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Abstract

We reconsider the Nagelian theory of reduction and argue that, con-
trary to a widely held view, it is the right analysis of inter-theoretic
reduction. For one, its purported successor, so-called new wave reduc-
tionism, turns out collapses into a sophisticated version of Nagelian
reduction and hence does not provide an alternative. For another, the
alleged difficulties of the Nagelian theory either vanish upon closer in-
spection, or turn out to be interesting philosophical questions rather
than knock-down arguments.
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1 Introduction

The purpose of this paper is to examine synchronic inter-theoretic
reduction, i.e. the reductive relation between pairs of theories each
of which describes the same phenomena and which are simultane-
ously valid to various extents.1 Examples of putative synchronic
inter-theoretic reductions are macro economics to micro economics,
chemistry to atomic physics, and thermodynamics (TD) to statistical
mechanics (SM). The latter will be our test case: what is it to say
that TD reduces to SM?

The central contention of this paper is that Nagel’s account of reduc-
tion essentially gives the right answer to this question. We first turn
our attention to the Nagelian model of reduction and consider some of
the problems that it allegedly faces. We then discuss its successor, so-
called new wave reductionism (NWR), which is nowadays commonly
advocated in its place. Our conclusion is twofold. First, we argue that
upon closer inspection NWR collapses into a sophisticated version of
Nagelian reduction, which, for reasons that will become clear as we
proceed, we refer to as Nagel-Schaffner Reduction (NSR). Hence, re-
ceived wisdom notwithstanding, NWR does not provide an alternative
to NSR. Second, we reconsider the alleged difficulties of NSR and con-
clude that not only are they far from being as insurmountable as it
they are often said to be; in fact most of them vanish upon closer
inspection and those that don’t turn out to be interesting philosoph-
ical issues rather then knock-down arguments. So NSR is alive and
well and can be used as a regulative model for reductionist research
programmes.

1There are, of course, various other types of reductive relations, most notably diachronic
theory reductions an example of which is Newtonian and relativistic mechanics. See Nickles
(1975). For an in-depth discussion of such cases see Batterman (2002).
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2 Statistical Mechanics - A Reduction-

ist Enterprise

SM is the study of the connection between micro-physics and macro-
physics. TD correctly accounts for a broad range of phenomena we ob-
serve in macroscopic systems like gases and solids. It does so by char-
acterizing the behavior of such systems as governed by laws which are
formulated in terms of macroscopic properties such as volume, pres-
sure, temperature and entropy. The aim of statistical mechanics is to
account for this behaviour in terms of the dynamical laws governing
the microscopic constituents of macroscopic systems and probabilistic
assumptions.

There is a broad consensus, among physicists and philosophers alike,
that SM is a reductionist enterprise. The following quotes are indica-
tive of this:

‘We know today that the actual basis for the equivalence
of heat and dynamical energy is to be sought in the ki-
netic interpretation, which reduces all thermal phenomena
to the disordered motions of atoms and molecules’ (Fermi
1936 p.ix).

‘The explanation of the complete science of thermodynam-
ics in terms of the more abstract science of statistical me-
chanics is one of the greatest achievements of physics.’ (Tol-
man 1938, 9)

‘The classical kinetic theory of gases is [a] case in which
thermodynamics can derived nearly from first principles.’
(Huang 1963, Preface)

Further statements pulling in the same direction can be found in
Dougherty (1993, 843), Ehrenfest & Ehrenfest (1912, 1), Goldstein
(2001, 40), Khinchin (1949, 7), Lebowitz (1999, 346), Ridderbos (2002,
66), Sklar (1993, 3) and Uffink (2007, 923).

What is meant by reduction? That practitioners of SM do not really
discuss the issue is not really a surprise; however, it should rise some
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eyebrows that by and large philosophers working on the foundations
of SM also only rarely address this issue. So the pressing question
remains: what notion of reduction is at work in the context of TD
and SM?

Different statements of the reductive aims of SM emphasise different
aspects of reduction (ontological, explanatory, methodological, etc.),
but all agree that a successful reduction of TD to microphysics in-
volves the derivation of the laws of TD from the laws of microphysics
plus probabilistic assumptions. This has a familiar ring to it: deduc-
ing the laws of one theory from another, more fundamental one, is
precisely what Nagel (1961) considers a reduction to be. Indeed, the
Nagelian model of reduction seems to be the (usually unquestioned
and unacknowledged) ‘background philosophy’ of SM.

One could lay the case to rest at this point if Nagel’s model of reduc-
tion was generally accepted as a viable theory of reduction. However,
the contrary is the case. As is well known, the Nagelian model of
reduction was from its inception widely criticised, and is now gen-
erally regarded as outdated and misconceived. Representative for a
widely shared sentiment about Nagel’s account is Primas, who notes
that ‘there exists not a single physically well-founded and nontrivial
example for theory reduction in the sense of Nagel...’ (1998, 83).

This leaves us in an awkward situation. On the one hand, if Nagel’s
account really is the philosophical backbone of SM, then we have an
(allegedly) outdated and discarded philosophy at work in what is gen-
erally accepted as the third pillar of modern physics alongside rela-
tivity and quantum theory! This is unacceptable. If we want to stick
with Nagelian reduction the criticisms have to be rebutted. On the
other hand, if, first appearances notwithstanding, Nagel’s account is
not the philosophical backbone of SM, what then is? In other words,
the question we then face is: what notion of reduction, if not Nagel’s,
is at work in SM?

This dilemma is not recognised in the literature on SM, much less
seriously discussed. But when raised in informal discussion – at re-
ceptions and in the corridors of conference hotels – one is usually told
to embrace the second option: Nagelian reduction is outdated and
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discarded but the so-called ‘New Wave Reductionism’ associated with
the work of Churchland and Hooker provides a model of reduction
that avoids the pitfalls of Nagelian reduction while providing a viable
philosophical backbone of SM. In what follows we argue that this is
an empty promise.

Before delving into the discussion of different accounts of reduction,
let us introduce two cases against which we test our claims: the Ideal
Gas Law and the Second Law of thermodynamics. These are gener-
ally considered to be paradigm cases of reduction and hence serve as
a benchmark for accounts of reduction.

Ideal Gas Law. The state of a gas is specified by three quantities: pres-
sure p, volume V , and temperature T . A gas is ideal if it consists of
particles without spatial extension (point particles) which do not inter-
act with each other. Needless to say, there are no ideal gases in nature,
but as long as the pressure is low, real gases can be treated as ideal
gases to a very good approximation (since the volume of molecules is
extremely small compared to the volume occupied by the gas and the
inter-molecular forces are negligable). If such a gas is in equilibrium
(i.e. if it is evenly distributed over V , and p and T do not change
over time), volume and temperature are related to one another by the
so-called Ideal Gas Law: p V = k T , where k is a constant. Let us call
this law together with the qualifications about its scope the thermal
theory of the ideal gas.

Consider a gas consisting of n particles of mass m confined to a vol-
ume V , for instance a vessel on the laboratory table. Each particle
has a particular velocity ~v, and its motion is governed by Newton’s
equations of motion. Assume, furthermore, that we are given a veloc-
ity distribution f(~v), specifying what portion of all particles move in
direction ~v. The exact form of this distribution is immaterial at the
moment. Let us call Newtonian mechanics plus the assumptions just
mentioned the kinetic theory of the ideal gas. The aim now is to derive
the law of the thermal theory of the ideal gas from the laws kinetic
theory.2

2For details see Greiner et al (1993, 12-15) or Pauli (1973, 94-103).
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Pressure is defined (in Newtonian physics) as force per surface: p =
FA/A, where A is surface (for instance a section of the kitchen table)
and FA the force acting perpendicular on the surface (for instance the
gravitational force exerted on the table by a glass placed on it). If
a particle crashes into the wall of the vessel and is reflected it exerts
a force onto the wall, and the exact magnitude of this force follows
immediately from Newton’s equation of motion. We now assume that
all particles in the gas are non-interacting and perfectly elastic point
particles. Then consider a wall in the x − y plane. Some purely
algebraic manipulations then show that the pressure exerted by the
gas on that wall is

p =
mn

V

∫ ∞
−∞

d3v f(~v)v2
z =

mn

V
〈v2

z〉, (1)

where vz is a particle’s velocity in z-direction. This equation says that
the pressure exerted on a wall in the x−y plane is proportional to the
mean quadratic velocity in z-direction of all the particles in the gas.
We now assume that space is isotropic, meaning that no direction in
space is in any way special and that for this reason f(~v) is the same
in all spatial directions. From this assumption it immediately follows
that:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉, (2)

and since, by definition, ~v2 = v2
x + v2

y + v2
z we have

p =
mn

3V
〈~v2〉. (3)

The kinetic energy Ekin is defined as m~v2/2, and hence this equation
becomes

pV =
2n
3
〈Ekin〉, (4)

where 〈Ekin〉 is the average kinetic energy of a particle, and hence
n〈Ekin〉 the average kinetic energy of the gas. Now compare Equation
4 with the Ideal Gas Law, p V = k T , which yields

T =
2n
3k
〈Ekin〉. (5)

The upshot of these calculations is that if we associate the tempera-
ture T with mean kinetic energy of a particle, then the Ideal Gas Law

6



follows from Newtonian physics (here the equation of motion and the
definitions of pressure and kinetic energy) and auxiliary assumptions
(that the molecules are non-interacting point particles and that the
velocity distribution is isotropic).3

Second Law of Thermodynamics. The second law of thermodynam-
ics states that in an isolated system the thermodynamic entropy ST

cannot decrease, which is equivalent to saying that transitions from
equilibrium to non-equilibrium states cannot. The aim of reduction-
ism is to derive this law from first principles. The details of such a
derivation are too complicated to be presented here, but the main ideas
are the following.4 We begin by carving up the system’s state space
into disjunct regions Mi which we associate with macrostates of the
gas. We then define the Boltzmann entropy as SB = kB log[µ(Mt)],
where Mt is the region in which the system’s microstate is at time t
and µ(Mt) is the Lebesgue measure of that region (the Lebesgue mea-
sure is the generalisation of the ‘ordinary’ three dimensional volume
to higher dimensional state spaces). The main challenge then is to
show that the dynamics of the system is such that SB increases and
reaches its maximum when the system reaches equilibrium. Such a
proof involves various assumptions about the system, most notably
the so-called Past Hypothesis and some dynamical property such as
being chaotic. For the sake of argument, let us assume that this can be
shown (which, in fact, is a matter of controversy). It is then generally
accepted that we have reduced the Second Law of TD to SM.

Two points deserve attention. First, the reduction, even if successful,
is only approximate. The thermodynamic entropy is static in equi-
librium: once it reached equilibrium it does not change any more.
The Boltzmann entropy, by contrast, fluctuates. This is generally
deemed to be unproblematic because the fluctuations are very small
and SB stays close to the equilibrium value most of the time. Second,
the reduction associates ST and SB - only when we assume that the
Boltzmann entropy is the thermodynamic entropy do we obtain (an
approximate version of) the Second Law. But why can we identify

3Notice that this argument does not depend on the velocity distribution being the
Maxwell-Boltzmann distribution.

4For a discussion of the details of this derivation as well as the difficulties that occur
see Frigg (2008) and Uffink (2007). Furthermore, we here only discuss Boltzmannian SM.
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the two? The fact that SB has the same formal properties as ST – it
increases in time and reaches its maximum – is not enough to justify
this identification; we also need a proof that the two quantities coin-
cide at equilibrium in the sense that they have the same values and,
what is more, have the same functional dependences of other crucial
variables (Emch and Liu 2002, 98-102).

3 Nagelian Reduction

We first introduce what we call the Nagel-Schaffner model. Next we
present some problems it purportedly faces.

3.1 The Nagel-Schaffner Model

On Nagel’s account (1961, 353-354), a theory, TP (here TD) reduces
to another theory, TF (here SM) iff the laws of TP can be deduced
from the laws of TF and some auxiliary assumptions.5 The auxil-
iary assumptions are typically idealisations and boundary conditions.
Nagel also assumed that a theory’s vocabulary was neatly divided into
observational and theoretical terms, and that (trivially) observational
terms have meaning independently of the theoretical context. He then
postulated two conditions for successful reduction. Connectability re-
quires that for every theoretical term in TP there be a theoretical term
in TF that corresponds to it. Derivability says that given connectabil-
ity the laws of TP can be derived from the laws of TF plus auxiliary
assumptions. In this case we call TF the reducing theory and TP the
reduced theory.

For Nagel there are two classes of reduction: homogeneous reduc-
tions and heterogeneous reductions. In homogeneous reductions the
two theories share the same relevant predicates. In this case the con-
nectability requirement is trivially satisfied. The often given example
of some such reduction is that of Kepler’s theory of planetary motion
and Newton’s mechanics: the latter contains all the relevant terms of
the former and therefore the deduction of Kepler’s laws from Newto-
nian mechanics bears no conceptual complications. If the theories do

5The indexes ‘P’ and ‘F’ stand for ‘phenomenological’ and ‘fundamental’ respectively.
This just an aide-mémoire and nothing depends on it.
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not share predicates in this sense, the putative reduction is hetero-
geneous. In this case it is clearly not possible to derive the laws of
TP from TF , as the laws of the latter are couched in terms of these
predicates. To overcome this difficulty Nagel postulates that there
be so-called bridge laws which connect the vocabulary of TP to that
of TF by providing ‘rules of translation’ specifying how one language
translates into the other.

The above examples make this clear. Take the Ideal Gas Law first.
Volume and pressure are terms that both theories share (they are
defined in the same way in both theories). But while the thermal
theory of the ideal gas talks about about temperature, the kinetic
theory talks about mean kinetic energy. The vocabularies of the two
theories are incongruent and therefore starting with kinetic theory
one cannot possibly derive Ideal Gas Law, which are couched in terms
of different predicates. So we need a bridge law to overcome this
difficulty. In this example the bridge law is Equation 5. From a
Nagelian point of view, then, the above case can be summarised as
follows (Argument 1):

Premise 1 : Kinetic theory – The posit that a gas is a col-
lection of molecules obeying Newton’s laws of motion, the
definitions of pressure and kinetic energy, and the existence
of the velocity distribution f(~v).
Premise 2 : Auxiliary assumptions – Space is isotropic, and
all particles are point particles that do not interact with
each other and are reflected elastically from the walls.
Premise 3 : Bridge law – Equation 5.
—————————————————————————
Conclusion: p V = k T .

This model of reduction has been criticised on different grounds. The
first points out that Nagel formulated his theory in the framework
of the so-called syntactic view of theories, which regards theories as
axiomatic systems formulated in first order logic whose non-logical vo-
cabulary is bifurcated into observational and theoretical terms. This
view is deemed untenable for many reasons, among them that first
order logic is too week to adequately formalise theories and that there
is no clear line to be drawn between observational and theoretical
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terms.6 This, so one often hears, renders Nagelian reduction unten-
able.

This is too quick. While it is true that Nagel was a proponent of the
syntactic view and discussed reduction within that framework, the
syntactic view is irrelevant to get the account off the ground. This
becomes clear from the above example: neither did we present a first
order formulation of the theory nor did we even mention a bifurcation
of the vocabulary into theoretical and observational (it is irrelevant
wether we regard temperature as observable or theoretical), and yet
we have given a Nagelian reduction of the thermal theory of the ideal
gas. Its positivistic roots should not detain us from using Nagel’s
model of reduction: we replace first order logic with any formal system
that is strong enough to do what we need it to do, and the bifurcation
of the vocabulary into observational and theoretical plays no role at all.

A more serious objection emerges when we try to give a Nagelian ren-
dering of our second example. As we have seen, it is not possible to
derive the exact Second Law of thermodynamics since the Boltzmann
entropy fluctuates in equilibrium, which the thermodynamic entropy
does not. And this is not an exception. It is almost never the case
that one can derive the exact laws of the reduced theory, and hence
Nagelian reduction is de facto unrealisable.

While this is true, the above example also indicates that exact deriv-
ability is too strong a requirement for successful reduction. To reduce
the Second Law it was enough to derive a law that looks in essential
ways very much like the Second Law. And the same is true in other
cases: it suffices to deduce laws that are only approximately the same
as the laws being targeted. Once this is realised, we can reformulate
the model so that all leading intuitions are preserved whilst avoiding
this particular objection. Indeed such a revision has been suggested
by Schaffner (1967, 1976) and, indeed, by Nagel himself (1974). We
call this the Nagel-Schaffner model of reduction (NSR).

We make room for a certain mismatch between the two theories, by
requiring not that TP itself, but rather a ‘corrected’ version of TP

6See for instance Suppes (1977) for critical discussion of the syntactic view.
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can be derived from TF . More specifically, the proposal is that TF

reduces TP iff there is a corrected version T ∗
P

of TP such that, (a)
T ∗

P
is derivable from TF given that the terms of T ∗

P
are associated via

bridge laws with terms of TF , and (b) that the relation btween T ∗
P

and
TP is one of strong analogy (Schaffner 1967, 144).7 This is illustrated
in Figure 1.

Fig 1. The Nagel-Schaffner Model

Two points deserve elaboration. The first is the introduction of
T ∗

F
. This is an aid to make more perspicuous that de facto the deriva-

tion consists of two steps: we first derive a special version of TF , T ∗
F

,
by introducing auxiliary assumptions and then replace the relevant
terms by their ‘correspondents’ using bridge laws, which yields T ∗

P
.

Of course this is equivalent to saying that we derive T ∗
P

from TF plus
auxiliary assumptions and bridge laws. Consider again the above ex-
amples. In the case of the Ideal Gas Law we first deduce a ‘kinematic
version’ of the law from the kinetic theory, namely Equation 4. In
the language of the above diagram this equation is the law of T ∗

F
. We

then use the bridge law – Equation 5 – to substitute T for 〈Ekin〉 and
obtain p V = k T , which is T ∗

P
and TP in one since in this simple case

strong analogy means identity. In the case of the Second Law we start
with SM and deduce, together with the auxiliary assumptions that
the system is chaotic and the past hypothesis holds, a law saying that
the Boltzmann entropy increases and only fluctuates a bit once it has
come close to equilibrium. This law, also referred to as ‘Boltzmann’s

7A much rehearsed criticism of Nagel’s approach is that we can reduce false theories,
but modus tollens then requires us to reject the reducing theory, which is self-defeating
because it has to be assumed to be true (see, for instance, Bickle 1998, 24). Once the
requirement that T

P
be derived from T

F
is replaced by the requirement that T ∗

P
be derived

this problem vanishes. For a discussion of this point see Endicott (1998, 60- 62).
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Law’, is the central law of T ∗
F

. We now introduce a bridge law pos-
tulating that ST = SB , i.e. we associate the thermodynamic entropy
and the Boltzmann entropy. This gets us from T ∗

F
to T ∗

P
, which says

that the thermodynamic entropy fluctuates only mildly once the sys-
tem has reached equilibrium. T ∗

P
then is strongly analogous to TP in

the sense that fluctuations are very small and the entropy stays close
to the equilibrium value most of the time.

The second point is that the notion of strong analogy is obviously
vague and hard to pin down. Critics might argue that it is so vague
that any account based on it must be untenable (cf. Nickles (1975)
Churchland (1987)). We disagree. It is a mistake to require that an
account of reduction come with a general account of strong analogy.
What is meant by strong analogy depends on the case at hand. It
is true that in any given case of reduction we need to specify what
exactly we mean by strong analogy, but this is a question that needs
to be settled either in the relevant scientific discipline itself or the
special philosophy of it, and not by a general philosophical account
of reduction. The above example of the derivation of the second law
makes this clear. That Boltzmann’s law is strongly analogous to the
Second Law in a way that underwrites reductive claims does not follow
from some philosophical theory of analogy; it is the result of a careful
analysis of the case at hand. Callender (1999, 2001) has argued, in our
view convincingly, that the unrestricted Second Law is too strong and
that we can accept Boltzmann’s law without contravening any known
empirical fact, which is why we can regard these laws as strongly
analogous. Indeed, we should expect the same to be the case with
almost every putative case of reduction: it is the particular science at
stake that has to provide us with a criterion of relevant similarity in
the particular context.8

8Schaffner (1967, 144) also requires that T ∗
P

corrects T
P

in the sense that T ∗
P

makes
more accurate predictions than T

P
. This is the case in our example since experiments show

that entropy fluctuates as predicted by T ∗
P

(and ruled out by T
P

). However, it seems too
strong a requirement to impose on all cases of reduction and so we leave it open whether,
in any given case, improved predictive accuracy should be considered to form part of the
strong analogy relation.
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3.2 Problems for the Nagel-Schaffner Model

The Nagel-Schaffner model faces three problems.

Problem 1: The Content of Bridge Laws. One of the main objections
against the Nagel-Schaffner model is that bridge laws play an essential
role in it, yet they are problematic in many ways. There are two main
issues.9 The first concerns the content of bridge laws: what kind of
statements do bridge laws make? Nagel considers three options (1961,
354-355): they can be claims of meaning equivalence, conventional
stipulations, or assertions about matters of fact. The third option
can be broken down further, since a statement connecting two quan-
tities could be assert the identity of two properties, the existence of a
nomic connection between them, or a presence of factual correlation.
Depending on how this issue is resolved, the question arises: how do
we get to know bridge laws and how are they established? This is
the second issue. Nagel (ibid. 356) points out that this is a difficult
issue since we cannot test bridge laws in the same way as we test
other laws. The kinetic theory of gases can be put to test only after
we have adopted Equation 5 as a bridge law, but then we can only
test the ‘package’ of the kinetic theory and the bridge law, while it is
impossible to subject the bridge law to independent test. This is not
a problem if one sees bridge laws as analytical statements or as mere
conventions, but it is a serious issue for those who see bridge laws as
making factual claims.

Problem 2: The meaning of terms. The rationale in invoking bridge
laws is to connect the vocabularies of two theories to each other. Feyer-
abend (1962) argued that such a move is impermissible. The meanings
of the central terms of a theory are fixed by the role they play in the
theory, and terms become meaningless when taken out of their theoret-
ical context. For this reason terms in different theories have different
meanings (and even where two different theories seemingly share theo-
retical terms, for example ‘mass’ in Newtonian Mechanics and Special

9A further criticism focuses on the formulation of bridge laws. Nagel took bridge laws
to be universally quantified bi-conditionals in first order logic, which, so the objection
continues, are too weak to express the content of a law. As we have pointed out above,
the use of first order logic in Nagel’s original presentation of his model is inessential, and
there is no reason to adhere to it.
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Relativity, this is merely a sharing of names but not of concepts since
the terms have different meanings in each context). But, so the argu-
ment goes, one cannot associate terms with different meanings with
each other. But since the meaning of a term is determined by its
theoretical context, it is impossible to associate terms from different
theoretical contexts with each other, which makes Nagelian reduc-
tion impossible, since bridge laws in effect express such associations.
Feyerabend illustrates this with the case of temperature. In thermo-
dynamics temperature is defined in terms of Carnot cycles and is used
in the definition of the thermodynamic entropy (ST =

∫
dQ/T ), which

is governed by the strict, non-probabilistic, Second Law. The bridge
law used when reducing TD to SM identifies ST with a quantity that
has a very different theoretical context, one in which Carnot cycles
play no role and the central notion is probability. This, Feyerabend
thinks, makes no sense.

Problem 3: Multiple realisability. A TP -property is multiply realisable
if it can correspond to a number of different TF -properties. The stan-
dard example of multiple realisability is that of pain: pain can be re-
alised by different brain states. Likewise, temperature can be realised
in a variety of different ways in different media (Sklar 1993, 352). It is
often suggested that the multiple realisability of TP -properties shows
reduction to be untenable.10

Why is this? Unfortunately the point is frequently asserted but rarely
argued. Yet, the main driving force behind it seems to be the view
that (a) bridge laws are genuine laws of nature, and that (b) proper
laws of nature cannot have a disjunctive form (i.e. saying something
like ‘Temperature is either ... or ... or ...’) (cf. Fodor 1974, 108).
Multiple realisability then seems to preclude bridge laws from being
genuine laws.

These difficulties have been regarded by many as so severe that avoid-

10This argument is commonly attributed to Fodor (1974). It is worth noticing, however,
that the multiple realisability argument, at least per Fodor, is not an argument against
NSR per se, but an argument against what he calls reductivism, the view that ‘all true
theories in the special sciences should reduce to physical theories’ (ibid., 97, cf. 110).
Whilst the argument may not be aimed at NSR, it still might, de facto, be detrimental to
it, which is the reason to consider it here.
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ing them appeared to be a better strategy than trying to address them.
This what the approach known as New Wave Reductionism purports
to achieve: explaining the reduction of one theory to another while
avoiding these difficulties. We discuss this approach in the next sec-
tion and conclude that it is unsuccessful. In Section 5 we return to
these problems are argue that they are by no means as devastating as
the opponents of the Nagel-Schaffner model have made them out to
be.

4 New Wave Reductionism

The approach to reductionism that has later become known as New
Wave Reductionism (NWR) has first been prosed by Churchland (1979,
80-88), and has then been developed by Churchland (1985, 1987) and
Hooker (1981), and later Bickle (1996, 1998).

Churchland invites us to consider two theories To and Tn, an old and
new one (e.g. the thermal theory and the kinetic theory of gases). He
then states two desiderata for reduction (1979, 81):

‘First, it provides us with a set of rules – “correspondence
rules” or “ bridge laws” [...] – which effect a mapping of the
terms of the old theory (To) onto a subset of the expressiosn
of the new or reducing theory (Tn).’
‘Second [...], a sucessful reduction ideally has the outcome
that, under the term mapping effected by the correspon-
dence rules, the central principles of To [...] are mapped
onto general sentences of Tn that are theorems of Tn. Call
the set of such sentences Sn. This set is the image of To

within Tn.’ (original emphasis)

Churchland is quick to point out that this is an ‘ideal or maximally
smooth’ case (ibid.). In general the situation will be more involved in
two ways (ibid., 83-84). First, the image of To within Tn may not be a
direct consequence Tn alone; it may be deducible only from an ‘aug-
mented theory T

′
n comprising within Tn plus auxiliary assumptions. In

the case of the Ideal Gas Law, for instance, we added the assumptions
that particles are point particles and that space is isotropic. Second,
we may not be able to derive a wholly faithful image of To within T

′
n
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(let alone Tn), and may have to rest content with deriving a modi-
fied or corrected version T

′
o of To. In this case we refer to Sn as the

‘corrected image of To’. We then require that the corrected theory T
′
o

and the original theory To be closely similar (ibid., 83) or analogous
(Hooker 1981, 49). Putting these pieces together we obtain the picture
illustrated in Figure 2.

Fig 2. New Wave Reductionism

If one theory can be obtained from another merely by substituting
terms by their bridge law doppelgäners Churchland calls the two the-
ories ‘relevantly isomorphic’ (1985, 10), in which case one is a ‘rele-
vantly adequate mimicri’ (ibid.) or ‘equipotent image’ (1979, 82) of
the other. So Sn is an equipotent image of To in the case of a perfectly
smooth reduction, and to T

′
o in the general case. The smoothness of a

reduction is a matter of degree, ranging from ‘ideal’ to ‘bumpy’, and
it depends on two factors (1979, 83-84): on how realistic the auxiliary
assumptions of T

′
o are, and on how close T

′
o is to To. The literature on

NWR is by and large silent about the relation between T
′
o and To, but

what we have said in the last section about strong analogy can also
be said about the relation between T

′
o and To and so we don’t think

that there is a serious problem here.

When looking at Figure 2 a question springs to mind immediately: in
what way is NWR different from NSR? It seems that if we substitute
TF for Tn, T ∗

F
for Sn, TP for To, and T ∗

F
for T

′
o we are back to NSR.

Nevertheless, proponents of NWR insist that theirs is an entirely dif-
ferent model of reduction. They highlight two points. First, NWR
and NSR are said to differ in what gets deduced. NWR insists that
what is deduced is not To (or T

′
o) but the (corrected) image Sn of To.

Churchland makes this point explicit by urging us to give up ‘the idea
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that what gets deduced in a reduction is the theory to be reduced’
(1985, 10), because

‘a reduction consists of the deduction, within [Tn], not of
[To] itself, but rather of a roughly equipotent image of
[To], an image still expressed in the vocabulary proper to
[Tn]. The correspondence rules play no part whatever in
the deduction.’ (1985, 10, original emphasis)

And, what is more, not only do correspondence rules play no role in
the deduction, they also play no role in the reduction per se:

‘it is important to appreciate that cross-theoretical identity
claims, even if they are justly made, are not a part of the
reduction proper, and they are not essential to the function
it performs.’ (1979, 83, emphasis added; cf. Bickle 1998,
27)

It is not entirely clear what is meant by ‘reduction proper’, but if the
suggestion is – which it seems to be – that bridge laws play no role
(or are unimportant) in reducing one theory to another one, then this
cannot be right. It is true that the deduction of Sn is the centre piece
of a reduction and it is, of course, also true that this deduction is
internal to Tn and entirely couched in the language of Tn, but this
does not imply that bridge laws are unimportant. It is crucial to a
reduction that Sn is an equipotent image of To (or T

′
o) and that it is

just any old collection of theorems. But being an equipotent image of
To is a relational property, and one that obtains if, and only if, there is
a mapping of To-terms onto Tn-terms, and this mapping is defined by
bridge laws. So bridge laws play a crucial role in defining what the aim
of the deduction is: they single out which set of theorems we should
try to derive. Given this, how could they possibly be irrelevant? Con-
sider the example of the ideal gas. In this case Sn consists of Equation
4. We only know that this formula is relevant to the reduction once
we have bridge laws telling us to associate pressure and volume in the
kinetic theory with pressure and volume in the thermal theory, and
mean kinetic energy with temperature. Many other theorems can be
derived from the kinetic theory, but they are not relevant to a reduc-
tionist project not because they are uninteresting, but because there
are no bridge laws linking them to a theorem of the thermal theory.

17



A more realistic description of what happens in a reduction would be
to say that it consists in two steps: the intra-theoretic deduction of Sn

within Tn and the inter-theoretic mapping of To into Sn using bridge
laws.11 We agree with that, but the difference to NSR now is one of
emphasis or presentation and not of substance. Saying that we first
derive Sn from Tn and then substitute the terms in Sn to retrieve T

′
o

(which we must do in order to establish that Sn is an equipotent image
of T

′
o) is equivalent to deriving T

′
o from Tn since the bridge laws can al-

ways be added to the premises of the deduction which, trivially, yields
T

′
o. In sum, once it is acknowledged that bridge laws are important in

establishing Sn’s status as an equipotent image, NWR collapses into
NSR, in this respect.

The second alleged difference between NWR and NSR has to do with
the content of bridge laws. Witness Churchland explaining the concept
of a bridge law invoked in NWR:

The correspondence-rule pairings need not be construed as
identity claim, nor even as material equivalences, in order
to show that Tn contains an equipotent image of To. In fact,
we can treat each correspondence rule as a mere ordered
pair of expressions [...] and we will then need only the
minimal assumption that the second element of each pair
truly applies where and whenever the first element of each
is normally thought to apply. (1979, 83; cf. 1985, 10).

On this understanding of bridge laws, Equation 5 neither asserts the
identity of mean kinetic energy and temperature, nor claims that they
are nomically connected; all that is stated is that they apply in the
same situation.12 The passage quoted is preceded by a critical men-
tion of Nagel’s account of reduction, which suggests that Churchland
thinks that on Nagel’s view bridge laws must be identity statements
and that it is the advantage of NWR that it is not committed to such

11In fact, Churchland (1985, 11) could be read as suggesting exactly this.
12Bickle (1998, 28) denies that bridge laws say even that much and claims that the two

terms in a pair need not be co-extensional. This is wrong, and Churchland is right in
stipulating, in effect, that the two notions of the pair have to be co-extensional (1985,
10-11). Bridge laws typically have the form of mathematical equations, and these, when
interpreted as factual claims, are false if the terms on both sides of the equality sign fail
to apply on the same occasions.
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an understanding of bridge laws.

This claim is wrong. As we have seen above, Nagel himself thought
that it was an open question how bridge laws ought to be understood
and suggested that they could be construed as conventions, statements
of synonymy, or factual claims. An understanding of bridge laws as
claims of co-extensionality falls within the scope of the third option,
and hence clearly is an option Nagel regarded as acceptable. This is of
course not to say that this is the right analysis of bridge laws (we come
back to this question below); the claim merely is that an understand-
ing of bridge laws as a co-extensionality claim is clealy compatible
with NSR, and hence does not serve to distinguish NWR and NSR.

So we conclude that upon closer analysis NWR and NSR turn out to
be equivalent.13

5 Nagelian Reduction Reconsidered

In order for NSR to be an acceptable account of reduction, we need to
address the problems mentioned in Section 3.2. Since all three of them
in one way or another have to do with bridge laws, it is important to
first get clear on the exact nature of bridge laws.

There is one perennial confusion about bridge laws that has hampered
a discussion of their contents: the view that bridge laws identify the
basic entities of TP and TF with each other. For instance, the identity
of light and electromagnetic radiation, electric currents and the flow
of electrons, and gases and swarms of atoms (see, for instance, Sklar,
1967, 120). Hence NSR is committed to an understanding of bridge
laws as identity statements. However, so a standard line of criticism
continues, this is untenable because we can reduce essentially false
theories to true ones, and hence NSR is untenable.

13A similar conclusion has been reached by Endicott (1998). However, our claim is more
radical than his since he grants that NWR and NSR differ in what gets deduced, which we
deny (cf. our first point). For further discussions of NWR, with a special focus on issues
in the philosophy of mind, see Endicott (2001), van Eck, De Jong and Schouten (2006)
and Wright (2000).
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This argument misconstrues the nature of bridge laws. Basic reduc-
tive claims are not what bridge laws are about. In fact, these claims
are part of the reducing theory TF . It is the basic posit of the ki-
netic theory of gases that gases are swarms of atoms, and it is the
basic posit of statistical mechanics that the systems within the scope
of thermodynamics have a molecular constitution and that the be-
haviour of molecules is governed by the laws of mechanics – none of
this is the subject matter of a bridge law. Let us call a basic iden-
tity claim of this kind the ‘background reduction’ of the (potential)
intertheoretic reduction of TP to TF . Background reductions can, of
course, be false, but if they are it is the reducing theory that is false,
and not a bridge law connecting TF to TP . Bridge laws enter into
the picture only once these basic identities have been established, and
they then assert that the TP -properties of a system thus identified
stand in a relevant relation to the TF -properties of that system, and
that and that the magnitudes of these properties stand in a relevant
functional relationship.

Before turning to the question of what this relevant relation is, let us
address Feyerabend’s criticism, that reduction is impossible because
in order to associate two terms with each other they must have the
same meaning, which, however, is never the case if the terms occur in
two different theories. Whether this argument is cogent depends on
what one means by ‘meaning’. Feyerabend associates the meaning of
a term with the role the term plays in a theoretical framework; the
meaning of the term ‘temperature’ as it occurs in thermodynamics,
for instance, is determined by everything we say about temperature in
the language of thermodynamics. Given this conception of meaning
it is clear that terms occurring in different theories must have differ-
ent meaning. But this is irrelevant when it comes to reduction. As
Chruchland rightly remarks, ‘it is not meaning that is preserved in
intertheoretic reduction. Indeed, the pairings effected therein stan-
dardly fail to preserve meaning.’ (1979, 81; cf. 86) When meaning is
framed in this way, what matters is not meaning equivalence. What
matters is whether the properties that the terms in the bridge laws
refer to stand in a relevant relation to each other.14

14For those subscribing to the so-called direct reference view of meaning (roughly the
view that the meaning of term is its referent) this conclusion would be reversed: meaning
equivalence would play an essential role in reduction.
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What, then, is the relevant relation between the properties picked out
by the terms paired up in a bridge law? This question can be under-
stood in two different ways. First, the issue may be what requirements
need to be imposed in order to make NSR fly. The answer to this is:
none. As we have seen above, Nagel contemplates different options,
and all of them are acceptable as far as NSR is concerned. So no
further constraints need to be imposed to get NSR in itself off the
ground.

However, there is a temptation to further restrict the class of allowable
bridge laws. The second reading of the question, then, is what these
restrictions should be. At this point we would like to take a non-
committal stance. We agree that bridge laws are not claims about
meaning equivalence: as we have just seen, terms correlated in bridge
laws characteristically don’t have the same meaning. We also agree
that they cannot be mere conventions. If one wants to maintain (as
we do) at least a minimum of realism about unobservables, then there
clearly is right or wrong in theoretical associations: it is true that the
temperature of gas correlates with 〈Ekin〉, but it is false that it cor-
relates with 〈Ekin〉2.15 So bridge laws are factual statements. They
express the fact that two properties are correlated in the sense that
whenever one is instantiated the other is instantiated as well, and that
their magnitudes are related to one another in the way described by
the bridge law: Equation 5 says that whenever a gas has a temperature
it also has a mean kinetic energy and that the value of T varies linearly
with 〈Ekin〉, where the proportionality constant is 2n/3k. This leaves
open the question whether T and 〈Ekin〉 are merely correlated (as a
brute matter of fact), whether there is a nomic connection between
them, or whether they are identical (and the terms co-referential).

We believe that the needs of reduction do not force us to settle this
question. This claim is controversial. In fact, there has been a strong
trend in the literature on reduction to try to settle exactly that, and,
more specifically, require that bridge laws express identities.16 We

15Nagel (1961, 355-358) points out, rightly, that there is no in principle way to decide
between conventions and factual statements, and that which way one goes depends on
one’s realist committments.

16cf. references in Klein (2009) p. 43, footnote 5. Interestingly, Hooker seems to have
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agree with Klein (2009) that these attempts are mistaken. Nothing
over and above correlation is needed for reduction per se. The driv-
ing force behind further demands on bridge laws are not the needs of
reduction, but other philosophical commitments, in particular views
about explanation and laws of nature.

To see this, consider the third criticism mentioned in Section 3.2,
multiple realisability, as an example. The claims is that laws cannot
contain disjunctive properties. The reason for this is that laws are
thought to relate natural kinds, and disjunctive properties cannot be
natural kinds. However, both the nature of natural kinds and laws
is a highly contentious matter, and hence it is neither clear what
the assertion amounts to nor does it follow that we have to accept
the conclusion. In fact, there are conceptions of laws of nature – for
instance Cartwright’s (1983) or Giere’s (1999) – which make no appeal
to natural kinds at all. So given all this it seems as if reduction turns
on one’s conception of laws of nature.

This is, however, mistaken. As Klein (2009, 49-50) points out
Nagelian reduction simply does not require bridge laws to be laws
of nature in any substantial sense. The primary goal of bridge laws
is the coordination of the vocabulary of two theories, and they do
so by claiming that whenever one term in the bridge law applies the
other one applies as well; or in terms of properties bridge laws say
that whenever the property referred to by one term is instantiated,
then the property referred to by the other term is instantiated as well.
Hence, bridge laws are purportedly true generalisations, but they need
not count as laws of nature in any thick sense for them to successfully
back up a reduction.17

It is true, however, that more than this ‘thin’ nature of bridge laws
may stand in conflict with other aims of science. Most notably expla-
nations seem to demand law-like connections which are stronger than
mere statements of correlation (this is the gist of most well known

conflated the stance that a further restriction of a bridge law is not needed (which is
also our stance), with the claim that there is no difference between some such further
restrictions (viz. correlations, nomic connections and identities). cf. Hooker (1981 202).

17This is also implicit in Sklar’s discussion of the case of temperature, when he insists
that the the multiple realisability of temperature is no impediment to reduction (1993,
352-354).
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counter-examples to the DN-model of explanation). There are two
ways to go at this point. Either we argue that the particular bridge
laws used in a certain context in fact express identities or nomic con-
nections, or we have to scale down the explanatory claims we base on
a reduction (Klein 2009, 51). The latter may well be undesirable for
various reasons, but it does not undercut reduction per se.

In light of the above, we suggest that neither of the problems men-
tioned in Section 3.2 is a persuasive argument against NSR.

Let us finally address the issue of the epistemology of bridge laws:
how do we come to know bridge laws and how do we test them? The
problem is that we cannot independently test bridge laws, and Nagel’s
discussion of them does not make it clear where we get them from.
Proponents of NWR have repeatedly complained that we do not, as
Nagel suggests, start with TF , then write down a bridge law, and
finally deduce T ∗

P
. In terms of the above figures, we rather start at

both ends and work our way to the middle, meaning that we start
deducing certain theories T ∗

F
from TF , then try to come up with a

corrected version of TP , and then, if we see a mapping between the
two emerge, we decided which terms to pair up. The same point is
made even more explicitly by Ager, Aronson and Weingard (1974,
119-122), who argue that the right analysis of the ideal gas case is not
Argument 1 in Section 3.1, but the following (Argument 2):

Premise 1 : Equation 3
Premise 2 : p V = k T
——————————–
Conclusion: Equation 5

In other words, it is not the Ideal Gas Law that we derive from the ki-
netic theory plus a bridge law (Equation 5); it the the bridge law that
we derive from the Ideal Gas Law and the kinetic theory. We then
take the bridge law seriously if the reduction is sufficiently smooth (in
the sense explained in Section 4); in other words, the smoothness of
the reduction is taken as evidence for the factual correctness of the
bridge law.18

18In fact, proponents of NWR argue that smoothness supports the claim that the bridge
law is an identity claim (Churchland 1995, 11). We think that this is too strong, but the
main idea, namely that smoothness supports factual correctness, seems valid.
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We agree with that point, which is an important insight into how we
establish bridge laws. But we don’t think that there is substantial
controversy here. Nagel’s is a rational reconstruction of a reductive
argument and as such does not reflect the actual course of events,
which is much closer to what NWR and Ager, Aronson and Weingard
say. So the proponent of NSR can take this as a friendly amendment
without having to change anything in his position.

6 Conclusion

We have argued that NSR is alive and well, and scientist involved
in a reductionist research programme do the right thing if they take
NSR as a regulative ideal. This, however, should not be taken to
support reductionism, the (much stronger) claim that ultimately all
sciences are reducible to one basic science (usually physics). This may
or may not be true; but nothing in NSR forces this view upon us. We
have pointed out what it would mean to reduce a theory to another
one; whether any given theory can actually can be reduced to another
theory, or even whether theoretical reduction can be achieved across
the board, is, in our view, a factual and not a philosophical question.
All we can do is wait and see whether a reduction is forthcoming.
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