One finds that the change of the 
electronic state density o(E) in the presence of solitons relative to that in their 
absence exhibits two discrete states +0_+, whose energies are symmetrically located 
about the center of the gap, E - 0. As I n i - n 21 ~ oc, the energy splitting between 
the two states vanishes as e In,-,~_l# so that one can form zero-energy eigenstates 
+os and ~b0s, localized about S and S, as linear combinations of the two states ~0+ - 

+0s and +og are given by [2] 

+o(n)--/-~/2 sech[(n - n,)/l]cos[½~r(n- hi) ] , 

S : i = I ,  S : i = 2 .  (2.10) 

To see how the continuum states are altered by S and S, we note that the 
completeness of electronic eigenstates ~,, at each site, implies that the energy integral 
of the local density p,, n(E), at any site n, is unity: 

f~  dEp,,,( E)= l, 
d ~  OC 

= E I  a(E - 
P 

N 

p ( E ) =  E p,,,,(E). (2.11) 
t l - -  I 
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Also the electronic hamiltonian is odd under charge conjugation, c, +, = c,,, so that 

O , , , , ( E ) - p , , , , ( - E ) .  (2.12) 

Therefore, breaking up the spectral integral in eq. (2. l l )  into contributions from the 
negative and positive energy continua plus the discrete zero-energy state, and using 
the symmetry (2.12), gives 

2f" dEo,',,,(E) + J¢o(,,)l 2 : 2 f  ° dE0,,,,(E). (2.13) 
OC OC 

Here the primed quantity is the local density in the presence of the soliton: the 
unprimed, in the vacuum where the soliton is absent. Thus, the local deficit in 
negative energy states satisfies 

d E [ p ; , , ( E ) - p , , , , ( E ) ] = - ' 1 ¢ o ( , , ) 1 2  (2.14) 
~C 

Summing over all sites, and using the normalization condition on ~'0, one finds that 
the total deficit from the negative energy valence sea is precisely ½ a state per spin. 
Including spin, a total of one electron is missing from the Fermi sea. due to the 
soliton. If g'0 is unoccupied, all spins are paired and the soliton has charge Q = + e  
and spin s = 0. Correspondingly, when 4'0 is singly occupied, the soliton is neutral 
Q = 0, but the spin is _+½. The two states are degenerate in energy, since ~'o is a 
zero-energy eigenstate, for infinite separation between S and S. (However, one does 
not usually compare these two situations since they involve a different number of 
electrons.) 

These local charge-spin relations would appear to violate Kramer's theorem, since 
one cannot go from integer spin to integer spin and remove or add one electron with 
spin ½. Nevertheless, these peculiar charge-spin relations have been observed experi- 
mentally in (CH)x *. Conventional fermion excitations in solids (electrons and holes) 
have charge ± e  and spin ±½. The resolution of the apparent paradox is that the 
antisoliton also has these spin-charge relations, so the difficulty is removed by the 
topological requirement that S and g be created in pairs, even though they act as 
independent excitations when widely separated. In other words, global constraints 
relating charge and spin are valid, but they do not fix local charge-spin relations. 

3. Fermionic  sol itons in a relativistic field theory 

3. I. PRELIMINARIES 

In a study of the spectrum for a Dirac field coupled to a broken symmetry Bose 
field, JR discovered in various models the existence of zero-energy fermion eigen- 

* For evidence of charged, spinless solitons, see ref. [6a]. Evidence for neutral, spin-} solitons is 
contained in ref. [6b]. 
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states, localized in the vicinity of a soliton of the Bose field. Their model, involving a 
scalar field ~b coupled to a Fermi field 't '  in one continuous spatial dimension, is 
closely related to the above discussed solutions from condensed matter theory. 

In the one-dimensional model, JR consider a hamiltonian [1] 

1[ d ~2 } 
/ / = f a x  }rI 2 +5177x, ) + , 

1 d 
P - i d x "  

(3.1) 

Here H is the momentum conjugate to ~, and V(q)) is a potential energy density for 
• . The Dirac spinors have two components,  hence the fermions carry no s p i n - - a  
simplifying option available in one dimension. Correspondingly, the two Dirac 
matrices c~ and/~ are two-dimensional: 

The model is analyzed in an adiabatic approximation*. The ground state is de- 
termined by minimizing f d x [ l ( ( d / d x ) d p ) 2 +  V(~)] with constant qb while the 

soliton is found by minimizing with an x-dependent ~,  subject to the condition that 
the total energy be finite. The Dirac hamiltonian is then quantized, with • taken as 
an external, prescribed, c-number, background field. For present purposes V(~) is a 
symmetric, double-well potential, as in fig. 3, but of simpler analytic form: 

- -  ~k2 2 
- -  ,2)2 = v ( - + ) .  ( 3 . 3 )  

z V  

3.2. BROKEN SYMMETRY GROUND STATE 

The minimum of (3.3) is at • = ±/~; thus the reflection symmetry • ~ -q~ is 
spontaneously broken. The Dirac hamiltonian describes a free particle with mass gap 
A = g/~ = m. The fermion modes satisfy the free Dirac equation 

( a p  + f l m ) u  ~+-) = +_leIu(+-), 

[e I =  k ~ + m  2. (3.4) 

Charge conjugation is implemented by the 0 3 matrix. It takes positive energy 
solutions of (3.4) into negative energy solutions, and vice versa. Quantization is 

* It can be shown that this approximation is the starting point for a systematic, weak coupling 
expansion; see ref. [7], 



R. Jackiw, J. R. Schrieffer / Solitons with fermion number ½ 

achieved by the usual expansion in modes:  
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q': • {e-i~'tbku~+)(x) + ei~'td~v(k-)(x)}. 
k 

(3.5) 

Here u(k +) is a positive energy solution, and v(k -) is the charge conjugate of the 
negative energy solution: 

= 

0 3 =(10  -I0)" (3.6) 

The operators btk (bk) create (annihilate) particles, while d~ (dk) do the same for 

antiparticles. The charge operator  

Q =fdx: ,v(~)q,(x). 

becomes 

2 

= " f dx ?~ ( q,,+(x),i,,(x)-,t,,(x),V,+(x)), (3.7) 
i ~ l  

Q :  E (b'~b~ - d2dk). (3.8) 
k 

The spectrum is elementary and can be built on either the A vacuum (g5 = ~) or 
the B vacuum (dO = - ~ ) .  Of course the vacua are charge neutral, 

Q[0)  = 0. (3.9) 

3.3. SOLITON EXCITATIONS 

The existence of  two ground states leads to topological solitons, which interpolate 
between them. To find the soliton shape of qb, we solve the equation 

d2 ,I,(~) + v ' (o)  = o  
d x  2 

(3.1o) 

For  (3.3), finite energy solutions are given by '~ 

• ( x )  = +__~tanh~.x. (3.11) 

" The origin has been arbitrarily set at x = 0, the location of the soliton. Of course, the soliton may be 
located at any x x o ,  and the proper quantum mechanical treatment of this degree of freedom is 
given in ref. [7]. For a review, see ref. [8]. 
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Note that as x passes from negative infinity to positive infinity, qb(x) interpolates 
between the two vacua. With the positive sign, (3.11) describes the soliton S; with 
the negative, the antisoliton S. The energy of the solution (3.11), interpreted as the 
soliton formation energy, is 

E s = f d x (  2(  d ~) 2+ d~ v(,)} 

-fd4d )2 
dx =4bt2X" (3.12) 

The quantization of the Dirac equations, proceeds as in the vacuum sector, except 
that modes in the presence of the soliton satisfy 

(ap + flmtanhXx)U (+-) = ± [~,; IU (---) . (3.13) 

Again charge conjugation insures that the positive eigenvalue is paired with a 
negative one, and the modes may be explicitly found. Additionally, (3.13) admits a 
zero-eigenvalue solution, 

q~o( X ) oc ( ol )exp( - m  fo xdx' tanhXx') (3.14) 

which is charge conjugation self-conjugate, 

+ ~ ( x )  -- ,,3q~g(x) = +0(x)  • (3.15) 

Thus the spectrum exhibits at the center of the gap an additional state. 
Quantization again proceeds by an expansion in modes, 

ql = a+o( X ) + E [ e-ig~'BkU(k+ )( x ) + oi~.-,~,ntl/( "- ~'k'k )(X)], (3.16) 
k 

U (+) being a positive energy solution, and V~ -) the charge conjugate of the negative k 
energy solution, 

v~<-> = o ~ ( u ~ - ' )  *. (3.17) 

The operators B~ (B~) and D~ (Dk) create (annihilate) conventional fermions and 
antifermions in the soliton sector. However, the further operator a when operating 
on the soliton state produces another state of the same energy; hence the two states 
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are degenerate in energy. To distinguish them, we may label them as ]__+ , S )  and 

a * [ - , S > = I + , S  > , 

al -  ,S> :0 ,  

a * l + , S > : O .  (3.18) 

In analogy with the physical situation encountered in the polyacetylene system, we 
may call the "plus" state occupied and the "minus" state unoccupied. 

The charge quantum number of l ~  , S )  is evaluated by substituting the expan- 
sion (3.16) into (3.7). One finds 

0 : a * , , - "  + E(s sk - 
k 

Consequently it follows that 

(3.19) 

Ql +_ , s >  = + +_ , s > ,  (3.20) 

i.e., each of the two soliton states carry ½ unit of charge. 

4. Discussion 

The two models under discussion--one drawn from a realistic situation in 
condensed matter physics, the other from a formal, mathematical investigation in 
relativistic quantum field theory--obviously differ in detail. The SSH hamiltonian is 
on a lattice, and also the fermions carry a spin degree of freedom. The JR 
hamiltonian is in the continuum; the fermions are spinless. A closer comparison can 
be made with the TLM hamil tonian--a  continuum approximation to SSH, if the 
fermion spin is ignored for simplicity. The structures of the JR and TLM fermion 
hamiltonians coincide, but differences remain in the boson parts. 

Nevertheless, in crucial respects the two models are similar: both give rise to 
spontaneous breaking of the field reflection symmetry, and as a consequence, have 
doubly degenerate ground states. They possess soliton excitations which interpolate 
between the degenerate vacua. Moreover, the fermion equation in both cases admits 
a localized zero-energy solution, which then implies charge fractionalization: ½ unit 
of charge is gained or lost depending whether ~b 0 is filled or empty. In the condensed 
matter example, the fractionalization is obscured by a doubling of degrees of 
freedom due to spin, but an experimentally observed signal remains in unusual 
charge-spin relations: charged solitons are spinless and neutral solitons carry spin ½. 
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In both models the presence of charge conjugation symmetry allows the pairing of 
positive energy modes with negative energy modes, leaving the zero-energy state 
unpaired. 

The common phenomena are in fact universal. It has been shown under very 
general mathematical hypotheses, that the Dirac equation in the background field of 
a topologically interesting configuration, like a soliton, always possesses zero- 
eigenvalue modes whose number is related to an integer which characterizes the 
non-trivial topology*. Since the result is valid in any number of dimensions, the 
possibility exists that effects similar to those observed in polyacetylene may be found 
in higher-dimensional systems, e.g. associated with vortices in superfluid helium 
three. 

The SSH-TLM model is also interesting for particle physicists in that it realizes its 
symmetry breaking due to the Peierls instability through quantum-mechanical 
dynamics. In the classical, tree approximation where fermions are ignored, the only 
dynamics for the bosons are the harmonic lattice vibrations; in contrast to the JR 
hamiltonian, for which even in the absence of the fermions and without quantal 
effects for the bosons, the classical solutions break the symmetry. The effective 
potential of fig. 3 for the Bose field is generated dynamically in the condensed-matter 
application, while it is arbitrarily posited in the mathematical field theory example. 
The possibility of realizing spontaneous symmetry breaking by dynamics, rather 
than by assumption, is widely discussed but rarely achieved by particle physicists. 

It is truly remarkable that a phenomenon as esoteric and peculiar as charge 
fractionalization should have been discovered in two different contexts: mathemati- 
cal investigations of model field theories by particle physicists; description of 
experimental phenomena by condensed matter physicists. That this should happen is 
strong reaffirmation of the unity of all branches of physics and another example of 
the power of mathematics to uncover unexpected physical behavior. 

The ideas on charge fractionalization can be carried further. It has been suggested 
that arbitrary charge fractions can be obtained in fermion-soliton systems, provided 
charge conjugation is abandoned and the vacuum structure is sufficiently complex. 
An example with ~ units of charge, which is not obscured by the two spin states, has 
been discussed by Su and Schrieffer [10] in the condensed matter context of 
TTF-TCNQ; while related ideas for particle physics have been investigated by 
Goldstone and Wilczek [11]. 

We thank our colleagues for many discussions which clarified for us each other's 
results. RJ especially acknowledges instruction on Peierls' instability by Y.R. Lin-Liu 
and I. Ventura, while JRS is grateful to W.P. Su for help with the manuscript. This 
research was supported by the National Science Foundation under grant nos. 
PHY77-27084 and DMR80-07432. 

* A review of these "index theorems" is found in ref. [9]. 
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