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In their much discussed recent book, Alan Sokal and Jean Bricmont (1998)
deride the French deconstructionists by quoting repeatedly from passages in
which it is evident even to the non-specialist that the jargon of science is being
outrageously misused and being given meanings to which it is not remotely
relevant. Their task of ‘deconstructing the deconstructors’ is made far easier by
the evident scientific illiteracy of their subjects.
Nancy Cartwright is a tougher nut to crack. Her apparent competence with

the actual process of science, and even with the terminology and some of the
mathematical language, may lead some of her colleagues in the philosophy of
science and even some scientists astray. Yet on a deeper level of real
understanding it is clear that she just does not get it.
Her thesis here is not quite the deconstruction of science, although she seems

to quote with approval from some of the deconstructionist literature. She
seems no longer to hold to the thesis of her earlier book (Cartwright, 1983) that
‘the laws of physics lie’. But I sense that the present book is almost equally
subversive, in that it will be useful to the creationists and to many less extreme
anti-science polemicists with agendas likely to benefit from her rather solipsistic
views. While allowing science some very limited measure of truth}which she
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defines as truth of each ‘model’ in its individual subject area within its ‘shield’
of carefully defined conditions set by the scientists themselves}she insists that
there is no unity, no sense in which there are general laws of physics with which
all must be compatible. She sees all of the laws of physics as applying only
ceteris paribus, all other things being equal. Whenever other things are not
equal, she seems to abandon the laws as any guide. In this sense, she advocates
a ‘dappled world’ in which each aspect of reality has its separate truth and its
separate ‘model’.
Reading further, one senses that the problem may be that she is bogged

down in eighteenth- and nineteenth-century (or even older) epistemology while
dealing with twentieth-century science. The central chapters seem to depend
heavily on such outdated, anthropomorphic notions as cause and effect,
recurrent regularities, capacities, etc. To me, the epistemology of modern
science seems to be basically Bayesian induction with a very great emphasis on
its Ockham’s razor consequences, rather than old-fashioned deductive logic.
One is searching for the simplest schematic structure which will explain all the
observations. In particular, what seems to be missing in the thinking of many
philosophers of science}even the great Tom Kuhn, according to Steven
Weinberg}is the realisation that the logical structure of modern scientific
knowledge is not an evolutionary tree or a pyramid but a multiply-connected
web.
The failure to recognise this interconnectedness becomes obvious when we

are presented with ‘classical Newtonian mechanics, quantum mechanics,
quantum field theory, quantum electrodynamics, Maxwell’s electromagnetic
theory’ and, in a separate place, ‘fluid dynamics’, as logically independent and
separate rather than as, what they are, different aspects of the same physical
theory, the deep interconnections among them long since solidly cemented.
Another part of the problem with this book is that the two dominant

examples chosen are physics and economics, the rationale being that both
sciences have ‘imperialistic ambitions’, the physicists aiming to provide a
‘theory of everything’ in the physical world, and some economists claiming
universal validity in the social sphere. These two sciences, however, are on
different levels of the epistemological ladder. Physicists search for their ‘theory
of everything’, acknowledging that it will in effect be a theory of almost
nothing, because it would in the end have to leave all of our present theories in
place. We already have a perfectly satisfactory ‘theory of everything’ in the
everyday physical world, which only crazies such as those who believe in alien
abductions (and perhaps Bas van Fraassen) seriously doubt. The problem is
that the detailed consequences of our theories are often extraordinarily hard to
work out, or even in principle impossible to work out, so that we have to
‘cheat’ at various intermediate stages and look in the back of the book of
Nature for hints about the answer. For instance, there is nothing in the
quantum mechanics of the chemical bond which implies the genetic code in its
detailed form, yet there is equally nothing in the operations of molecular
biology which is incompatible with our quantum-mechanical understanding of
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the chemical bond, intermolecular forces, and so on. In fact in the defining
discovery of the field, the double helix, that understanding played a crucial
role. Thus the consequences often imply the laws without the laws implying a
particular set of consequences. Physics is well embedded in the seamless web of
cross-relationships which is modern physical science.
Economics, on the other hand, is an example of a field which has not yet

achieved interconnection of enough related information to have real objective
validity. It resembles medicine before the germ theory, or biology before
genetics: there are a lot of facts and relationships, but there are probably some
unifying principles and connections to other sciences which are yet to be found.
Yes, the Chicago school makes ambitious claims}so did the Marxists in the
past. Both, to my mind, qualify as ideologies rather than theories and belong in
the political sphere. There are also serious economists}with several of whom
I happen to have worked, including one of the creators of the mainstream
Arrow–Debreu theory}who are doing their best to discover the deeper
realities that may be there, and are in conflict with the dominant school. In
science as in every other field of human endeavour the rule must be caveat
emptor: science as a whole cannot be responsible for the temporary gullibility
of the public to the claims of cold fusion, Freudianism or monetarism: these are
just bad, or at best incomplete, science. In sum, whenever a school of scientists
creates an intellectually isolated structure which claims validation only within
its own area and on its own terms}that is, does exactly what Cartwright is
claiming all scientists do}that science no longer has the force of dynamic, self-
correcting growth which is characteristic of modern science. Cartwright’s
‘cocoons’ are an excellent description of Freudianism or behaviourism in
psychology, or of the response of electrochemists to cold fusion, but do not
describe healthy science.
I have some particular reason for unhappiness about the message of the

book: in a very early chapter she quotes me as being opposed to my clearly
stated position. My best-known work on these subjects begins with these
words: ‘The reductionist hypothesis may still be a topic for controversy among
philosophers, but among the great majority of scientists it is accepted without
question. The workings of our minds and bodies, and of all matter [. . .], are
assumed to be controlled by the same set of fundamental laws, which [. . .] we
know pretty well’. Since it is clear that I was and am one of that ‘great
majority’, it is disingenuous of Cartwright, who is one of those ‘controversial
philosophers’, to quote succeeding paragraphs in such a way as to arrogate me
to the opposite side.
There was a second place where I can fairly competently fault her

understanding. In Chapter 8 she states that she will ‘take as the central
example’ the BCS theory of superconductivity, an area which has been
extensively studied by the ‘London School of Economics Modelling Project’.
I have been involved with the theory (and practice) of superconductivity for 43
years}for instance, I supplied a crucial proof which is referred to in the
original BCS paper as a personal communication. In 1987 I gave a lecture
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studying an important and neglected part of the history of this theory, which
was written up and published by Lillian Hoddeson as part of the American
Institute of Physics’s history of solid-state physics (Hoddeson, 1992).
My contribution was called ‘It Isn’t Over Till the Fat Lady Sings’. I used that

crude American metaphor from the world of sport to characterise the
somewhat confused period (1957–1965) between the original BCS paper, which
indeed proposed a ‘model’, and the approximate end of the verification and
validation process which made the model into what physicists properly call the
‘theory’ of phonon-mediated (ordinary, or BCS) superconductivity. (My usage
of ‘model’ may be rather different from that of the LSE modelling project.
What I, and physicists in general, usually mean by the term is a simplified
example which is in the right universality class}for the meaning of this term,
read on.) At the end of that period we were in possession (i) of a microscopic
theory controlled by a small parameter, hence described by a convergent
perturbation expansion about a mean-field solution which is rather like BCS,
and (ii) of a detailed understanding of a much wider range of phenomenology
than the Ginsburg–Landau equations could provide. This is such that the
theory is no longer confined to its ‘cocoon’ but deals well with all kinds of
messy dirt effects. (The best books describing this outcome may be Parks’ two-
volume compendium (1969) and de Gennes’ slim book (1966), both published
in the late 1960s.)
Apparently, the LSE project accepts, for much of its account of BCS and

G-L, a late pedagogical description (Orlando and Delin, 1990), by two
engineering-oriented authors who had no part in the above history. It is known
to many historians of science that textbooks tend to caricature the real process
of discovery and validation, and this is an error I regret finding here. The only
original literature quoted (except for BCS and for Gor’kov’s early, model-
based derivation of G-L from BCS) are unsuccessful previous attempts at a
theory by Bardeen himself and by Frohlich, as well as others by such
luminaries as Heisenberg, Salam, Wentzel and Tomonaga. (In the process, she
renames my old friend Herbert Frohlich ‘Hans’.)
So: in 1957 BCS may have been describable as a ceteris paribus model, with

no adequate account of a wide range of phenomena, or of its own limitations.
It was made, by 1965, into an enormously flexible instrument with a high
degree of a priori predictive power, and even more explanatory power. In fact,
one of the deep difficulties of theorists of the new high Tc superconductors is
persuading the community that, flexible as BCS is, new principles of physics
must be invoked to explain the new phenomena. But as is almost always the
case, the new ideas do not destroy, but instead supplement, the old. Just as the
discovery of quantum chromodynamics left quantum electrodynamics firmly in
place, no sensible theory of high Tc will displace BCS from its validity in
ordinary metals.
The story that Cartwright misses entirely, however, is the unifying and

interleaving effect the theory of superconductivity had on very widely separated
areas of physics. Far from being an isolated ‘model’ applying only in its
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shielded cocoon (as in the misfit metaphor she uses of the SQUID
magnetoencephalograph in its shielded room) it was an explosive, unifying,
cocoon-breaking event. First, in its own field: it showed us solid-state physicists
that we could no longer safely ignore the general structure of physical theory:
our familiar electrons were no longer little particles but unquestionably were
quanta of a quantum field. True, in accepting the exclusion principle we should
long since have realised how implausible it would be for ‘particles’ to be
absolutely identical, but we had come to make casual assumptions about them.
Then our particle physics friends began speculating how the vacuum itself
might be a BCS state, a speculation ending in the electroweak theory. Finally,
the nuclear physicists realised that we might have found the explanation for a
series of puzzling phenomena observed in nuclei, and made the nucleus into a
paired state. Yet another epiphany came when we predicted, and found, that
the rare isotope of He would be a BCS superfluid of a new kind. So even
though, in terms of the fundamental, unifying, microscopic laws, BCS made
not the slightest change, it taught us a new way in which quantum fields could
act, and also called our attention to the very general phenomenon of broken
symmetry which is one of the key ways in which complexity can emerge from
those laws.
Let us get back to the book. One of the basic epistemological points on

which I differ radically from Cartwright is a very common misconception. Like
many others, she maintains that the primary goal of science is prediction,
prediction in the sense of being able}or at least wishing}to exactly calculate
the outcome of some determinate set of initial conditions. But that is not, for
instance, what an archaeologist is doing when he measures a carbon date, or a
fluid dynamicist when he studies the chaotic outcome of convection in a Benard
cell. Rather, each is searching for understanding. In the one case, he wishes to
correlate different measurements to get some idea of the sequence of past
events, which surely could never have been predicted in the quantitative sense
but may enlighten him as to fundamental human behaviours. In the second
case, he knows to a gnat’s eyelash the equations of motion of his fluid but also
knows, through the operation of those equations of motion, that the details of
the outcome are fundamentally unpredictable, although he hopes to get to
understand the gross behaviour. This aspect is an example of a very general
reality: the existence of universal law does not, in general, produce
deterministic, cause-and-effect behaviour.
Of course, in some sense there is always an aspect of prediction, in the sense

that correct predictions}but by no means detailed ones}are very strong
validations of the theory. If the archaeologist sees a particular kind of pottery,
he may predict and then verify the carbon date; then next time he will not have
to check the date. But in the epistemology which describes at least the natural
sciences, I believe that the goal is exactly what Cartwright is trying to convince
us is impossible: to achieve an accurate, rational, objective, and unified view of
external reality. In the final section of her Chapter 2, asking ‘Where Do Laws
of Nature Come From?’, she gives as her answer, ‘always the source must be
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the books of human authors and not the book of Nature’. On crucial matters
she is a social constructionist.
I have argued elsewhere that this is not a tenable position, at least unless one

is willing to accept total solipsism. Our perception of the everyday world is
based on fragmentary, unreliable data which we only put together by creating a
‘schema’ or theory about the actual nature and objective existence of the
various objects}chairs, mothers-in-law, teddy bears, or whatever}which we
hypothesise to be in it. Then we correct, verify and validate the theory by
making predictions from it (if I reach out and touch that brown thing, it will be
fuzzy). Or I ask someone else to confirm my idea. Thus if we reject the
inductive methods of science, we reject our only way of dealing with reality. In
order to maintain our daily lives we have to accept the objective reality of the
world and that it is the same world for everyone.
Why is this necessarily the case? Because we have so many cross-checks, so

many consistency conditions. In the end, the schema contains many, many
fewer bits of information than the data our senses gather, so we can be sure
that no other theory could possibly fit. Now, we see that we can think of
science as simply a somewhat more abstract, somewhat more comprehensive
extension of our schema, describing the external world and compressing the
enormous variety of our observations into a comprehensible whole.
The process of deconstructing the rest of the book in detail is beyond my

budget of patience. The last chapter, in which she deals with the quantum
measurement problem, for instance, seems to advocate one of the thousands of
alternative incorrect ways of thinking about this problem that retain the
quantum-classical dichotomy. My main test, allowing me to bypass the
extensive discussion, was a quick, unsuccessful search in the index for the word
‘decoherence’ which describes the process that used to be called ‘collapse of the
wave function’. The concept is now experimentally verified by beautiful atomic
beam techniques quantifying the whole process.
Another key word missing from the index and from the book}I checked}is

renormalisation. This is not just a technical trick but a central concept in the
philosophy of physics, underpinning the physicists’ use of model Hamiltonians,
the passage to the limit of continuum equations, and even the modern view of
statistical mechanics. A ‘modelling project’ which has anything to do with
physics should hardly ignore the way in which we build and justify our
models. The renormalisation group is a way to expand the scale from the
atomic to the macroscopic which shows that often the result is an enormous
simplification, a division of systems into ‘universality classes’ all of which
behave the same way in this limit; hence we may pick the simplest model for
further study.
Returning to Cartwright’s other exemplary subject, there is another contrast

here. It is a great advantage of physics over economics that we physicists can
often actually justify our use of models in this way, whereas use of the same
idea in economics is almost never justifiable. An economy cannot be sorted out
into macroscopic vs microscopic, with the former constructed by simply
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aggregating the latter: the individual agents have foresight and are of such
widely different sizes and characteristics that averaging is meaningless, even if
they behaved in any mechanistic or even rational way.
There is an attack on the entire science of molecular biology in the

Introduction, making the hardly very philosophical plea that the allocation of
funds for genetics should be slashed in favour of preventive medicine,
childcare, and other worthy causes. I could agree that a very bad glitch in the
patent laws}based on not very good science}has led to a frantically
accelerated search for the ‘gene for this and that disease’, where almost all
phenomena involve the collective contributions of many genes and perhaps
even of the entire genome. But while we are being feminist, are we willing to
give up DNA testing? Or the heavily molecular and surprisingly successful
research programme on AIDS? These are political and moral questions and
have no place in a book about epistemology. Science advances by looking
under the streetlight where the light is, not by ‘crusades’ against socially
acceptable targets. The political direction of scientific strategy which she
appears to advocate here has a very bad historical record in which Lysenko is
only the worst recent disaster.
In summary, this book seems to show that what may have happened in the

philosophy of science}or at least in this corner of the field}is precisely the
kind of intellectual isolation from outside sources which elsewhere leads to bad
science. There is a reluctance to accept the fact that science has become a
dynamic, growing web of interrelationships both within and across fields, and
that even philosophers can no longer make do without taking into account
modern insights into the workings of nature and of our own mentalities. The
description in this book of the process of scientific discovery, in the chapter
called ‘Where Do Laws of Nature Come From?’, is just false from the point of
view of one who has participated in it. Scientists have increasingly, and in some
cases consciously, had to invent for themselves the epistemology they actually
use. Scientists are not particularly able philosophers, as the case of Bohr
demonstrates, but at least they are in touch with reality at first hand, and their
insights into the matter have profoundly changed our understanding of how we
make discoveries. In the modern state of science, no discovery lives in a
cocoon, rather it is built within and upon the entire interconnected structure of
what we already know.
In a sense, this is a valuable book, in that it serves as a wake-up call telling

me that it is time scientists themselves examined epistemology in the light of
their experience of the reality of scientific discovery. When challenged on these
subjects, many of us cite Popper’s ideas. Though basically right as far as they
go, these now seem out of date and naive. Two scientists who have addressed
these matters are Murray Gell-Mann and E. O. Wilson, and my remarks above
are strongly influenced by what they have had to say. Gell-Mann, in The Quark
and the Jaguar (1994), and even more in remarks at various workshops of
the Santa Fe Institute, has emphasised the role of ‘compression’, while Wilson
(1998) proposes the term ‘consilience’ for the web of interrelationships. But it is
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time to take a more definitive look at why}and, of course, when}science
is right.
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Most of the materials you in your daily life-liquids,glass, 

alloys, colloids-are highly structure. the properties of the true 

of technology are controlled primarily by dislocations 

flux lines in superconductors, walls in 30-40 years ago, when 

the off, solid state physics-now known as ,",VJu.u.'~.uc' .......... 

overwhelmingly the study the pure crystalline state or as good an 

as could or of very of defects such as color centers or 

shallow impurity centers. 

I looked in the two textbooks as written or even as late as 1976, 

and found no reference in one under "disorder"'-Kittel's 5th in the other 

(Ashcroft and Mermin) the following dismissal in a footnote: "The problem of 

struct ure disordered potentials...... is the subject of lively discussion". True enough. 

very next year a Nobel was In this area, and this year's prize, 

awarded to Gilles de for work on almost everything regular , repre­

sents perhaps the full mat uration of a new field, involving ~V''''J''-'''''.1 as 

part of the mainstream of physics. Clearly, at some time a revolution must have happened: 

some to mark the time being the first on localization at major 

semiconductor 1980, and a Kittel's '86 edition. But 

the of new field has yet to the attention of the 

CM: for instance, a visitor at one of the country's oldest and most prestigious physics 

departments, Berkeley, was told of some bewilderment at the Nobel de Gennes 

1991. in an otherwise book "The New Physics" dedicated to 

field was completely ignored Paul Davies. 

A book revolution as it was place was as 

lectures from a Les Bouches summer school in 1 called "Ill-Condensed Matter''' ­

"La Matiere which would have a much better title for my talk 

here-and in the introduction to I wrote some words w hieh may serve as 

revolution. 

"Multiple scattering is the of old attit ude; =.::==="-" and "--____ 

1 


http:VJu.u.'~.uc


are which are specific to disordered systems ..... .of the new. 

of non-(or broken) ergodicity... This revolution has usrelated is 

a whole new set of ..... 'How do disordered systems differ from 

not, 'How can =-===-'= to " 

cover even a to book is beyond my 

on what I see to be a few Ieven 

of course I can only talk about 

I was more or so I apologize in advance for a self-centered point 

of view. 

But first I am to you an overall map of some of this territory, of 

which may be unfamiliar to you. 

I will borrow Davies' phrase and essentially layout for you a "Table of Contents" of a 

possible history of The New of III Condensed Matter. The table, is, hopefully, 

to a great extent self-explanatory; it an enormous burgeoning of activity, involving 

the generation of many very some of which, such as mesoscop­

ics, spin glass, esoteric phase transitions, are very 

today; while the problem the most profound problem, 

which is both well-posed 

After guiding you table, I'd like to focus on what 

I see as important and seminal events. of 

finally try to discuss one or two of them in a truly ."'<LA"'''' manner sense of "how 

and why did they happen?" 

II, then 

2 
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So let's see how many of these seminal events we have time for. Clearly the earliest, 

and the most interesting historically, was localization. 
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A. CLASSICAL CRYSTALLOGRAPHY: GRAIN BOUNDARIES 


'20's< 	BURGERS, G TAYLOR, ETC. ' 

'40's 	THE BRISTOL SCHOOL: FRANK, MOTT, NABARRO, COTTRELL, 
READ, ETC.: SLIP, CREEP, FLOW 

B. DEFECTS IN UANTUM CONDENSATES 

30'-50' 	(1) DOMAIN WALLS STRUCTURES IN FM, BLOCH, LANDAU­
LIFSCHITZ 

'50's 	LANDAU-GINSBURG + THE SUPERCONDUCTING MIXED HAS 

"50's 	(2) VORTICES AND FLUX LINES: FEYNMAN, ('55), ONSAGER, 
ABRIKOSOV ('56) 

'55 FEYNMAN 

'62 JOSEPHSON 

'63-65 ANDERSON 

(NEUTRON STARS '74) 
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'40's SHOCKLEY - NABARRO 

'55 FEYNMAN 

'72 KOSTERLITZ, THO LESS 

'80's HEXATICS: NELSON, ET 

E. TOPO GICAL THEORY: THE REVIVAL OF CRYSTALS 

'60 F.C. FRANK; DE GENNES ('30) 

'74-75' TOULOUS KLEMAN, VOLOVIK-MINEEV 



TABLE II: 

SOME SEMINAL SOURCES AND EVENTS 


IN "THE NEW PHYSICS OF ILL-CONDENSED MATTER" 


(1) ACCEPTANCE OF NON-ERGODICITY IN DISORDERED 
QUANTUM SYSTEMS: 

HAMMERSLEY'S PERCOLATION 
+PWA+MOTT'S 20-YEARS WAR -+ MODERN MESOSCOPICS 

I(2) ACCEPTANCE OF BROKEN ERGODICITY IN SPIN GLASSES: I 
'63-'70 EXPERIMENTS 

'69-'70 WHAT'S IN A NAME? COLES, PWA 

'75 	EDWARDS, THE REPLICA TRlCK 

(ALSO DE GENNES n -+ 0) 

FRUSTRATION THE KEY: Pwa, TOULOUSE 


'7S 	PARlSI'S BRlLLIANT ANSATZ 

'77-'SO KIRKPATRlCK, HOPFIELD, KAUFFMANN, LINK TO 
"COMPLEXITY" 

",'SO CONFIRMATION: BOUCHIAT + OTHERS, Non-linear X 

1(3) FIRST SUCCESSFUL DEFECT TH. OF PHASE TRANS: I 

'72 	KOSTERLITZ-THOULESS 

1(4) TOPOLOGICAL THEORY OF DEFECTS: I 

'75 	DE GENNES, TOULOUSE, VOLOVIK, 

(RELATION TO DISSIPATION AND GENERALIZED 

RIGIDITY: PWA, JOSEPHSON, TOULOUSE) 




October 10, 1989 

Some Thoughtful Words (not mine) 

on Research Strategy for Theorists 

P.W. ANDERSON 

Joseph Henry boratories of Physics 


Jadwi.n Hall, Princeton University 


Princeton, NJ 08544 




I quote one of the greatest theoretical of the era: 

"The principal error 1 see in mO.5t current theoretical work i.5 that of imagining 

that a theory i8 really a good model for ... nature rather than being merely a 

demon.5tration (of pouibility)-a 'don't worry' theory. Theori.5tJ-almoJi alwaYJ 

become too fond of their own ideaJ . . . It 1.5 difficult to believe that one 'J cheri8hed 

theory, which really workJ rather nicely, may be completely fa18e. The ba8ic trou­

ble iJ that many quite different theorie8 can go some way to explaining the fact.5. 

and 8implicity are... dangerou.5 guides, what con8traints can uJed 

as a guide through the jungle of possible theorieJ~.. . The only u.5eful constraints 

are contained in the experimental evidence. Even this information is not without 

iu hazards, since experiment 'facts' are often misleading or even plain wrong. It 

18 thUJ not 8ufficient to have rough acquaintance with the evidence, but rather a 

and critical knowledge of many different .5ince one never know8 know8 

what type of fact is likely to give game away. .. 

Theorists . .. "hould realize that it 1.5 unlikely that they will produce 

a u.5eful theory ju.5t by having a bright idea di.5tantly related to what they imagine 

to be the fact.5. more unlikely is that they produce a good theory at 

their fir.5t attempt. .. they have to produce theory after theory... The very prOCe.58 

of abandoning give8 them a degree of critical detachment which i.5 alm08t 

e.5untial. " 

The words indicated by dots would give the game away, that this 

IS about in biology, at conclusion 

autobiography, "What Mad Pursuit". He, fact, distinguishes biological theory 

on the that the mechanisms the 

process of evolution. But of on this matter 

2 
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other as Crick's Richard and 

Gell-Mann, it seems to me that one should, perhaps, take more 

seriously as a guide to theory is actually done he may do. 

all, in physical theory, we now know that whether or not the origip.al cosmic egg 

was as as some as Linde seem to think it was, 

almost both in condensed matter and in particle 

theory, are result of and nearly as 

and evolutionary as 

My own ",v,..,,,,,..., that theories are 

result of successive corrections to errors that may on the ludicrous, correc­

normally dictated by a look at experiment. long and tortuous 

tale I told of IS one IS 

who could guessed, even in certain given out, 

potential scattering, spin-orbit and ..........,.~.J''''.J, .... scattering would 

turn out to give qualitatively different localization phenomena? Localization, in 

the presence of a magnetic field, simple at first-until the experimental-

showed us it led to utterly unlikely phenomenon of Hall 

quantization, us to up. another fa­

miliar to me, at least, right A helium was predicted 

solving the wrong Hamiltonian in the wrong way. that is, too, a delight­

ful of Crick's "demonstration" that paper demonstrated that 

different were which, the out to be 

really useful and conceptual result. 

"'("\11"1",1'", In my especially, do also to Crick's 

words experiment to heart. They often seem to believe that there is some 

http:origip.al


of "Miranda rule" about what of evidence is 

theory either in an vacuum, or in relation to 

endorsed by some previous paper or produced by the most fashionable expen­

rather than are real 

to the truth. 

As I see it, even the "standard moder' of particle theory-like it or not-was 

arrived at by same kind of random walk guided at every stage by experiment, 

and many of its features still seem to have been as unpredictable on the basis 

of of or simplicity as the of biological 

evolution. 

In conclusion, it appears that in all its branches physics is still an experimen­

tal science. Its basic is not mathematical elegance or the achievement of 

tenure, but learning truth about the world around us, and Sir Francis Crick's 

words are as good a guide to that end as I have seen. 



                     D.P. AROVAS 















ar
X

iv
:0

81
2.

50
97

v3
  [

he
p-

th
] 

 2
6 

Ja
n 

20
09

MIT-CTP/3997

New Kinds of Quantum Statistics

Frank Wilczek
Dept. of Physics

Massachusetts Institute of Technology

Cambridge, MA 02139, USA∗

I review the quantum kinematics of identical particles, which suggests new possibilities, beyond
bosons and fermions, in 2+1 dimensions; and how simple flux-charge constructions embody the new
possibilities, leading to both abelian and nonabelian anyons. I briefly allude to experimental realiza-
tions, and also advertise a spinor construction of nonabelian statistics, that has a 3+1 dimensional
extension.

In quantum theory the notion of identity reaches a new level of precision and has profound dynamical significance.
It becomes important that two particles can be precisely identical, i.e. indistinguishable, as opposed to merely similar.
When passing from a classical description of indistinguishable particles to a quantum description one must supply
additional rules, known as the quantum statistics of the particles.

For many years it was thought that there are only two possibilities for quantum statistics: bosons and fermions. But
in 1977 Leinaas and Myrheim [1] demonstrated, at the level of particle quantum mechanics, that there were additional
theoretically consistent possibilities. I’m told there were hints of this in earlier work in axiomatic field theory [2]. The
work of Leinaas and Myrheim received little attention, and their insight was rediscovered, independently, by Goldin,
Menikoff, and Sharp [3], who realized it in the context of a special formulation of quantum mechanics using currents
and densities; and by me using conventional quantum field theory [4] (involving solitons, as below, and/or Chern-
Simons terms [5]). This circle of ideas came to life as physics in 1984, when Arovas, Schrieffer and I demonstrated [6]
– theoretically, but I think quite convincingly – that quasiparticles in the fractional quantum Hall effect obey forms
of the new, “anyon” quantum statistics. (That possibility was foreseen by Halperin [7].). The anyonic behavior of
quasiparticles (and quasiholes) in the fractional quantum Hall effect is so closely integrated into the overall theory
of those states that it can be subtle to demonstrate as an independent phenomenon. A recent series of impressive
experiments by V. Goldman and his collaborators [8] have been interpreted this way, and other experiments, requiring
less interpretation, are in the works.

Rich mathematical possibilities arise when we consider nonabelian statistics. In the abelian case the operations
characteristic of quantum statistics – roughly speaking: slow, distant exchange of particle positions – are implemented
as multiplications of the wave-function by a complex number (phase). In the nonabelian case complex motions in large
Hilbert spaces of degenerate states can come into play. The possibility of exploiting a robust mapping from operations
in physical space (characterized topologically) to navigate through large Hilbert spaces has inspired visions of a possible
route to quantum computing, known as topological quantum computing. Physical realization of topological quantum
computing is still far off, if it can be achieved at all, but the program has inspired impressive work, both theoretical and
experimental. An upcoming milestone may be demonstration of a proposal by Moore and Read [9] that quasiparticles
in an observed ν = 5

2
quantum Hall state obey nonabelian statistics. Experimental programs to test this are well

advanced, as well.
Here I will describe a few of the most fundamental concepts underlying these developments in what might appear,

to a quantum field theorist, as their simplest natural context. (I will mention quantum Hall physics, experimental
aspects, and quantum computing, but I will not even begin to do them justice.) In the course of this review a few
intriguing new ideas will come up, too.

I. BRAIDS, PERMUTATIONS, AND IN BETWEEN

Traditionally, the world has been divided between bosons (Bose-Einstein statistics) and fermions (Fermi-Dirac
statistics). Let’s recall what these are, and why they appear to exhaust the possibilities.

If two identical particles start at positions (A, B) and transition to (A′, B′), we must consider both (A, B) → (A′, B′)
and (A, B) → (B′, A′) as possible accounts of what has happened. According the rules of quantum mechanics, we must
add the amplitudes for these possibilities, with appropriate weights. The rules for the weights encode the dynamics
of the particular particles involved, and a large part of what we do in fundamental physics is to determine such rules

∗Electronic address: wilczek@mit.edu
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and derive their consequences.
In general, discovering the rules involves creative guesswork, guided by experiment. One important guiding principle

is correspondence with classical mechanics. If we have a classical Lagrangian Lcl., we can use it, following Feynman,
to construct a path integral, with each path weighted by a factor

ei
R

dtLcl. ≡ eiScl. (1)

where Scl. is the classical action. This path integral provides – modulo several technicalities and qualifications
– amplitudes that automatically implement the general rules of quantum mechanics. Specifically: it sums over
alternative histories, takes products of amplitudes for successive events, and generates unitary time evolution.

The classical correspondence, however, does not instruct us regarding the relative weights for trajectories that
are topologically distinct, i.e. that cannot be continuously deformed into one another. Since only small variations in
trajectories are involved in determining the classical equations of motion, from the condition that Scl. is stationary, the
classical equations cannot tell us how to interpolate between topologically distinct trajectories. We need additional,
essentially quantum-mechanical rules for that.

Now trajectories that transition (A, B) → (A′, B′) respectively (A, B) → (B′, A′) are obviously topologically
distinct. The traditional additional rule is: for bosons, add the amplitudes for these two classes of trajectories1; for
fermions, subtract.

These might appear to be the only two possibilities, according to the following (not-quite-right) argument. Let
us focus on the case A = A′, B = B′. If we run an “exchange” trajectory (A, B) → (B, A) twice in succession, the
doubled trajectory is a direct trajectory. The the square of the factor we assign to the exchange trajectory must be
the square of the (trivial) factor 1 we associate to the direct trajectory, i.e. it must be ±1.

This argument is not conclusive, however, because there can be additional topological distinctions among trajecto-
ries, not visible in the mapping between endpoints. This distinction is especially important in 2 spatial dimensions,
so let us start there. (I should recall that quantum-mechanical systems at low energy can effectively embody reduced
dimensionality, if their dynamics is constrained below an energy gap to exclude excited states whose wave functions
have structure in the transverse direction.) The topology of trajectory space is then specified by the braid group.
Suppose that we have N identical particles. Define the elementary operation σj to be the act of taking particle j over
particle j + 1, so that their final positions are interchanged, while leaving the other particles in place. (See Figure 1.)
We define products of the elementary operations by performing them sequentially. Then we have the obvious relation

σjσk = σkσj ; |j − k| ≥ 2 (2)

among operations that involve separate pairs of particles. We also have the less obvious Yang-Baxter relation

σjσj+1σj = σj+1σjσj+1 (3)

which is illustrated in Figure 1. The topologically distinct classes of trajectories are constructed by taking products
of σjs and their inverses, subject only to these relations.

If we add to the relations that define the braid group the additional relations

σ2
j = 1 (4)

then we arrive at the symmetric (permutation) group SN . In 3 spatial dimensions, there are more ways to untangle
trajectories. Indeed, one can always untangle two world-lines by escaping into the transverse direction to avoid
potential intersections, so the permutation of endpoints captures all the topology.

Yet in 3 dimensions, famously, rotations through 2π are not topologically trivial. This topological fact underlies
the possibility of spin- 1

2
(projective) representations of the rotation group. In such representations, the action of a 2π

rotation is to multiply the wave function by −1. On the other hand, rotations through 4π are topologically trivial.
This suggests that for particles with extended structure, that cannot be adequately represented as simple points (e.g.,
magnetic monopoles, or solitons with extended zero-modes) we should consider relaxing Eqn. (4) to

σ4
j = 1 (5)

since σ2
j can be implemented by a 2π rotation moving the particles (j, j + 1) around one another, and σ4

j by a 4π
rotation. The relations Eqn. (5), together with Eqns. (2, 3), define a group intermediate between the braid group
and the symmetric group.

1 As determined by the classical correspondence, or other knowledge of the interactions.
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FIG. 1: The elementary acts of crossing one particle trajectory over another generate the braid group. The Yang-Baxter
relation σ1σ2σ1 = σ2σ1σ2, made visible here, is its characteristic constraint.

II. ABELIAN ANYONS

The substitution

σj → eiθ (6)

preserves the defining relations of the braid group for any phase factor eiθ, so it generates a unitary representation of
the braid group. Thus, at the level of quantum kinematics, it is consistent to weight the amplitudes from topologically
distinct classes of trajectories with the corresponding phase factors. (Of course, the additional constraint Eqn. (4)
reduces the freedom to eiθ = ±1.) This possibility defines the classic, abelian anyons.

There is a simple dynamical realization of anyons, using flux and charge. Consider a U(1) gauge theory that has
particles of charge q, associated with a field η and is spontaneously broken by a condensate associated with a field
of ρ of charge mq, with m an integer2 Gauge transformations that multiply η by e2πik/m will multiply ρ by e2πik.
Thus for integer k they will leave the condensate invariant, but generally act nontrivially on η. We are left with
an unbroken gauge group Zm, the integers modulo m. No conventional long-range gauge interaction survives the
symmetry breaking, but there is a topological interaction, as follows:

The theory supports vortices with flux quantized in units of

Φ0 =
2π

mq
(7)

in units with ~ ≡ 1. A particle or group of particles with charge bq moving around a flux Φ will acquire a phase

exp ibq(

∮
dt~v · ~A) = exp ibq(

∮
d~x · ~A) = eiΦbq (8)

If the flux is aΦ0, then the phase will be e2πi ab

m .
Composites with (flux, charge) = (aΦ0, bq) will be generally be anyons: as we implement the interchange σj , each

charge cluster feels the influence of the others flux. (Note that in two dimensions the familiar flux tubes of three-
dimensional physics degenerate to points, so it is proper to regard them as particles.) There are also topological
interactions, involving similar accumulations of phase, for non-identical particles. What matters are the quantum
numbers, or more formally the superselection sector, not the detailed structure of the particles or excitations involved.

The phase factors that accompany winding have observable consequences. They lead to a characteristic “long
range” contribution to the scattering cross-section3, first computed by Aharonov and Böhm [10] in their classic paper

2 If m is irrational the gauge group is not compact, i.e. it is the additive group R
+ rather than U(1).

3 It diverges at small momentum transfer and in the forward direction.
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on the significance of the vector potential in quantum mechanics. Unfortunately, that cross-section may not be easy
to access experimentally for anyons that occur as excitations in exotic states of condensed matter.

FIG. 2: A schematic interference experiment to reveal quantum statistics. We study how the combined current depends on the
occupation of the quasiparticle island.

Interferometry appears more practical. The basic concept is simple and familiar, both from optics and (for instance)
from SQUID magnetometers. One divides a coherent flow into two streams, which follow different paths before
recombining. The relative phase between the paths determines the form of the interference, which can range from
constructive to destructive recombination of the currents. We can vary the superselection sector of the area bounded
by the paths, and look for corresponding, characteristic changes in the interference. (See Figure 2.) Though there
are many additional refinements, this is the basic concept behind both the Goldman experiments and other planned
anyon detection experiments [11].

Elementary excitations in the fractional quantum Hall effect are predicted to be anyons. By far the simplest states
to analyze are the original Laughlin 1/m states, where the excitations are anyons with θ = π/m. There is a rich
theory covering more general cases.

III. NONABELIAN ANYONS

The preceding field-theoretic setting for abelian anyons immediately invites nonabelian generalization. We can have
a nonabelian gauge theory broken down to a discrete nonabelian subgroup; vortex-charge composites will then exhibit
long range, topological interactions of the same kind as we found in the abelian case, for the same reason.

The mathematics and physics of the nonabelian case is considerably more complicated than the abelian case, and
includes several qualitatively new effects. First, and most profoundly, we will find ourselves dealing with irreducible
multidimensional representations of the braiding operations. Thus by winding well-separated particles4 around one
another, in principle arbitrarily slowly, we can not only acquire phase, but even navigate around a multidimensional
Hilbert space. For states involving several particles, the size of the Hilbert spaces can get quite large: roughly speaking,
they grow exponentially in the number of particles.

As will appear, the states in question are related by locally trivial but globally non-trivial gauge transformations.
Thus they should be very nearly degenerate. This situation is reminiscent of what one would have if the particles had
an internal of freedom – a spin, say. However the degrees of freedom here are not localized on the particles, but more
subtle and globally distributed.

The prospect of having very large Hilbert spaces that we can navigate in a controlled way using topologically
defined (and thus forgiving!), gentle operations in physical space, and whose states differ in global properties not
easily obscured by local perturbations, has inspired visions of topological quantum computing. (Preskill [12] has
written an excellent introductory review.) The journey from this vision to the level of engineering practice will be
challenging, to say the least, but thankfully there are fascinating prospects along the way.

4 From here on I will refer to the excitations simply as particles, though they may be complex collective excitations in terms of the
underlying electrons, or other degrees of freedom.
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FIG. 3: By a gauge transformation, the vector potential emanating from a flux point can be bundled into a singular line.
This aids in visualizing the effects of particle interchanges. Here we see how nonabelian fluxes, as measured by their action on
standardized particle trajectories, are modified by particle interchange.

The tiny seed from which all this complexity grows is the phenomenon displayed in Figure 3. To keep track of the
topological interactions, it is sufficient to know the total (ordered) line integral of the vector potential around simple
circuits issuing from a fixed base point. This will tell us the group element a that will be applied to a charged particle
as it traverses that loop. (The value of a generally depends on the base point and on the topology of how the loop
winds around the regions where flux is concentrated, but not on other details. More formally, it gives a representation
of the fundamental group of the plane with punctures.) If a charge that belongs to the representation R traverses
the loop, it will be transformed according to R(a). With these understandings, what Figure 3 makes clear is that
when two flux points with flux (a, b) get interchanged by winding the second over the first, the new configuration is
characterized as (aba−1, a). Note here that we cannot simply pull the “Dirac strings” where flux is taken off through
one another, since nonabelian gauge fields self-interact! So motion of flux tubes in physical space generates non-trivial
motion in group space, and thus in the Hilbert space of states with group-theoretic labels.

FIG. 4: Winding a flux-antiflux pair around a test flux, and seeing that it gets conjugated, we learn that the pair carries charge.

As a small taste of the interesting things that occur, consider the slightly more complicated situation displayed in
Figure 4, with a pair of fluxes (b, b−1) on the right. It’s a fun exercise to apply the rule for looping repeatedly, to find
out what happens when we take this pair all the way around a on the right. One finds

(a, (b, b−1)) → (a, (aba−1, ab−1a−1)) (9)

i.e., the pair generally has turned into a different (conjugated) pair. Iterating, we eventually close on a finite-

dimensional space of different kinds of pairs. There is a non-trival transformation R̃(a) in this space that implements
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the effect of the flux a on pairs that wind around it. But this property – to be transformed by the group operation
– is the defining property of charge! We conclude that flux pairs – flux and inverse flux – act as charges. We have
constructed, as John Wheeler might have said, Charge Without Charge.

This flux construction makes it clear that nonabelian statistics is consistent with all the general principles of
quantum field theory. Physical realization in condensed matter is a different issue – in that context, nonabelian gauge
fields don’t come readily to hand. Fortunately, and remarkably, there may be other ways to get there. At least one
state of the quantum Hall effect, the so-called Moore-Read state at filling fraction 5

2
, has been identified as a likely

candidate to support excitations with nonabelian statistics.
The nonabelian statistics of the Moore-Read state is closely tied up with spinors [13] [14]. I’ll give a proper

discussion of this, including an extension to 3 + 1 dimensions, elsewhere [15]. Here, I’ll just skip to the chase. Taking
N γj matrices satisfying the usual Clifford algebra relations

{γj, γk} = 2δjk (10)

the braiding σj are realized as

σj = eiπ/4 1√
2
(1 + γjγj+1) (11)

It’s an easy exercise to show that these obey Eqns. (2, 3), and σ4
j = 1 (Eqn. (5)) but not σ2

j = 1 (Eqn. (4)).
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Abstract This paper examines the role of mathematical idealization in describing
and explaining various features of the world. It examines two cases: first, briefly, the
modeling of shock formation using the idealization of the continuum. Second, and in
more detail, the breaking of droplets from the points of view of both analytic fluid
mechanics and molecular dynamical simulations at the nano-level. It argues that the
continuum idealizations are explanatorily ineliminable and that a full understanding
of certain physical phenomena cannot be obtained through completely detailed, non-
idealized representations.

Keywords Models · Idealizations · Simulations · Explanation · Fluid dynamics ·
Scaling · Molecular dynamics

1 Introduction

Physical applied mathematics is in the business of constructing and investigating mod-
els of physical phenomena. Typically these mathematical models take the form of an
equation or set of equations which are then manipulated in various ways. Fowler (1997)
discusses the nature of this art:

Applied mathematicians have a procedure, almost a philosophy, that they apply
when building models. First, there is a phenomenon of interest that one wants to
describe or, more importantly, explain. Observations of the phenomenon lead,
sometimes after a great deal of effort, to a hypothetical mechanism that can
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explain the phenomenon. The purpose of a model is then to formulate a descrip-
tion of the mechanism in quantitative terms, and the analysis of the resulting
model leads to results that can be tested against the observations. Ideally, the
model also leads to predictions which, if verified, lend authenticity to the model.
It is important to realize that all models are idealizations and are limited in their
applicability. In fact, one usually aims to oversimplify; the idea is that if a model is
basically right, then it can subsequently be made more complicated, but the analy-
sis of it is facilitated by having treated a simpler version first. (Fowler 1997, p. 3)

I think that this is an accurate statement of a fairly widespread view about mathe-
matical modeling and, while I agree with the overall sentiment, I also believe that in
several ways it potentially misleads. For instance, I agree with Fowler that all mod-
els are or involve idealizations; although I disagree that this necessarily means that
they are limited in their applicability. I agree that mathematical modelers usually aim
to over-simplify; although I will argue that sometimes (often, in fact) if one tries to
make the model more complicated, one fails to realize the stated goal of providing an
explanation of the phenomenon. Finally (though I will not consider this here), I think
that in many instances the search for a mechanism—at least if this is understood rather
narrowly in causal terms—is not an important feature of the explanation provided by
the mathematical model.

In what follows I would like to discuss these features of mathematical modeling. In
particular, I will concentrate on the explanatory goals of modeling. In order to do so
we must examine more closely the role of idealization and the proper understanding of
that role in describing and explaining various features of the world. However, in order
to do this we need to grasp what counts as the physical phenomenon to be modeled.
I believe that most discussions of modeling simply take it for granted that we have
an appropriate understanding of “the physical phenomenon”. But, I think a proper
investigation of this concept will help us (at least) to make some distinctions between
different views about modeling. Thus, in the next section I try to say something about
the nature of the phenomena that are often investigated, and how certain important
features of those phenomena demand a particular way of thinking about the role of
idealizations in the model—a way that is largely at odds with some of the things Fowler
mentions. Following that in Sect. 3 I discuss, qualitatively, an example of the modeling
of shocks. In Sects. 4 and 5 I consider in much more detail, first, the analytical modeling
of the behavior of breaking droplets and, second, molecular dynamical simulations
of the formation of droplets at the nano-level. These two problems are intimately
related to one another and serve as good exemplars of the different roles played by
idealizations in mathematical modeling. I conclude by arguing that some idealizations
are explanatorily ineliminable. That is to say, I argue that the full understanding of
certain phenomena cannot be obtained through a completely detailed, nonidealized
representation.

2 Idealization and the phenomena

There are (at least) two views about the nature and role idealizations play in modeling
and representing physical phenomena. There is what one might call a traditional view,
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according to which one aims for the most exact and detailed representation of the
phenomenon of interest. On this view, the use of idealizations is, in effect, justified
pragmatically: We need to introduce idealizations into our equations in order to sim-
plify them so as to make them tractable or solvable. (As the passage above indicates,
Fowler appears to endorse something like this traditional view.) A second view finds
virtue where the traditional view sees vice; namely, in the particular kinds of simplifi-
cation that idealizations typically provide. This other view, which for lack of a better
term I will call “nontraditional,” maintains that in some cases (and actually in many
cases) idealized “overly simple” model equations can better explain and characterize
the dominant features of the physical phenomenon of interest. That is to say, these
idealized models better explain than more detailed, less idealized models.

Let us consider the traditional view in a bit more detail. As noted this approach to
modeling holds that one should try to find the most accurate and detailed mathematical
representation of the problem at hand.1 This fits nicely with Fowler’s “philosophy” of
modeling. If the model fails to capture adequately those features of the phenomenon
one is interested in, then there are a couple of things one can do. For instance, one
can try to add more detail to the mathematical representation,2 or one might try to
adjust the parameters already appearing in the model so as to better reflect what is
going on. Most crucially, on this view, the aim is to try to effect a kind of convergence
between model and reality. Ultimately, the goal is to arrive at a complete (or true)
description of the phenomenon of interest. Thus, on this view, a model is better the
more details of the real phenomenon it is actually able to represent mathematically. In
effect, idealizations are introduced only to be removed later through further work on
those details. This, too, fits nicely with Fowler’s “philosophy” of modeling.

Before considering the contrasting approach, we need to get clear about the nature
of the so-called “phenomenon of interest.” As I noted, I think there is virtually no
discussion of this in the literature on modeling and idealization. However, a proper
understanding of the kinds of phenomena that are most often of interest will enable
us to appreciate better the second, nontraditional, role of idealization in mathematical
modeling.

It is an incontrovertible fact that nature presents us with patterns and regularities.
And, much of scientific theorizing involves trying to understand how these regularities
arise. This is not to say that every pattern we observe reflects a genuine lawful feature
of the world. Humans are all too ready to see patterns in just about anything.3 Neither
is it to say that we are interested only in investigating “real” regularities and patterns.
Sui generis phenomena are, of course, also worthy of investigation. As an example of
the latter one might think of studying the nature of the transient behavior in a particular
electrical circuit before it settles down to a steady state.

1 I consider the work of Ronald Laymon as representative of this approach to idealization. See for instance,
Laymon (1980).
2 By this I mean, one might include mathematical representations of additional factors that may be relevant
for the phenomenon under investigation.
3 Fine, in his excellent discussion of computational complexity, randomness, and probability, puts the point
as follows: “Too keen an eye for pattern will find it anywhere” (Fine 1973, p. 120).
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Nevertheless, most often it seems that our attention is captured by regularities—
by repeatable phenomena. It is, in part, the repeatability of phenomena that makes it
dominant and captures our interest. That is to say, the repeatability itself is a salient
feature that leads us to ask about what is responsible for that very repeatability. When
we couple this feature—the salience of the phenomenon—with the fact that for all
but the simplest empirical generalizations we need to idealize so as to find an ade-
quate mathematical representation, we gain a fuller understanding of the meaning of
“dominant feature.”

One goal of mathematical modeling is, surely, to capture these salient features of
the regularity in a mathematical formula. The repeatability of the phenomenon places
a constraint on the nature of the mathematical model: The model must be sufficiently
robust or stable under certain kinds of changes to reflect the fact that the phenomenon
is repeatable in various situations where many details have changed. The world is con-
stantly changing in myriads of ways; yet despite this, we see the same patterns over and
over again in different situations. Idealizing is a means for focusing on exactly those
features that are constitutive of the regularity—those features that we see repeated at
different times and in different places. Equivalently, the process of idealization, un-
derstood in this way, is most broadly seen as a means for removing details that distract
from such a focus—those details that can change without affecting the dominant, re-
peatable behavior of interest. The mathematical operation that represents the removal
of such irrelevant details involves the taking of limits.

Let me now return to the discussion of what I have called the “nontraditional view”
of the nature and role of mathematical modeling. Recall that the traditional view aims,
ultimately, to “de-idealize” by adding more details so as to bring about a convergence
to a complete and accurate descriptions. The nontraditional view, to the contrary, holds
that a good model does not let these details get in the way. In many cases the full details
will not be needed to characterize the phenomenon of interest, and those details may, in
fact, actually detract from an understanding of that phenomenon. This nontraditional
approach requires that one find a minimal model—a model “which most economically
caricatures the essential physics” (Goldenfeld 1992, p. 33). The adding of details with
the goal of “improving” the minimal model is self-defeating—such improvements are
illusory.4

Once one arrives at a representative equation, there is, to some extent, a set of
procedures the modeler typically follows in order to gain insight from the model.
(These procedures are largely independent of ones view of the nature of modeling;
though, as will become evident, I believe they best fit the nontraditional conception.)
In effect, these procedures characterize the modeler’s methods of simplification. Two
features of this recipe stand out. First, one typically nondimensionalizes the equation or
system of equations. This enables one to compare parameters appearing in the equation
as to their importance or “size” even though they have been expressed in different units.
Second, one takes limits thereby reducing the equation. Typically these limits involve
letting a “small” nondimensionalized parameter approach the limiting value of zero or
a “large” nondimensionalized parameter is taken to infinity. The aim is to simplify by

4 See Batterman (2002) for a detailed discussion.
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idealizing in this fashion. This is not by any means solely an exercise in pragmatics:
It is not simply a means for finding exactly solvable solutions. In today’s world of
extraordinary computing capabilities, this analytical practice continues to play a major
role in the investigation of physical phenomena. If all we cared about were correct
and accurate numerical predictions, then we would not bother with these analytic
investigations. (As Fowler puts it, sounding here as if he endorses the nontraditional
conception of modeling, “computation can limit insight, because of an inability to
pose questions properly” (Fowler 1997, p. 6).)

The hope is that if done correctly, one will end up with a model which exhibits
the dominant features of the system. It will be a limiting model that displays the
essential physics. As a qualitative example, consider the case of shocks. (A more
detailed example is discussed in Sect. 4.)

3 Modeling shocks

Let us say we are interested in understanding the behavior of a gas as it moves through
a tube. See Fig. 1. If a collection of the molecules are given a push (say by blowing
into the tube at one end), then they will begin to catch up to those in front resulting in
a more densely populated region separating two regions of relatively less molecular
density. Across this region, molecules will exchange momentum with one another
as if some kind of permeable membrane were present. The region occupied by this
“membrane” is a shock. Of course it is very difficult to track the behavior of the indi-
vidual molecules as they move through the tube and undergo the collisions in the shock
region. (This is not to say that computational simulations cannot approximately track
such behavior. I will have more to say about molecular dynamical simulation and this
notion of approximation below.) But, often the applied mathematician will approach
the problem by taking a continuum limit. This is a model in which the collection of
molecules in the tube is treated as a continuous fluid. Such a limit will shrink the
shock region onto a two-dimensional boundary. Upon either side of the boundary, the
behavior of the fluid will be governed by the relevant (partial) differential equations
of fluid mechanics. However, the behavior across the boundary is not governed by

Fig. 1 Modeling shocks
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any differential equation at all, but rather by algebraic “jump conditions”—singular
behavior across the boundary.

One might think (if you held the more traditional approach to modeling) that the
idealization of the collection of molecules to a continuous fluid would be to make the
boundary region unimportant to the physics. After all, the boundary shrinks to two
dimensions and is not “law governed.” (All those ignored molecular details ought to
be put back in!) In fact, traditional (covering law) accounts of explanation hold that
laws do the essential explanatory work, and initial conditions and boundary conditions
are given a sort of secondary status. Further, as the boundary is a place where the laws
apparently break down, how can the boundary function in a covering law explanation?

Mark Wilson has argued that this view—the view that the boundary becomes unim-
portant to the physics—is mistaken. In fact, the boundary is the most important feature
when it come to understanding the behavior of interest. As Wilson notes “the allegedly
‘suppressed details’ have become crushed into a singular (hence not law-governed)
factor that still dominates the overall behavior through the way in which it constrains
the manner in which the ‘law governed regions’ piece together” Wilson (2003, personal
communication).5 The idea is that such boundaries dominate the physics and that often
the mathematical modeler’s search focuses on those features to explain what is going
on. The limits often yield boundaries that shape or constrain the phenomena. And, it
is the elucidation of these shapes that is important for understanding.

Thus, the continuum limit provides a means for ignoring details about molecular
interactions in the development of shocks. Most importantly, the taking of limits in
this way often imposes mathematical constraints on the equations or formulas that rep-
resent the phenomenon of interest. In particular, it requires our models to exhibit the
appropriate kind of stability under perturbation of various details—those details that
are effectively eliminated by the taking of the limit. Our attempt to represent the dom-
inant features of the phenomenon—genuine features of the world—dictates to some
extent the nature of the appropriate mathematical representation. That representation,
in turn, leads us to investigate in detail the nature of the imposed constraints. It turns
out that in many instances such investigations lead to the discovery of singularities—
places where the governing laws “breakdown.” The example of shocks is just one such
instance. In the next section I consider another example in considerably more detail.

4 Modeling drops and jets

As water drips from a faucet it undergoes a topological change—a single mass of
water changes into two or more droplets. This is the most common example of a
hydrodynamic discontinuity that arises in a finite period of time. In Victorian times
Lord Rayleigh recognized that drops form as a result of a competition between
gravitational force and surface tension. He was able to determine the typical size
of a droplet and was able to set the time scale upon which a drop would form (Eggers
1997, p. 866).

5 See Wilson (2006) for much more detailed discussions of these and related issues.
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Fig. 2 Geometry of a falling
drop
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Recent work on the problem has focused on characterizing the shape of the fluid
interface at and near the time of breakup. One needs to examine the nonlinear
Navier–Stokes equations for free surface flows. These problems are considerably more
difficult to solve than those where the fluid is constrained (say by the walls of a pipe).6

The Navier–Stokes equations must develop a singularity in finite time that is charac-
terized by divergences both in the fluid velocity and in the curvature of the interface
at the point of snap-off.

To begin we assume that the typical geometry of a dripping drop is exhibits axial
symmetry about the z-axis. Figure 2 provides the relevant details. Assuming axial
symmetry, the velocity field inside the fluid is given by a function v(z, r). One can
define a time dependent radius function, h(z, t), describing the shape of the drop at any
given time. R1 and R2 are the principal radii of curvature of the axisymmetric surface
�. In this geometry, using cylindrical coordinates, the Navier–Stokes equations are
given by

∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
= − 1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2 + ∂2vr

∂z2 + 1

r

∂vr

∂r
− vr

r2

)
, (1)

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
+ ν

(
∂2vz

∂r2 + ∂2vz

∂z2 + 1

r

∂vz

∂r

)
− g, (2)

∂vr

∂r
+ ∂vz

∂z
+ vr

r
= 0. (3)

6 In such cases (at least for laminar flows) one can conquer by dividing the problem into two asymptotically
related regimes—one near the wall (the boundary layer where viscous effects will dominate), and the other,
far from the wall, where such effects are subdominant.
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The acceleration due to gravity (g) is in the negative z-direction; vz and vr are,
respectively, the velocities in the axial and radial directions; p is the pressure; ρ

is the fluid density; and ν is the kinematic viscosity. Equation 3 expresses the conti-
nuity of the fluid. Equations 1 and 2 express the force balance. The accelerations on
the left-hand-sides are due to a pressure gradient (from surrounding the air), viscous
stresses, and to gravity (in the z-direction).

These equations are subject to two boundary conditions. The first comes from a
balance of normal forces

nσn = −γ

(
1

R1
+ 1

R2

)
, (4)

and the second from a balance of tangential forces

nσ t = 0. (5)

Here σ is the stress tensor and γ is the surface tension and Eq. 4, called the “Young-
Laplace equation,” says that the stress within the fluid normal to the interface and near
the surface must be balanced by a stress that acts normal to the surface due to surface
tension. The formula “(1/R1 + 1/R2)” appearing here is equal to twice the mean
curvature of the surface � at the point of evaluation. Equation 5 expresses the fact that
sheer stresses vanishes at the interface. It is possible to express the mean curvature in
terms of the radial “shape” function h(z, t).7 This allows us to write the equation of
motion for h(z, t) as follows:

∂h

∂t
+ vz

∂h

∂z
= vr |r=h . (6)

This says that the surface must move with the fluid at the boundary.
These equations define a difficult and complex moving boundary value problem.

We are interested in what happens near the point at which the fluid breaks—at the
singularity. Prima facie, that should make the problem even more difficult, as nonlinear
effects will dominate. Nevertheless, by focusing on the behavior of the fluid near
the singularity, it is possible to simplify the problem dramatically and provide exact
solutions to these equations. (This is the modeling recipe mentioned above.) There are
two aspects of the problem that allow this to happen.

The first (Eggers 1995, p. 942) derives from the fact that, near breakup, the axial
extension of the fluid is much greater than its radial extension. This allows us to make
the simplifying assumption that the singularity is line-like. In turn this allows us to
find a one-dimensional solution to the full Navier–Stokes equations by introducing a
characteristic axial length scale lz that is related to a radial length scale lr according
to the following scheme:

lr = εlz, (7)

7 See Eggers (1995).
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where ε is a small parameter. If, in addition, we introduce a characteristic time scale
tz we can nondimensionalize the quantities appearing in above equations. The charac-
teristic scales lz, lr , and tz are, of course, constants and so have zero time derivatives.
Nevertheless, as the singularity forms, these characteristic scales will be different at
different stages of the singularity formation (Eggers 1995, p. 942).

The second feature of the moving boundary problem that allows for simplification
is the fact that near the singularity, surface tension, viscous forces, and inertial forces
all become equally important (Eggers 1995, p. 942). Surface tension is related to the
radius of curvature which diverges at the singularity, viscous forces are also impor-
tant, and inertial forces must also be considered as the fluid velocity is increasing
with greater pressure gradients due to the increasing curvature. Given this, the fluid
acceleration diverges leaving the constant acceleration of gravity out of the picture
near the singularity.

Furthermore, and this is extremely important, close to the singularity, all of the
length scales become arbitrarily small in comparison with any external length scale
such as the nozzle size of the faucet. This is an indication that one should expect the
singular solutions of the one-dimensional Navier–Stokes problem to possess similarity
or scaling properties. To a large extent and for a wide range of fluids, this turns out to
be the case.

It is worth stressing the importance of discovering a similarity solution to a physical
problem. This discovery will mean that one can expect essentially identical behavior
in the system when “viewed” at different (appropriately chosen) scales. Such solutions
are crucial in standard cases of modeling in which one builds a model, experiments
with it, and then argues that the same observed properties will hold at different scales.
For instance, consider the investigation of the aerodynamic properties of wings through
experimentation on model wings in a wind tunnel.8 In addition, however, the existence
of similarity solutions and their corresponding scaling laws play essential roles in our
understanding of why different systems exhibit identical or nearly identical behavior
when described in the appropriate (dimensionless) variables. Another way of putting
this is to say that the existence of a similarity solution is an indication of a kind of
robustness or stability of the phenomenon under perturbation of various details. This,
will become clear as the argument below progresses.

Returning to the process of drop formation, recall the following fact. “External”
length and time scales that are determined by the initial conditions and the boundary
conditions become irrelevant in the description of the singularity. This is critical for
our understanding of the nature of the singularity. It means, for example, that it is
possible to describe the flow near the breakup using only “internal” length and time
scales, defined in terms of the fluid parameters. One introduces the so-called viscous
length scale and the viscous time scale as follows:

lν = ρν2

γ
(8)

8 An excellent discussion of dimensional analysis, similarity solutions, scaling laws can be found in
Barenblatt (2003).
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Fig. 3 Water droplet at breakup
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z' = (z - z0)/lν
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tν = ρ2ν3

γ 3 (9)

These scales imply that when the viscosity ν is doubled, the breakup will look the
same at length scales four times as large and at time scales eight times as large. This
is an instance of scaling.

On the supposition that the breakup occurs at a single point z0, and at an instant
t0, we can measure spatial and temporal distance from the singularity in terms of the
dimensionless variables:

z′ = z − z0

lν
(10)

t ′ = t − t0

tν
. (11)

See Fig. 3.9

In effect, the scales lν and tν characterize the width of the critical region around the
singularity. For a specific fluid, they are fixed constants and do not change with time
as do the characteristic scales mentioned above (lz, lr , lt ).

9 The pictures of water drops in Figs. 3–6 are courtesy of Sidney R. Nagel and appear in Nagel (2001).

123



Synthese

It is possible now to demonstrate that a scaling or similarity solution in the variables
z′, t ′ exists that describes the drop radius or shape function

h(z′, t ′) = |(t ′)|α	(ξ), (12)

where the similarity variable ξ is defined as follows.

ξ = z′

|t ′|β . (13)

One can determine the values of the scaling exponents α and β from dimensional
analysis. Eggers then shows, both analytically and numerically, that the similarity
solution (12) does hold for the problem. One finds the function 	 by inserting the
similarity solution into a nondimensionalized version of the fundamental differential
Eq. 6.10 Furthermore, such a solution is in excellent agreement with the full solutions
for the (one-dimensional) Navier–Stokes equations at low viscosities.11

The existence of such a similarity solution in the variable ξ indicates that the shape
of breaking drops is universal. One can see evidence of this by examining the shapes
in Figs. 4 and 5.

Notice the cone-to-sphere shape in Fig. 4 and note the identical shape at the top
of the about-to-break satellite drop in Fig. 5. This demonstrates that how the drop
is formed (whether, for instance, it drips solely under the influence of gravity or is
sprayed in the air by a crashing wave) is irrelevant for the shape it takes on as it
breaks.12

In fact, this similarity solution characterizes an entire class—a universality class—
of fluids at breakup. This class is, in part, determined by the ratio of the viscosity of the
fluid to the viscosity of the surrounding medium. For example, the shape of water drops
dripping from a faucet surrounded by air (Figs. 4, 5) in which νint � νext is different
than that of a drop forming in a fluid surrounded by another fluid of approximately
the same viscosity (Fig. 6) where νint ≈ νext .13

That these shapes are to be expected is completely accounted for by the nature of
the similarity solution (12) just prior to breakup. Furthermore, Eggers has shown that
for scales sufficiently larger than the microscopic, it is actually possible to continue,
uniquely, the similarity solution before breakup to one that holds beyond the singu-
larity, after breakup. At breakup some molecular mechanism must come into play,
but the uniqueness of this continuation is an indication of the self-consistency of the
hydrodynamic description. The striking conclusion is that the evolution of the fluid
both before and after breakup is independent of the molecular microscopic details.

10 This equation is nondimensionalized using Eqs. 10 and 11.
11 Shi et al. (1994) argue that Eggers’ and Dupont’s solution needs to be corrected as there are perturbations
(noise) that play an essential role in determining the character of the fluid shape near breakup.
12 See Nagel (2001).
13 Interestingly, Doshi et al. (2003) have recently demonstrated a third regime, characterized by νint � νext

that fails to exhibit universal behavior. The breakup profiles in this latter regime are nonuniversal and depend
upon initial and boundary conditions in a way that the other two regimes do not.
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Fig. 4 Water droplet at breakup

So the existence of the scaling solutions to the one-dimensional Navier–Stokes
equations provide evidence for the universality of the phenomenon. And, as a result,
it is possible to explain why different fluids, of different viscosities, dripping from
different nozzles, etc., will exhibit the same shape upon breakup.

5 Molecular dynamics and simulations

Let me now describe the drop breakup problem from the point of view of state-of-
the-art simulations in molecular dynamics. (After all, as just noted, some molecular
mechanism must be involved near breakup.) Moseler and Landman (2000) investigate
the formation, stability, and breakup of jets at the nanolevel.They model propane as it is
injected into a vacuum through a nozzle of diameter 6 nm. The simulation involves fol-
lowing approximately 200,000 propane molecules as they are pushed through a nozzle
composed of gold molecules at various pressures. The molecules interact according
to the Lennard-Jones 12-6 potential:

φLJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (14)

where ε and σ are, respectively, energy and length scales appropriate to the materials.
The term proportional to ( 1

r12 ) dominates at short distances and represents the repulsion

123



Synthese

Fig. 5 Water droplet after
breakup

between molecules in very close proximity to one another. The ( 1
r6 ) term dominates

at large distances and represents the attractive forces between the molecules. Thus the
potential has an attractive tail at large r , reaches a minimum near r = 1.122σ , and is
strongly repulsive for r < σ .14

The nanojets in Fig. 7 were simulated by pressurizing the nozzle downstream at
500 MPa and with a controlled temperature at the nozzle of 150 K.15 This results in
a 200 m/s flow velocity for the jet. For t < 1 nanosecond following the initial exit
of the fluid, the flow exhibits transient behavior. One can see the beginnings of the
formation of fast moving droplets and molecular clusters in this initial period, and
after that one sees the formation of necking instabilities resulting in breakup and the
formation of drops. Moseler and Landman note that for t ≥ 1ns, a steady state is

14 The use of the Lennard-Jones potential is justified in investigation of this sort (interactions between
closed-shell atoms) for the following reasons. It exhibits long-range van der Waals attraction, extremely
strong short-range repulsion and has a potential well. Given these features, along with its relative ease
of computational implementation, it is the potential of choice for investigations into generic properties of
many molecular dynamical interactions. For a detailed discussion of molecular dynamical simulations see
Ercolessi (1997).
15 Figures 7 and 8 are courtesy of Uzi Landman and appear in Moseler and Landman (2000, p. 1166 and
p. 1168, respectively).
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Fig. 6 Two fluid breakup:
νint ≈ νext

Fig. 7 Formation of nanojets

achieved with an average breakup length of 170 nm. They report that, upon repeated
simulations, the typical shape at breakup resembles a double cone as shown in Fig. 8b
and the upper image in Fig. 8d. Occasionally, however, they witness the formation of
nonaxisymmetric necks as in Fig. 8a and an elongated neck configuration as in Fig. 8c
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Fig. 8 Molecular dynamical configurations of nanojets

which was accompanied by the formation of small “split-off” molecular clusters or
“satellite drops”.

If we suppose that the hydrodynamic equations discussed in the last section could
apply to the nanoscale drop formation problem, then we would expect the propane (at
the nanoscale) to be quite viscous. (Even though, at larger scales, propane is surely
not very viscous.)16 Viscous fluids such as glycerol or honey exhibit long necks prior
to breakup. (Just think about the honey that you drip into your cup of tea, or the
maple syrup you pour over your pancakes.) In fact, Moseler and Landman apply the
hydrodynamic equations (particularly, Eq. 6) and show that as expected for a viscous
fluid, the propane jet should develop long necks prior to breakup. This is shown in
Fig. 8d and is the simulation labelled “LE” for “lubrication equations.”

The discrepancy between the double cone shape of the the molecular dynamical
simulation and the hydrodynamic description of the same process is a direct indication
that continuum deterministic hydrodynamics fails to apply at the nanoscale. Large
hydrodynamic fluctuations become important at the nanolevel signaling a break down
of the deterministic continuum description. As Moseler and Landman note,

…the continuum description of such small systems requires the use of exceed-
ingly small volumes, each containing a very limited number of particles, and
consequently, continuum variables associated with such small volume elements,
which represent (local) averages over properties of the microscopic constituents
are expected to exhibit large fluctuations. (Moseler and Landman 2000, p. 1168)

16 The reason for this depends upon the scale of observation. For “macroscopic” observation, the scale
(lobs ) is on the order of one micron (10−6 m), and at this level of observation the ratio lobs /lν � 1. This
ratio is what we expect for low viscosity fluids such as water that yield the asymmetric cone-to-cap shape
at breakup. However, at the nanolevel—at the level of molecular dynamics—lobs is on the order of a few
nanometers (10−9 m). At this level, lobs/lν � 1. This ratio holds of viscous fluids such as glycerol and
leads to an expectation of thin neck formation prior to breakup (Moseler and Landman 2000, p. 1167).
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Moseler and Landman introduce a stochastic term (Gaussian noise) into the hydro-
dynamic equations and solve the stochastic continuum equations. They demonstrate
remarkable agreement with the dominant double cone shape of the molecular dynam-
ical simulations. This agreement is displayed in Fig. 8d. Compare the top molecular
dynamical run with the stochastic continuum equations labelled SLE. This agreement
“strongly suggests that in [nanojets] the very nature of the dynamical evolution is influ-
enced strongly by hydrodynamic fluctuations, deviating in a substantial way from the
behavior predicted through the analysis of the deterministic [continuum equations]”
(Moseler and Landman 2000, p. 1168). Further analysis shows that it is possible to
see the failure of the deterministic continuum equations as a consequence of a new
length scale becoming important at the nanolevel. Moseler and Landman introduce
this so-called “thermal capillary length” that for most materials is on the order of
interatomic distances.

The fact that a new length scale becomes important at the nanolevel is, according
to Moseler and Landman, further indication that the universality described above
(provided by the scaling solutions to the Navier–Stokes equations) breaks down. As
they say,

The appearance of an additional length scale in the [stochastic continuum] sim-
ulations …is a direct consequence of the extension to include temperature-
dependent stress fluctuations, and its magnitude determines the nature of the
jet evolution, including the appearance of solutions other than the universal
ones predicted through the deterministic [continuum equations]. (Moseler and
Landman 2000, p. 1168, My emphasis.)

Let me make a few observations and pose a couple of questions concerning the
molecular dynamical simulations and their potential for providing explanations for
certain aspects of very small-scale drop phenomena. First of all, notice that every
molecular dynamical simulation of nanojet formation is different.17 The images in
Fig. 8a–c attest to this. While Moseler and Landman assert that “[t]he most frequently
observed breakup process [exhibits] close to pinch-off formation of an axisymmetric
double cone shape of the neck …,” this amounts to a statistical claim based solely
upon generalizations from different simulation runs (Moseler and Landman 2000,
p. 1168). And, while it is sometimes appropriate to say that the explanatory buck must
stop somewhere, one might, in this situation, ask for an explanation of why this is the
statistically dominant shape for nanojet breakup.

As we have seen, one important virtue of the scaling solutions to the Navier–Stokes
equations discussed in Sect. 4 is that they allow for exactly such an answer to the
analogous explanatory why-question on larger scales. We can explain and understand
(for large scales) why a given drop shape at breakup occurs and why it is to be
expected. The answer depends essentially upon an appeal to the existence of a genuine
singularity developing in the equations of motion in a finite time. It is because of this

17 One might think that this is merely an artifact of simulation and that it counts against treating the
molecular dynamical simulations as genuinely providing theoretical information about the formation of
nanojets. This would be a mistake. The differences in simulations can be attributed to difference in initial
conditions, and, as a result, are to be expected.
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singularity that there is a decoupling of the breakup behavior (characterized by the
scaling solution) from the larger length scales such as those of the faucet diameter.
Without a singularity, there is no scaling or similarity solution. Thus, the virtue of
the hydrodynamic singularity is that it allows for the explanation of such universal
behavior. The very break-down of the continuum equations enables us to provide an
explanation of universality. This is completely analogous to the renormalization group
explanation of the universality of critical phenomena.18

No such explanation—one that appeals to a singularity to explain the statistically
universal double cone structure, is available from the “fundamental” theory employed
in the molecular dynamical simulations. If one looks, for example, at any of the results
presented in Fig. 8a, b, or c, one cannot locate the actual breakup location in either
time or space. There is no well-defined singularity in the equations. And, of course,
one would not expect there to be, since the Newtonian molecular dynamical equations
do not develop singularities in finite times.

6 Analytical modeling versus simulation: a reconciliation?

So the question is whether it is possible to provide some kind of theoretical answer
to the question of why the double cone structure is to be expected in nanojet breakup.
Moseler and Landman show that if one introduces fluctuations into the continuum
hydrodynamic equations, and solves those equations, the shape is similar to that typical
of many molecular dynamical simulations. But the challenge is to understand the
qualitative change in the breakup shape that occurs in the regime in which fluctuations
apparently make a leading contribution to the shape function. To put this another
way, we would like to have an account of the statistical universality of the double
cone structure—one that provides the kind of understanding that the scaling solutions
provide for the breakup profile at larger scales by demonstrating that most of the details
of the evolution are by and large irrelevant.

In a paper entitled “Dynamics of Liquid Nanojets” Eggers (2002) provides the
desired explanation. Eggers notes that Moseler’s and Landman’s stochastic continuum
equations suggests that “hydrodynamics, at least when suitably generalized to include
fluctuations, is fully capable of describing free surface flows down to the scale of
nanometers” (Eggers 2002, p. 084502-1). There is a simple physical argument to
understand what goes on at the nanolevel. One can think of the random noise introduced
into the continuum equations as representing a kind of effective force that is generated
by the fluctuations.

[A] random fluctuation which increases the thread radius also increases its
effective mass, slowing down the motion. Any fluctuation towards a smaller
neck radius, on the other hand, accelerates the motion. On average, the fluctua-
tions thus drive the thread towards breakup, in fact more effectively than surface
tension …(Eggers 2002, p. 084502-2)

18 See Batterman (2005) for a discussion.

123



Synthese

As Eggers notes, however, conventional perturbative analysis around the deter-
ministic continuum solution cannot describe this mechanism. This is because the
fluctuations—the noise—makes the dominant contribution. The idea that one can
average about a fixed time

no longer makes sense for this problem, because there is a finite probability for
pinchoff to have occurred, so the original formulation ceases to be valid. Thus a
valid description has to be conditioned on the event of breakup to take place at a
fixed time t0. It is then natural to ask for the most probable sequence of profiles
that brings one from the initial condition to a “typical” breakup event. (Eggers
2002, p. 084502-2)

Eggers develops an ingenious and difficult argument involving path integrals to deter-
mine probability of the “optimal” path to breakup. For our purposes here, the interesting
feature is that to solve this problem he needs to assume, for a fixed breakup time t0,
that the solution is self-similar. He finds that the unique solution, on this assumption,
is the symmetric profile of a double cone unlike the asymmetric long-neck similarity
profile for the deterministic equations. The crucial feature is that the similarity solution
is only possible on the assumption that there is a singularity at t0 in the (stochastic)
hydrodynamical equations. The result is an explanation for why such a symmetric
profile seen in the molecular dynamical simulations is to be expected—one that is
grounded in the “less fundamental” continuum theory of hydrodynamics.

A further consequence of this explanation is that we can understand why so few
satellite drops are formed in nanojets and why there is a very narrow distribution in
the size of the droplets that are formed. If one looks back at Fig. 5, one sees that a
satellite drop is about to detach itself from the nozzle at the upper end of the picture.
This is a consequence of the asymmetric, long-neck nature of the dripping process.
That smaller satellite molecular clusters, such as that in Fig. 8c, are unlikely to form
is a direct consequence of the universality of the double cone profile for nanojets.
They occur only for large fluctuations in the neck region; and such fluctuations are
statistically rare.

So, surface tension driven pinching at larger scales essentially determines the
breakup time. Nevertheless, at times very close to that, a different process dominated
by fluctuations takes over, speeding up the breakup at the nanoscale. The transition
between these different scaling regimes can be understood in terms of the emergence,
as one approaches the nanolevel, of a new length scale—the thermal capillary length.
Most importantly, however, our understanding of this transition and of the universality
of the different profiles, depends essentially upon the development of finite time sin-
gularities in the continuum hydrodynamical equations. These singularities entail that
the breakup behavior at small length and time scales decouples from larger length and
time scales. The details of the molecular dynamics drops out of our explanation of the
origin of the different universality classes. Thus, the very breakdown of the continuum
equations enables us to provide an explanation of the universal shapes.

However, from the point of view of pure molecular dynamical simulation, we can
have no explanation of the universal shape of breaking drops and jets. The molecular
dynamical equations do not exhibit any singularities—there are no blow-ups allowing
for the scaling solutions that is required for this sort of understanding.
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7 Conclusion

Fowler’s characterization of the nature of idealization in mathematical modeling
conforms well with what I have called the traditional conception. Recall that from
that point of view, idealizations are pragmatically justified and (paradoxically) receive
their ultimate warrant from the “fact” that they are to be (can in principle be) eliminated
by further work on the details. In the context of our discussion of the nanojet simula-
tions, one can think of the simulations as attempts to provide all of those details—to
fully de-idealized a continuum description by tracking all of the molecular motions.
Such simulations do surely provide significant and interesting information about the
nature of those dynamical systems.

However, one lesson to be learned from this discussion is that, sometimes at least,
such simulations do not tell us the whole story. The understanding of the process that
they provide is only partial. They cannot, I have argued, provide an explanation for
the universality of the shapes that appear in the jets at breakup. The gaps in the full
story can, as I have tried to show, be filled in by employing (limiting) idealizations—
idealizations that are ubiquitous in the mathematical analysts’ approach to modeling.
In particular, by appealing to the idealized continuum theory of hydrodynamics. Fur-
thermore, it seems that these idealizations are in many instances explanatorily ine-
liminable. That is to say, they play an essential role in the proper explanation of the
phenomenon of interest. They are not, as the traditional view of the use of idealization
in modeling suggests, put in only to be subsequently removed by more detailed work.

Acknowledgements I would like to thank Roman Frigg, Stephan Hartmann, and Cyrille Imbert for the
stimulating and informative Models and Simulations conference at which an earlier version of this paper
was presented.
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Effective field theories have been a very popular tool in quantum physics

for almost two decades. And there are good reasons for this. I will argue
that effective field theories share many of the advantages of both
fundamental theories and phenomenological models, while avoiding their
respective shortcomings. They are, for example, flexible enough to cover a

wide range of phenomena, and concrete enough to provide a detailed story
of the specific mechanisms at work at a given energy scale. So will all of
physics eventually converge on effective field theories? This paper argues

that good scientific research can be characterised by a fruitful interaction
between fundamental theories, phenomenological models and effective field
theories. All of them have their appropriate functions in the research

process, and all of them are indispensable. They complement each other
and hang together in a coherent way which I shall characterise in some
detail. To illustrate all this I will present a case study from nuclear and
particle physics. The resulting view about scientific theorising is inherently

pluralistic, and has implications for the debates about reductionism and
scientific explanation. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is little doubt that effective field theories are nowadays a very popular
tool in quantum physics. They are almost everywhere, and everything is
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considered to be an effective field theory (EFT). Particle physicists, for
example, even take a supposed-to-be fundamental theory such as the celebrated
Standard Model of the electromagnetic, weak, and strong interactions to be an
EFT (Meissner, 1992). Nuclear physicists systematically derive low-energy
EFTs from quantum chromodynamics (a theory which is part of the Standard
Model) to account for the dynamics of protons and neutrons in atomic nuclei
at low and intermediate energies (Van Kolck, 1999). And solid state theorists
formulate age-old models such as the BCS theory of conventional super-
conductivity in the language of EFTs (Shankar, 1999). Even gravitational
physicists seem to be infected by the EFT-virus: they consider the general
theory of relativity to be the starting point of a power-series expansion, to
which higher-order quantities that are still invariant under general coordinate
transformations have to be added, to account for the physics at higher energies
(Donoghue, 1994a,b). The resulting EFTs include quantum corrections to
Einstein’s theory which are considered to be footprints of a quantum theory of
gravity, a theory we do not yet have, but which we might be able to find (or
divine) by following the EFT programme.
EFTs account for the physics at a given energy scale by relying only on those

entities which are relevant at that scale. These entities are, for example, quarks,
leptons and the gauge bosons in the Standard Model, pions and nucleons in
nuclear physics at not too high energies, and Cooper pairs in the theory of
conventional superconductors. Using these effective degrees of freedom makes
computations tractable and provides some intuitive understanding of what is
physically going on at the energy scale under consideration. The resulting
descriptions are very accurate. This indicates that the effects of the physics at
higher energies do not really make a difference at lower scales in these cases: the
physics at high energies is ‘decoupled’ from the physics at low energies. Its
effects are contained in a few parameters of the low energy theory. The
formalism of EFTs makes all this more precise. Besides, there is a systematic
and controlled way to derive low energy EFTs from a more fundamental high
energy theory.
For a long time, the criterion of renormalisability was considered to be a sine

qua non for any acceptable physical theory. After all, we want our theories to
give finite results and if higher orders in a perturbation expansion diverge, the
theory is in trouble. Renormalisation is a way to ‘get rid’ of these infinities, but
it turns out that many EFTs cannot be renormalised and are therefore,
according to the old view, in trouble. Their appraisal requires that we
reconceptualise what renormalisation amounts to. This reconceptualisation
took place in the 1970s; it is a consequence of a realistic (as opposed to a
formalistic) interpretation of the cut-off parameter in quantum field theories
and of the insights of renormalisation group theory.
Besides their value in research, EFTs also played a role in a recent debate

among scientists which was, however, in the end mainly about funding issues.
In this debate, particle physicists (most prominently Steven Weinberg)
advocated building a Superconducting Super Collider (SSC), an extraordina-
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rily expensive particle accelerator, which should help theorists find the ‘final
theory’ (Weinberg, 1993). In the end, the US Congress did not make this dream
come true. Weinberg’s opponents, such as the solid state physicists Philip W.
Anderson and James Krumhansl, argued convincingly against this project.
Since he could not point to technological spin-offs, Weinberg’s main argument
for the SSC was the very foundational character of particle physics: ‘Particle
physics is in some sense more fundamental than other areas of physics’
(Weinberg, 1987, p. 434). It is more fundamental because it is ‘on a level closer
to the source of the arrows of explanation than other areas of physics’ (ibid., p.
437). Anti-reductionists, on the other hand, point to the autonomy of the
different levels of organisation. All these levels have their own ontology and
their own laws, so why not call them fundamental as well?1 It is not an easy
task to make more precise what it means exactly that different levels of
organisation are autonomous. However, within the programme of EFTs, the
notion of quasi-autonomy can be given a precise meaning and the relation of
one level of organisation to a deeper level can be studied. We will come back to
this issue below and discuss its consequences for the reductionism debate.
Despite the great importance of EFTs in actual scientific practice and in an

important debate among scientists, philosophers of science have not paid much
attention to EFTs. Following a seminal (though philosophically controversial)
paper by Cao and Schweber (1993), some articles have been published which
mainly focus on the issue of renormalisation and on the role of the
renormalisation group.2 In 1996, a remarkable conference on the conceptual
foundations of quantum field theory took place at Boston University. Its
participants included many of the main contributors to the development of
quantum field theory and to the EFT programme.3 At this conference a lot of
attention was paid to EFTs. A full philosophical appraisal of EFTs and their
consequences is still missing however. This is the aim of this article.
Philosophers of science have discussed theories and models a great deal.

EFTs share similarities with both of them. My first goal will therefore be to
locate EFTs in the ‘conceptual space’ defined by these tools. I will do this by
looking at the functions of theories, models, and EFTs in the research process
and conclude that EFTs share many of the functions of theories and models.
Theories and models are, however, also an indispensible tool of scientific
research and I will defend a pluralistic account of scientific theorising on the
basis of a detailed case study. My second goal is then to draw some more
general conclusions from my reconstruction of scientific practice, namely about
the issues of reductionism and scientific explanation.
The remainder of this article is organised as follows. Section 2 provides some

historical background and introduces the concept of EFTs. Section 3 points

1This debate is carefully reconstructed in Cat (1998).
2See the articles by Huggett and Weingard (1995), Robinson (1992), Cao (1993), Schweber (1993a),

and the more general articles by Schweber (1993b, 1995).
3The proceedings of this conference are published in Cao (1999).
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out the functions of, and relations between, theories, models, and EFTs on the
basis of a case study from nuclear and particle physics. Philosophical
conclusions concerning pluralism, reductionism and scientific explanation are
then drawn in Section 4. Finally, Section 5 summarises my main points.

2. The Emergence of Effective Field Theories

Although the first paper on EFTs appeared only in 1979 (Weinberg, 1979,
1980b), the general idea behind it is much older. As early as in 1936, the
German physicists Hans Euler and Werner Heisenberg calculated the process
of photon-photon scattering at small photon energies within the framework of
the quantum theory of fields developed by Paul Dirac a couple of years earlier.
Euler and Heisenberg derived a non-linear modification of Maxwell’s
equations which could however be interpreted in an intuitive way. Another
early example of an EFT is Fermi’s theory of weak interactions. Both theories
will be discussed in Section 2.1. For a long time, however, theories such as the
ones by Euler, Heisenberg and Fermi were not taken seriously because they
were not renormalisable. Only after a ‘change in attitude’ (Weinberg) among
physicists}mainly due to the development of renormalisation group
techniques}was it possible to consider non-renormalisable theories as full-
blown scientific achievements. To arrive at the current conception of EFTs, one
more step was required. In 1975, Appelquist and Carazzone derived a theorem
(Appelquist and Carazzone, 1975) according to which under certain conditions
the heavy particles in a theory decouple from the low-energy physics (modulo a
renormalisation of the parameters of that theory). I will sketch these
developments in Section 2.2. Finally, I present two ways of applying EFTs,
viz. the bottom-up approach and the top-down approach, both of which have a
variety of applications in physics.

2.1. Two early examples

This section introduces two early examples of an EFT, the Euler–Heisenberg
theory of photon-photon scattering (Section 2.1.1) and the Fermi theory of
weak interactions (Section 2.1.2). Both theories exhibit typical features of an
EFT which are compiled in Section 2.1.3.

2.1.1. The Euler–Heisenberg theory
Soon after Dirac presented his first attempts towards a quantum theory of

fields, Euler and Heisenberg applied this theory to the process of photon-
photon scattering.4 The authors did not worry much about the fact that Dirac’s
theory had various conceptual problems at that time. Quite to the contrary, by

4The first paper on this subject matter was published by Euler (1936); Heisenberg and Euler (1936)

contains a considerable simplification and generalisation of Euler’s calculation.
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working out interesting applications of the theory and by exploring its
consequences, Euler and Heisenberg hoped to get a hint in which direction one
has to look in order to find a satisfactory quantum theory of fields. In a letter
to Wolfgang Pauli, Heisenberg wrote about a similar situation a couple of
months earlier:

In respect to quantum electrodynamics, we are now in the same state as we were
in 1922 in respect to quantum mechanics. We know that everything is wrong. But
in order to find the direction in which we have to depart from the present state, we

have to know much better the consequences of the present formalism.5

Following this line of thought, the motivation of Euler and Heisenberg’s
joint work was to get an understanding of the consequences of Dirac’s
provisional formalism in order to find ways to improve it.
Photon-photon scattering is a typical quantum electrodynamical process

which has no classical analogue. It does not occur in classical physics because
of the linearity of Maxwell’s equations (‘superposition principle’). In quantum
electrodynamics, however, the superposition principle does not hold. Now,
photons can interact and the elementary process, the discovery of which Euler
attributes to Otto Halpern and Peter Debye, is this: the two photons scatter
and create an electron-positron pair which then decays back into two photons,
respecting energy and momentum conservation. This effect will lead to a
modification of Maxwell’s equations for the vacuum by adding non-linear
terms to it.
Euler and Heisenberg did not tackle the full problem but considered a special

case. While Breit and Wheeler calculated the cross section for this process for
high photon energies, in which real electrons and positrons are created, Euler
and Heisenberg’s attention focused on photons with energies well below the
production threshold of electrons and positrons.
But even this is not an easy problem. In the modern language of Feynman

diagrams, the ‘box-diagram’ depicted in Fig. 1 has to be calculated.6 Euler and
Heisenberg, of course, did not know Feynman’s efficient methods, but they
calculated essentially this diagram and so we use it here to visualise the
corresponding elementary process. Since the process is of the fourth order, it is
clear that there are considerable mathematical difficulties which show up when
calculating the transition amplitude. These difficulties even show up when
Feynman diagrams are used explicitly. 7

For the details of the calculation we now follow the modern reconstruction
given by Itzykson and Zuber (1980, pp. 195f). This work is focused on Euler
and Heisenberg (1936), which is a simplification and generalisation of Euler
(1936). The modern covariant formulation goes back to Schwinger (1973,

5Letter to W. Pauli dated 25 April 1935; quoted from Cassidy (1995, p. 416), my translation.
6Besides this diagram, there are two other diagrams which contribute in the same (fourth) order in

perturbation theory; they are obtained by permutating the external photon lines, cf. Jauch and

Rohrlich (1976, Ch. 13).
7For an exact calculation, see Jauch and Rohrlich (1976, Ch. 13).
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pp. 123–134). If one requires (1) U(1) gauge invariance, (2) Lorentz invariance
and (3) parity invariance, any Lagrangian density which should account for the
process of photon-photon scattering must have the following structure:

Leff ¼ �
1

4
FmnFmn þ

a

m4e
ðFmnFmnÞ

2 þ
b

m4e
FmnFnsF

srFrm þ OðF6=m8eÞ: ð1Þ

Here me is the mass of the electron, and F
mn is the field-strength tensor of the

electromagnetic field. a and b are dimensionless constants which have to be
determined.
Note that there are no electron degrees of freedom in Eq. (1). This is not

necessary, however, since the considered process is purely photonic. Electrons
do not show up explicitly. The first term in Eq. (1) is the well-known
contribution of ‘free’ photons. All other terms are part of a systematic
expansion in 1=me, respecting the symmetries mentioned above. The non-
linearity of these terms reflects the violation of the superposition principle. For
low photon energies (Eg � me), it suffices to consider only the first three terms
in this expansion.
All information about this energy regime is therefore contained in the

constants a and b. But how can these constants be determined? One possibility
is to do the explicit expansion of the original Lagrangian density of quantum
electrodynamics by ‘integrating’ out the electron degrees of freedom. There are
efficient calculational tools available now which, however, presuppose the
path-integral formulation which was not available when Euler and Heisenberg
performed the calculations. Instead, Heisenberg and Euler (1936) applied
elegant mathematical technique which essentially led to the same result.
However, in the original publication, Euler (1936) chose another way. He
calculated a special case of the process under consideration in two ways:
exactly and by using the effective Lagrangian density given by Leff .
Comparing both results, he obtained the following values for the two

Fig. 1. Feynman diagram for photon-photon scattering.
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constants:

a ¼ �
a20
36

; b ¼
7a20
90

; ð2Þ

with the fine-structure constant a0 ¼ 1=137. In terms of the electric and
magnetic field strengths (E and B), the resulting effective Lagrangian density
has the following form:

LEH
eff ¼

1

2
ðE2 � B2Þ þ

2a20
45m4e

½ðE2 � B2Þ2 þ 7ðE � BÞ2	: ð3Þ

This expression has been the basis of many subsequent calculations; it is still
used today (see, for example, Becker, McIver, and Schlicher (1989) for a
quantum optical application).

2.1.2. The Fermi theory
Another historical example is Enrico Fermi’s theory (1933, 1934) of weak

interactions which was developed soon after Wolfgang Pauli suggested the
existence of the neutrino as a way to account for the continuous beta spectra
discovered by James Chadwick in 1914. These spectra gave rise to various
speculations, including Niels Bohr’s famous suggestion of giving up energy
conservation in order to account for them.
Following the model of quantum electrodynamics, Fermi developed a theory

which uses Pauli’s hypothesis and describes the elementary process n!
pþ e� þ %ne quantum field theoretically. In this reaction, a neutron (n) decays in
a proton (p), an electron (e�) and an electron anti-neutrino (%ne).

8 Since there
was nothing known about the details of the interaction, Fermi had to start
from scratch, with some, but not many experimental constraints. He assumed
that the interaction is pointlike and that the interaction Hamiltonian is given
by the product of the operators representing the relevant particles multiplied by
a coupling constant which has to be derived from experiment. This coupling
constant has the dimension energy�2.
With these assumptions and the application of perturbation theory, Fermi

was able to derive various mean lives of unstable nuclei as well as the shape of
the electron spectra. Fermi’s theory was highly successful and remained valid
until experiments established that parity is violated in weak interactions. In
order to account for this, Richard P. Feynman and Murray Gell-Mann (along
with Robert E. Marshak and E.C.G. Sudarshan) suggested in 1958 a
modification of Fermi’s theory, the V � A theory. This empirically very
successful theory (apart from an explanation of CP violation) is still based on a
point interaction and uses the same coupling constant Fermi used. Like
Fermi’s theory, the V � A theory is not renormalisable.

8Fermi took it to be a neutrino. He did not yet know about the conservation of lepton number and

other kinds of neutrinos.
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2.1.3. Some conclusions
The theories of Fermi and Euler and Heisenberg have some interesting fea-

tures. These features are typical for EFTs and can be summarised as follows:

1. Both theories take only the relevant fields into account. These fields, called
effective fields, are the photon field (represented by the electrical and
magnetical field strengths) in the Euler–Heisenberg example, and the
proton, neutron, electron and neutrino fields in the Fermi theory of weak
interactions. Other fields, such as the electron field in the Euler–Heisenberg
case, do not show up explicitly at the respective energy scale. Their presence
is hidden, reflected by the non-linear terms in the effective Lagrangian
density.

2. Both theories are valid only at a given energy scale. The derivation of the
Euler–Heisenberg theory presupposes that the photon energy is small
compared to the rest mass of the electron. Applications to higher energies
are not justified. The Fermi theory violates unitarity at high energies (above
300 GeV) and is therefore also valid only at a specific energy scale. For
higher energies, alternative theories are needed.

3. Both theories are non-renormalisable. It can be shown on general grounds
that the theories by Euler and Heisenberg and by Fermi are non-
renormalisable. Divergent results show up once higher order contributions
to the perturbation expansion are calculated. To eliminate them, a
renormalisation scheme has to be specified. This renormalisation scheme
is therefore part of the definition of the EFT if one is interested in higher
order contributions.

4. Both theories are based on certain symmetries. Symmetry requirements are
very important in the construction process of an EFT. This is demonstrated
by our reconstruction of the development of the Euler–Heisenberg theory;
to get the effective Lagrangian density of Eq. (1), all possible terms with the
required symmetries have to be included}whether they are renormalisable
or not. The hard job is then to determine the coefficients of the respective
terms in the expansion.
Symmetry considerations also played a role in the formulation of the Fermi
theory. Since there was not much information about the structure of the
weak interaction, simplicity suggested a scalar interaction term. After the
discovery of the violation of parity conservation in the weak interactions, a
combination of all other possible types of Lorentz-invariant pointlike
interactions were tried. Fortunately, there are only five of them (scalar (S),
pseudoscalar (P), vector (V), axialvector (A) and tensor (T) interactions)
and a set of crucial experiments finally selected the V � A of Feynman and
Gell-Mann as the only one compatible with available experimental data (see
Franklin, 1990).

5. Both theories produce scientific understanding. The work of Euler and
Heisenberg had many motivations. Among those were the wish to apply, to
test, and to find out the consequences of Dirac’s provisional quantum theory
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of fields. Another motive was to get a tractable mathematical formalism
which allowed the calculation of the interaction of photons at low energies.
This goal suggested the chosen approximation scheme. Yet another motive
was to get some intuitive understanding of the respective processes. This is
directly substantiated by a section title in Euler’s original paper (1936,
p. 400; my translation):

} 1. Provisional statement of an intuitive expression for the interaction %U1 of
light with light [ . . . ]
In the course of this work Euler mentions several times that his aim is to

derive an intuitive (anschaulich) expression which describes the physically
relevant processes. What does this mean? It was already well known at the
time that certain materials react in a non-linear way to external fields. The
guiding idea for Euler and Heisenberg now was that even the vacuum
exhibits such non-linear behaviour. Starting from the quantum theory of
electrons and photons, they succeeded in deriving non-linear corrections to
Maxwell’s equations for the vacuum based on this analogy. The corrections
suggest the interpretation that even the vacuum can be polarised, an effect
which is responsible for the non-vanishing photon-photon cross section. This
analogy to an already well-understood effect guided their derivation and
helped to interpret the final result. The resulting corrections to Maxwell’s
equations are also very easy to handle mathematically, once they are derived.
It is a typical feature of EFTs that they are very easy to handle (compared to
the full theory), and also produce (local) understanding (unlike the full
theory, as I will argue below, see Section 3.1.1). Pragmatic and cognitive
goals meet here in an interesting way.
The Fermi theory produces understanding in so far as it is the simplest

modification of quantum electrodynamics which accounts for the phenom-
ena of weak interactions.

In the years between the development of Euler, Heisenberg and Fermi’s
theories and the late nineteen-forties, theoretical research in quantum field
theory focused mainly on formulating a theory which avoids the divergences in
the perturbative expansion from which Dirac’s theory suffered. Satisfactory
covariant renormalisation schemes were finally introduced by Dyson, Feyn-
man, Schwinger, and Tomonaga.9 Motivated by the astonishing success of
QED, as manifested most convincingly in the precise calculation of the Lamb
shift and the anomalous magnetic moment of the electron, renormalisability
soon became the key criterion for the selection of quantum field theories for
other phenomena (such as the weak and strong interactions). Henceforth, non-
renormalisable theories had at best a provisional status: useful, perhaps, for
various calculations, but of no deeper significance. This view began to crumble
with the development of renormalisation group techniques in the 1970s which
finally led to the rehabilitation of non-renormalisable theories and the

9See Schweber (1994) for an historical account of these exciting developments.
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establishment of the research programme of EFTs. The next section will sketch
this development in more detail.

2.2. Renormalisation and the renormalisation group

The modern development of EFTs is closely related to a new conceptualisa-
tion of renormalisation. This section will give a concise reconstruction of this
development. It all began with quantum electrodynamics (QED) and the
supposed need to find a way to eliminate the notorious infinities in the
perturbation expansion. Let’s first look at this expansion.
Let HI be the interaction Hamiltonian of a system and let CðtÞ be a field

operator in the interaction picture. CðtÞ satisfies the Schr .odinger equation

HICðtÞ ¼ i
@CðtÞ
@t

; ð4Þ

which has the formal solution

CðtÞ ¼ Cð�1Þ � i
Z t

�1
dt1 HI ðt1ÞCðt1Þ : ð5Þ

In particle physics experiments, one is typically interested in the calculation of
scattering processes. This only requires information about the asymptotic state
Cðþ1Þ of the system under consideration. This state can be formally obtained
from the initial state by applying the so-called S-matrix:

Cðþ1Þ ¼ S Cð�1Þ: ð6Þ

If S is known, all relevant observables, such as scattering cross sections, can
be obtained easily. More explicitly, S is given by

S ¼
X1
n¼0

ð�iÞn

n!

Z
d4x1 . . . d

4xn P HI ðx1Þ . . .HI ðxnÞf g ; ð7Þ

with the time ordering operator P. Based on the last equation, a perturbation
expansion can be derived which in turn can be translated into the language of
Feynman diagrams. These diagrams provide an intuitive identification of all
contributions to S with a representation of elementary spacetime processes
which lead from the initial state to the final state while respecting all relevant
conservation laws.
In quantum electrodynamics (QED), the theory we will focus on for a while,

S can be expanded in powers of the fine structure constant a0: S ¼ Sð0Þþ
Sð1Þ þ Sð2Þ þ . . ., with SðnÞ being proportional to an0. Due to the smallness of
a0 � 1=137, a small number of terms suffices to determine S with good accuracy.
But complications arise since divergences show up. Before pointing this out

in some detail, a change of notation will be useful: since S ¼ 1 describes the
trivial reaction that the finite state is identical to the initial state, it is useful to
introduce the so-called T-matrix which only captures non-trivial reactions:
S ¼ 1þ i T .

Studies in History and Philosophy of Modern Physics276



2.2.1. Renormalisation in QED
To present the idea of renormalisation, let us focus on one specific process

and let us use the language of Feynman diagrams.10 The process we will focus
on is the scattering of an electron by an external potential Aext (cf. Fig. 2). The
first divergent term in the perturbation expansion of the S-matrix is depicted in
Fig. 3. In this diagram, a photon is emitted by the ‘incoming’ electron and
reabsorbed by the ‘outgoing’ electron. This photon is called virtual because it does
not show up in the Feynman diagram as an external line with one loose end.
It is now interesting to ask what the energy and the momentum of this

virtual photon are. Although energy and momentum conservation hold at the
vertices, this does not fix these values uniquely. A whole spectrum of values is
possible, ranging from zero to infinity. In the mathematical formalism this
means that all those contributions have to be added up, and here lies the source
for the divergences.
In more technical terms, the story so far amounts to this: let k be the

4-momentum of the virtual photon, and let p be the momentum of the
incoming electron with bare mass m0 and bare charge e0. 4-momentum

Fig. 2. The main contribution to the potential scattering of an electron.

Fig. 3. Vertex-correction to the potential scattering of an electron.

10 I am following the clear presentation given by Lepage (1989). See also Mills (1993).
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conservation then requires that the momentum of the electron after the
emission of the virtual photon is p� k. Similarly, if p0 denotes the final electron
4-momentum, the 4-momentum of the electron immediately after the
interaction with the external potential is then p0 � k. 4-momentum conserva-
tion does not give us any more information. k is completely undetermined and
all positive real numbers are possible for its absolute value. All resulting
contributions then have to be integrated up to get the T-matrix. Applying the
Feynman rules of QED, one obtains

T ðaÞ ¼

� e30

Z 1

0

d4k

ð2pÞ4
1

k2
� %uðp0Þg

1

ðp0 � kÞ � g�m0
Aextðp0 � pÞ � g

1

ðp� kÞ � g�m0
guðpÞ;

ð8Þ

with spinors uðpÞ and %uðp0Þ for the incoming and outgoing electron and the 4-
vector of Dirac’s g-matrices denoted by g. This integral is divergent since the
numerator is proportional to k3dk, while the denominator is proportional to k4

for large k: T ðaÞ diverges logarithmically. Many other divergent terms like this
show up in higher orders of the perturbation expansion, and many physicists
came to the conclusion that this is an indication of a serious inconsistency in
the very foundations of the theory.
Pragmatically oriented as many physicists are, the empirical success of the

renormalisation procedure developed around 1949 overruled these negative
feelings. The suggested renormalisation schemes were not only a way to
eliminate the infinities; they also led to new predictions and explanations of
tiny corrections to observables. These quantities (such as the anomalous
magnetic moment of the electron or the Lamb shift) have been measured in the
laboratories with a remarkable accuracy. This is generally considered as an
impressive confirmation of QED and the renormalisation scheme it applies. Let
us see in some more detail how this works.
First, the divergent contributions have to be eliminated in all orders of

perturbation theory. It turned out that in QED these terms have the same
structure as terms which showed up already in the original Lagrangian density.
Hence, they can be eliminated by a suitable redefinition of the parameters of
the original Lagrangian density. These parameters are the mass and the charge
of the electron:

m0 ! mR ¼ m0 þ dm; e0 ! eR ¼ e0 þ de: ð9Þ

Here, mR is the renormalised mass and dm is the modification of the mass due
to higher order contributions to the perturbation theory. Simlilarly, eR is the
renormalised charge and de includes the radiative corrections.
Dyson showed that a reparametrisation of this kind can be carried through

in all orders of perturbation theory in QED.11 Now, while this procedure is so

11Later, Salam and Weinberg completed Dyson’s original proof; cf. Cao (1993, pp. 42f).
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far purely mathematical and might look like a trick, a physical interpretation is
required to justify this procedure. The basic idea behind this justification is to
identify the renormalised mass and charge of the electron with its ‘physical’ (i.e.
real) mass and charge. To get the observed finite values for these parameters, it
has to be assumed that the bare mass and charge of an electron are also infinite,
cancelling the infinite radiative corrections dm and de. In the absence of the
radiation field, the mass as well as the charge of the electron would be infinite.
It is the ‘switching-on’ of the radiation field which accounts for the finite mass
and charge of the electron.
At first sight it might sound problematic to attribute an infinite bare mass

and charge to the electron. Indeed, Richard Feynman meant exactly this when
he claimed that in QED the real problems are swept under the rug. For
Feynman it does not help to simply state that there is no real problem because
a finite result can be obtained by subtracting one infinite number (the
calculated radiative correction) from another infinite number (the}fortuna-
tely!}unobservable bare mass or charge).
But the situation is more subtle than this suggests. Let us go back to the

example of the electron interacting with an external potential. Equation (8)
represented the contribution of the Feynman diagram from Fig. 3 to the
scattering amplitude. Instead of integrating over all k up to infinity, let us first
introduce an upper limit L0 to this integral. Doing so can be understood as a
purely formal trick to keep the integral well-defined and the numbers finite.
The value of the original integral can then be obtained by performing the limit
L0 ! 1 at the end of the calculation.
Next, let us go one step further. We consider another theory which has a cut-

off L5k5L0 and ask how the original theory with cut-off L0 has to be
modified in order to produce the same results as the theory with cut-off L. It
turns out that the following Lagrangian density has to be subtracted:

T ðaÞðk > LÞ ¼

�e30

Z L0

L

d4k

ð2pÞ4
1

k2
� %uðp0Þ g

1

ðp0 � kÞ � g�m0
Aextðp0 � pÞ � g

1

ðp� kÞ � g�m0
g uðpÞ:

ð10Þ

To proceed, let us assume that all masses and external momenta (p and p0)
are much smaller than L, so that the quantities m0, p and p0 can be neglected in
the integrand. One obtains:

T ðaÞðk > LÞ � � e30

Z L0

L

d4k

ð2pÞ4
1

k2
%uðp0Þ g

k � g
k2

Aextðp0 � pÞ � g
k � g
k2

guðpÞ

� � e30 %uðp0Þ Aextðp0 � pÞ � g uðpÞ
Z L0

L

d4k

ð2pÞ4
1

ðk2Þ2
:

ð11Þ
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In order to get the full T-matrix in this order of perturbation theory, other
diagrams have to be included as well. Treating them in the same way as
described above, the following result obtains for that part of the scattering
amplitude which can be neglected due to the introduction of the new
cut-off L:

Tðk > LÞ � �i e0 c0ðl=L0Þ %uðp0Þ Aextðp0 � pÞ � g uðpÞ; ð12Þ

with a dimensionless quantity c0, which only depends on the ratio L=L0:

c0ðL=L0Þ ¼ �
a0
6p
logðL=L0Þ: ð13Þ

Note that L and L0 are the only energy scales at high energies for this problem
since p, p0 and m0 have been neglected.
Now Tðk > LÞ is certainly an important contribution to the scattering

amplitude which cannot be ignored. However, it is possible to ‘simulate’ the
contribution of this term in the Lagrangian density with cut-off L by adding a
counter term of the form:

dL0 ¼ �e0 c0ðL=L0Þ %c A � g c: ð14Þ

Astonishingly, dL0 has the same structure as the current-field coupling term
in the original Lagrangian density of QED. The effect of the additional term
can therefore be included by a redefinition of the charge parameter:
e0 ! e0½1� c0ðL=L0Þ	.
To sum up: in a renormalisable quantum field theory such as QED, the

contributions of the high-energy sector of the theory can be effectively taken
into account by a reparametrisation of the original theory. As the above
derivation shows, this procedure does not presuppose that the original cut-off
L0 goes to infinity. However, if one calculates this limit one is bound to assume
that the bare mass and charge are indeed infinite in order to account for the
finite values of various quantities which we obtain in experiments.
A theory is called renormalisable if such an absorption of the divergent

contributions of the high-energy sector of the theory in the mass and charge
parameter(s) can be accomplished at all orders in perturbation theory. Doing
so is, however, not possible for all quantum field theories. In fact, only a very
small subclass of all quantum field theories is renormalisable. Motivated by the
enormous empirical success of QED, renormalisability soon became the
selection criterion for the construction of new quantum field theories. In his
speech during the award of the Nobel price for 1979, Steven Weinberg argued
this point:

To a remarkable degree, our present detailed theories of elementary particle
interactions can be understood deductively, as consequences of symmetry
principles and of the principle of renormalizablity which is invoked to deal with
the infinities (Weinberg, 1980a, p. 515).
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Somewhat later in this speech, Weinberg addressed the issue of the role of
renormalisability for his own work:

I learned about renormalization as a graduate student, mostly by reading Dyson’s
papers. From the beginning it seemed to me to be a wonderful thing that very few

quantum field theories are renormalizable. Limitations of this sort are, after all
what we most want; not mathematical methods which can make sense out of an
infinite variety of physically irrelevant theories, but methods which carry

constraints, because constraints can point the way towards the one true theory
[. . .. At the time] I thought that renormalizability might be the key criterion,
which also in a more general context would impose a precise kind of simplicity on
our theories and help us pick out the one true physical theory out of the infinite

variety of conceivable quantum theories [. . .]. I would say this a bit differently
today, but I am more convinced than ever that the use of renormalizability as a
constraint on our theories of the observed interactions is a good strategy

(Weinberg, 1980a, p. 517).

Renormalisation started as a pragmatic scheme which allowed efficient and
precise predictions but which was theoretically considered to be unsatisfying
and perhaps only provisional. It soon became the selection criterion (besides
symmetry principles) for future quantum field theories. The theories found in
this way (such as the Standard Model) turned out to be highly successful. The
subsequent developments, summarised in the next section, led to a rehabilita-
tion of non-renormalisable theories. Renormalisation is not any longer
considered to be a decisive criterion for theory choice, but one should not
forget to address the issue why renormalisable theories such as the Standard
Model are so successful.

2.2.2. A new conceptualisation of renormalisation
Let us summarise the renormalisation story told so far: in a renormalisable

theory, the divergent terms in the perturbation can be eliminated by redefining
the parameters of the original theory. The standard reasoning for this is that
the bare masses and charges of the particles involved are not observable
because of the ineliminable presence of radiation fields. These parameters can
therefore be chosen freely, e.g. one can choose them to be infinite. The
observed values of the masses and charges are then due to compensation effects
of the radiative corrections.
This story did not convince everyone. One of the most severe critics was Paul

Dirac, the founder of the old quantum theory of fields in which the problem
with infinities first occurred. Several years later he wrote:

This [i.e. the renormalisation programme] is quite nonsense physically, and I have

always been opposed to it. It is just a rule of thumb that gives results (Dirac, 1983,
p. 55).12

12See also Kragh (1990, pp. 165f).
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However amazed by the empirical success of the renormalisation machinery
and the possibilities it opened up of constructing new theories such as the
Standard Model, most physicists did not follow Dirac’s skepticism. Those who
did, such as the advocates of the programme of Axiomatic QFT, did not
succeed in finding the supposed inconsistency in the foundations of the
theory.13 The historical development took a different path. The key to make
sense of renormalisation came from within physics and the guiding idea was to
interpret realistically the cut-off parameter which showed up in renormalisation
schemes. It represents the energy scale up to which the theory in question is
applicable.
To see this, let us go back to our example. It turned out to be helpful to

replace the upper limit of the integral by some cut-off L. The standard
procedure, first suggested by Feynman, is to take the limit and let L go to
infinity at the end of the calculation. For Feynman, the cut-off was a purely
formal calculational device (‘formal interpretation’), and indeed there was a
good reason for this, since a realistic interpretation of the cut-off leads
immediately to a new problem.
In this case, photons with all energies contribute, for example, to the

diagram of Fig. 3. Now, photons and electrons are not the only particles
present at high energies. And these other particles (such as protons, muons and
pions) also couple to the electron and the photon. If one interprets the cut-off
parameter realistically, there is no reason why these particles and their
interactions should not be included in the calculation. But in that case, maybe
it is just these contributions that make the theory finite. According to the
realistic interpretation of the cut-off (if taken in the limit L ! 1), only the
final theory, if there is any, should be finite. So there is no reason anymore why
QED with photons and electrons should be renormalisable.
But there is another way to interpret this situation. One can say that there is

no reason anymore to consider theories with a finite cut-off as second rank if
the cut-off parameter is interpreted realistically. This parameter then just
reflects the production threshold of new particles (muons, pions, etc.) and the
theory is henceforth only applicable up to this energy. A realistic interpretation
of the cut-off leads to a rehabilitation of theories with a finite cut-off.
The formalism sketched so far can be easily extended to solve the following

problem: given a theory with cut-off L1, how can we get from there to a theory
with a higher cut-off L2? If no new particles show up in the energy regime
between L1 and L2, it turns out that only the parameters of the theory (masses,
charges) have to be changed (‘renormalised’). Consequently, the masses and
charges of particles depend on the energy scale under consideration; they have
no absolute values. To get the values of these parameters on a higher or lower
scale, the so-called renormalisation group equations have to be solved.14

13Cf. Wightman (1986) for a discussion of renormalisation in this programme. See also Cao (1997,

pp. 217–219).
14See Fischer (1999) for a general introduction.
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Let us again illustrate this with our example from QED. As we saw, the
elimination of states above some energy L05L (with L being the cut-off of the
original theory) can be obtained by adding additional local terms of the form

dL ¼ �e0c0
L
L0

� �
%c gmA

m c�m0 *c0
L
L0

� �
%c c; ð15Þ

with dimensionless parameters c0 und *c0 proportional to ln L=L0. The new
Lagrangian density is then

L0 ¼ LQED þ dL ¼ %cðigm@
m � eLgmA

m �mLÞc; ð16Þ

with the renormalised charge and mass given by

eL ¼ e0 1þ c0
L
L0

� �� �
; mL ¼ m0 1þ *c0

L
L0

� �� �
: ð17Þ

Changing the cut-off can therefore be compensated by changing the parameters
of the theory. It can be shown that the parameters obey the renormalisation
group equations:

L
deL
dL

¼ bðeLÞ; L
dmL

dL
¼ mLgðeLÞ; ð18Þ

with appropriate functions b and g.
These equations grew out of the research of Michael Fisher, Leo Kadanoff

and most importantly Kenneth Wilson in the context of solid state physics. It
happened to have fruitful applications in particle physics as well. Here is the
upshot of all this: (1) interpreting the cut-off realistically leads to a reappraisal
of theories with a finite cut-off. (2) There is a systematic algorithm as to how to
change the parameters of a theory when the energy scale is changed. (3) This
algorithm, introduced here only for the case of a specific renormalisable theory,
can be extended to other quantum field theories, including non-renormalisable
quantum field theories, and to applications where new particles show up in the
energy regime between the two cut-offs.

2.2.3. The decoupling theorem
Only one more idea is missing to make EFTs a powerful tool: the decoupling

theorem, proved by Appelquist and Carazzone in 1975. In its simplest case, this
theorem demonstrates that for two coupled systems with different energy scales
m1 and m2 (with m2 > m1) and described by a renormalisable theory, there is
always a renormalisation condition according to which the effects of the
physics at scale m2 can be effectively included in the theory with the smaller
scale m1 by changing the parameters of the corresponding theory. The
decoupling theorem implies the existence of an EFT at scale m1 which will,
however, cease to be applicable once the energy gets close to m2.
One might think that this is not such a spectacular result since the whole

edifice of physics is grounded on the assumption that empirical reality is
layered so that for the physics at a given energy scale the details of the physics
at much higher energies do not really matter. The idea of eliminating the
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physics at higher energies to get an effective account that is valid only at lower
energies is also quite popular in other parts of physics. In his beautiful book
Qualitative Methods in Quantum Theory, Migdal (1977) discusses an instructive
example from quantum mechanics. Let S be a system which is composed of a
fast subsystem Sf and a slow subsystem Ss, characterised by two frequencies of

and os. It can be shown that the effects of Sf on Ss can be taken into account
effectively by adding a potential energy term to the Hamiltonian operator of Ss.
In this case, as well as in many other cases, one ends up with an effective
Hamiltonian operator for the subsystem characterised by the smaller frequency
(or energy). It is interesting, however, that the decoupling theorem holds, given
certain assumptions, also in quantum field theory. This is far from trivial if one
recalls all those complicated radiative corrections which have to be taken into
account here.
The decoupling theorem gives further legitimacy to non-renormalisable

theories. If that theorem holds, the physics at higher energies can be effectively
included in the parameters of a non-renormalisable EFT. Higher energy scales
decouple and empirical reality seems to be divided into a set of ‘quasi-
autonomous domains’, each theoretically captured by an EFT which employs
only those particles and their interactions that are relevant at that scale. The
domains are only quasi-autonomous since the effects of the physics at higher
energy scales get more important once the energy reaches the cut-off energy of
the EFT under consideration. It should be noted that EFTs can also be divined
or obtained if one is not in the possession of a fundamental and renormalisable
theory such as QED. It might, however, be more difficult to ‘anchor’ these
theories, as the example of Fermi’s theory showed. In these cases, finding a
suitable EFT is more like guessing.
Does the decoupling theorem imply that empirical reality is, as a whole,

layered into quasi-autonomous domains, as suggested by some authors? No,
since the decoupling theorem is based on assumptions which may not always be
fulfilled. Most importantly, the decoupling theorem (as proved by Appelquist
and Carazzone) presupposes that there is a renormalisable theory of the
composite system which is the starting point of the decoupling procedure.
Without such a theory, which is supposed to be valid on all energy scales, the
decoupling theorem cannot be applied. Furthermore, the decoupling theorem
presupposes that different mass scales exist in the underlying renormalisable
theory. But sometimes mass scales do not separate neatly, as examples from the
theory of complex systems (such as turbulence) demonstrate. In these cases the
physics at high energies cannot simply be absorbed in the parameters of a low
energy theory and the picture of empirical reality as layered into a hierachy of
quasi-autonomous domains turns out to be too wild an extrapolation.

2.3. Two ways to apply EFTs

There are two ways to use EFTs in physics, the bottom-up approach and the
top-down approach. I will describe both of them in some detail.
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2.3.1. The bottom-up approach
This strategy is closely related to observable phenomena and some think that

this is the way physics has to proceed. We will look at these arguments below
(Section 4.2).
To apply this strategy, two scenarios have to be distinguished. First, there

might be no relevant theory at all. In this case one has to start from scratch and
construct a Lagrangian density from the particles, symmetries and interactions
assumed to be relevant at the energy scale under consideration. Second, there is
already some EFT T1 which represents the physics at some energy scale,
characterised by a cut-off parameter L1. This theory might be, for example,
QED or the Standard Model, both of which are}despite being renormalisa-
ble}considered to be EFTs. They might be applicable only up to some
maximal energy L1. At higher energies, new phenomena might happen to show
up, and T1 does not account for them. In order to obtain a new theory T2
(valid up to some energy L2 > L1) from the old theory T1, two more cases have
to be distinguished:

1. There are no new particles between L1 and L2. In this case all the para-
meters of T1 (i.e. charges and masses) have to be modified according to the
renormalisation group equations. If the energy is less than L1, both theories
will give the same results for observable phenomena. But T2 can also be
applied for the energy range between L1 and L2. It should be noted that the
relation between T1 and T2 for energies up to L1 is very interesting. On the
one hand, the theories differ from each other because their respective mass
and charge parameters have different numerical values, while on the other
hand, both are empirically equivalent.
Even if there are no new particles in the energy regime between L1 and L2,
new interactions between the old particles might become important. T2 is
then constructed by including these new interactions in the Lagrangian
density of T1. In order to save the phe-nomena accounted for already by T1,
some of the parameters of T1 might have to be changed and new parameters
have to be adjusted appropriately.

2. There are new particles between L1 and L2. This case is, of course, the more
complicated one. T2 is now constructed in several steps. First, the masses
and charges of T1 have to be adapted to the new energy scale; again, this is
done by solving the renormalisation group equations. Second, all new
particles which show up in the energy regime between L1 and L2 have to be
identified. Are they fermions or bosons? What is their mass and charge (on
the scale L2)? How do they couple to the other particles? The formalism of
quantum field theory presents a tool box to systematically construct the new
terms in the Lagrangian density of T2. In many cases, the relevant coupling
constants have to be adjusted to experimental results. This procedure
therefore has a theoretical (or a priori, if you like) and an experimental (or a
posteriori) component. The structure of the new terms follows from the
general formalism of quantum field theory. The masses, charges and
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coupling constants have to be determined on the basis of experiments. This
procedure is, of course, not completely theory-free. The determination of the
relevant parameters takes place on a given energy scale, and auxilliary (or
measurement) theories have to be used to determine their numerical values.
These measurement theories also work on a given energy scale, and
consistency must be achieved in this whole process.

There are several examples of the bottom-up approach in physics. The Fermi
theory of weak interactions, discussed in Section 2.1.2, is a good example of a
theory which had to start from scratch. Doing so, one might be mistaken, for
example, when it comes to specifying the correct interaction between the
relevant particles, as the discovery of parity violation for weak interactions
shows. The work based on taking the general theory of relativity as an EFT is a
good example of case 1 mentioned above. Here new interactions are included
which correct Einstein’s theory at higher energies. The new theories obtained
by following this approach have been interpreted tentatively as low-energy
limits of a quantum theory of gravity. We do not know this theory yet, but
following the EFT approach might eventually lead to new ideas as to what
such a theory might look like (Donoghue, 1994a,b). The problem here is of
course that there are almost no experimental data available which can be used
to fix the parameters in the new theory (as in the case of Fermi’s theory). It
might, however, be possible to derive these parameters from candidate theories
for a quantum theory of gravity. Supersymmetric extensions of the Standard
Model are an example of case 2. Here the Standard Model is essentially
duplicated by including the supersymmetric partners of all particles which are
already present in the Standard Model (Meissner, 1992). Again, the problem
here is that there are no experimental data yet that can be used to fix the new
parameters (such as the masses of the supersymmetric partners of the leptons
and quarks).

2.3.2. The top-down approach
This strategy starts with a more fundamental theory which is valid on a given

energy scale L1. The aim is now to construct an EFT for lower energies
L25L1. There is a systematic procedure for getting these low-energy theories.
Once the original theory is renormalisable and the decoupling theorem holds, a
tower of EFTs can be uncovered in this way. A typical example of this strategy
is the theory of Euler and Heisenberg, discussed in Section 2.1.1. Here, a purely
photonic theory was obtained from QED by eliminating all electronic degrees
of freedom. The resulting EFT is then valid for photons whose energy is much
smaller than the rest mass of the electron. Other examples of this strategy are
the various attempts to justify some kind of superstring theory. These theories
cannot be tested experimentally at a typical energy of a superstring. Instead,
systematic low energy expansions are carried out in order to obtain low energy
footprints of the high energy regime of this theory. Yet another example of the
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application of the top-down strategy is provided by nuclear and particle
physics. I will look at this case in some more detail in the next section.

3. Theorising in Nuclear and Particle Physics: A Case Study

The present situation in theoretical nuclear and particle physics is rather
involved. On the one hand, there is the Standard Model, a renormalisable and
well-confirmed theory which should, in principle, account for all phenomena
which are not gravitational. On the other hand, there are all sorts of models
and EFTs which are often used in practical applications. Especially in the
sector of the Standard Model which deals with strong interactions, a plurality
of theoretical accounts can be identified. They all seem to coexist peacefully,
and they all seem to complement each other in a way which I will investigate in
more detail below. In this section, I shall focus on the physics of the strong
interaction only and first introduce quantum chromodynamics, the underlying
theory, as well as some typical models and EFTs in this part of physics (Section
3.1). By focusing on their respective functions in the research process, Section
3.2 argues that all of them are indispensable and Section 3.3 points out various
interrelations between them. This case study will be the basis of my argument
for some variant of pluralism in the next section.

3.1. Theories, models and EFTs

For a long time, the physics of strong interactions lacked a fundamental
theory. There were phenomenological models, all of which could be applied for
some purposes, but all of which had their well-known limits. Among the
models used extensively in nuclear physics are the liquid drop model and the
nuclear shell model. The liquid drop model helps to understand nuclear fission,
as Niels Bohr and John A. Wheeler pointed out, but fails to explain why
certain configurations of protons and neutrons are particularly stable. These
‘magic numbers’ of protons and neutrons can be naturally explained with the
nuclear shell model which has, in turn, other deficiencies. Among the models of
the constituents of the nuclei (protons, neutrons and pions) are various bag
models, chiral quark models, the purely bosonic Skyrme model, and ap-
proaches which utilise sum rules derived in the spirit of the S-matrix tradition.
All these models were considered provisional at best, and applied and

studied because of a lack of a more satisfactory alternative. Fortunately, this
alternative was found in the early nineteen-seventies.15 Quantum chromo-
dynamics (QCD) was born, but it soon turned out that tractable applications
of this theory could only be obtained in the high-energy regime. Nuclear
physics and the theory of hadron structure remained almost completely

15For a reconstruction of this development and for an analysis of the role models played in this

context see Hartmann (1995a,b).
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unaffected and developed quite independently for a long time. There have been
some attempts to derive low energy results from QCD, but these endeavours
turned out to be technically extremely hard and rather uninteresting and
unilluminating. Other QCD-inspired research in hadron physics involved the
qualitative modelling of features of QCD such as confinement and dynamical
chiral symmetry breaking. These models (see Section 3.1.2) have been quite
successful, but their formal relation to QCD is far from clear. This is where
EFTs come in handy. EFTs allow a systematic low energy expansion of QCD,
and many of the old models could be given a more solid foundation.

3.1.1. The theory: quantum chromodynamics
QCD is generally considered to be the fundamental theory of strong

interactions. It is a renormalisable gauge theory, and its fundamental entities
are the fermionic quarks (spin-1=2) and the bosonic gluons (spin-1). There are
six different kinds of quarks (‘flavours’): up, down, strange, charm, bottom and
the recently discovered top. Besides spin and flavour, quarks have an additional
degree of freedom which is called ‘colour’. Gluons, the exchange particles of
the strong interactions, show up in eight different kinds and, unlike photons in
QED, directly interact with each other. This fact, which is a consequence of the
internal colour structure of the gluons, along with the large value for the
coupling constant of QCD, makes actual calculations very complicated and
involved. The self-interaction of the gluons follows mathematically from the
non-commutativity of the generators of the corresponding gauge group,
colour-SU(3). Here is the Lagrangian density of QCD:

LQCD ¼ %cðigmD
m � #m0Þc�

1

4
FkmnF

mn
k : ð19Þ

c represents the quark field and Fmn
k (with k ¼ 1; . . . ; 8 for the eight gauge

degrees of freedom) is the field strength tensor associated with the gluons. The
operator Dm fixes the gauge invariant coupling of the quarks and the gluons
and #m0 is the mass matrix of the quarks; the quarks which show up in the
Lagrangian density of QCD are also called ‘current quarks’, as opposed to the
much heavier ‘constituent quarks’ of non-relativistic quark models. This
matrix cannot be deduced from first principles and has to be adjusted to
experimental data.
For most low-energy applications, exact consequences of Eq. (19) can only

be obtained numerically with a method called lattice gauge theory (see
Montvay and M .unster, 1994). Here quark and gluon fields are defined on a
lattice with a finite spacing a; exact results can be obtained by running
extensive computer simulations with finite a and extrapolating the results to the
continuum limit a! 0. Although this method also suffers from technical
problems, my main point about lattice gauge theory is that it effectively works
like a black box. Technical problems aside, lattice gauge theory produces the
exact results of QCD and hence makes tests of this theory possible. However, it
does not reveal more about the concrete mechanisms which account for the
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calculated result. Like a black box-theory, lattice gauge theory yields
consequences of a theory, but it does not produce insight and understanding.16

This account of ‘black-boxism’ does not square with traditional black box
theories such as behaviourism. These theories were criticised for not providing
a detailed mechanism for the dynamics of a system. According to Bunge
(1964), these mechanisms have to be provided by a fundamental theory.17 In
the case of strong interactions, QCD does indeed specify the overall dynamics
of the system; there are quarks and gluons, and these entities interact in a very
complicated way with each other according to the Lagrangian density of QCD.
But not much more can be said: the rest has to be done numerically with the
help of high-powered computers (cf. Lepage, 1994). And computers function
like a black box. All possible Feynman diagrams are summarised, although,
perhaps, only a few of them (or a certain subclass of them) produce almost the
whole effect under investigation. A knowledge of these actually relevant
processes would produce insight and understanding. Lattice gauge theory does
not produce this insight, and QCD is, therefore, effectively a black-box theory.
In order to learn something about the actually relevant processes, models

and EFTs are applied. While EFTs can be directly obtained from QCD by
following well-defined procedures, models usually extract one or more of the
general features and consequences of the theory and explore their implications.
Some of these general features and consequences are well known. Among them
are the following three (Donoghue et al., 1992).
First, QCD is asymptotically free. This means that quarks move freely at

very high energies. At low energies (energies of the order of the rest mass of the
proton), the reverse effect shows up and quarks and gluons interact very
strongly with each other. This is why perturbation theory, which works so well
in QED, cannot be applied here.
Second, QCD exhibits quark confinement. First introduced to account for the

fact that no one ever observed a free quark, it now seems clear that quark
confinement is a strict consequence of QCD. But what does confinement really
amount to? This is not so clear and there are several options to be found in the
literature. Some argue that the interaction between the quarks increases with
their distance, others favour a model according to which quarks are bound
inside some solid sphere which prevents the existence of free quarks. And there
are other, more technical proposals (for details see Hartmann (1999)).
Third, low energy QCD is (almost) chirally invariant and exhibits dynamical

chiral symmetry breaking. Unlike confinement, this phenomenon is well
understood. Here is the basic idea. The masses of the quarks in the Lagrangian
density of QCD (see Eq. (19)) are very small (about 10 MeV) compared to the
typical energy scale of strong interactions (about 1 GeV). Let us therefore
assume that quarks are massless. The Lagrangian density of QCD then exhibits

16This point is elaborated in Hartmann (1999).
17For an interesting discussion of the role of phenomenological theories in physics see also

Heisenberg (1966).
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another symmetry, called chiral symmetry. As a consequence of this symmetry,
so-called left-handed and right-handed eigenstates of the QCD Hamiltonian
cannot be distinguished energetically. Every hadron which is an eigenstate of
the QCD Hamiltonian should have a chiral partner with the same mass, but
with opposite chirality. Now, these chiral partners do not seem to exist. There
is, for example, no other particle with the mass and charge of the proton, but
with opposite chirality.18 A way out of this difficulty is to assume that chiral
symmetry is dynamically broken. This means that the interaction itself breaks
the symmetry so that a large mass gap between the chiral partners emerges. The
pion emerges as the corresponding Goldstone boson of the broken symmetry.
It should be noted, however, that chiral symmetry is also explicitly broken due
to the non-vanishing of the values of the current quark masses in the
Lagrangian density of QCD. This effect has some interesting consequences,
such as the finite pion mass.

3.1.2. Models
I take a model to be a set of assumptions (augmented, perhaps, by diagrams,

sketches, and other visualisations), where some of these assumptions might be
inspired by a theory. All other assumptions specify the concrete object or
system under consideration. Phenomenological models, like the ones in hadron
physics, use theories like a tool box; they pick some of the relevant features of
(at least) one theory, fit these into a larger theoretical framework (which might
be different from the one employed by the theory), and explore the
consequences of the assumptions made. This procedure allows for models to
be used as probes for the features of the underlying theory (Hartmann, 1999).
The deductive relation between a model and an underlying theory is, however,
not at all clear.
Among the relevant features of QCD at low energies are quark confinement

and the dynamical breaking of chiral symmetry. While bag models concentrate
on the first feature, chiral quark models explore the consequences of QCD’s
second main feature. The first and conceptually easiest bag model is the MIT-
Bag Model (see Mosel, 1999, Ch. 16). Here quark confinement is included in
the model assumptions by restricting the motion of quarks to a finite region in
space, the ‘bag’. Mathematically this is done by imposing an appropriate
boundary condition to the quark wavefunctions which are assumed to be a
solution of the (free) Dirac equation for relativistic particles. Bag models like
the MIT-Bag Model therefore do not operate in the framework of quantum
field theory (such as QCD), but in the framework of relativistic quantum
mechanics which is mathematically easier to handle.
Chiral models explore the consequences of chiral symmetry and its

dynamical breaking. Some of these models take only quark degrees of freedom
into account (such as the Nambu–Jona–Lasinio model), others (such as the
Skyrme model) neglect quark degrees of freedom completely and describe

18The chirality is given by the projection of the spin on the momentum of the particle.
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hadrons in terms of scalar and pseudoscalar meson fields, while yet other
models favour an hybrid account of quark and meson degrees of freedom (such
as the soliton models of the Friedberg–Lee type) (see Mosel, 1999, Ch. 17).
These models have a long history which started in the days of the S-matrix
programme and the work on current algebra in the nineteen-fifties and sixties.
In this context, plenty of experimentally well-confirmed relations between
hadron masses have been derived from the assumption of chiral symmetry
only. A famous example is the Gell-Mann–Oakes–Renner relation which
relates properties of the pion (its mass mp and its decay constant fp) to quark
properties:

m2pf
2
p ¼ �

mu þmd

2
h %qqi; ð20Þ

where h %qqi � ð�250 MeVÞ3 is the so-called quark condensate.

3.1.3. Effective field theories
The most popular EFT based on QCD is Chiral Perturbation Theory,

developed by Steven Weinberg, Heinrich Leutwyler and others in the nineteen-
eighties. I will give a short outline of this approach along the lines of Leutwyler
(1994).
The main idea of Chiral Perturbation Theory is to expand the Lagrangian

density of QCD in terms of a typical momentum for the process under
consideration. For the sake of simplicity let us assume for a moment that the
current quark masses vanish (mu ¼ md ¼ 0) and that there are only two quark
flavours. This last assumption is reasonable in the low energy regime of about
1 GeV.
In order to get the desired momentum expansion, one first replaces the quark

and gluon fields of QCD by a set of pion fields which are, as pointed out above,
the Goldstone bosons of the theory due to the dynamical breaking of chiral
symmetry. These fields can be conveniently represented by a 2� 2 matrix
UðxÞ 2 SU(2). Next, the Lagrangian density of QCD is expressed exclusively in
terms of UðxÞ. After this decisive step in the derivation, quark and gluon
degrees of freedom do not show up in the Lagrangian density anymore. One
obtains:

LQCD ¼ Leff ðU; @U; @2U; . . .Þ: ð21Þ

It turns out that a low energy expansion of this Lagrangian density can be
obtained by expanding LQCD in terms of the derivatives of UðxÞ.19 The
Lorentz invariance of the whole Lagrangian density implies that only terms
with an even number of derivatives show up in the truncated expression. One
obtains:

L ¼ L2
eff þL4

eff þL6
eff þ . . . ð22Þ

19This follows from the observation that the momentum operator is given by pm ¼ �i@m.
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The requirement of chiral symmetry very much constrains the form of the
terms in this expansion. The second-order contribution is given by:

L2
eff ¼

1

4
f 2p tr½@mUy@mU	: ð23Þ

This term is essentially determined by the decay constant of the pion ( fp). The
next term of order p4 is already a bit more complicated:

L4
eff ¼

1

4
l1ðtr½@mUy@mU	Þ2 þ

1

4
l2 tr½@mUy@nU	 tr½@mUy@nU	: ð24Þ

It turns out that these first two terms suffice already for many practical
applications.
Why is this procedure called ‘Chiral Perturbation Theory’? The reason is

this: we have, so far, assumed that the quark masses vanish and that chiral
symmetry is hence an exact symmetry of QCD. This is an approximation since
chiral symmetry is explicitly broken due to the finite (though small) current
masses of the quarks. These effects are taken into account in another
perturbation expansion in the quark masses.
The whole procedure of Chiral Perturbation Theory therefore consists of

two power series expansions, one in some typical momentum, and the other in
the mass matrix m ¼ diagðmu;mdÞ of the quarks. In order to be consistent, one
contribution of a quark mass term in the expansion must correspond to two
powers of the momentum. In leading (i.e. second) order one obtains:

L2
eff ¼

1

4
f 2p tr½@mUy@mU	 þ

1

2
f 2p tr½mðU þUyÞ	: ð25Þ

It is interesting to note that many of the phenomenological models and
current algebra relations (low-energy theorems) derived in the nineteen-sixties
and seventies can be strictly deduced from QCD and summarised in a compact
fashion (cf. Ecker, 1995).
While the original programme of Chiral Perturbation Theory only aimed at

applications in hadron physics, the more complicated task of deriving EFTs for
nuclear physics from QCD has also been undertaken. This remarkably popular
and successful research programme is reviewed by Van Kolck (1999). It
demonstrates how the relation between theories of several domains (nuclei}
protons, neutrons, and pions}and quarks) can be studied in a mathematically
controlled way. This fact has implications for the reductionism debate, which
will be discussed in Section 4.2.

3.2. Functions of theories, models and EFTs

Theories, models, and EFTs have various functions in actual scientific prac-
tice. They are more or less efficient tools in the process of theorising, helping
scientists to reach certain cognitive goals. It turns out that none of these tools
serves all the functions scientists are interested in. Consequently, a suitable
combination of them has to be applied. We will come back to this in Section 4.1.
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3.2.1. The functions of theories
Theories have a wide scope of applicability. QCD, for example, should apply

to all phenomena governed by strong interactions. It should not only account
for the properties of protons and neutrons, but also for whole nuclei and their
interactions as well as for astrophysical objects such as neutron stars. Theories
provide a coherent account of a large class of phenomena: they unify
phenomena which, at first sight, do not have much to do with each other.
When it comes to calculations, theories (such as QCD) give the most precise
values for the quantities in question. They are therefore also good tools to
predict new effects. Theories constrain the assumptions made in models, and
may also suggest models (such as the hadron models mentioned above).
However, the price for universal scope and predictive accuracy is that the

theory does not provide local understanding of the relevant physical processes.
Usually, the theory can only be solved numerically and the entities employed
by it, such as quarks and gluons, are ‘too far away’ from the phenomena in
question. An understanding of why neutron stars eventually collapse, for
example, is hardly achieved by referring to the dynamics of the myriads of
quarks and gluons which supposedly constitute these astrophysical objects.
Theories produce global understanding by fitting an object or system under
consideration into a bigger framework, but tend to fall short in their efforts to
produce local understanding (see also Section 4.3).

3.2.2. The functions of models
Models, on the other hand, produce local understanding. They often go with

a causal-mechanistic story and aim at capturing the essential physics of a
phenomenon in a few assumptions (with only a few parameters), just as a
caricature represents a person with a few brush lines. As a consequence of this,
models are easy to handle mathematically (compared to a more fundamental
theory), and deductive consequences of the model can be obtained in an
efficient manner. This pragmatic (or computational) superiority of models to
theories can hardly be over-estimated (see Humphreys, 1994, 1995). Models are
also heuristically very important; they often play a decisive role in the
construction of more fundamental theories (such as QCD, as I showed in detail
in Hartmann (1995a,b)) or suggest strategies to derive EFTs from a more
fundamental theory.20

Among the drawbacks of models are the following. The assumptions made
by models often lack a deeper foundation; sometimes they are just ad hoc in
order to save a phenomenon. As the case study has shown, there might not be a
‘controlled’ deductive relation between the model and an underlying theory,
and if a derivation of the model from the theory is actually carried through,
further assumptions have to be made to obtain the model, and these assump-
tions (which might turn out to be more dubious than the assumptions made by
the original model) again require a justification, and so on, ad infinitum. The

20A more complete list of the various functions of models can be found in Hartmann (1999).
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parameters which enter a model are sometimes derived from the theory; often,
however, they are simply adjusted to experimental results. So they often require
a deeper theoretical underpinning. Assumptions made by models might
contradict assumptions made by other models, or by a theory for that matter.
The MIT-Bag Model, for example, violates chiral symmetry, and many chiral
quark models lack confinement. And yet, as I have argued in Hartmann (1999),
the models and the underlying theory are bound together in some sense. There
often is a story which connects the vocabulary of the model to the vocabulary
of the underlying theory even if there are no formalised ontological bridges in
the sense of Rohrlich (2000). We shall come back to this in Section 4.1.

3.2.3. The functions of EFTs
EFTs share many of the functions of theories and models. Like models, they

provide a local, intuitive account of a given phenomenon in terms of the
degrees of freedom which are relevant at the energy scale under consideration.
They are relatively easy to solve and to apply, and they are heuristically useful.
This is demonstrated by the Fermi theory and the V � A theory which
eventually led to the Standard Model, as well as by the EFTs which are used to
test the low-energy regime of a future quantum theory of gravity. Like theories,
EFTs are part of a bigger picture or framework, from which they can be
derived in a controlled way. They help to make predictions and to test the
theory they relate to. EFTs avoid the disadvantage of theories of being ‘too far
away’ from the phenomena.
In practice, however, EFTs often contain more adjustable parameters than a

model of the same system. Besides, EFTs are only applicable if the energy
scales of a system separate well. That is why EFTs work well in particle
physics, but do not work so well in the physics of complex systems. Here
models and perhaps more fundamental theories are required. It should also be
noted that EFTs are closely related to the general framework of QFT. If this
framework theory breaks down at some energy and, say, a superstring theory
takes over, the whole idea of EFTs might also be vitiated. Then it would have
to be clarified in which sense the old EFTs can be recovered or obtained within
a certain limit from the new theory.

3.3. Relations between theories, models and EFTs

The theories, models, and EFTs discussed in this section are intimately
related to each other. There are various interactions and dependencies as well
as conceptual and cognitive relations between these tools which I will now
point out by going through the material presented in the case study above.
Theories and models are often not related deductively. However, theories

may inspire models which pick out a feature of a more fundamental theory,
such as confinement or chiral symmetry in the case of QCD, and embed it in a
less complex theoretical framework (such as non-relativistic quantum mecha-
nics). By doing so, models function as a probe to explore the consequences of
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just one aspect of the theory. This leads to a better understanding of the physics
represented by the theory. Theories may also be used to fix the numerical value
of the parameters of a model. Many quark models, for example, employ the
strong coupling constant which is taken from QCD. Other models have
adjustable parameters which can be calculated directly from the underlying
theory (although this is often not done in order to have more freedom to adjust
the model to experimental data). Models, on the other hand, often play a role
in the construction process of a theory (as the QCD example demonstrates).
Models and EFTs are not always easy to distinguish. Sometimes, a newly

developed EFT or some consequence of it turns out to be identical to a model
developed many years earlier. An example of this is the work on current
algebra. Many of the results which were derived in this framework since the
nineteen-sixties turn out to be consequences of chiral perturbation theory. The
EFT then provides additional support for the model. Some EFTs are treated
like models because no attempt has been made to calculate, for example, the
coupling constants and renormalised masses from first principles. They are
simply fitted to experimental data. In some cases, models are employed to
obtain these parameters.
EFTs and theories may be related in a deductive sense, provided that there is

a theory. EFTs then serve to apply and test the theory because they are easier
to handle mathematically. They point out the relevant mechanisms at a given
energy scale, which helps to better understand the physics covered by the
theory. If there is no theory, following the bottom-up strategy of constructing a
tower of EFTs might eventually give scientists a hint as to where to look for a
more fundamental theory. But of course, there is no direct way from, say, QED
to quarks; just using the tricks of the renormalisation group will not take you
from here to there. This is where creativity and imagination comes in.
Most important are the cases where theories, models and EFTs complement

each other. The establishment of dynamical chiral symmetry breaking as a
feature of QCD, for example, resulted from the interaction of all three
approaches. Lattice gauge calculations suggested models, consequences of
models were used to derive an EFT, which in turn inspired other models and
allowed for analytical results. It is this interaction between various tools that
makes scientific research so exciting.

4. Some Philosophical Lessons

I will now draw some more general conclusions from this case study. The
main point I would like to make is that theories, models, and EFTs are
indispensible tools in scientific research. They complement each other in a way
which will be analysed in some more detail in Section 4.1. Sections 4.2 and 4.3
focus on the consequences for the reductionism debate and the controversy
about scientific explanation.
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4.1. Pluralism and coherence

Generalising the results of the case study, the following picture of theorising
in physics emerges. Scientists use a variety of theoretical tools; among these
tools are theories, models and EFTs. All of them have specific functions, and
all of these functions are required.
This has consequences for the notorious debate about the final theory.

Setting aside worries that we will anyway never be in the position to write down
this theory, a final theory faces at least three problems. First, it will be ‘too far
away’ from the phenomena we experience directly or in a laboratory. A final
theory is therefore unlikely to provide a local understanding of these
phenomena. Models and EFTs are still needed for this. Second, the final
theory cannot be applied without various additional (model-) assumptions
about the concrete system under investigation. Besides, low energy expansions
have to be carried out in a systematic way. This is where EFTs will come in
handy. And third, we will probably never arrive at a final theory without a
supporting scaffolding of various models and EFTs. This has been the case for
all theories of physics so far. So there is no reason to believe that things will be
different for a final theory.
Let us now consider whether models are likely to dominate theoretical

science as some philosophers of science think (see Cartwright, 1999). In our
case study, none of the models we looked at was taken seriously by scientists if
there was not at least a qualitative story which connected the model to a more
fundamental theory. And even before the formulation of QCD, physicists did
not consider the plurality of nuclear and hadron models to be a satisfactory
state of affairs. Theories are needed to inspire the development of models and
to present a framework for the various models.
EFTs are also not likely to make the other two tools obsolete. Although

EFTs share many of their functions with theories and models, they will not be
able to fulfil all of these functions. To illustrate this point, let us distinguish two
cases. First, there is a fundamental theory from which specific EFTs can be
deduced. Then, of course, the EFT depends on the fundamental theory which
is then still an essential part of our theorical account of the world. Second,
there is no fundamental theory. In this case the ‘recipe’ which is part of the
bottom-up EFT ideology is to try and construct a tower of EFTs. More and
more new particles will be added to the theory, all of them being ‘elementary’ in
a certain sense, and all of them might couple to all the other particles known so
far. But the resulting theory will not be of much value; it is simply too
complicated, and its predictive power will go down just as the predictive power
of the Ptolemaic system went down when more and more epicycles were added
(see Forster, 2000). Instead, theorists will search for a more fundamental
theory which will reduce the contingency that goes along with the tower-
construction strategy.
The upshot of all this is that theories, models and EFTs are each

indispensable tools of theoretical research in physics. But how are they
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related? Obviously there are logical contradictions between various models,
and also between QCD and EFTs. Nevertheless, they all hang together in some
sense. Sometimes there is an approximate deductive relation between, for
example, QCD with an EFT at a given energy scale. In the framework of Chiral
Perturbation Theory, both are related through an ontological bridge (Rohrlich,
2000), i.e. the identification of the terms involving quark degrees of freedom in
the Lagrangian density of QCD with the bosonic field UðxÞ. But the
connections are not always so tight. Sometimes there is only a plausible story
which relates the vocabularies of a model and QCD and which sets the model
in the bigger framework provided by a theory. This story can be interpreted as
a semantic bridge between the model and the theory. There is a whole
continuum of relations between theories, models and EFTs which range from
strict reductive relations through ontological bridges to rather vague
associations through semantical bridges. It is these bridges which integrate
all these approaches in a coherent whole (note that coherence comes in
degrees!). It is tempting to reconstruct this picture in terms of the probabilistic
model of the coherence of a belief set suggested in Bovens and Hartmann
(2000) and developed in Bovens and Hartmann (forthcoming). The various
bridges between a model M and a theory T , for example, could then be
modelled by the conditional probability PðMjTÞ.21 While this discussion refers
to the statics of scientific theorising (how do the theories and models at a given
time hang together?), a discussion of the role of considerations concerning
coherence in the dynamics of successive scientific theories can be found in
Hartmann (forthcoming).

4.2. Reduction and emergence

The issue of reduction is probably the one which so far has got most
attention in the philosophical literature about EFTs. Much of this debate
relates to the radical conclusions Cao and Schweber draw in their article from
1993. The authors claim to have ‘found that the recent developments support a
pluralism in theoretical ontology, an antifoundationalism in epistemology and
an antireductionism in methodology’ (p. 69). I will evaluate these claims on the
basis of the case study presented in the last section.
First, ontological pluralism. This thesis is based on the observation that

empirical reality seems to be organised in a multitude (infinity?) of quasi-
autonomous layers. Each layer has its own ontology, and this ontology is to a
considerable extent independent of the physics at higher energies. Only when
the probing energy approaches the cut-off of a given layer, do effects of the
higher layers turn out to have some influence. This influence might lead to a
renormalisation of the mass and charge parameters, but it might also lead to
the insight that the ontology used so far is not really fundamental. Nuclei

21Given the prior probabilities for M and T , PðMÞ and PðTÞ, PðT jMÞ can be obtained by Bayes’
Theorem.
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turned out to be composed of nucleons and pions, and nucleons and pions
turned out to be composed of quarks and gluons. Cao and Schweber’s claim of
ontological pluralism rests on the assumptions, as Robinson (1992) has pointed
out, ‘that we can build up our ontological commitments in QFT only by the
method of first identifying the referring terms of the theory we accept. But to
accept this form of realism}theoretical realism}is to deny that we can build
up our ontological commitments through experiment in the absence of theory’
(p. 403). I would not go as far as Robinson and subscribe to some variant of
entity realism. Rather, I would point to the role which other theories and their
interrelations play when it comes to establishing the ontology of the world.
And given these other theories and their interrelations it seems clear that
ontological pluralism can at best be defended as a pragmatic thesis.22 We are
not trapped in the language game of one theory. Given these other theories it
might be interesting to take EFTs as a case study in emergence. How do the
properties of nucleons, for example, emerge from the complicated interplay of
quarks and gluons? This is a physics problem, and the role of symmetry
breaking mechanisms has to be addressed in detail. It should also be noted that
Cao and Schweber’s talk of quasi-autonomous domains rests on the validity of
the decoupling theorem. As I have explained in Section 2.2.3, this theorem can
only be proven if there is a underlying renormalisable theory and if the energy
scales of the particles separate. While the second assumption might not be
fulfilled empirically, the first assumption renders many of Cao and Schweber’s
more radical conclusions implausible since they are based on the assumption
that there is no underlying theory.
Second, epistemological antifoundationalism. According to this thesis, quasi-

autonomous layers do not only have their own ontology, but also have their
own ‘fundamental’ theory. Since none of the layers is distinguished, none of the
theories is the fundamental one. There is no foundation for all other theories,
and there is no (and there will never be a) final theory which entails all other
theories. Cao and Schweber know that this is a metaphysical thesis, but they
think that it is well supported by the practice of science. And indeed, a final
theory seems to be as far away as it was twenty years ago. But this, of course,
does not imply that there will never be a final theory. Leaving metaphysical
questions aside, it seems to be philosophically more interesting to examine the
formal relations between the theories, models and EFTs we have already. As
I argued in Section 4.1, the relation between some underlying theory and an
EFT can be reconstructed along the lines of Rohrlich’s (2000) two-step model:
first, a deductive relation between the two formalisms has to be obtained. This
typically involves approximations and a limiting process. Second, ontological
bridges between the incommensurable concepts of both theories have to be
established. This model, designed to account for the relation between mature
theories, does not help to analyse the relation between a model and a theory,
which is typically much more involved. This calls for detailed case studies.

22For another account of ontological pluralism see Rohrlich (1988).
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Third, methodological antireductionism. This position advocates the bottom-
up EFT research strategy which is also favoured by many pragmatically-
minded physicists. Howard Georgi, for example, writes:

The philosophical question underlying old-fashioned renormalizability is this:
How does this process end? It is possible, I suppose, that at some very large

energy scale, all nonrenormalizable interactions disappear, and the theory is
simply renormalizable in the old sense. This seems unlikely, given the difficulty
with gravity. It is possible that the rules change dramatically, as in string theory.

It may even be possible that there is no end, simply more and more scales as one
goes to higher and higher energy. Who knows? Who cares? In addition to being a
great convenience, effective field theory allows us to ask all the really scientific

questions that we want to ask without committing ourselves to a picture of what
happens at arbitrarily high energy (Georgi, 1993, p. 215).

Georgi recommends the bottom-up EFT strategy for pragmatic reasons.
Unlike a final theory, EFTs can be systematically tested experimentally, and
this is taken to be a feature any acceptable scientific theory should have:

My personal suspicion is that Nature is much more imaginative than we are. If we
theorists approach her study with the proper respect, if we recognize that we are

parasites who must live on the hard work of our experimental friends, then our
field will remain healthy and prosper. But if we allow ourselves to be beguiled by
the siren call of the ’ultimate’ unification at distances so small that our

experimental friends cannot help us, then we are in trouble, because we will lose
that crucial process of pruning of irrelevant ideas which distinguishes physics
from so many other less interesting human activities (Georgi, 1989, p. 457).

Georgi does not commit himself to a view concerning the possible existence of
a final theory. Whether it exists or not is not a question which can be settled in
the laboratory. Maybe the tower of EFTs never ends. It would, however, be a
mistake to stop taking the possibility of a final theory into account. Michael
Redhead also argues this point:

[F]rom a point of view of methodology of science a recurring theme has been the
search for an ultimate underlying order characterized by simplicity and symmetry

that lies behind and explains the confusing complexity of the phenomenal world.
To subscribe to the new EFT programme is to give up on this endeavour and
retreat to a position that is admittedly more cautious and pragmatic and closer to

experimental practice, but is somehow less intellectually exciting. Perhaps one
should not allow such considerations to enter into one’s evaluation of a scientific
programme, but to my own taste, the regulative ideal of an ultimate theory of

everything remains a powerful aesthetic ingredient motivating the existence of the
greatest intellectual ingenuity in the pursuit of what may admittedly, in itself, be
an illusory goal. But that after all is the proper function of regulative ideals
(Redhead, 1999, p. 40)
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4.3. Explanation and understanding

One of the major aims of science is to explain phenomena. Although the
concept of explanation is pretty vague, an acceptable explanation should show
(1) how the phenomenon under consideration reached its present state and (2)
how it fits into a larger theoretical framework. Although these two
requirements do not exclude each other, it remains to be seen if both can be
fulfilled by the same scientific theory or model. This is not clear to start with,
and philosophical theories of explanation therefore usually concentrate on one
of these requirements}a task which turns out to be hard enough as the
controversial nature of the debate over the last four decades or so impressively
shows (Salmon, 1989).
According to the causal/mechanical account, pioneered by Salmon and

others (see Salmon, 1998), a phenomenon is explained by providing a
mechanism which produces the effect under consideration. This mechanism
is often given by a model (or an EFT for that matter), as the MIT-Bag Model
illustrates. Here quarks are confined to a hard sphere in which they can move
freely apart from occasional bounces off the inner side of the bag, a situation
which can be easily visualised classically (see Section 3.1.2). The mass of the
proton, for example, can then be determined by summing up the kinetic
energies of the quarks and the potential energy of the bag. Explanations of this
kind produce local understanding, but lack global understanding because no
general principles are required to specify the mechanism.
According to the unification account, developed by Friedman and

elaborated by Kitcher (1989), a successful explanation fits the explanandum
in a general framework. This view, which is a distant descendant of the original
Hempel–Oppenheim account, supports the intuition that something is
explained if it is integrated in a larger theoretical context. Explanations of
this kind are provided by theories such as QCD. An explanation of the mass of
the proton, for example, goes like this: there are quarks and gluons coupled to
a state with the quantum numbers of the proton and interacting in a very
complicated way. Deductions from the Lagrangian density of QCD, facilitated
by high-powered computers, then yield the result of 938 MeV. As I have argued
in Section 3.1.1, this account does not produce local understanding. By
integrating the proton in a bigger framework it produces, however, global
understanding.
I think that the question which of the two accounts of explanation is the

right one is misguided. The case study presented in Section 3 has shown that
both accounts complement and interact with each other. The account of
scientific explanation I consider to be in accordance with scientific practice is
therefore a pluralist one: science studies a given phenomenon from various
theoretical perspectives, all of which reveal some explanatory information
about the phenomenon in question. Putting all of them together should result
in a coherent explanatory account of the phenomenon. It should be noted that
Salmon (1998, pp. 73f) also acknowledges a rapprochement of the causal/
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mechanical account and the unification account of scientific explanation in his
recent book.

5. Conclusions

Science is a complex and involved activity. All simple reconstructions of it
will probably fail. Generalisations based on the work on theory unification in
particle physics, for example, are as hasty as the philosophical conclusions
some now draw from the current interest in EFTs among physicists. Science
usually does not address issues such as unity, reductionism, and what the
characteristics of a good explanation are. Rather, scientists use a plurality of
interrelated conceptual tools, and explanations are obtained by attacking a
phenomenon from a variety of theoretical perspectives. It is this pluralism of
tools which is good for science and which makes science flourish.
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The Dirac Prize Committee cited my work on fractional charges and on chiral
anomalies; therefore, I shall discuss these two topics. As with all true and deep
physical effects, there are many ways of arriving at the results. It is particularly ap-
propriate here today that one route towards understanding both fractional charges
and chiral anomalies delves into Dirac’s negative energy sea. This is especially
provocative, because usually we think of Dirac’s negative energy sea as an unphys-
ical construct, invented to render quantum field theory physically acceptable by
hiding – that is, by renormalizing – negative energy solutions. But I am suggesting
that in fact physical consequences can be drawn from Dirac’s construction.

First let me set the stage for the discussion.

Quantum physics has taught us that a physical observable need not be a quan-
tity with arbitrary magnitude. Because it is the eigenvalue of a linear Hermitian
operator, it will in general be quantized. This is not the case in classical physics
where most observables, like angular momentum and energy, are continuously vary-
ing and can take on any value. On the other hand, even in classical physics, there
are concepts that are intrinsically integral – for example particle number of con-
served particles – and one expects that the integrality will be preserved in the
quantum theory, that is, eigenvalues of the relevant operator – the number oper-
ator in our example – are expected to be integers. Quantization of eigenvalues is
most easily attained when the operator is a generator of a compact, non-Abelian
group, like angular momentum generating SO(3) rotations. However, the number
operator frequently generates only Abelian transformations with no group-theoretic
quantization.

Closer examination of the number operator in a theory with second quantized
fermions raises doubts that it will in fact possess only integer eigenvalues. The
problem derives from Dirac’s negative energy sea, which must be filled to define
the vacuum. This involves an infinite number of “particles”. Since the number
of any further particles must be measured relative to this infinity, there may very
well emerge a non-integral answer. Nevertheless, it had been believed that various
renormalization procedures, like normal ordering, can unambiguously ensure inte-
grality of the eigenvalue. Therefore, it was a suprise when Rebbi and I established
about twenty years ago that fermions moving in the field of a topologically non-
trivial soliton (kink in one spatial dimension, vortex in two, monopole in three)
possess non-integer eigenvalues for their number operator.1 It is perhaps even more
surprising that this peculiar effect has a physical realization in properties of actual
condensed matter systems – polyacetylene being the standard example.2 Here, I
shall describe this to you, first in a general, formal way, and then in a physically
intuitive language appropriate to polyacetylene.

We wish to second quantize fermions moving in a static background that gener-
ically is described by ϕ. Fermion dynamics is governed by a Dirac Hamiltonian
H(ϕ). Two different backgrounds are envisioned: one is appropriate for the vac-
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uum sector of the theory ϕv, the other for the soliton ϕs. For example, ϕ may
be a condensate field that takes a homogenous value in the vacuum sector and a
topologically nontrivial profile in the soliton sector.

Second quantization proceeds by computing the energy eigenvalues and eigen-
functions of H(ϕ), which possesses both positive and negative energy eigenstates,
and “filling” the negative energy sea. The number density of the soliton ground
state is given by

ρ(x) =
∑∫ 0

−

−∞

dE
(
|ΨE(x)|2 − |ψE(x)|2

)
(1)

where the integration, which also includes summutation over discrete levels, extends
over all negative energy states, since they are filled in the vacuum. Here ΨE is the
energy eigenfunction in the presence of the soliton and ψE is the eigenfunction in
the vacuum sector:

H(ϕs)ΨE = EΨE , H(ϕv)ψE = EψE . (2)

In (1) the contribution from the vacuum sector is subtracted; the soliton charge
density is renormalized, so that it is measured relative to the vacuum. The fermion
number of the soliton ground state is the spatial integral of ρ

NF =

∫
dx ρ(x) . (3)

A very beautiful aspect of the theory is that one can evaluate (1) and (3) by gen-
eral methods, which bypass solving the eigenvalue problem (2) explicitly. Rather,
one uses spectral sum rules whose form is dictated by general features of the Hamil-
tonian, in particular by the topological properties of the background ϕ and of the
space {x}. While these methods are powerful, they are also technical, requiring
much mathematical knowledge, so I shall not present them here. However, when
the Hamiltonian posseses one further property, which I shall now describe, the sum
rules become trivial, and the result for NF is immediate.

We assume further that H(ϕ) possesses a conjugation symmetry, taking posi-
tive energy states into negative energy states and vice versa; that is, we assume
there exists an operator C that anticommutes with H(ϕ): C−1HC = −H. One
consequence of this is that the number density at E is an even function of E:
|ΨE |2 = |Ψ−E |2, |ψE |2 = |ψ−E |2. A less obvious consequence is that in the soli-
ton sector, there are always normalizable, discrete zero-energy modes

H(ϕs)u0 = 0,

∫
dx |u0(x)|2 = 1 . (4)

This fact may be seen by explicit solution of the eigenvalue problem, but it also
follows from a general mathematical argument, called index theory, which ensures
that the Dirac operator has normalizable zero-energy modes in the presence of a
topologically nontrivial background.
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We are now in a position to evaluate (1) and (3). First, we use completeness of
the eigenfunctions in the soliton and vacuum sectors

∑∫ 0
−

−∞

dE |ΨE(x)|2 +
∑∫ ∞

0+

dE |ΨE(x)|2 + |u0(x)|2 −
∑∫ ∞

−∞

dE |ψE(x)|2 = 0 . (5)

The zero-energy mode in the soliton sector has been explicitly separated; we assume
there is just one. (In the vacuum sector there are none.) Then, use of the conju-
gation symmetry allows equating the positive energy integrals with the negative
energy ones, and converts (5) into an evaluation of (1)

∑∫ 0
−

−∞

dE
(
|ΨE(x)|2 − |ψE(x)|2

)
= −1

2
|u0(x)|2 . (6)

The spatial integration that determines NF is trivial since the zero mode is normal-
ized:

NF = −1

2
. (7)

The conclusion is that the soliton vacuum, defined with the zero mode empty, carries
fermion number −1

2
; of course, when the zero mode is filled, this fermion number is

+1

2
! The fermion number assignment of ±1

2
for two states degenerate in energy is

the only possible one consistent with a conjugation-odd fermion number operator.
Two comments should be made in connection with this very elementary deriva-

tion of our surprising result.

(i) The above evaluation concerns the expected value of the second-quantized, field
theoretic number operator, N̂F . However, one can show, by expanding the
second quantized field in terms of creation and annihilation operators in the
presence of the soliton, that in fact the eigenvalues are ±1

2
.

(ii) We have viewed the soliton as an external field. In a complete description,
one must take the soliton’s quantum dynamics into account. Necessarily there
will occur spontaneous symmetry breaking in the vacuum sector. Calculations
in the full theory can be carried out by Monte-Carlo methods, or by analytic
techniques of the Born-Oppenheimer variety.

The three ingredients necessary for fermion number fractionization – sponta-
neous symmetry breaking, solitons and fermions – come together in a description of
a physical system, polyacetylene. This is a one-dimensional array of carbon atoms
that can form one of two degenerate ground states. The degeneracy arises from a
spontaneous breaking of the right-left symmetry (Peierls instability) and manifests
itself in an alteration of the bonding pattern, as illustrated in Fig. 1.

A microscopic Hamiltonian for the system has been proposed by Su, Schrieffer
and Heeger (SSH).2 In the continuum and infinite volume limit, electron transport
is governed by a Dirac-type Hamiltonian in one spatial dimension:

H(ϕ) = σ3p̂+ σ1ϕ(x), p̂ =
1

i

d

dx

σ3 =
(

1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
.

(8)
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Fig. 1: Polyacetylene consists of a linear chain of carbon atoms (dots). The
equally spaced configuration (O) possesses a left-right symmetry, which how-
ever is energetically unstable. Rather in the ground states the carbon atoms
shift a distance µ to the left or right, breaking the symmetry and producing
two degenerate ground states (A,B). (The drawing is not to scale; the shift
is only a few percent of the total bond length.) A soliton (S) is a defect in
the alteration patters; it provides a domain wall between configurations (A)
and (B).

Here, ϕ(x) is the phonon field; it measures the displacement of the carbon atom from
its equalibrium position. The matrix structure of the above Hamiltonian does not
arise from spin. In the SSH description, electron-electron interactions are ignored
and spin is a passive label; the Hamiltonian in (8) describes separately spin up and
spin down electrons. Rather, the Dirac-like matrix form for H arises through a lin-
earized approximation and the two-component wavefunctions that are eigenmodes
of H refer to the right-moving and left-moving electrons with momentum ±|p|. The
filled negative energy states are the valence electrons, while the conduction electrons
populate the positive energy states.

In the SSH model, ϕ(x) is determined self-consistently by the phonon’s dy-
namics, and in the lowest (vacuum) states ϕ(x) takes the uniform values ±µ, as
illustrated in Fig. 1. The corresponding spectrum of (8) exhibits a gap.

In addition to the two ground states, where the phonon field takes a constant
value, there exist stable excited states where ϕ(x) assumes a kink shape, which
interpolates as x passes from −∞ to +∞, between the vacuum configurations −µ
and +µ. This is the soliton, and it describes a defect in the alteration pattern, as
is also exhibited in Fig. 1.

The Hamiltonian in (8) admits a conjugation symmetry: C = σ2 =
(

0

i
−i
0

)
anticommutes withH – this is ordinary charge conjugation invariance in the absence
of Coulomb interactions. The zero eigenvalue problem is easily solved with a kink
background: there is one normalizable zero-energy solution. Thus, our general
analysis predicts that fermion number, here coinciding with charge, fractionizes to
±1

2
in the one-soliton state.
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This result may also be seen pictorially. When two solitons are inserted into the
ground state (B), the bonding pattern is depicted in Fig. 2. Note that the number
of bonds in the two-soliton state is one fewer than in the ground state. If the two
solitons are now separated far apart, so that they act independently, the quantum
numbers of the missing bond must be shared between the two states, and that is
how the fraction 1

2
arises.

Fig. 2: With two solitons (SS) inserted in vacuum (B), the number of bonds
≈ electrons between the sites of the defects decreases from five to four.

Of course, for actual physical samples, where both the volume and the separation
between defects are finite, the non-integer fermion number is only an expectation
value for the operator N̂F , and there are corrections that vanish in the infinite
limit. The important point is that the variance 〈N̂2

F 〉 − 〈N̂F 〉2 also vanishes in the
limit. This is to be contrasted to the uninteresting situation of, say, an electron
circulating about two nuclei. When the nuclei are far apart, the expected value
for electron number near each nucleus is 1

2
, plus small corrections. However, the

variance remains 1

4
for infinite separation, which shows that this fraction never

becomes an eigenvalue.
The concept of fractional quantum numbers has now extended beyond soliton

systems – for example the theory of the quantum Hall effect makes use of the idea,
even though dynamical details are quite different from the above example.

While fractional quantum numbers were first seen in relativistic field theory,
thus far they have not played any experimentally verified role in particle physics.
Nevertheless, it is curious that an effect which in principle is physical, and has been
observed in condensed matter systems, should arise from distortions in the negative
energy sea, which for particle physicists is an unphysical construct, in contrast to the
condensed matter application, where negative energy states correspond to physical
quantities – the valence electrons.

In particle physics there is another, physically realized circumstance where the
Dirac negative energy sea modifies symmetry behavior of fermions. This is the
chiral anomaly phenomenon whereby the axial vector currect iψ̄γµγ5ψ, which is
conserved for free massless Dirac fermions, ceases to be conserved when the mass-
less fermions are quantized and made to interact with a gauge field, even though the
interaction appears to be chirally invariant.3 Indeed, for unquantized Dirac fields
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the chiral invariance ensures conservation of the unquantized axial vector current.
This disappearance after quantization of chiral symmetry is usually associated with
infinities that plague relativistic quantum field theory: the infinities must be reg-
ulated and renormalized, but there is no chirally invariant regulator procedure.
However, a more directly physical discussion of the anomaly phenomenom may be
given, which shows that in fact it is the filling of the negative energy sea that breaks
the chiral symmetry.

Let me first state the essential puzzle of the chiral anomaly. In spite of profound
differences between the classical and quantal description of physical phenomena, it
was generally believed that symmetry properties and conserved constants of mo-
tion transcend the classical/quantal dichotomy: when a classical model possesses
symmetries and supports constants of motion, one expects that quantization pre-
serves the symmetries, so that conserved quantities – now propmoted to quantum
operators – remain time-independent, that is, they commute with the Hamiltonian
operator. But as observed thirty years ago by Bell and me,3 and also independently
by Adler,3 this need not be so.

A simple instance of quantum mechanical violation of symmetry is encountered
by considering a massless Dirac fermion moving in a background gauge field Aµ.
The dynamics is governed by a Lagrangian, which splits into separate right and left
parts – this separation is a manifestation of chiral symmetry:

L = ψ̄(i 6∂ − e 6A)ψ

= ψ̄+(i 6∂ − e 6A)ψ+ + ψ̄−(i 6∂ − e 6A)ψ−

ψ = ψ+ + ψ−, ψ± = 1

2
(1 ± iγ5)ψ .

(10)

In the first-quantized theory, where ψ is a wavefunction and ψ̄γµψ is a probabil-
ity current, the separate right and left currents are conserved, and the separate
probabilities

∫
dxψ†

±
ψ± are time-independent. In the second quantized theory,

where ψ becomes an operator, the anomaly phenomenon renders the separate right
and left currents no longer conserved, and the right and left charges are not time-
independent. Nevertheless, the sum of right and left currents – the vector current
– is conserved, while the divergence of the difference between the right and left
currents – the axial vector current – is nonzero owing to the anomaly. Our task
then is to understand what causes the separate nonconservation of left and right
currents even though there is no coupling between the two apparent in (10).

Evidently, the problem derives from the second quantization procedure, hence
we implement it. We set A0 to zero, find the eigenmodes of the Hamiltonian in
the background field A, and define the second quantized vacuum by filling the
negative energy modes, leaving the positive energy modes empty. The background
A is chosen in a specific functional form so that the anomaly is nonvanishing. This
requires A be time-dependent, but we chose a potential constant in time and space
and model the time variation by an adiabatic change A → A + δA.

The simplest model to study is two-dimensional and Abelian – two-dimensional
massles quantum electrodynamics.4 The Dirac matrices are 2 × 2 and ψ is a two-
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component spinor.

γ0 = σ1, γ1 = iσ2, γ5 = iγ0γ1 = −iσ3

ψ+ =
(

1 0
0 0

)
ψ, ψ− =

(
0 0
0 1

)
ψ .

(11)

The axial current possess an anomalous divergence proportional to ǫµνFµν ∝ ∂tA
(since A0 = 0 and A has the single spatial component A1 ≡ A),5 which we wish
to understand. The eigenmodes to be second quantized satisfy a one-dimensional
Dirac equation,

HψE = α(p̂− eA)ψE = EψE , α = −σ3 (12)

where A is constant. They are given by

ψ+ =
(
eipx

0

)
with E = −p+ eA

ψ− =
(

0
eipx

)
with E = p− eA

. (13)

Second quantization is performed by filling the negative energy sea. For A = 0,
the energy-momentum dispersion is depicted in Fig. 3, where the right-hand branch
corresponds to fermions of one chirality, and the left-hand branch to those of the
other chirality. The negative energy states are filled, as indicated by the filled
circles; the positive energy states are empty, as indicated by the empty circles. As
A increases from 0 to δA, empty states in the right-hand branch acquire negative
energy, while filled states of the left-hand branch become positive energy states; that
is, there is a net production of right-handed antiparticles and left-handed particles;
see Fig. 4. So the separate right and left charges are not conserved, but their sum
is. Put in another way, the separation between positive and negative energy states
of definite chirality cannot be achieved gauge-invariantly, since changing A from 0
to a constant δA is a gauge transformation, yet particles are produced.

Fig. 3: Energy-momentum disper-
sion at A = 0. Empty circles are
empty states; filled circles are filled
states.

Fig. 4: Energy-momentum dispersion
at A = δA > 0. The energy shift
produces negative energy empty states
and positive energy filled states.
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We thus see that the negative energy sea is responsible for nonconservation of
chirality even though the dynamics is chirally invariant. This effect was called
anomalous because its discovery was a surprise.3 However, a better name might be
quantum mechanical symmetry breaking – a symmetry-breaking mechanism, which
like Heisenberg’s spontaneous symmetry breaking attributes physical asymmetry to
the vacuum state and not to the dynamics. Here, however, unlike in Heisenberg’s
case, it is not vacuum degeneracy but the very definition of the vacuum that is
responsible. Once again we must assign physical reality to Dirac’s negative energy
sea, because it produces the chiral anomaly, whose effects are experimentally ob-
served, principally in the decay of the neutral pion to two photons, but there are
other physical consequences as well.6

The two phenomena that I have described show that Nature seems to know and
make use of what at first appears to be a defect of a quantum field theory, and
which is usually “renormalized away”. Remarkably, the infinities in the formalism
give rise to finite and physical effects. One may quite appropriately call this an
example of “The Unreasonable Effectiveness of Quantum Field Theory in Physics”.

In my presentation of fractional charge and of the chiral anomaly I have used
concepts that are primitively physical, employing little analysis beyond drawing
pictures and counting. But to the same end a most sophisticated mathematical
discussion can also be given, wherein zero modes are controlled by various index
theorems (Atiyah-Singer, Callias), fractional charges are related to Atiyah, Patodi,
Singer spectral flows, and chiral anomalies are identified with Chern-Pontryagin
densities. This confluence between physics and mathematics, which was brought
about by physicists’ research on the topics that I described, seeded an interaction
between these two disciplines, which still flourishes and today fuels the current
string/M-theory program.

But in sharp contrast with the above, contemporary mathematical discussions
within physics do not as yet have experimentally observed correlatives. These days
research follows very closely Dirac’s dictum:

The most powerful method of advance [in physics] . . . is to employ all the
resources of pure mathematics in attempts to perfect and generalize the
mathematical formalism that forms the existing basis of theoretical physics,
and . . . to try to interpret the new mathematical features in terms of physical
entities. — P.A.M. Dirac

Early in my career I heard him say this at a seminar devoted to his research history,
and I was very inspired. However, my subsequent work with physics and mathe-
matics makes me feel that Dirac’s suggestion is too radical, while a quote by Yang
more accurately describes my own experience of mathematical physics:

Physics is not mathematics, just as mathematics is not physics. Somehow
nature chooses only a subset of the very beautiful and complex and intricate
mathematics that mathematicians develop, and that precise subset is what
the theoretical physicist is trying to look for. — C.N. Yang
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The phenomenon of quantum number fractionalization is explained. The relevance
of non-trivial phonon field topology is emphasized.

1. Introduction

Discussions of the spatial forms of physical materials use in a natural way
geometrical and topological concepts. It is to be expected that arrange-
ments of matter should form patterns that are described by pre-existing
mathematical structures drawn from geometry and topology. But theoret-
ical physicists also deal with abstract entities, which do not have an actual
material presence. Still geometrical and topological considerations are rel-
evant to these ephemeral theoretical constructs. I have in mind fields, both
classical and quantum, which enter into our theories of fundamental pro-
cesses. These fields φ(x) provide a mapping from a “base” space or space-
time on which they are defined into the field “target” manifold on which
they range. The base and target spaces, as well as the mapping, may possess
some non-trivial topological features, which affect the fixed time description
and the temporal evolution of the fields, thereby influencing the physical
reality that these fields describe. Quantum fields of a quantum field theory
are operator valued distributions whose relevant topological properties are
obscure. Nevertheless, topological features of the corresponding classical
fields are important in the quantum theory for a variety of reasons: (i)
Quantized fields can undergo local (space-time dependent) transformations
(gauge transformations, coordinate diffeomorphisms) that involve classical

∗TOP2005 symposium, sapporo, japan, march 2005.
†This work is supported in part by funds provided by the U.S. Department of Energy
(D.O.E.) under cooperative research agreement DE-FC02-94ER40818.
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functions whose topological properties determine the allowed quantum field
theoretic structures. (ii) One formulation of quantum field theory uses a
functional integral over classical fields, and classical topological features be-
come relevant. (iii) Semi-classical (WKB) approximations to the quantum
theory rely on classical dynamics, and again classical topology plays a role
in the analysis.

Topological effects in quantum electrodynamics were first appreciated
by Dirac in his study of the quantum mechanics for (hypothetical) magnetic
monopoles. This analysis leads directly to contemporary analysis of Yang-
Mill theory – the contemporary generalization of Maxwell’s electrodynamics
– and has yielded several significant results: the discovery of the θ-vacuum
angle; the recognition that c-number parameters in the theory may require
quantization for topological reasons (like Dirac’s monopole strength); the
realization that the chiral anomaly equation is just the local version of the
celebrated Atiyah-Singer index theorem.

Here I shall not describe the Yang-Mills investigations; they are too
technical and too specialized for this general audience. Rather I shall
show you how a topological effect in a condensed matter situation leads
to charge fractionalization. This phenomenon has a physical realization in
1-dimensional (lineal) polymers, like polyacetylene, and in 2-dimensional
(planar) systems, like the Hall effect.

The polyacetylene story is especially appealing, because it can be told in
several ways: in pictorial terms which only involves counting, or in the first
quantized formalism for quantum mechanical equations, or in the second
quantized formalism of a quantum field theory 1.

2. The Polyacetylene Story (Counting Argument)

Polyacetylene is a material consisting of parallel chains of carbon atoms,
with electrons moving primarily along the chains, while hopping between
chains is strongly suppressed. Consequently, the system is effectively 1-
dimensional. The distance between carbon atoms is about 1Å.

If the atoms are considered to be completely stationary, i.e. rigidly
attached to their equilibrium lattice sites, electron hopping along the chain
is a structureless phenomenon. However, the atoms can oscillate around
their rigid lattice positions for a variety of reasons, like zero-point motion,
thermal excitation, etc. It might be thought that these effects merely give
rise to a slight fuzzing of the undistorted-lattice situation.

In fact this is not correct; something more dramatic takes place. Rather
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Figure 1. (a) The rigid lattice of polyacetylene; (O) the carbon atoms are equally spaced
1 Å apart. (b), (c) The effect of Peierls’ instability is to shift the carbon atoms .04Åto
the right (A) or to the left (B), thus giving rise to a double degeneracy.

than oscillating about the rigid-lattice sites, the atoms first shift a distance
of about .04 Å and then proceed to oscillate around the new, slightly dis-
torted location. That this should happen was predicted by Peierls, and is
called the Peierls instability. Due to reflection symmetry, there is no differ-
ence between a shift to the right or a shift to the left; the material chooses
one or the other, thus breaking spontaneously the reflection symmetry, and
giving rise to doubly degenerate vacua, called A and B.

If the displacement is described by a field φ which depends on the posi-
tion x along the lattice, the so-called phonon field, then Peierls’ instability,
as well as detailed dynamical calculations indicate that the energy density
V (φ), as a function of constant φ, has a double-well shape. The symmetric
point φ = 0 is unstable; the system in its ground state must choose one
of the two equivalent ground states φ = ± | φ0 |= ±.04Å. In the ground
states, the phonon field has uniform values, independent of x.

By now it is widely appreciated that whenever the ground state is degen-
erate there frequently exist additional stable states of the system, for which
the phonon field is non-constant. Rather, as a function of x, it interpolates,
when x passes from negative to positive infinity, between the allowed ground
states. These are the famous solitons, or kinks. For polyacetylene they cor-
respond to domain walls which separate regions with vacuum A from those
with vacuum B, and vice versa. One represents the chemical bonding pat-
tern by a double bond connecting atoms that are closer together, and the
single bond connecting those that are further apart.

Consider now a polyacetylene sample in the A vacuum, but with two
solitons along the chain. Let us count the number of links in the sample
without solitons and compare with number of links where two solitons are
present. It suffices to examine the two chains only in the region where they
differ, i.e. between the two solitons. Vacuum A exhibits 5 links, while the
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Figure 2. Energy density V (φ), as a function of a constant phonon field φ. The sym-
metric stationary point, φ = 0, is unstable. Stable vacua are at φ = +|φ0|, (A) and φ =
-|φ0|, (B).

Figure 3. The two constant fields, ± | φ0 |, correspond to the two vacua (A and B).
The two kink fields, ±φs, interpolate between the vacua and represent domain walls.

addition of two solitons decreases the number of links to 4. The two soliton
state exhibits a deficit of one link. If now we imagine separating the two
solitons a great distance, so that they act independently of one another,
then each soliton carries a deficit of half a link, and the quantum numbers
of the link, for example the charge, are split between the two states. This
is the essence of fermion fractionization.

It should be emphasized that we are not here describing the familiar
situation of an electron moving around a two-center molecule, spending
“half” the time with one nucleus and “half” with the other. Then one might
say that the electron is split in half, on the average; however fluctuations
in any quantity are large. But in our soliton example, the fractionization
is without fluctuations; in the limit of infinite separation one achieves an
eigenstate with fractional eigenvalues.

We must however remember that the link in fact corresponds to two
states: an electron with spin up and another with spin down. This doubling
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Figure 4. Polyacetylene states. The equally spaced configuration (O) possesses a left-
right symmetry, which however is energetically unstable. Rather in the ground states the
carbon atoms shift a distance μ to the left or right, breaking the symmetry and producing
two degenerate vacua (A, B). A soliton (S) is a defect in the alteration pattern; it provides
a domain wall between configurations (A) and (B).

B

A

2S

SS

Figure 5. (a), (b) Pattern of chemical bonds in vacua A and B. (c) Two solitons inserted
into vacuum A.

obscures the dramatic charge 1

2
effect, since everything must be multiplied

by 2 to account for the two states. So in polyacetylene, a soliton carries a
charge deficit of one unit of electric charge. Nevertheless charge fraction-
ization leaves a spur: the soliton state has net charge, but no net spin, since
all of the electron spins are paired. If an additional electron is inserted into
the sample, the charge deficit is extinguished, and one obtains a neutral
state, but now there is a net spin. These spin-charge assignments (charged
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– without spin, neutral – with spin) are unexpected, but in fact have been
observed, and provide experimental verification for the soliton picture and
fractionalization in polyacetylene.

Notice that in this simple counting argument no mention is made of
topology. This feature emerges only when an analytic treatment is given.
I now turn to this.

3. The Polyacetylene Story (Quantum Mechanics)

I shall now provide a calculation which shows how charge 1/2 arises in
the quantum mechanics of fermions in interaction with solitons. The
fermion dynamics are governed by an one-dimensional Dirac Hamiltonian,
H(φ), which also depends on a background phonon field φ, with which the
fermions intact. The Dirac Hamiltonian arises not because the electrons are
relativistic. Rather it emerges in a certain well-formulated approximation
to the microscopic theory, which yields a quantal equation that is a 2x2
matrix equation, like a Dirac equation. In the vacuum sector, φ takes on a
constant value φ0, appropriate to the vacuum. When a soliton is present,
φ becomes the appropriate, static soliton profile φs. We need not be any
more specific. We need not insist on any explicit soliton profile. All that we
require is that the topology [i.e. the large distance behavior] of the soliton
profile be non-trivial.

In the present lineal case the relevant topology is that infinity corre-
sponds to two points, the end points of the line, and the phonon field in
the soliton sector behaves differently at the points at infinity.

To analyze the system we need the eigenmodes, both in the vacuum and
soliton sectors.

H(φ0)ψv
E = Eψv

E (1)

H(φs)ψs
E = Eψs

E (2)

The Dirac equation is like a matrix-valued “square root” of the wave equa-
tion. Because a square root is involved, there will be in general negative
energy solutions and positive energy solutions. The negative energy so-
lutions correspond to the states in the valence band; the positive energy
ones, to the conduction band. In the ground state, all the negative energy
levels are filled, and the ground state charge is the integral over all space of
the charge density ρ(x), which in turn is constructed from all the negative
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energy wave functions.

ρ(x) =

0∫

−∞
dE ρE (x), ρE(x) = ψ∗

E (x)ψE (x) (3)

Of course integrating (3) over x will produce an infinity; to renormalize we
measure all charges relative to the ground state in the vacuum sector. Thus
the soliton charge is

Q =
∫

dx

0∫

−∞
dE {ρs

E (x) − ρv
E (x)}. (4)

Eq. (4) may be completely evaluated without explicitly specifying the soli-
ton profile, nor actually solving for the negative energy modes, provided
H possesses a further property. We assume that there exists a conjugation
symmetry which takes positive energy solutions of (1) and (2) into negative
energy solutions. (This is true for polyacetylene.) That is, we assume that
there exists a unitary 2x2 matrix M , such that

MψE = ψ−E . (5)

An immediate consequence, crucial to the rest of the argument, is that the
charge density at E is an even function of E.

ρE(x) = ρ−E(x) (6)

Whenever one solves a conjugation symmetric Dirac equation, with a
topologically interesting background field, like a soliton, there always are,
in addition to the positive and negative energy solutions related to each
other by conjugation, self-conjugate, normalizable zero-energy solutions.
That this is indeed true can be seen by explicit calculation. However, the
occurrence of the zero mode is also predicted by very general mathematical
theorems about differential equations. These so-called “index theorems”
count the zero eigenvalues, and insure that the number is non-vanishing
whenever the topology of the background is non-trivial. We shall assume
that there is just one zero mode, described by the normalized wave function
ψ0.

To evaluate the charge Q in (4), we first recall that the wave functions
are complete, both in the soliton sector and in the vacuum sector.

∞∫

−∞
dE ψ∗

E (x)ψE(y) = δ(x− y) (7)
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As a consequence, it follows that
∞∫

−∞
dE [ρs

E (x) − ρv
E (x)] = 0. (8a)

In the above completeness integral over all energies, we record separately
the negative energy contributions, the positive energy contributions, and for
the soliton, the zero-energy contribution. Since the positive energy charge
density is equal to the negative one, by virtue of (6), we conclude that (8a)
may be equivalently written as an integral over negative E.

0∫

−∞
dE [2ρs

E (x) − 2ρv
E (x)] + ψ∗

0 (x)ψ0 (x) = 0 (8b)

Rearranging terms give

Q =
∫
dx

0∫

−∞
dE[ρs

E(x) − ρv
0(x)] = −1

2

∫
dxψ0(x)ψ0(x) = −1

2
. (9)

This is the final result: the soliton’s charge is − 1

2
; a fact that follows

from completeness (7) and conjugation symmetry (6). It is seen in (9)
that the zero-energy mode is essential to the conclusion. The existence of
the zero mode in the conjugation symmetric case is assured by the non-
trivial topology of the background field. The result is otherwise completely
general.

4. The Polyacetylene Story (Quantum Field Theory)

The quantum mechanical derivation that I just presented does not address
the question of whether the fractional half-integer charge is merely an unin-
teresting expectation value or whether it is an eigenvalue. To settle this, we
need a quantum field theory approach, that is we need to second quantize
the field. For this, we expand Ψ, which now is an anti-commuting quantum
field operator, in eigenmodes of our Dirac equation in the soliton sector as

Ψ =
E∑

(bE ψs
E + d†E ψ

s
−E) + aψ0

Ψ† =
E∑

(b†E ψ
s∗
E + dE ψ

s∗
−E) + a†ψ0. (10)

The important point is that while the finite energy modes ψs
±E enter with

annihilation particle (conduction band) operators bE and creation anti-
particle (valence band) operators d†E , the zero mode does not have a partner
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and is present in the sum simply with the operator a. The zero energy state
is therefore doubly degenerate. It can be empty | − >, or filled | + >, and
the a, a† operators are realized as

a | + >=| − >, a† | + >= 0, a | − >= 0, a† | + >=| + > . (11)

The charge operator Q =
∫
dxψ†ψ must be properly defined to avoid

infinities. This is done, according to Schwinger’s prescription in the vacuum
sector, by replacing the formal expression by

Q =
1
2

∫
dx (ψ†ψ − ψψ†). (12)

We adopt the same regularization prescription for the soliton sector and
insert our expansion (10) into (12). We find with the help of the orthonor-
mality of wave functions

Q =
1
2

∑
E

(b†E bE + dE d
†
E − bE b

†
E − d†E dE) +

1
2
(a†a− aa†)

=
∑
E

(b†E bE − d†E dE) + a†a− 1
2
. (13)

Therefore the eigenvalues for Q are

Q | − >= −1
2
|− >, Q | + >=

1
2
|+ > ! (14)

5. Conclusion

This then concludes my polyacetylene story, which has experimental realiza-
tion and confirmation. And the remarkable effect arises from the non-trivial
topology of the phonon field in the soliton sector.

Many other topological effects have been found in the field theoretic
descriptions of condensed matter and particle physics. Yet we must no-
tice that mostly these arise in phenomenological descriptions, not in the
fundamental theory. In condensed matter the fundamental equation is the
many-body Schrödinger equation with Coulomb interactions. This does
not show any interesting topological structure. Only when it is replaced by
effective, phenomenological equations do topological considerations become
relevant for the effective description. Fundamental (condensed matter) Na-
ture is simple!

Similarly in particle physics, our phenomenological, effective theories,
like the Skyrme model, enjoy a rich topological structure. Moreover, even
the Yang-Mills theory of our fundamental “standard particle physics model”
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supports non-trivial topological structure, which leads to the QCD vacuum
angle. In view of my previous observation, can we take this as indirect
evidence that thisYang-Mills based theory also is a phenomenological, ef-
fective description and at a more fundamental level – yet to be discovered –
we shall find a simpler description that does not have any elaborate math-
ematical structure. Perhaps in this final theory Nature will be described
by simple counting rules – like my first polyacetylene story. Surely this will
not be the behemoth of string theory.

This work is supported in part by funds provided by the U.S. Depart-
ment of Energy (D.O.E.) under cooperative research agreement DE-FC02-
94ER40818.

References

1. This research was performed in collaboration with C. Rebbi, and indepen-
dently by W.P. Su, J.R. Schrieffer and A. Heeger. For a summary see R.
Jackiw and J.R. Schrieffer “Solitons with Fermion number 1/2 in Condensed
Matter and Relativistic Field Theories” Nucl. Phys. B190, 253 (1981).

25



                   L.P. KADANOFF 



































                  G.A. SAWATZKY 

























                 R. SHANKAR 



1

The renormalization group and Fermi liquids

R.Shankar

Sloane Physics Lab

Yale University

New Haven CT 06520



Chapter 1

1.1 The RG: what, why and how

Imagine that you have some problem in the form of a partition function

Z(a, b) =
∫
dx
∫
dye−a(x2+y2)e−b(x+y)4 (1.1)

where a, b are the parameters.
First consider b = 0, the gaussian model. Suppose that you are just interested in x, say

in its fluctuations. Then you have the option of integrating out y and working with the new
partition function

Z(a) = N
∫
dxe−ax2

(1.2)

where N comes from doing the y-integration. We will ignore such an x-independent pre-
factor here and elsewhere since it will cancel in any averaging process.

Consider now the nongaussian case with b 6= 0. Here we have

Z(a′, b′...) =
∫
dx
[∫

dye−a(x2+y2)e−b(x+y)4
]

≡
∫
dxe−a

′
x
2

e−b
′
x
4
−c

′
x
6+... (1.3)

where a′, b′ etc., define the parameters of the effective field theory for x. These parameters
will reproduce exactly the same averages for x as the original ones. This evolution of param-
eters with the elimination of uninteresting degrees of freedom, is what we mean these days
by renormalization, and as such has nothing to do with infinities; you just saw it happen in
a problem with just two variables.

The parameters b, c etc., are called couplings and the monomials they multiply are called
interactions. The x2 term is called the kinetic or free-field term.

Notice that to get the effective theory we need to do a nongaussian integral. This can
only be done perturbatively. At the simplest tree Level, we simply drop y and find b′ = b. At
higher orders, we bring down the nonquadratic exponential and integrate in y term by term
and generate effective interactions for x. This procedure can be represented by Feynman
graphs in which variables in the loop are limited to the ones being eliminated.

Why do we do this? Because certain tendencies of x are not so apparent when y is around,
but surface to the top, as we zero in on x. For example, we are going to consider a problem in

2
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which x stands for low-energy variables and y for high energy variables. Upon integrating out
high energy variables a numerically small coupling can grow in size (or initially impressive
one diminish into oblivion), as we zoom in on the low energy sector.

This notion can be made more precise as follows. Consider the gaussian model in which
we have just a 6= 0. We have seen that this value does not change as y is eliminated since
x and y do not talk to each other. This is called a fixed point of the RG. Now turn on new
couplings or ”interactions” (corresponding to higher powers of x, y etc.) with coefficients b,
c and so on. Let a′, b′ etc., be the new couplings after y is eliminated. The mere fact that
b′ > b does not mean b is more important for the physics of x. This is because a′ could also
be bigger than a. So we rescale x so that the kinetic part, x2, has the same coefficient as
before. If the quartic term still has a bigger coefficient, (still called b′), we say it is a relevant
interaction. If b′ < b we say it is irrelevant. This is because in reality y stands for many
variables, and as they are eliminated one by one, the coefficient of the quartic term will run
to zero. If a coupling neither grows not shrinks it is called marginal.

There is another excellent reason for using the RG, and that is to understand the phe-
nomenon of universality in critical phenomena. I must regretfully pass up the opportunity
to explain this and refer you to Reference [1].

We will now see how this method is applied to interacting fermions in d = 2. Later we
will apply these methods to quantum dots.

1.2 The problem of interacting fermions

Consider a system of nonrelativistic spinless fermions in two space dimensions. The one
particle hamiltonian is

H =
K2

2m
− µ (1.4)

where the chemical potential µ is introduced to make sure we have a finite density of particles
in the ground state: all levels up the Fermi surface, a circle defined by

K2
F
/2m = µ (1.5)

are now occupied and occupying these levels lowers the ground-state energy.
Notice that this system has gapless excitations above the ground state. You can take an

electron just below the Fermi surface and move it just above, and this costs as little energy as
you please. Such a system will carry a dc current in response to a dc voltage. An important
question one asks is if this will be true when interactions are turned on. For example the
system could develop a gap and become an insulator. What really happens for the d = 2
electron gas?

We are going to answer this using the RG. Let us first learn how to do RG for nonin-
teracting fermions. To understand the low energy physics, we take a band of of width Λ on
either side of the Fermi surface. This is the first great difference between this problem and
the usual ones in relativistic field theory and statistical mechanics. Whereas in the latter
examples low energy means small momentum, here it means small deviations from the Fermi
surface. Whereas in these older problems we zero in on the origin in momentum space, here
we zero in on a surface. The low energy region is shown in Figure 1.1.
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K F 

Λ K F 
 

+ 

Λ K F - 

Figure 1.1: The low energy region for nonrelativistic fermions lies within the annulus con-
centric with the Fermi circle.

To apply our methods we need to cast the problem in the form of a path integral.
Following any number of sources, say [2] we obtain the following expression for the partition
function of free fermions:

Z0 =
∫
dψdψeS0 (1.6)

where

S0 =
∫
d2K

∫
∞

−∞

dωψ(ω,K)

(
iω − (K2 −K2

F
)

2m

)
ψ(ω,K) (1.7)

where ψ and ψ are called Grassmann variables. They are really weird objects one gets to
love after some familiarity. Most readers can assume they are ordinary integration variables.
The dedicated reader can learn more from Ref. [2].

We now adapt this general expression to the annulus to obtain

Z0 =
∫
dψdψeS0 (1.8)

where

S0 =
∫ 2π

0
dθ
∫

∞

−∞

dω
∫ Λ

−Λ
dkψ(iω − v k)ψ. (1.9)

To get here we have had to approximate as follows:

K2 −K2
F

2m
≃ KF

m
· k = vF k (1.10)

where k − K − KF and vF is the fermi velocity, hereafter set equal to unity. Thus Λ can
be viewed as a momentum or energy cut-off measured from the Fermi circle. We have also
replaced KdK by KFdk and absorbed KF in ψ and ψ. It will seen that neglecting k in
relation to KF is irrelevant in the technical sense.

Let us now perform mode elimination and reduce the cut-off by a factor s. Since this
is a gaussian integral, mode elimination just leads to a multiplicative constant we are not
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interested in. So the result is just the same action as above, but with |k| ≤ Λ/s. Let us now
do make the following additional transformations:

(ω′, k′) = s(ω, k)

(ψ′(ω′, k′), ψ
′

(ω′, k′)) = s−3/2(ψ(
ω′

s
,
k′

s
), ψ(

ω′

s
,
k′

s
)). (1.11)

When we do this, the action and the phase space all return to their old values. So what?
Recall that our plan is to evaluate the role of quartic interactions in low energy physics as we
do mode elimination. Now what really matters is not the absolute size of the quartic term,
but its size relative to the quadratic term. Keeping the quadratic term identical before and
after the RG action makes the comparison easy: if the quartic coupling grows, it is relevant;
if it decreases, it is irrelevant, and if it stays the same it is marginal. The system is clearly
gapless if the quartic coupling is irrelevant. Even a marginal coupling implies no gap since
any gap will grow under the various rescalings of the RG.

Let us now turn on a generic four-Fermi interaction in path-integral form:

S4 =
∫
ψ(4)ψ(3)ψ(2)ψ(1)u(4, 3, 2, 1) (1.12)

where
∫

is a shorthand: ∫
≡

3∏
i=1

∫
dθi

∫ Λ

−Λ
dki

∫
∞

−∞

dωi (1.13)

At the tree level, we simply keep the modes within the new cut-off, rescale fields, fre-
quencies and momenta , and read off the new coupling. We find

u′(k′, ω′, θ) = u(k′/s, ω′/s, θ) (1.14)

This is the evolution of the coupling function. To deal with coupling constants with
which we are more familiar, we expand the functions in a Taylor series (schematic)

u = uo + ku1 + k2u2... (1.15)

where k stands for all the k’s and ω’s. An expansion of this kind is possible since couplings
in the Lagrangian are nonsingular in a problem with short range interactions. If we now
make such an expansion and compare coefficients in Eqn. (1.14), we find that u0 is marginal
and the rest are irrelevant, as is any coupling of more than four fields. Now this is exactly
what happens in φ4

4, scalar field theory in four dimensions with a quartic interaction. The
difference here is that we still have dependence on the angles on the Fermi surface:

u0 = u(θ1, θ2, θ3, θ4)

Therefore in this theory we are going to get coupling functions and not a few coupling
constants.

Let us analyze this function. Momentum conservation should allow us to eliminate one
angle. Actually it allows us more because of the fact that these momenta do not come form
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Figure 1.2: Kinematical reasons why momenta are either conserved pairwise or restricted to
the BCS channel.

the entire plane, but a very thin annulus near KF . Look at the left half of Figure 1.2.
Assuming that the cutoff has been reduced to the thickness of the circle in the figure, it
is clear that if two points 1 and 2 are chosen from it to represent the incoming lines in a
four point coupling, the outgoing ones are forced to be equal to them (not in their sum, but
individually) up to a permutation, which is irrelevant for spinless fermions. Thus we have
in the end just one function of two angles, and by rotational invariance, their difference:

u(θ1, θ2, θ1, θ2) = F (θ1 − θ2) ≡ F (θ). (1.16)

About forty years ago Landau came to the very same conclusion[3] that a Fermi system
at low energies would be described by one function defined on the Fermi surface. He did
this without the benefit of the RG and for that reason, some of the leaps were hard to
understand. Later detailed diagrammatic calculations justified this picture [4]. The RG
provides yet another way to understand it. It also tells us other things, as we will now see.

The first thing is that the final angles are not slaved to the initial ones if the former
are exactly opposite, as in the right half of Figure 1.2. In this case, the final ones can be
anything, as long as they are opposite to each other. This leads to one more set of marginal
couplings in the BCS channel, called

u(θ1,−θ1, θ3,−θ3) = V (θ3 − θ1) ≡ V (θ). (1.17)

The next point is that since F and V are marginal at tree level, we have to go to one loop
to see if they are still so. So we draw the usual diagrams shown in Figure 3. We eliminate
an infinitesimal momentum slice of thickness dΛ at k = ±Λ.

These diagrams are like the ones in any quartic field theory, but each one behaves differ-
ently from the others and its its traditional counterparts. Consider the first one (called ZS)
for F . The external momenta have zero frequencies and lie of the Fermi surface since ω and
k are irrelevant. The momentum transfer is exactly zero. So the integrand has the following
schematic form:

δF ≃
∫
dθ
∫
dkdω

(
1

(iω − ε(K))

1

(iω − ε(K))

)
(1.18)
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Figure 1.3: One loop diagrams for the flow of F and V . The last at the bottom shows that a
large momentum Q can be absorbed only at two particular initial angles (only one of which
is shown) if the final state is to lie in the shell being eliminated.

The loop momentum K lies in one of the two shells being eliminated. Since there is no
energy difference between the two propagators, the poles in ω lie in the same half-plane and
we get zero, upon closing the contour in the other half-plane. In other words, this diagram
can contribute if it is a particle-hole diagram, but given zero momentum transfer we cannot
convert a hole at −Λ to a particle at +Λ. In the ZS’ diagram, we have a large momentum
transfer, called Q in the inset at the bottom. This is of order KF and much bigger than the
radial cut-off, a phenomenon unheard of in say φ4 theory, where all momenta and transfers
are bounded by Λ. This in turn means that the loop momentum is not only restricted in
the direction to a sliver dΛ, but also in the angular direction in order to be able to absorb
this huge momentum Q and land up in the other shell being eliminated (see bottom of Fig.
(1.3). So we have du ≃ dt2, where dt = dΛ/Λ. The same goes for the BCS diagram. Thus
F does not flow at one loop.

Let us now turn to the renormalization of V . The first two diagrams are useless for the
same reasons as before, but the last one is special. Since the total incoming momentum is
zero, the loop momenta are equal and opposite and no matter what direction K has, −K is
guaranteed to lie in the same shell being eliminated. However the loop frequencies are now
equal and opposite so that the poles in the two propagators now lie in opposite half-planes.
We now get a flow (dropping constants)
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dv(θ1 − θ3)

dt
= −

∫
dθv(θ1 − θ) v(θ − θ3) (1.19)

Here is an example of a flow equation for a coupling function. However by expanding in
terms of angular momentum eigenfunctions we get an infinite number of flow equations

dvm

dt
= −v2

m
. (1.20)

one for each coefficient. These equations tell us that if the potential in angular momentum
channel m is repulsive, it will get renormalized down to zero ( a result derived many years ago
by Anderson and Morel) while if it is attractive, it will run off, causing the BCS instability.
This is the reason the V ’s are not a part of Landau theory, which assumes we have no phase
transitions. This is also a nice illustration of what was stated earlier: one could begin with a
large positive coupling, say v3 and a tiny negative coupling v5. After much renormalization,
v3 would shrink to a tiny value and v5 would dominate.

1.3 Large-N approach to Fermi liquids

Not only did Landau say we could describe Fermi liquids with an F function, he also managed
to compute the response functions at small ω and q in terms of the F function even when
it was large, say 10, in dimensionless units. Again the RG gives us one way to understand
this. To this end we need to recall the the key ideas of ”large-N” theories.

These theories involve interactions between N species of objects. The largeness of N
renders fluctuations (thermal or quantum) small, and enables one to make approximations
which are not perturbative in the coupling constant, but are controlled by the additional
small parameter 1/N .

As a specific example let us consider the Gross-Neveu model[5] which is one of the sim-
plest fermionic large-N theories. This theory has N identical massless relativistic fermions
interacting through a short-range interaction. The Lagrangian density is

L =
N∑

i=1

ψ̄i 6∂ψi −
λ

N

( N∑
i=1

ψ̄iψi

)2

(1.21)

Note that the kinetic term conserves the internal index, as does the interaction term:
any index that goes in comes out. You do not have to know much about the GN model to
to follow this discussion, which is all about the internal indices.

Figure 1.4 shows the first few diagrams in the expression for the scattering amplitude
of particle of isospin index i and j in the Gross-Neveu theory. The “bare” vertex comes
with a factor λ/N . The one-loop diagrams all share a factor λ2/N2 from the two vertices.
The first one-loop diagram has a free internal summation over the index k that runs over N
values, with the contribution being identical for each value of k. Thus, this one-loop diagram
acquires a compensating factor of N which makes its contribution of order λ2/N , the same
order in 1/N as the bare vertex. However, the other one-loop diagrams have no such free
internal summation and their contribution is indeed of order 1/N2. Therefore, to leading
order in 1/N , one should keep only diagrams which have a free internal summation for every
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Figure 1.4: Some diagrams from large-N theory

vertex, that is, iterates of the leading one-loop diagram, which are called bubble graphs. For
later use remember that in the diagrams that survive (do not survive), the indices i and j
of the incoming particles do not (do) enter the loops. Let us assume that the momentum
integral up to the cutoff Λ for one bubble gives a factor −Π(Λ, qext), where qext is the external
momentum or frequency transfer at which the scattering amplitude is evaluated. To leading
order in large-N the full expression for the scattering amplitude is

Γ(qext) =
1

N

λ

1 + λΠ(Λ, qext)
(1.22)

Once one has the full expression for the scattering amplitude (to leading order in 1/N)
one can ask for the RG flow of the “bare” vertex as the cutoff is reduced by demanding that
the physical scattering amplitude Γ remain insensitive to the cutoff. One then finds (with
t = ln(Λ0/Λ))

dΓ(qext)

dt
= 0 ⇒ dλ

dt
= −λ2dΠ(Λ, qext)

dt
(1.23)

which is exactly the flow one would extract at one loop. Thus the one-loop RG flow is
the exact answer to leading order in a large-N theory. All higher-order corrections must
therefore be subleading in 1/N .

1.3.1 Large-N applied to Fermi liquids

Consider now the ψ̄ψ− ψ̄ψ correlation function (with vanishing values of external frequency
and momentum transfer). Landau showed that it takes the form

χ =
χ0

1 + F0

, (1.24)

where F0 is the angular average of F (θ) and χ0 is the answer when F = 0. Note that the
answer is not perturbative in F .

Landau got this result by working with the ground-state energy as a functional of Fermi
surface deformations. The RG provides us with not just the ground-state energy, but an
effective hamiltonian (operator) for all of low-energy physics. This operator problem can be
solved using large N -techniques.



CHAPTER 1. 10

The value of N here is of order KF/Λ, and here is how it enters the formalism. Imagine
dividing the annulus in Fig. (1.2) into N patches of size (Λ) in the radial and angular
directions. The momentum of each fermion ki is a sum of a ”large” part (O(kF )) centered
on a patch labelled by a patch index i = 1, ...N and a ”small” momentum (O(Λ) within the
patch[2].

Consider a four-fermion Green’s function, as in Figure (1.4). The incoming momenta are
labeled by the patch index (such as i) and the small momentum is not shown but implicit.
We have seen that as Λ → 0, the two outgoing momenta are equal to the two incoming
momenta up to a permutation. At small but finite Λ this means the patch labels are same
before and after. Thus the patch index plays the role of a conserved isospin index as in the
Gross-Neveu model.

The electron-electron interaction terms, written in this notation, (with k integrals re-
placed by a sum over patch index and integration over small momenta) also come with a
pre-factor of 1/N (≃ Λ/KF ).

It can then be verified that in all Feynman diagrams of this cut-off theory the patch index
plays the role of the conserved isospin index exactly as in a theory with N fermionic species.
For example in Figure (1.4) in the first diagram, the external indices i and j do not enter the
diagram (small momentum transfer only) and so the loop momentum is nearly same in both
lines and integrated fully over the annulus, i.e., the patch index k runs over all N values.
In the second diagram, the external label i enters the loop and there is a large momentum
transfer (O(KF )). In order for both momenta in the loop to be within the annulus, and
to differ by this large q, the angle of the loop momentum is limited to a range O(Λ/KF ).
(This just means that if one momentum is from patch i the other has to be from patch j.
) Similarly, in the last loop diagram, the angle of the loop momenta is restricted to one
patch. In other words, the requirement that all loop momenta in this cut-off theory lie in
the annulus singles out only diagrams that survive in the large N limit.

The sum of bubble diagrams, singled out by the usual large-N considerations, reproduces
Landau’s Fermi liquid theory. For example in the case of χ, one obtains a geometric series
that sums to give χ = χ0

1+F0
.

Since in the large N limit, the one-loop β-function for the fermion-fermion coupling is
exact, it follows that the marginal nature of the Landau parameters F and the flow of V ,
Eqn. (1.20), are both exact as Λ → 0.

A long paper of mine Ref. ([2]) explains all this, as well as how it is to be generalized
to anisotropic Fermi surfaces and Fermi surfaces with additional special features and con-
sequently additional instabilities. Polchinski [6] independently analyzed the isotropic Fermi
liquid (though not in the same detail, since it was a just paradigm or toy model for an
effective field theory for him).

This work was supported by NSF-DMR 0103639.



Bibliography

[1] M.E.Fisher Critical Phenomena, F. W. J. Hahne, Editor, Lecture Notes Number 186,
Springer-Verlag, Berlin, (1983). These notes are from the Engelbrecht Summer School
of 1983!

[2] R. Shankar, Physica A177, 530 (1991); R.Shankar, Rev. Mod. Phys. 66, 129 (1994).

[3] L. D. Landau, Sov. Phys. JETP 3, 920 (1956); Sov. Phys. JETP 5, 101 (1957).

[4] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, Dover Publications, New York, 1963.

[5] D. J. Gross and A. Neveu, Phys. Rev.D10, 3235 (1974).

[6] P.Polchinski In: TASI Elementary Particle Physics, ed by J. Polchinski and J.Harvey
(World Scientific, 1992.)

11



                  P.C.E. STAMP 



EUROPHYSICS LETTERS 

Europhys. Lett., 14 (6), pp. 569-574 (1991) 

15 March 1991 

Quasi-Particle Quantum Numbers 
in Two and Three Dimensions. 

P. c. E. STAMP 

Physics Department, University of British Columbia 
6224 Agricultural Rd., Vancouver, B.C., Canada V6T 2A6 

(received 18 July 1990; accepted in final form 11 January 1991) 

PACS. 67.40D - Quantum statistical theory; ground state, elementary excitations. 
PACS. 67.50D - Normal phase. 
PACS. 73.20D - Electron states in low-dimensional structures (inc. quantum wells, super- 

PACS. 74.70T - Heavy-fermion superconductors. 
lattices, layer structures and intercalation compounds). 

Abstract. - I t  is shown how quasi-particle quantum numbers may be defined and calculated for 
interacting Fermi systems in 2 and 3 dimensions. Exact results are given for charged and 
neutral Fermi systems, both normal and superfluid, in 3 dimensions, and for Cherns-Simons 
implementations of anion theories in 2 dimensions. The latter is applied to the fractional Hall 
effect. In all cases, the local quasi-particle quantum numbers vary continuously with 
interactions and/or temperature. 

There has been great interest recently in the possibility of exotic quasi-particle states in 
%dimensional Fermi systems. Such states are already known to exist in l-dimensional 
systems[1,2], and in the fractional quantum Hall effect (FQHE)[31, and many recent 
theories of high-T, superconductivity depend crucially on the existence of quasi-particles 
with precisely defined fractional quantum numbers [4]. 

However the definition and calculation of these quantum numbers (or <<charges>>) turn out 
to be full of surprises, even for 3-dimensional systems. Here a way of calculating both <<local>> 
and <<global>> charges will be given, along with exact results for a variety of systems. Apart 
from suggesting a number of interesting experiments, these calculations also considerably 
clarify the issues at stake in the discussion of exotic quasi-particles. 

Definition of quasi-particle charges. - Consider some 2- or 3-dimensional system 
composed of interacting fermions, and eigenstates labelled by quantum numbers {Ej}. The 
expectation value of some lpcal operator X(r ,  t )  acting on the system in a stateAI a ) ,  with one 
single quasi-particle, is ( X J r ,  t ) )  = (a lX(r ,  t ) ia ) .  The Fourier transform ( X J Q ) )  of this 
A:(&), the fully renormalized 3-point vertex describing interactions between the normalized 
<<quasi-particles. and the field X(Q)  (here Q = (q, U)). In general we shall deal with quasi- 
particle wave-packets IX)  , which can nevertheless be labelled using the conserved 
quantities {tj} of the system. 
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We now define the functions x z ( t )  for different <(charges. as 

where the system size L >> R, and we require R >> t Aplm, the free-particle wave-packet 
spread after time t (with momentum spread Ap); we also require Ar(t = 0) << R. The 4oca1 
quasi-particle charges, are given by Xkm = Xz( t  + m) (but still keeping R >> t Aplm, in this 
long-time limit), while the .global quasi-particle charges* X$Ob = X,(t + 0). Thus we see that 
#the ghbal charge X:lob refers to the expectation value of X ,  averaged over the entire system 
(or over a small part of it at short times). However the local charge X',.. refers to that part of 
thb charge that .stays together*, in a somewhat distorted and slowly spreading <<packet., 
as%me goes on. Note that the shape and size of this packet (which is really a density matrix) 
is different for each different quantum number (see below). The difference between Xkm and 
X:lob arises solely from interactions. 

3-dimensional systems. - It is very useful to start by considering some familiar 
examples. A neutral 3-dimensional Fermi liquid has l-quasi-particle states I pcr) , for which 

P ' S '  I 
L 

I 

(we consider wave-packets below). Here A:., is the bare 3-point vertex for quasi-particle 
interactions with the field X and T;:(Q) is the r e n o m l i x e d  on-shell quasi-particle T- 
matrix [5]. We assume that our initial quasi-particle energy cp. is considerably less than the 
typical fluctuation energies of the system (note cp. is a complex function of Cp. = ( p  - p;) I$; 
and cp. = &,. for very low cp. 151). 

We may then solve (2) using microscopic Fermi-liquid theory, in terms of the Landau 
parameters Ff, F f .  The techniques are standard [ 5 , 6 ] ,  but the results are actually rather 
surprising. Considering for example the fermion number density n,(Q), and taking only 
1 = 0, 1 parameters (as for 3He liquid), one finds that 

where ?j = w/qvF, and 6, =p.o. This very complex result contains all the details of the 
.decay down. of I p s ) ,  via particlehole and collective mode emission(l). However although 
the Fourier transform is also very unwieldy (it is in fact the generalization of the 1st-order 
calculation of ref. [7] to all orders in perturbation theory), the long- and short-time results 
are very simple. Thus one finds nilob = 1, whilst nkm = 1/(1+ Fi ) ;  and analogous calculations 
for spin and current give S$:b = (1/2) yha, ,Tilob =p/m,  but Sky = (1/2) yha/(l + Ff), and 
J p  =p/m( l  + 1/3F1) =p/m*. The difference between the global and local results describes 
<<charge>, that has escaped to (or been sucked in from) infinity. These fractions differ for each 
charge/quantum number, so that we have, e.g., <<partial spidcharge separation. at long 
times. Lest the reader doubt the applicability of our definitions here, it should be noted that 

(') The details of the calculations of X,(Q) and its Fourier transform XZ(r ,  t )  are technically 
interesting but very lengthy, and will be given in a longer paper. 
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the functions ( n,(Q)) , (Spu(Q)), etc., are nothing but the Landau distribution functions for 
density, spin, etc., since A,,(Q) solves the Landau-Boltzmann equation [61. Thus our 
definitions of local and global quasi-particle charges correspond simply to the local and global 
parts of the relevant Landau distribution functions-which are themselves simply 
expectation values Tr { p X a }  over the reduced density matrix p [5]. 

These results are easily generalized to globally neutral electronic systems, but with one 
subtlety. At very short times, the standard calculation of the 3-point vertex gives 
A,,(Q) = E-'(Q)~,,(Q),  where &(Q) is the .proper 3-point vertex. not containing direct 
Coulomb lines [6].  Now A,,(Q) describes a very localized electronic wave-packet, whose 
electric charge is not locally compensated. But the correct description of the quasi-particles 
at long times is given by A,,(Q), which satisfies the Landau-Silin equation; as is well known, 
this function describes, at long times, fermionic charge spread uniformly, thereby 
preserving local charge neutrality (cf. ref. [6]). Of course if we added electrons to the 
system, uncompensated by neutralizing charge, they would go to the walls [8]; but it is quite 
wrong to associate such excitations with quasi-particles, as usually defined. 

Partial spidcharge separation also occurs-a fraction F$(1+ Ff)- l  of the spin <<escapes to 
infinity,. Ff can be extracted from spin-wave measurements. 

. It is often assumed that the sharpness of quasi-particle charges may be restored if there 
are no gapless excitations. While this is often true in 1 dimension, it is incorrect in 3 
dimensions. Consider, e.g., a general singlet neutral superfluid. For short times one finds 
the usual results %$lob = (IuPI2 - lvPl2), = (1/2) yhu, and straightforward 
generalization of the method given above yields the long-time limits 

=p/m, and 

SE = ; yhuY(T)(l+ Ff Y(T))-1 , I (4) 

where Fij(T) and Y(T) are the matrix and scalar Yosida functions [9] for the appropriate gap 
function (s-wave, d-wave, etc.). Again partial (and only partial) spirdcharge separation 
occurs. Moreover this partial separation is not changed, if we add Coulomb interactions to 
the system-exactly as for the metal described above, quasi-particles are neutral in the 
long-time limit, and Sa: is still given by (4). Thus it is incorrect to regard the quasi-particles 
in 3-d superconductors as spinons [8]. 

In view of these results, one is led to ask how to properly define quasi-particle statistics. 
In 3-d systems this is normally done quite unambiguously via their global commutation 
relations [6]. This is equivalent to the global fermionic charge defined above, which is equal 
to unity for fermionic systems. The local fermionic charge d'," is not the same. In fact it 
corresponds to the Berry phase +, that one would obtain by slowly moving one quasi-particle 
around a second one, on a circle of radius R centered on the second (and with R >> t Aplm). 
The demonstration that q5, = 2mkw is then essentially the same as that in the anion literature 
(see, e.g., Arovas et al. [lo]), since the excess phase accumulated corresponds to the excess 
enclosed fermionic charge. However in 3 dimensions this Berry phase definition is somewhat 
artificial (since we can always deform the circle into a quite different curve, with a different 
+&, so it is best to stick to the definition of nbw given previously. 
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2 dimensions.  - Elementary consideration of the 2-particle scattering matrix for point 
particles shows that in 3 dimensions it is forced by undistinguishability and unitarity to take 
the form K(Q) =f(Q ff(fL2 + 7c). However in 2-d the more general 

m 

K(0) = 2 exp [2ian]f(e + 2xn) 
n=-Es 

is allowed [lo], yielding <<anions,, with statistics and fermionic charge a. This result follows 
for point particles when a # 0 because the diverging centrifugal force (as 1 rl - r2( + 0) 
prevents world lines from crossing. But how do we deal with quasi-particles, which are 
always smeared out in space? 

A common answer to this is to argue that, if the quasi-particles are widely separated, 
then the above argument (or its more rigorous braid group formulation [lo]) is still 
applicable, since world lines will then rarely cross. The argument would then justify a 
posteriori the use of Berry's phase to define quasi-particle statistics in, e.g., the fractional 
Hall effect (FQHE); it gives anions with fractional fermionic charge nl" = v = f 1421 + l), 
where 1 = 1,2, ..., and v is the Landau level filling fraction. At temperature T = 0 this result 
follows from Laughlin's wave function[3], and is easily shown using the methods above, 
since the charge does not spread at T = 0. Hence we find [3,10] that $p = 27rnp = 273. 

However at finite T things are more subtle. It has not yet been possible to generalize the 
Laughlin theory to finite T, but we can resort to the effective action theories that have been 
recently devised [ll]. The simplest versions of these have a Lagrangian density 

1 47: 
K 
2 ( i d ,  - e(Ao + a,)) - -(V - i ( eA  + a))' V' + p 1 ! # I 2  - A I TI4 - e2,~hVou, d,u,, (5 )  

where the fields Y(r ,  t )  can be interpreted, following Read [l l] ,  as the amplitude for finding 
a particle at (r,  t). At T = 0 the vortices in the <<statistical gauge field. uh(r, t ) ,  of form 
aA(r, t )  - (2 x ?)/er, collect a local charge nl" = v around themselves (note that AJr, t )  is the 
e.m. field). 

Now it might be assumed that, because there is an energy gap A = /3/A in this theory, the 
charge is bound to the vortex cores in <<sub-gap. states, as in superconducting vortices. But 
this is quite wrong. The eigenfunctions for (Y, Y+) in the presence of a single vortex are 
easily found, and have the form (for 7j! >> 1; = h/eB): 

where p = Ak, the quasi-particle energy E, 3 A ,  and m = 0, f 1, k 2, ... (we assume v < 1). 
Then there are no bound states, for any T (if v < l), and n'" arises entirely from continuum 
states. The situation is the same as that prevailing in (2 + 1)-dimensional QED [121, and 
indeed we could not have a fractional nl" if the states were bound! 

It is then revealing to calculate doc around a vortex at finite T. A simple Boltzmann 
average then promotes charge higher up these states, and assuming kT << A (the Lagrangian 
(5)  is unlikely to be meaningful otherwise), we find 

n'" = v ( 1 -  exp [- d/2kT]) (7) 

so that some charge has escaped (note that this result could also be obtained [l] by applying 
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trace identities to (5)). In a real FQHE system there will be corrections to this arising from 
other quasi-particles or quasi-holes-these have long-range interactions. Nevertheless (7) 
clearly shows that the T = 0 Berry phase definition of doc will eventually fail at finite T 
(although if we had a finite-T microscope generalization of Laughlin’s theory, presumably 
we could recover (7) as a Berry phase at finite T). 

Experimental tests. - Let us briefly examine what is possible here. Recent 
experimentsr131 have indicated how one may measure doc in the FQHE, and similar 
experiments should be capable of checking (7), thereby testing the effective action theories. 
A good way of testing the 3-d results in normal and superfluid 3He would be via ballistic 
quasi-particles experiments involving thin wires [14], since these experiments see n1OC (not 
npglob) for a quasi-particle <<wave-packet.. Similar experiments involving spin could be done 
by spin wave transmission (in metals or normal 3He). In superconductors a convenient 
method would be to make a ballistic point contact spectroscopic measurement (using a 
polarized tip, if one is interested in Sa-). Detailed discussion of such experiments will be 
given elsewhere. 

Thus, to conclude, we see that the useparation. of quasi-particle charges (i.e. the 
sometimes quite large differences between the local values of, e.g., spin and fermionic 
charge) is a quite general phenomenon in both 2 and 3 dimensions-as is the distinction 
between the local and global values of each charge. This phenomenon arises because of 
interactions in 3 dimensions, at any temperature; and in 2 dimensions, even if there are 
topological terms in the effective action which may enforce quantized local charges a t  T = 0, 
these constraints break down at finite T. These local charges are often accessible 
experimentally, in both 2 and 3 dimensions. 

* * *  
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2.1. Quantum environments

2.1.1. Extended environmental modes; oscillator baths

Research on the dynamics of polarons and related problems led Feynman in the early
1960s to a general discussion of the interaction of a quantum system with its background
environment. Feynman and Vernon (1963) considered the case where each environmental
mode coupled only weakly to the central system. Arguing that for this weak-coupling case,
the effect of any environment could be mapped to that of a set of oscillators, they treated a
model Hamiltonian in which a central system S, with generalised coordinates P;Q and
Hamiltonian H0ðP;QÞ, interacted with an environment E of oscillators with generalised
coordinates fpq; xqg and Hamiltonian Hosc

envðfpq; xqgÞ, via a simple bilinear coupling:

Hosc
eff ¼ H0 þH int þHosc

env; H intðQ; fxqgÞ ¼
XN

q¼1

cqxqQ. (1)

We assume that the entire HamiltonianHeff ðO0Þ is defined with an ultraviolet cutoff energy
O0. The important points to bear in mind here are:

(i) the oscillators have bosonic statistics, and typically represent delocalised modes,
extending over the whole region of the environment. Typical examples are phonons,
magnons, electron–hole pairs, or photons, which are wave-like oscillations of some
background field. These are the low-energy modes of the environment—at higher
energies the model usually breaks down;

(ii) the couplings fcqg are weak—in fact cq�OðN�1=2Þ, where N is the number of low-
energy environmental modes (N is thus proportional to the size of the environmental
domain). This typically follows because we must normalise the oscillator wave
functions (so they are �OðN�1=2Þ). Typically N is very big, so that mathematical
treatments often just adopt the ‘thermodynamic limit’ N ! 1. Since the effect of each
oscillator to second order is �jcqj2�Oð1=NÞ, their total effect is then independent of N,
as it should be in this limit. Thus each oscillator is only very weakly affected by the
system, but the system may be quite strongly affected by the oscillators.

Curiously, the work of Feynman and Vernon had no impact whatsoever on the discussion
of quantum measurements or decoherence for two decades—possibly because it was
phrased in the then unfamiliar language of path integrals, and because the community
working on the foundations of quantum mechanics was less interested at that time in
detailed models.

At the beginning of the 1980s Caldeira and Leggett (1983) introduced a somewhat
generalised Feynman–Vernon model, in which the coupling

P
qcqxqQ was replaced by

Hosc
int ¼

XN

q¼1

½FqðQÞxq þ GqðPÞpq�. (2)

The Hamiltonians (1) and (2) are effective ones, which means amongst other things that
the couplings cq;Fq, and Gq, the oscillator frequencies oq, and even the system
Hamiltonian H0 depend not only on the UV cutoff O0 but also on the bath temperature
T. This may seem strange to some (particularly readers more at home with the models used
in particle physics). Recall however that all Hamiltonians in physics are effective ones,
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written in a quantum system in terms of operators defined over some restricted Hilbert
space, depending implicitly or explicitly on energy cutoffs, temperature, and possibly other
boundary conditions.8 It is only when dealing with a very rarified medium that one can
ignore these complexities.
Caldeira and Leggett gave arguments for the very general applicability of such effective

Hamiltonians to systems at low energy (along with specific application to superconducting
SQUIDs). Consider some arbitrary environment, with eigenstates faðXÞ and eigenenergies
�a defined over the environment’s full multi-dimensional coordinate space X. Assume the
system interacts with this environment via some interaction V ðQ;XÞ. Then the arguments
go as follows:

(a) Certainly we can recover an oscillator bath model if the coupling between different
eigenstates induced by the interaction V ðQ;XÞ is weak, i.e., under the Feynman–
Vernon condition that

jVabj5jð�a � �bÞj (3)

for all relevant environmental states, where V ab ¼ R
dXf�

aðXÞV ðQ;XÞfbðXÞ. The
oscillator modes then correspond to the transitions between these states, and
oq � ð�a � �bÞ.

(b) However, even if the weak-coupling condition is not obeyed, we can use a
Born–Oppenheimer argument to derive a similar criterion. We first define adiabatic
environmental eigenstates ~faðX;QÞ and eigenenergies ~�aðQÞ, which depend on the
instantaneous system coordinate Q. Now suppose that these states have a fast

dynamics compared to the slower dynamics of the system coordinate Q (formally, that
if Q moves on a frequency scale E0, then E05~�a). One then defines a fake ‘gauge
potential’ Aab, describing the effect of the slowly changing Q on the bath modes, given
by iAab ¼ R

dX ~f
�
aðXÞq=qQ ~fbðXÞ; there is no reference to the original interaction

between Q and the bath modes, because this has already been incorporated into the
renormalised ~�a. Standard manoeuvres then show that we can make a mapping to an
oscillator bath provided

jAabj5jð~�a � ~�bÞj (4)

for all the relevant modes. If (4) is satisfied, then the oscillators now describe
transitions between the new adiabatic bath modes, with frequencies oq � ð~�a � ~�bÞ; and
one can also derive the couplings Fq;Gq in terms of the gauge coupling in (4).

(c) Leggett et al. then argued that the low-T, low-energy quantum dynamics of such a
system could be related to its higher T dissipative classical dynamics (cf. Fig. 1). From
the classical dissipative dynamics one infers a low-energy effective Hamiltonian
(having the form (1), with the generalised interaction in (2)); in particular, one finds
the form of the couplings in (2). This is crucially important—instead of trying to derive
the form of Heff from some theory (a move which is always open to criticism given the
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huge complexity of large systems), one instead infers it directly from experiment.9 One
then derives the quantum dynamics of the system from this effective Hamiltonian.

At first glance the assumptions behind the oscillator bath model seem restrictive—small
oscillations and weak coupling to each mode, use of a Born–Oppenheimer approximation,
etc. However appearances are deceptive—oscillator bath models are quite robust in the
real world. A large class of effective Hamiltonians (sometimes called a universality class),
which will describe many physical systems, can be mapped to models of the oscillator bath
type (Dubé & Stamp, 2001). Examples include: (i) itinerant fermion baths (e.g., a bath of
interacting conduction electrons), in three, two or one dimensions; (ii) systems having
weak higher-order ‘anharmonic’ couplings to extended bath modes—these can be
absorbed into modified couplings to a new set of oscillators (the couplings and oscillator
frequencies now being very strongly T-dependent); and (iii) systems where bath modes are
strongly coupled to the system, provided the condition (4) is not violated (i.e., provided the
effective coupling between two environmental states goes to zero fast enough as one
reduces the energy difference between them). It is worth remarking here on a point
which is crucially important for decoherence. The reduction in the strength of coupling to
oscillator bath modes at low energies is a general feature of extended environmental
states, whose density of states always goes down with energy, because of decreasing
available phase space volume. This means that at as one lowers energies and temperatures
towards zero, we can naively expect the decoherence from oscillator baths to also decrease
to zero.

We have seen that oscillator bath models of quantum environments are thus much more
general than is often assumed in the literature. However they certainly cannot always
work, and they clearly fail in many solid-state systems at low temperatures. In order to
understand why, we make a little diversion into the real world of low-energy physics.
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Fig. 1. The epistemological connection between the observable classical (usually high-temperature) dynamics and

the low-temperature quantum dynamics (often not so easy to observe), for a system with many degrees of

freedom. Both can be derived from the correct quantum effective Hamiltonian. Often (as in the approach of

Caldeira and Leggett) one infers the quantum Hamiltonian from experiments on the classical behaviour.

9In Caldeira–Leggett theory, the interaction between system and environment is summarised in a ‘spectral

function’ Jðo;TÞ, a function of frequency and temperature. If the Caldeira–Leggett effective Hamiltonian applies

to some physical system, and if one knows Jðo;TÞ, then the behaviour can be derived theoretically in both

classical and quantum regimes. More typically, one infers Jðo;TÞ from the classical and/or quantum behaviour in

experiments.
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2.1.2. Interlude: real condensed matter

Condensed matter is all around us—we are directly aware of little else. All measuring
systems are made from condensed matter. It is clearly messy, and complex structures and
order are evident everywhere (not least in living things). As a result, except for the He
liquids (which go superfluid at low T and which can be made in essentially completely pure
form) and rarified gases and plasmas, the low-energy effective Hamiltonians of real

condensed matter systems are extraordinarily subtle (and very far from the descriptions
usually given in student textbooks). There is a common misunderstanding that these
subtleties have to do with ‘dirt’ effects (the ‘squalid state’, in Pauli’s famous phrase). In fact
they are mostly intrinsic, for the following reasons (footnote 8):

(i) Topology. Many-particle wave-functions have topological properties which restrict
and sometimes control the dynamics. This often leads to new branches of low-energy
‘topological excitations’, with their counterpart in the effective Hamiltonian
(Thouless, 1998).

(ii) Lattices þ interactions. In solids, electrons are constrained to move between different
atomic orbitals. Strong repulsive interactions between electrons can prevent more than
one particle per orbital, imposing a highly non-trivial structure on the Hilbert space of
the effective Hamiltonian and even causing the low-energy states to localise.

(iii) Boundaries or edges. All systems have boundaries. In conjunction with long-range
forces and/or the topological properties of wave-functions, the boundaries and the
states localised near them can control the low-energy properties of the whole system.

(iv) Frustration. Interactions between two different pairs of particles or spins are often
‘incompatible’ (i.e., lead to contradictory effects on any one of the particles). The
result is typically a large number of almost degenerate low-energy states which hardly
communicate.10 The system can never reach its putative ground state (which then
becomes a mere mathematical chimera). Because of frustration, most pure solids,
without impurities, are intrinsically disordered. States pile up at low energies—many
of these low-energy states are localised (footnote 10).

Clearly none of these effects come from ‘junk’ or ‘dirt’; moreover, because they arise
from very general mechanisms, they lead to effects that are ubiquitous in low-temperature
experiments. These include peculiar structure in the low-energy density of states, complex
and often non-linear long-time relaxation phenomena, including ‘glassy’ behaviour (the
freezing out of dynamics caused by frustration), increasingly subtle kinds of quantum
ordering as one lowers the temperature, etc. Over the last four decades a phenomenological
description has emerged for these low-energy phenomena, in terms of a set of low-energy
discrete modes (i.e., each having a discrete finite set of states, often only two, in the energy
range of interest), appropriate to localised states (Anderson, 1994; Binder & Young, 1986;
Esquinazi, 1998; Mézard et al., 1987). These states interact both amongst themselves, and
with the extended ‘oscillator modes’. Thus one ends up with a low energy description in
terms of a set of interacting ‘two-level systems’; usually the interactions are fairly weak,
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although they can have important effects. There is certainly no universal agreement about
this picture (Yu & Leggett, 1988), but in many cases there is extensive evidence that it gives
a good description of the low-energy physics (Anderson, 1994; Binder & Young, 1986;
Esquinazi, 1998; Mézard et al., 1987). I emphasise again that these effects are pretty much
universal in solids, although their effects are sometimes not obvious until very low
temperatures. Their effects on ordinary transport and other dissipative properties can be
very small (making them almost invisible at higher temperatures), but we shall see that
their contribution to decoherence can be very large.

One is often met by surprise at this situation. How, it is asked, can a simple solid show
such ‘pathological behaviour’, when after all it is made up electrons, protons, etc., which
can be described by a simple continuum theory having none of these complexities? The
fallacy in this argument is the assumption that the effective Hamiltonian of a composite
system will somehow be analysable into that of its constituents.11 This is not true—the
effective theory of the constituents is still an effective theory, applicable only in a certain
energy range and assuming a restricted Hilbert space. For this reason neither the
vacuum nor the low-energy eigenstates of the high-energy Hamiltonians used in particle
physics look anything like a condensed matter system (even though this is physically what
a high-energy system becomes if it is cooled!). In many real solids, an infinite hierarchy of
effective Hamiltonians, ever more complex, is expected as one lowers the energy scale
(footnote 8), and we only have a dim understanding of what their structure might be. In
other words, we do not really understand the basic structure of the lowest energy states
or Hilbert spaces of most many-body systems. An understanding of this low-energy
structure is one of the holy grails of condensed matter physics—in many ways it seems
more elusive now than it did 30–40 (or even 100) years ago. One hundred years ago,
with the vindication of the atomic hypothesis, but before quantum mechanics, a simple
reductionist view of condensed matter looked very reasonable. Thirty to forty years
ago, a unification of methods between quantum field theory and condensed matter physics
looked imminent—the Ginzburg–Landau–Wilson theory of phase transitions, and the
BCS theory of superconductivity, were shaping much of modern particle theory. This
unification has happened, but only in the study of ‘simple’ systems. For a more realistic
perspective see Anderson (1994), Binder and Young (1986), Esquinazi (1998) and Mézard
et al. (1987).

If some day we ever have a ‘‘complete theory of everything’’, with a ‘universal
Hamiltonian’ whose eigenstates (including the ground state) represent the real states of the
universe, over all energy scales, then we would presumably find that the low-energy states
of this Hamiltonian contain the full complexity of real condensed matter. Right now we
have little idea if such a theory would even be meaningful (it is perhaps more likely that the
whole Hamiltonian structure will be replaced by something more fundamental). We
certainly have not the slightest idea whatsoever what it would look like. Current efforts
towards progress range from theory at supra-Planck scale energies, to the exploration of
coherence phenomena at temperatures below 10�9 K.

ARTICLE IN PRESS

11It is commonly argued that the ‘complexity’ of low-energy physics comes only from the large number of

constituents (this is certainly the point of view of ‘reductionists’). This argument is refuted in a well-known paper

by Anderson (1972), which inspired a very large subsequent literature.

P.C.E. Stamp / Studies in History and Philosophy of Modern Physics 37 (2006) 467–497 475



2.1.3. Localised modes: spin baths

We return now to the question at hand, which is to understand the sources of
decoherence at low energies in real condensed matter systems. The importance of the
previous discussion is that we now see we must deal with the large number of low-energy
localised states existing in solids, or more generally, low-energy modes having a finite
Hilbert space, with discrete excitations. The general nature of these was described above;
they include the eigenstates of nuclear spins, of topological defects, and of various more
subtle modes associated with frustration, boundaries, and intrinsic disorder. In any real
system there will also be ‘junk’ effects, coming from paramagnetic impurities, ‘charge trap’
excitations, etc. In many systems we may not know exactly what these discrete modes are,
but as noted above, their presence is often very obvious in experiments (Anderson, 1994;
Binder & Young, 1986; Esquinazi, 1998; Mézard et al., 1987).
Now one can always map a system having a set of M discrete states to a spin system,

with spin s, such that 2sþ 1 ¼ M. Thus we can in all cases describe an environment of
these states as a ‘spin bath’ (Prokof’ev & Stamp, 2000). Spin baths have the following
general characteristics:

(i) The generic model for a quantum system interacting with a spin bath (corresponding to
the generic oscillator bath model defined by Eqs. (1) and (2)) has the effective
Hamiltonian:

H
sp
eff ðO0Þ ¼ H0 þH

sp
int þHsp

env, (5)

where H0ðP;QÞ describes the system as before; but now the interaction term is a vector
coupling to a set of ‘spins’ frkg (which for simplicity we take here to be two-level
systems, i.e., spin-1

2
systems):

H
sp
int ¼

XNs

k

FkðP;QÞ � rk, (6)

and the spin bath Hamiltonian itself has the form:

Hsp
env ¼

XNs

k

hk � rk þ
XNs

k;k0
V

ab
kk0s

a
ks

b
k0 , (7)

with a set of external fields fhkg, and interspin interactions Vkk0 . The generalisation of
this model to bath modes having M42 discrete states is straightforward.

(ii) Each bath ‘spin’ interacts only weakly with its compatriots—formally we require that
fjFkjgbjVkk0 j. If the frkg describe localised modes, this is quite typical. The different
bath excitation wave-functions do not overlap and can only communicate via weak
long-range interactions Vkk0 , whereas there is nothing limiting the size of the fjFkjg
(which are no longer �Oð1=N1=2Þ). The bath dynamics is then under the direct control
of the central system (note that inequality (4) is now violated), with its own ‘intrinsic
dynamics’ playing second fiddle. Recall that this is exactly opposite to the oscillator
bath system, where the intrinsic dynamics of the oscillator bath is only weakly
perturbed by the central system, because the oscillator frequencies foqg are much larger
than either the fcqg or the Fq;Gq in (2). This situation is illustrated in Fig. 2.
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Clearly under some circumstances we can map the spin bath onto an oscillator bath. For
example, if the interactions Vkk0 are strong (i.e., if fjFkjgojVkk0 j and if jhkjojVkk0 j), then
the bath spins can couple together to form extended ‘spin waves’, and H

sp
eff ðO0Þ then maps

back to a Caldeira–Leggett model. If the central system dynamical energy scale E0bjFkj,
then one goes to an anti-adiabatic (or ‘anti-Born–Oppenheimer’) limit, in which the
system–bath couplings can be treated perturbatively. One can give more complete criteria
for the mapping of spin baths to oscillator baths (Prokof’ev & Stamp, 2000), which we see
must also involve the static fields fhkg.

In real physical systems the coupling energies jFkj and static field strengths fjhkjg are
often spread over a very wide range, particularly in systems with frustration, disorder or
impurities (note that ‘impurities’ include nuclear spins, which are almost everywhere; they
live in some finite fraction of the nuclei of almost all the elements in solids). We cannot
then use either or a Born–Oppenheimer or an anti-Born–Oppenheimer approximation,
there are many environmental modes which must be treated directly as localised modes.
Because these modes then have characteristic frequencies similar to those of the central
system we are interested in, they cause a lot of decoherence.

2.2. Bath-induced decoherence and relaxation

Although the detailed calculation of the dynamics of decoherence is a complicated
business, many of the main points can be understood by simple (although qualitative)
arguments.

As noted earlier, in the early development of this subject, the idea of decoherence was
very much bound up with quantum measurements. Decoherence was, in effect, viewed as a
process in which the environment E ‘measured’ the state of the system S being decohered,
via a transition

X

j

cjcjF0 !
X

j

cjwjFj, (8)
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Fig. 2. The ‘spin bath’ environment—a set of satellite spins couples to the central quantum system of interest. The

spins typically represent localised modes (not necessarily spins!) in the environment, each with a finite Hilbert

space (often two-dimensional). The coupling between spins is weak compared to the coupling of each to the

central system.
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on this issue and that it was a matter of taste.

4.2 The Boltzmann equation and H-theorem (1872)

In 1872 Boltzmann published one of his most important papers. It contained two celebrated results

nowadays known as the Boltzmann equation and the H-theorem. The latter result was the basis of

Boltzmann’s renewed claim to have obtained a general theorem corresponding to the Second Law.

This paper has been studied and commented upon by numerous authors, and an entire translation of

the text has been provided by (Brush 1966). Thus, for the present purposes, a succinct summary of the

main points might have been sufficient. However, there is still dispute among modern commentators

about its actual content.

The issue at stake in this dispute is the question whether the results obtained in this paper are

presented as necessary consequences of the mechanical equations of motion, or whether Boltzmann

explicitly acknowledged that they would allow for exceptions. Klein has written:

I can find no indication in his 1872 memoir that Boltzmann conceived of possible excep-

tions to the H-theorem, as he later called it (Klein 1973, p. 73).

Klein argues that Boltzmann only came to acknowledge the existence of such exceptions thanks to

Loschmidt’s critique in 1877. An opposite opinion is expressed by von Plato (1994). Calling Klein’s

view a “popular image”, he argues that, already in 1872, Boltzmann was well aware that his H-

theorem had exceptions, and thus “already had a full hand against his future critics”. Indeed, von

Plato states that

Contrary to a widely held opinion, Boltzmann is not in 1872 claiming that the Second

Law and the Maxwellian distribution are necessary consequences of kinetic theory (von

Plato 1994, p. 81).

So it might be of some interest to try and settle this dispute.

Boltzmann (1872) starts with an appraisal of the role of probability theory in the context of gas

theory. The number of particles in a gas is so enormous, and their movements are so swift that we

can observe nothing but average values. The determination of averages is the province of probability

calculus. Therefore, “the problems of the mechanical theory of heat are really problems in probability

calculus” (Abh. I, p. 317). But, Boltzmann says, it would be a mistake to believe that the theory of

heat would therefore contain uncertainties.

He emphasizes that one should not confuse incompletely proven assertions with rigorously de-

rived theorems of probability theory. The latter are necessary consequences of their premisses, just

like in any other theory. They will be confirmed by experience as soon as one has observed a suf-

ficiently large number of cases. This last condition, however, should be no significant problem in
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the theory of heat because of the enormous number of molecules in macroscopic bodies. Yet, in this

context, one has to make doubly sure that we proceed with the utmost rigour.

Thus, the message expressed in the opening pages of this paper seems clear enough: the results

Boltzmann is about to derive are advertised as doubly checked and utterly rigorous. Still, they are

theoretical. Their relationship with experience might be less secure, since any probability statement is

only reproduced in observations by sufficiently large numbers of independent data. Thus, Boltzmann

would have allowed for exceptions in the relationship between theory and observation, but not in the

relation between premisses and conclusion.

He continues by saying what he means by probability, and repeats its equivocation as a fraction

of time and the relative number of particles that we have seen earlier in 1868:

If one wants [. . . ] to build up an exact theory [. . . ] it is before all necessary to determine

the probabilities of the various states that one and the same molecule assumes in the

course of a very long time, and that occur simultaneously for different molecules. That is,

one must calculate how the number of those molecules whose states lie between certain

limits relates to the total number of molecules (Abh. I p. 317).

However, this equivocation is not vicious. For most of the paper the intended meaning of probability

is always the relative number of molecules with a particular molecular state. Only at the final stages

of his paper (Abh. I, p. 400) does the time-average interpretation of probability (suddenly) recur.

Boltzmann says that both Maxwell and he had attempted the determination of these probabilities

for a gas system but without reaching a complete solution. Yet, on a closer inspection, “it seems not

so unlikely that these probabilities can be derived on the basis of the equations of motion alone...”

(Abh. I, p. 317). Indeed, he announces, he has solved this problem for gases whose molecules consist

of an arbitrary number of atoms. His aim is to prove that whatever the initial distribution of state in

such a system of gas molecules, it must inevitably approach the distribution characterized by the

Maxwellian form (ibid. p. 320).

The next section specializes to the simplest case of monatomic gases and also provides a more

complete specification of the problem he aims to solve. The gas molecules are contained in a fixed

vessel with perfectly elastic walls. They interact with each other only when they approach each other

at very small distances. These interactions can be mimicked as collisions between elastic bodies.

Indeed, these bodies are modeled as hard spheres (Abh I, p. 320). Boltzmann represents the state

of the gas by a time-dependent distribution function ft(�v), called the “distribution of state”, which

gives us, at each time t, the relative number of molecules with velocity between �v and �v + d3�v.29

He also states two more special assumptions:

29Actually Boltzmann formulated the discussion in terms of a distribution function over kinetic energy rather than velocity.
I have transposed this into the latter, nowadays more common formulation.
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1. Already in the initial state of the gas, each direction of velocity is equally probable. That is:

f0(�v) = f0(v). (47)

It is assumed as obvious that this will also hold for any later time.

2. The gas is spatially uniform within the container. That is, the relative number of molecules

with their velocities in any given interval, and their positions in a particular spatial region R

does not depend on the location of R in the available volume.

The next and crucial assumption used by Boltzmann to calculate the change in the number of particles

with a velocity �v1 per unit time, is the Stoßzahlansatz, (29) and (30).

For modern readers, there are also a few unstated assumptions that go into the construction of

this equation. First, the number of molecules must be large enough so that the (discrete) distribution

of their velocities can be well approximated by a continuous and differentiable function f . Secondly,

f changes under the effect of binary collisions only. This means that the density of the gas should be

low (so that three-particle collisions can be ignored) but not too low (which would make collisions

too infrequent to change f at all). These two requirements are already hard enough to put in a

mathematically precise form. The modern explicitation is that of taking the so-called Boltzmann-

Grad limit (cf. paragraph 6.4). The final (unstated) assumption is that all the above assumptions

remain valid in the course of time.

He addresses his aim by constructing a differentio-integral evolution equation for ft, by taking

the difference of (29) and (30) and integrating over all variables except �v1 and t. The result (in a

modern notation) is the Boltzmann equation:

∂ft(�v1)
∂t

= N

∫ d

0

bdb

∫ 2π

0

dφ

∫
R3
d3�v2 ‖�v2 − �v1‖

(
ft(�v1

′)ft(�v2
′) − ft(�v1)ft(�v2)

)
(48)

which describes the change of f in the course of time, when this function at some initial time is

given. (Recall from paragraph 3.3 that the primed velocities are to be thought of as functions of the

unprimed velocities and the geometrical parameters of the collision: �v′i = �vi
′(�v1, �v2, b, φ), and d

denotes the diameter of the hard spheres.)

4.2.1 The H-theorem

Assuming that the Boltzmann equation (48) is valid for all times, one can prove, after a few well-

known manipulations, that the following quantity

H[ft] :=
∫
ft(�v) ln ft(�v)d3�v (49)
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decreases monotonically in time, i.e.
dH[ft]
dt

≤ 0; (50)

as well as its stationarity for the Maxwell distribution, i.e.:

dH[ft]
dt

= 0 (∀t) iff ft(v) = Ae−Bv2
. (51)

Boltzmann concludes Section I of the paper as follows:

It has thus been rigorously proved that whatever may have been the initial distribution

of kinetic energy, in the course of time it must necessarily approach the form found by

Maxwell. [. . . ] This [proof] actually gains much in significance because of its applica-

bility to the theory of multi-atomic gas molecules. There too, one can prove for a certain

quantity [H] that, because of the molecular motion, this quantity can only decrease or

in the limiting case remain constant. Thus, one may prove that because of the atomic

movement in systems consisting of arbitrarily many material points, there always ex-

ists a quantity which, due to these atomic movements, cannot increase, and this quantity

agrees, up to a constant factor, exactly with the value that I found in [(Boltzmann 1871c)]

for the well-known integral
∫
dQ/T .

This provides an analytical proof of the Second Law in a way completely different from

those attempted so far. Up till now, one has attempted to proof that
∫
dQ/T = 0 for

a reversible (umkehrbaren) cyclic30 process, which however does not prove that for an

irreversible cyclic process, which is the only one that occurs in nature, it is always nega-

tive; the reversible process being merely an idealization, which can be approached more

or less but never perfectly. Here, however, we immediately reach the result that
∫
dQ/T

is in general negative and zero only in a limit case... (Abh. I, p. 345)

Thus, as in his 1866 paper, Boltzmann claims to have a rigorous, analytical and general proof

of the Second Law. From our study of the paper until now, (i.e. section I) it appears that Klein’s

interpretation is more plausible than von Plato’s. I postpone a further discussion of this dispute to

paragraph 4.2.3, after a brief look at the other sections of the paper.

4.2.2 Further sections of Boltzmann (1872)

Section II is entitled “Replacement of integrals by sums” and devoted to a repetition of the earlier

arguments, now assuming that the kinetic energies of the molecules can only take values in a discrete

30The term “cyclic” is missing in Brush’s translation, although the original text does speak of “Kreisprozeß”. The special
notation

H
for cyclic integrals was not introduced until much later.
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set {0, ε, 2ε, . . . , pε}. Boltzmann shows that in the limit ε −→ 0, pε −→ ∞ the same results are

recovered.

Many readers have been surprised by this exercise, which seems rather superfluous both from a

didactic and a logical point of view. (However, some have felt that it foreshadowed the advent of

quantum theory.) Boltzmann offers as motivation for the detour that the discrete approach is clearer

than the previous one. He argues that integrals only have a symbolic meaning, as a sum of infinitely

many infinitesimal elements, and that a discrete calculation yields more understanding. He does not

argue, however, that it is closer to physical reality. Be that as it may, the section does eventually take

the limit, and recovers the same results as before.

The third section treats the case where the gas is non-uniform, i.e., when condition 2 above is

dropped. For this case, Boltzmann introduces a generalized distribution function ft(�r,�v), such that

ftd
3�rd3�v represents the relative number of particles with a position in a volume element d3�r around

�r and a velocity in an element d3�v around �v.

He obtains a corresponding generalized Boltzmann equation:

∂ft(�r,�v)
∂t

+ �v · ∇xft +
�F

m
· ∇vft =

N

∫
bdbdφd3�v2 ‖�v2 − �v1‖

(
ft(�r,�v′1))ft(�r,�v′2) − ft(�r,�v1))ft(�r,�v2)

)
(52)

where �F denotes an external force field on the gas. The quantity H now takes the form H[ft] :=∫
ft(�r,�v)d3�rd3�v; and a generalization of the H-theorem dH/dt ≤ 0 is obtained.

The last three sections are devoted to polyatomic molecules, and aim to obtain generalized re-

sults for this case too. The key ingredient for doing so is, of course, an appropriately generalized

Stoßzahlansatz. The formulation of this assumption is essentially the same as the one given in his

paper on poly-atomic molecules (1871a), which was later shown wrong and corrected by Lorentz. I

will not go into this issue (cf. Lorentz 1887, Boltzmann 1887b, Tolman 1938).

An interesting passage occurs at the very end of the paper, where he expands on the relationship

between H and entropy. He considers a monatomic gas in equilibrium. The stationary distribution

of state is given as:

f∗(�r,�v) = V −1

(
3m
4πT

)3/2

exp(
−3mv2

4T
) (53)

where V is the volume of the container. (Note that in comparison with (27), Boltzmann adopts units

for temperature that make k = 2/3.) He shows that

H[f∗] :=
∫
f∗ log f∗dxdv = −N log V

(
4πT
3m

)3/2

− 3
2
N ; (54)

which agrees (assuming S = −kNH[f∗]) with the thermodynamical expression for the ideal gas
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(16) up to an additive constant. A similar result holds for the polyatomic gas.

4.2.3 Remarks and problems

1. The role of probability. As we have seen, the H-theorem formed the basis of a renewed claim

by Boltzmann to have obtained a theorem corresponding to the full Second Law (i.e. including both

parts) at least for gases. A main difference from his 1866 claim, is that he now strongly empha-

sizes the role of probability calculus in his derivation. It is clear that the conception of probability

expounded here is thoroughly frequentist and that he takes ‘the laws of probability’ as empirical

statements. Furthermore, probabilities can be fully expressed in mechanical terms: the probability

distribution f is nothing but the relative number of particles whose molecular states lie within cer-

tain limits. Thus, there is no conflict between his claims that on the one hand, “the problems of

the mechanical theory of heat are really problems in probability calculus” and that the probabilities

themselves are derived on the basis of the equations of motion alone, on the other hand. Indeed, it

seems to me that Boltzmann’s emphasis on the crucial role of probability in this paper is only in-

tended to convey that probability theory provides a particularly useful and appropriate language for

discussing mechanical problems in gas theory. There is no indication in this paper yet that probability

theory could play a role by furnishing assumptions of a non-mechanical nature, i.e., independent of

the equations of motion (cf. Boltzmann & Nabl 1904, p. 520).

2. The role of the Stoßzahlansatz. Note that Boltzmann stresses the generality, rigour and “an-

alyticity” of his proof. He puts no emphasis on the special assumptions that go into the argument.

Indeed, the Stoßzahlansatz, later identified as the key assumption that is responsible for the time-

asymmetry of the H-theorem, is announced as follows

The determination [of the number of collisions] can only be obtained in a truly tedious

manner, by consideration of the relative velocities of both particles. But since this con-

sideration has, apart from its tediousness, not the slightest difficulty, nor any special

interest, and because the result is so simple that one might almost say it is self-evident I

will only state this result.” (Abh. I, p. 323)

It thus seems natural that Boltzmann’s contemporaries must have understood him as claiming that

the H-theorem followed necessarily from the dynamics of the mechanical gas model.31 I can find no

evidence in the paper that he intended this claim to be read with a pinch of salt, as (von Plato 1991,

p.. 81) has argued.

31Indeed this is exactly how Boltzmann’s claims were understood. For example, the recommendation written in 1888 for
his membership of the Prussian Academy of Sciences mentions as his main feat that Boltzmann had proven that, whatever its
initial state, a gas must necessarily approach the Maxwellian distribution (Kirsten & Körber 1975, p.109).
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Is there then no evidence at all for von Plato’s reading of the paper? Von Plato refers to a passage

from Section II, where Boltzmann repeats the previous analysis by assuming that energy can take on

only discrete values, and replacing all integrals by sums. He recovers, of course, the same conclusion,

but now adds a side remark, which touches upon the case of non-uniform gases:

Whatever may have been the initial distribution of states, there is one and only one dis-

tribution which will be approached in the course of time. [. . . ] This statement has been

proved for the case where the distribution of states was already initially uniform. It must

also be valid when this is not the case, i.e. when the molecules are initially distributed

in such a way that in the course of time they mix among themselves more and more, so

that after a very long time the distribution of states becomes uniform. This will always

be the case, with the exception of very special cases, e.g. when all molecules were ini-

tially situated along a straight line, and were reflected by the walls onto this line (Abh. I,

p. 358).

It is this last remark that, apparently, led to the view that after all Boltzmann did already conceive

of exceptions to his claims. However, I should say that this passage does not convince me. True

enough, Boltzmann in the above quote indicates that there are exceptions. But he mentions them

only in connection with an extension of his results to the case when the gas is not initially uniform,

i.e. when condition (2) above is dropped. There can be no doubt that under the assumption of the

conditions (1) and (2), Boltzmann claimed the rigorous validity of the H-theorem. (Curiously, his

more systematic treatment of the non-uniform gas (Section III of (1872)) does not mention any

exception to the claim that “H can only decrease” (Abh. I p. 362).

As a matter of fact, when Loschmidt formulated the objection, it happened to be by means of

an example of a non-uniform gas (although nothing essential depended on this). Thus, if Boltzmann

had in 1872 a “full hand against his future critics”, as von Plato claims, one would expect his reply

to Loschmidt’s objection to point out that Loschmidt was correct but that he had already anticipated

the objection. Instead, he accused Loschmidt of a fallacy (see paragraph 4.3 below).

But apart from the historical issue of whether Boltzmann did or did not envisage exceptions to his

H-theorem, it seems more important to ask what kind of justification Boltzmann might have adduced

for the Stoßzahlansatz. An attempt to answer this question must be somewhat speculative, since, as

we have seen, Boltzmann presented the assumption as “almost self-evident” and “having no special

interest”, and hence presumably as not in need of further explanation. Still the following remarks

may be made with some confidence.

First, we have seen that Maxwell’s earlier usage of the assumption was never far away from an

argument from insufficient reason. Thus, in his approach, one could think of the Stoßzahlansatz as

expressing that we have no reason to expect any influence or correlation between any pair of particles
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that are about to collide. The assumption would then appear as a probabilistic assumption, reflecting

a ‘reasonable judgment’, independent from mechanics.

In contrast, Boltzmann’s critique of Maxwell’s approach (cf. footnote 16) suggests that he did not

buy this arguments from insufficient reason. But since the Stoßzahlansatz clearly cannot be conceived

of as an assumption about dynamics —like the ergodic hypothesis—, this leaves only the option that

it must be due to a special assumption about the mechanical state of the gas. Indeed, in the years

1895-6, when Boltzmann acknowledged the need for the ansatz in the proof of his H-theorem more

explicitly —referring to it as “Assumption A” (Boltzmann 1895) or “the hypothesis of molecular

disorder” (Boltzmann 1896)—, he formulated it as an assumption about the state of the gas.

Yet, even in those years, he would also formulate the hypothesis as expressing that “haphazard

governs freely” (Boltzmann 1895, Abh. III, p. 546) or “that the laws of probability are applicable for

finding the number of collisions” (Boltzmann 1895b). Similarly, he describes states for which the

hypothesis fails as contrived “so as to intentionally violate the laws of probability”(Boltzmann 1896,

§3). However, I think these quotations should not be read as claims that the Stoßzahlansatz was a

consequence of probability theory itself. Rather, given Boltzmann’s empirical understanding of “the

laws of probability”, they suggest that Boltzmann thought that, as a matter of empirical fact, the

assumption would ‘almost always’ hold, even if the gas was initially very far from equilibrium.

3. The H-theorem and the Second Law. Note that Boltzmann misconstrues, or perhaps under-

states, the significance of his results. Both the Boltzmann equation and the H-theorem refer to a

body of gas in a fixed container that evolves in isolation from its environment. There is no question

of heat being exchanged by the gas during a process, let alone in an irreversible cyclic process. His

comparison in the quotation on page 46 with Clausius’ integral
∫
dQ/T (i.e.

∮
dQ/T in equation

(18) above) is therefore really completely out of place.

The true import of Boltzmann’s results is rather that they provide (i) a generalization of the

entropy concept to non-equilibrium states,32 and (ii)a claim that this non-equilibrium entropy −kH
increases monotonically as the isolated gas evolves for non-equilibrium towards an equilibrium state.

The relationship with the Second Law is, therefore, somewhat indirect: On the one hand, Boltzmann

proves much more than was required, since the second law does not speak of non-equilibrium en-

tropy, nor of monotonic increase; on the other hand it proves also less, since Boltzmann does not

consider the increase of entropy in general adiabatic processes.

32Boltzmann emphasized that his expression for entropy should be seen as an extension of thermodynamic entropy to non-
equilibrium states in (1877b, Abh. II, p. 218; 1896, §5) . Of course there is no guarantee that this generalization is the unique
candidate for a non-equilibrium entropy.
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6.4 Lanford’s approach to the Boltzmann equation

We now turn to consider some modern approaches to non-equilibrium statistical mechanics. Of

these, the approach developed by Lanford and others (cf. Lanford 1975, Lanford 1976, Lanford 1981,

Spohn 1991, Cercignani, Illner &Pulvirenti 1994) deserves special attention because it stays concep-

tually closer to Boltzmann’s 1872 work on the Boltzmann equation and the H-theorem than any

other modern approach to statistical physics. Also, the problem Lanford raised and tried to answer is

one of no less importance than the famous reversibility and recurrence objections. Furthermore, the

results obtained are the best efforts so far to show that a statistical reading of the Boltzmann equation

or the H-theorem might hold for the hard spheres gas.

The question Lanford raised is that of the consistency of the Boltzmann equation and the under-

lying Hamiltonian dynamics. Indeed, if we consider the microstate of a mechanical system such as a

dilute gas, it seems we can provide two competing accounts of its time evolution.

(1) On the one hand, given the mechanical microstate x0 of a gas, we can form the distribution of

state f(�r,�v), such that f(�r,�v)d3�vd3�r gives the relative number of molecules with a position between

�r and �r + d3�r and velocity between �v and �v + d3�v. Presumably, this distribution should be uniquely

determined by the microstate x0. Let us make this dependence explicit by adopting the notation f [x0].

This function, then, should ideally serve as an initial condition for the Boltzmann equation (48), and

solving this equation —assuming, that is, that it, that it has a unique solution— would give us the

shape of the distribution function at a later time, f [x0]

t (�r,�v).

(2) On the other hand, we can evolve the microstate x0 for a time t with the help of the Hamilto-

nian equations. That will give us xt = Ttx0. This later state xt will then also determine a distribution

of state f [xt](�r,�v).

It is a sensible question whether these two ways of obtaining a later distribution of state from an

initial microstate are the same, i.e. whether the two time evolutions are consistent. In other words,

the problem is whether the diagram below commutes:

x0

Hamilton−→ xt

↓ ↓
f [x0] Boltzmann−→ f

[x0]

t
?= f [xt]

(136)

The first issue that has to be resolved here is the precise relation between a microstate and the

distribution of state f . It is obvious that, in so far as this function represents the physical property of

a gas system, it should be determined by the momentary microstate x. It is also clear, that in so far

as it is assumed to be continuous and differentiable in time in order to obey the Boltzmann equation,

this cannot be literally and exactly true.

So let us assume, as Boltzmann did, that the gas consists of N hard spheres, each of diameter
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d and mass m, contained in some fixed bounded spatial region Λ with volume |Λ| = V . Given a

microstate x of the system one can form the ‘exact’ distribution of state:

F [x](�r,�v) :=
1
N

N∑
i

δ3(�r − �qi)δ3(�v − �pi

m
). (137)

This distribution is, of course, not a proper function, and being non-continuous and non-differentiable,

clearly not a suitable object to plug into the Boltzmann equation. However, one may reasonably sup-

pose that one ought to be able to express Boltzmann’s ideas in a limit in which the number of particles,

N , goes to infinity. However, this limit clearly must be executed with care.

On the one hand, one ought to keep the gas dilute, so that collisions involving three or more par-

ticles will be rare enough so that they can safely be ignored in comparison to two-particle collisions.

On the other hand, the gas must not be so dilute that collisions are altogether too rare to contribute to

a change of f . The appropriate limit to consider, as Lanford argues, is the so-called Boltzmann-Grad

limit in which N −→ ∞, and:67

Nd2

V
= constant > 0. (138)

Denote this limit as “N BG−→ ∞”, where it is implicitly understood that d ∝ N−1/2. The hope is then

that in this Boltzmann-Grad limit, the exact distribution F [xN
] will tend to a continuous function that

can be taken as an appropriate initial condition for the Boltzmann equation. For this purpose, one has

to introduce a relevant notion of convergence for distributions on the µ-space Λ × R
3. A reasonable

choice is to say that an arbitrary sequence of distributions fn (either proper density functions or in

the distributional sense) converges to a distribution f , fn −→ f , iff the following conditions hold:

For each rectangular parallelepiped ∆ ⊂ Λ × R
3 :

lim
n−→∞

∫
∆

fNd
3�rd3�v =

∫
∆

fd3�rd3�v, (139)

and lim
n−→∞

∫
�v2fnd

3�rd3�v =
∫
�v2fd3�rd3�v, (140)

where the second condition is meant to guarantee the convergence of the mean kinetic energy.

It is also convenient to introduce some distance function between (proper or improper) distribu-

tions that quantifies the sense in which one distribution is close to another in the above sense. That

67The condition can be explained by the hand-waving argument that Nd2/V is proportional to the ‘mean free path’, i.e.
a typical scale for the distance traveled by a particle between collisions, or also by noting that the collision integral in the
Boltzmann equation is proportional to Nd2/V , so that by keeping this combination constant, we keep the Boltzmann equation
unchanged.
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is to say, one might define some distance d(f, g) between density functions on Λ ×R3 such that

d(fn, f) −→ 0 =⇒ fn −→ f. (141)

There are many distance functions that could do this job, but I won’t go into the question of how to

pick out a particular one.

The hope is then, to repeat, that F [xN
] −→ f in the above sense when N

BG−→ ∞, where

f is sufficiently smooth to serve as an initial condition in the Boltzmann equation, and that with

this definition, the Boltzmannian and Hamiltonian evolution become consistent in the sense that the

diagram (136) commutes. But clearly this will still be a delicate matter. Indeed, increasing N means

a transition from one mechanical system to another with more particles. But there is no obvious

algorithm to construct the state xN+1 from xN , and thus no way to enforce convergence on the level

of individual states.

Still, one might entertain an optimistic guess, which, if true, would solve the consistency problem

between the Boltzmann and the Hamiltonian evolution in an approximate fashion if N is very large.

OPTIMISTIC GUESS: If F [xN
0 ] is near to f then F [xN

t ] is near to ft for all t > 0, and

where ft is the solution of the Boltzmann equation with initial condition f .

As Lanford (1976) points out, the optimistic guess cannot be right. This is an immediate consequence

of the reversibility objection: Indeed, suppose it were true for all x ∈ Γ, and t > 0. (Here, we

momentarily drop the superscript N from xN to relieve the notation.) Consider the phase point Rx

obtained from x by reversing all momenta: R(�q1, �p1; . . . ; �qN , �pN ) = (�q1,−�p1; . . . , ; �qN ,−�pN ). If

F [x](�r,�v) is near to some distribution f(�r,�v), then F [Rx](�r,�v) is near to f(�r,−�v). But as x evolves

to xt, Rxt evolves to TtRxt = RT−txt = Rx. Hence F [TtRxt](�r,�v) = F [Rx](�r,�v) is near to

f(�r,−�v). But the validity of the conjecture for Rxt would require that F [TtRxt](�r,�v) is near to

ft(�r,−�v) and these two distributions of state are definitely not near to each other, except in some

trivial cases.

But even though the optimistic guess is false in general, one might hope that it is ‘very likely’

to be true, with some overwhelming probability, at least for some finite stretch of time. In order to

make such a strategy more explicit, Lanford takes recourse to a probability measure on Γ, or more

precisely a sequence of probability measures on the sequence of ΓN ’s.

Apart from thus introducing a statistical element into what otherwise would have remained a

purely kinetic theory account of the problem, there is a definite advantage to this procedure. As men-

tioned above, there is no obvious algorithm to construct a sequence of microstates in the Boltzmann-

Grad limit. But for measures this is different. The microcanonical measure, for example is not just

a measure for the energy hypersurface of one N -particles-system; it defines an algorithmic sequence
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of such measures for each N .

In the light of this discussion, we can now state Lanford’s theorem as follows (Lanford 1975,

1976):

LANFORD’S THEOREM: Let t �→ ft be some solution of the Boltzmann equation, say for

t ∈ [0, a) ⊂ R. For each N , let ∆N denote the set in the phase space ΓN of N particles,

on which F [xN
] is near to f0 (the initial condition in the solution of the Boltzmann

equation) in the sense that for some chosen distance function d and for tolerance ε > 0:

∆N = {xN ∈ ΓN : d(F [xN
], f0) < ε}. (142)

Further, for each N , conditionalize the microcanonical measure µN on ∆N :

µ∆,N (·) := µN (·|∆N ). (143)

In other words, µ∆,N is a sequence of measures on the various ΓN that assign measure 1

to the set of microstates xN ∈ ΓN that are close to f0 in the sense that d(F [xN
], f0) < ε.

Then: ∃τ , 0 < τ < a such that for all t with 0 < t < τ :

µ∆,N ({xN ∈ ΓN : d(F [xN
t ], ft) < ε}) > 1 − δ (144)

where δ −→ 0 as both ε −→ 0 and N BG−→ ∞.

In other words: as judged from the microcanonical measure on ΓN restricted to those states xN that

have their exact distribution of state close to a given initial function f0, a very large proportion (1−δ)

evolve by the Hamiltonian dynamics in such a way that their later exact distribution of state F [xN
t ]

remains close to the function ft, as evolved from f0 by the Boltzmann equation.

6.4.1 Remarks

Lanford’s theorem shows that a statistical and approximate version of the Boltzmann equation can be

derived from Hamiltonian mechanics and the choice of an initial condition in the Boltzmann-Grad

limit. This is a remarkable achievement, that in a sense vindicates Boltzmann’s intuitions. According

to Lanford (1976, p. 14), the theorem says that the approximate validity of the Boltzmann equation,

and hence the H-theorem, can be obtained from mechanics alone and a consideration of the initial

conditions.

Still the result established has several remarkable features, all of which are already acknowledged

by Lanford. First, there are some drawbacks that prevent the result from having practical impact for
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the project of justifying the validity of the Boltzmann equation in real-life physical applications. The

density of the gas behaves like N/d3, and in the Boltzmann-Grad limit this goes to zero. The result

thus holds for extremely rarified gases. Moreover, the length of time for which the result holds, i.e.

τ , depends on the constant in (138), which also provides a rough order of magnitude for the mean

free path of the gas . It turns out that, by the same order of magnitude considerations, τ is roughly

two fifths of the mean duration between collisions. This is a disappointingly short period: in air at

room temperature and density, τ is in the order of microseconds. Thus, the theorem does not help to

justify the usual applications of the Boltzmann equation to macroscopic phenomena which demand

a much longer time-scale.

Yet note that the time scale is not trivially short. It would be a misunderstanding to say that the

theorem establishes only the validity of the Boltzmann equation for times so short that the particles

have had no chance of colliding: In two fifths of the mean duration between collisions, about 40 %

of the particles have performed a collision.

Another issue is that in comparison with Boltzmann’s own derivation no explicit mention seems

to have been of the Stoßzahlansatz. In part this is merely apparent. In a more elaborate presentation

(cf. Lanford 1975, 1976), the theorem is not presented in terms of the microcanonical measure, but

an arbitrary sequence of measures νN on (the sequence of phase spaces) ΓN . These measures are

subject to various assumptions. One is that each νN should be absolutely continuous with respect to

the microcanonical measure µN , i.e. νN should have a proper density function

dνN (x) = nN (x1, . . . xN )dx1 · · ·xN (145)

where xi = (�qi, �pi) denotes the canonical coordinates of particle i. Further, one defines, for each N

and m < N , the reduced density functions by

n
(m)

N (x1, . . . xm) :=
N !

(N −m)!
1
Nm

∫
nN (x1, . . . xN )dxm+1 · · · dxN (146)

i.e. as (slightly renormalized) marginal probability distributions for the first m particles. The crucial

assumption is now that

lim
N

BG−→∞
n

(m)

N (x1, . . . xm) = n(1)(x1) · · ·n(1)(xm) (147)

uniformly on compact subsets of (Λ × R
3)m. This assumption (which can be shown to hold for the

microcanonical measures) is easily recognized as a measure-theoretic analogy to the Stoßzahlansatz.

It demands, in the Boltzmann-Grad limit, statistical independence of the molecular quantities for any

pair or m-tuple of particles at time t = 0. As Lanford also makes clear, it is assumption (146) that
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would fail to hold if we run the construction of the reversibility objection; (i.e. if we follow the states

x in ∆N for some time t, 0t < τ , then reverse the momenta, and try to apply the theorem to the set

∆′
N = {Rxt : x ∈ ∆N} ).

But another aspect is more positive. Namely: Lanford’s theorem does not need to assume ex-

plicitly that the Stoßzahlansatz holds repeatedly. Indeed a remarkable achievement is that once the

factorization condition (146) holds for time t = 0 it will also hold for 0 < t < τ , albeit in a weaker

form (as convergence in measure, rather than uniform convergence). This is sometimes referred to

as “propagation of chaos” (Cercignani, Illner &Pulvirenti 1994).

But the main conceptual problem concerning Lanford’s theorem is where the apparent irreversibi-

lity or time-reversal non-invariance comes from. On this issue, various opinions have been expressed.

Lanford (1975, p. 110) argues that irreversibility is the result of passing to the Boltzmann-Grad

limit. Instead, Lanford (1976) argues that it is due to condition (146) plus the initial conditions (i.e.:

xN ∈ ∆N ).

However, I would take a different position. The theorem equally holds for −τ < t < 0, with the

proviso that ft is now a solution of the anti-Boltzmann equation. This means that the theorem is, in

fact, invariant under time-reversal.

6.5 The BBGKY approach

The so-called BBGKY-hierarchy (named after Bogolyubov, Born, Green, Kirkwood and Yvon) is

a unique amalgam of the description of Gibbs and the approach of Boltzmann. The goal of the

approach is to describe the evolution of ensembles by means of reduced probability densities, and to

see whether a Boltzmann-like equation can be obtained under suitable conditions —and thereby an

approach to statistical equilibrium.

First, consider an arbitrary time-dependent probability density ρt. The evolution of ρ is deter-

mined via the Liouville-equation by the Hamiltonian:

∂ρt

∂t
= {H, ρ}. (148)

Central in the present approach is the observation that for relevant systems in statistical mechanics,

this Hamiltonian will be symmetric under permutation of the particles. Indeed, the Hamiltonian for

a system of N indistinguishable particles usually takes the form

H(�q1, �p1; . . . ; �qN , �pN ) =
N∑
=1

�pi
2

2m
+

N∑
i

V (�qi) +
N∑

i<j

φ(‖qi − �qj‖) (149)
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To see a world in a grain of sand

Shou-Cheng Zhang

Department of Physics, Stanford University, Stanford, CA 94305

Throughout John Wheeler’s career, he wrestled with big issues like the fundamental length, the

black hole and the unification of quantum mechanics and relativity. In this essay, I argue that

solid state physics – historically the study of silicon, semiconductors and sand grains – can give

surprisingly deep insights into the big questions of the world.
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I. INTRODUCTION

Modern physics is built upon three principal pillars, quantum mechanics, special and general relativity. Histori-
cally, these principles were developed as logically independent extensions of classical Newtonian mechanics. While
each theory constitutes a logically self-consistent framework, unification of these fundamental principles encountered
unprecedented difficulties. Quantum mechanics and special relativity were unified in the middle of the last century,
giving birth to relativistic quantum field theory. While tremendously successful in explaining experimental data,
ultraviolet infinities in the calculations hint that the theory can not be in its final form. Unification of quantum
mechanics with general relativity proves to be a much more difficult task and is still the greatest unsolved problem
in theoretical physics.

In view of the difficulties involved with unifying these principles, we can ask a simple but rather bold question:
Is it possible that the three principles are not logically independent, but rather there is a hierarchical order in
their logical dependence? In particular, we notice that both relativity principles can be formulated as statements of
symmetry. When applying non-relativistic quantum mechanics to systems with a large number of degrees of freedom,
we sometimes find that symmetries can emerge in the low energy sector, which are not present in the starting
Hamiltonian. Therefore, there is a logical possibility that one could start from a single non-relativistic Schrödinger
equation for a quantum many-body problem, and discover relativity principles emerging in the low energy sector. If
this program can indeed be realized, a grand synthesis of fundamental physics can be achieved. Since non-relativistic
quantum mechanics is a finite and logically self-consistent framework, everything derived from it should be finite and
logically consistent as well.

The Standard Model in particle physics is described by a relativistic quantum field theory and is experimentally
verified below the energy scale of 103GeV . On the other hand, the Planck energy scale, where quantum gravitational
force becomes important, is at 1019GeV . Therefore, we need to extrapolate 16 orders of magnitude to guess the new
physics beyond the standard framework of relativistic quantum field theory. It is quite conceivable that Einstein’s
principle of relativity is not valid at Planck’s energy scale, it could emerge at energies much lower compared to the
Planck’s energy scale through the magic of renormalization group flow. This situation is analogous to one in condensed
matter physics, which deals with phenomena at much lower absolute energy scales. The “basic” laws of condensed
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matter physics are well-known at the Coulomb energy scale of 1 ∼ 10eV ; almost all condensed matter systems can be
well described by a non-relativistic Hamiltonian of the electrons and the nuclei(Laughlin and Pines, 2000). However,
this model Hamiltonian is rather inadequate to describe the various emergent phenomena, like superconductivity,
superfluidity, the quantum Hall effect (QHE) and magnetism, which all occur at much lower energy scales, typically
of the order of 1meV . These systems are best described by “effective quantum field theories”, not of the original
electrons, but of the quasi-particles and collective excitations. In this lecture, I shall give many examples where these
“effective quantum field theories” are relativistic quantum field theories or topological quantum field theories, bearing
great resemblance to the Standard Model of elementary particles. The collective behavior of many strongly interacting
degrees of freedom is responsible for these striking emergent phenomena. The laws governing the quasi-particles and
the collective excitations are very different from the laws governing the original electrons and nuclei(Anderson, 1972).
This observation inspires us to construct models of elementary particles by conceptually visualizing them as quasi-
particles or collective excitations of a quantum many-body system, whose basic constituents are governed by a simple
non-relativistic Hamiltonian. This point of view is best summarized by the following diagram:

Planck energy at 1019GeV ⇔ Coulomb energy at 10eV
↑ ? ↓

Standard Model at 103GeV ⇔ Superconductivity, QHE, Magnetism etc at 1 meV
Relativistic quantum field theory of elementary particles Effective quantum field theory of quasi-particles

The conceptual similarity between particle physics and condensed matter physics has played a very important role
in the history of physics. A crucial ingredient of the Standard Model, the idea of spontaneously broken symmetry and
the Higgs mechanism, first originated from the BCS theory of superconductivity. This example vividly shows that the
physical vacuum is not empty, but a condensed state of many interacting degrees of freedom. Another fundamental
concept is the idea of renormalization group transformation, which was simultaneously developed in the context
of particle physics and in the study of critical phenomena. From the theory of renormalization group, we learned
that symmetries can emerge at the low energy sector, without being postulated at the microscopic level. Today, as
physicists face unprecedented challenges of unifying quantum mechanics with relativity, and tackling the problem of
quantum gravity, it is useful to look at these historic successes for inspiration. A new era of close interaction between
condensed matter physics and particle physics could shed light on these grand challenges of theoretical physics.

II. EXAMPLES OF EMERGENCE IN CONDENSED MATTER SYSTEMS

In this section, we review some well-known examples in condensed matter physics, where one starts from a quantum
many-body system at high energies and arrives at a relativistic or topological field theory of the low energy quasi-
particles and elementary excitations. The high energy models often look simple and innocuous, yet the emergent low
energy phenomena and their effective field theory description are profound and beautiful.

A. 2+1 dimensional QED from superfluid helium films

Let us first start from the physics of a superfluid film. The mean velocity of the helium atoms are significantly
lower compared to the speed of light, therefore, relativistic effects of the atoms can be completely neglected. The
basic non-relativistic Hamiltonian for this system of identical bosons can be expressed in the following close form:

H =
1

2m

∑

n

~p2
n +

∑

n<n′

V (xn − xn′) (1)

where V is the inter-atomic potential, whose form depends on the details of the system. However, for a large class
of generic interaction potentials, the system flows towards a universal low energy attractive fix point, namely the
superfluid ground state. At typical inter-atomic energy scales of a few eV ’s, helium atoms are the correct dynamic
variables, and the Hamiltonian (1) is the correct model Hamiltonian. However, at the energy scale characteristic of
the superfluid transition, which is of the order of 1K ∼ 10−4eV , the correct dynamical variables are sound wave
modes and the vortices of the superfluid film. (See fig. (1). for an illustration).

The remarkable thing is that the effective field theory model for these low energy degrees of freedom is exactly
the relativistic quantum electrodynamics (QED) in 2 + 1 dimensions! This connection was established by the work
of Ambegaokar, Halperin, Nelson and Siggia(Ambegaokar et al., 1980) and derived from the point of view of vortex
duality(Fisher and Lee, 1989). To see how this works, let us recall that the basic hydrodynamical variables of the
superfluid film are the density ρ(x) and the velocity vi(x) fields, (i = 1, 2), satisfying the equation of continuity

∂tρ + ∂i(ρ̄vi) = 0 (2)
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ω

q

FIG. 1 Collective excitations of a neutral 2D superfluid film are the sound waves and the vortices. In the long wave length
limit, the sound wave maps onto the Maxwell fields, while vortices map onto electric charges.

where ρ̄ is the average density of the fluid. Now let us recall that in 2 + 1 dimensions, the electric field Ei has
two components while the magnetic field B has only one component, which can therefore be identified as a scalar.
Faraday’s law of induction is given by the Maxwell equation:

1

c
∂tB + εij∂iEj = 0 (3)

where εij is the antisymmetric tensor in two dimensions. Therefore, if we make the following identification,

B ⇔ −c
ρ

ρ̄
Ei ⇔ εijvj (4)

we see that the equation of continuity of the superfluid film agrees exactly with Faraday’s law as expressed in the
Maxwell’s equation (3). Next we examine the fluid velocity in the presence of a vortex, with unit vorticity, located at
the position xn. The superfluid state has a well defined U(1) order parameter, and the velocity field can be expressed
in terms of the phase, φ, of the U(1) order parameter:

vi =
h̄

m
∂iφ (5)

Because of the single valuedness of the quantum mechanical wave function, eiφ must be single valued. Therefore, the
superflow around a vortex is quantized:

∫

~v · d~l = 2π
h̄

m
q (6)

where q is an integer. For elementary vortices, q = ±1. The differential form of this integral equation is

εij∂ivj = 2πρv(x) (7)

where ρv(x) =
∑

n qnδ(x − xn) is the density of the vortices and qn = ±1 is the vorticity. If we identify the vortex
density with the electric charge density in Maxwell’s equations, we see that equation (7) is nothing but Gauss’s law
in 2 + 1 dimensions:

∂iEi = 2πρv(x) (8)

Next let us investigate the dynamics of the superfluid velocity vi, through the Josephson equations of superfluidity.
The first Josephson equation relates the superfluid velocity to the gradient of the superfluid phase, φ, as expressed
in (5). The second Josephson equation relates the time derivative of the phase to the chemical potential h̄∂tφ = −µ.
Combining the two Josephson equations, we obtain,

∂tvi =
h̄

m
∂t∂iφ = −

1

m
∂iµ = −

κ

mρ̄
∂iρ (9)

where we use the compressibility κ = ρ̄∂µ
∂ρ

to express the chemical potential µ in terms of the density ρ. This equation

agrees exactly with the source-free Maxwell equation

cεij∂jB = ∂tEi (10)
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provided one identifies the speed of light as c2 = κ/m. This equation needs to be modified in the presence of the
vortex flow Jv

i , which unwinds the U(1) phase by 2π each time a vortex passes. The vortex current satisfies the
equation of continuity

∂tρv + ∂iJ
v
i = 0 (11)

Therefore, the source free Maxwell equation (10) acquires a additional term, in order to be compatible with both (11)
and (8):

cεij∂jB = ∂tEi + 2πJv
i (12)

This is nothing but Ampere’s law, supplemented by Maxwell’s displacement current.
This proves the complete equivalence between the superfluid equations and Maxwell’s equations in 2+1 dimensions.

Interestingly enough, we seem to have completed a rather curious loop. Starting from the relativistic Standard Model
of the quarks and leptons, one arrives at an effective non-relativistic model of the helium atoms (1). However, as
one reduces the energy scale further, the effective low energy degrees of freedom become the sound modes and the
vortices, which are described by the field theory of 2 + 1 dimensional quantum electrodynamics, very similar to the
model we started from in the first place! A “civilization” living inside the helium film would first discover the Maxwell’s
equations, and then, after much harder work, they would establish equation (1) as their “theory of everything”.

Superfluid 4He films are relatively simple because the 4He atom is a boson. The superfluidity of 3He is much
more complex, with many competing superfluid phases. In fact, Volovik(Volovik, 2001) has pointed out that many
phenomena of the superfluid phase of 3He share striking similarities with the Standard Model of elementary particles.
These similarities inspired him to pioneer a program to address cosmological questions by condensed matter analogs.

B. Dirac fermions of d wave superconductors

Having considered the low energy properties of a superfluid, let us now consider the low energy excitations of a
superconductor, with d wave pairing symmetry. In this case, there are low energy fermionic excitations besides the
bosonic excitations. This system is realized in the high Tc superconductors. The microscopic Hamiltonian is the two
dimensional (2D) Hubbard model, or the t − J model, expressible as

H = −t
∑

〈ij〉,σ

c†iσcjσ + J
∑

〈ij〉

~Si · ~Sj (13)

where c†iσ is the electron creation operator on site i with spin σ, ~Si is the electron spin operator and 〈ij〉 denotes the
nearest neighbor bond on a square lattice. Double occupancy of a single lattice site is forbidden.

This model is valid at the energy scale of 150meV , which is the typical energy scale of the antiferromagnetic
exchange J . When the filling factor x lies between 10% and 20%, the ground state of this model is believed to be
a d wave superconductor. There is indeed overwhelming experimental evidence that the pairing symmetry of the
high Tc superconductor is d wave like. Remarkably, the elementary excitations in this case can be described by the
2 + 1 dimensional Dirac Hamiltonian. In contrast to the t − J model, which is valid at the energy scale of 100meV ,
the effective Dirac Hamiltonian for the d wave quasi-particles is valid at much lower energy, typically of the order
of 30meV , which is the maximal gap. While the connection between the t − J model and d wave superconductivity
still needs to be firmed established, the connection between the d wave BCS quasi-particle Hamiltonian and the Dirac
equation is well-known in the condensed matter community(Balents et al., 1998; Franz et al., 2002; Simon and Lee,
1997; Volovik, 1993). Here we follow a pedagogical presentation by Balents, Fisher and Nayak(Balents et al., 1998).

The BCS mean field Hamiltonian for a d wave superconductor is given by

H =
∑

kα

εkc†kαckα +
∑

k

[∆kc†k↑c
†
−k↓ + ∆∗

kc−k↓ck↑]. (14)

where εk is the quasi-particle dispersion relation, and ∆k is the d wave pairing gap, given by

εk = −2t(coskx + cosky) , ∆k = ∆0(coskx − cosky) (15)

One can introduce a four component spinor

Υaα(~k) =







Υ11

Υ21

Υ12

Υ22






=











ck↑

c†−k↓

ck↓

−c†−k↑











. (16)
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which doubles the number of degrees of freedom. This can be compensated by summing over only half of the Brillouin
zone, say ky > 0. In terms of these variables, the BCS Hamiltonian becomes

H =
∑

k,ky>0

Υ†
aα(~k)[τzεk + τ+∆k + τ−∆∗

k]abΥbα(~k), (17)

where ~τab are the standard Pauli matrices acting in the particle/hole subspace.

The d-wave nodes are approximately located near the special wave vectors ~K1 = (π/2, π/2), ~K2 = (−π/2, π/2),
~K3 = − ~K1 and ~K4 = − ~K2. In order to obtain a long wave length and low energy description, we can expand around

the nodal points ~K1 and ~K2, which satisfy the ky > 0 constraint. The nodal points ~K3 and ~K4 are automatically
taken into account in the Υ spinor.

k

k

x

y

K

K

K

K

12

3 4

q
q

y
x

(π,0)

(π,0)

(−π,0)

(0,−π)

FIG. 2 A 2D d wave superconductor has four nodes, indicated by K1, K2, K3 and K4. Around these nodal points, BCS
quasi-particles obey the massless Dirac equation.

Introducing the rotated coordinates qx and qy, as indicated in fig. (2), and the effective spinors

Ψ1aα(~q) = Υaα( ~K1 + ~q) , Ψ2aα(~q) = Υaα( ~K2 + ~q) (18)

we obtain

H =
∑

q∈K1

Ψ†
1aα(~q)[τzεK1+q + τ+∆K1+q + τ−∆∗

K1+q]abΨ1bα(~q) + (1 ↔ 2) (19)

Here q ∈ K1 denotes a momentum sum near the vector K1. Expansion near K1 gives

εK1+q ≈ vF qx , ∆K1+q ≈ ∆qy (20)

A similar expansion applies for K2. Going to the continuum limit, we obtain the Hamiltonian density

H = Ψ†
1aα[vF τzi∂x + (∆̃τ+ + ∆̃∗τ−)i∂y]abΨ1bα

+(1 ↔ 2; x ↔ y), (21)

which is exactly the Dirac Hamiltonian density in 2 + 1 dimensions. Once again, we see the emergent relativistic
behavior of a quantum many-body system. We start from a non-relativistic interacting fermion problem at higher
energies, but recover a relativistic Dirac equation at low energies.

C. Emergence of a topological quantum field theory

When Einstein first wrote down his field equation of general relativity, he said that the left-hand side of the equation
that had to do specifically with geometry and gravity was beautiful - it was as if made of marble. But the right-hand
side of the equation that had to do with matter and how matter produces gravity was ugly - it was as if made of
wood. Taking Einstein’s aesthetic point of view one step further, one is tempted to construct a fundamental theory by
starting with the description of the topology, or a topological field theory without matter and without even geometry
from the start. Having demonstrated that the relativistic Maxwell equation and Dirac equation can emerge in the low
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energy sector of a quantum many-body problem, I now give an example demonstrating how a topological quantum
field theory, namely the Chern-Simons (CS) theory, can emerge from the matter degrees of freedom in the low energy
sector of the QHE. The CS topological quantum field theory was derived microscopically by Zhang, Hansson and
Kivelson(Zhang et al., 1989), and reviewed extensively in ref. (Zhang, 1992).

The basic Hamiltonian of QHE is simply that of a two-dimensional electron gas in a perpendicular magnetic field.

H =
1

2m

∑

n

[

~pn −
e

c
~A(xn)

]2

+
∑

n

eA0(xn) +
∑

n<n′

V (xn − xn′) (22)

where ~A is the vector potential of the external magnetic field, which in the symmetric gauge can be expressed as

Ai =
1

2
Bεijxj (23)

A0 is the scalar potential of the external electric field, Ei = −∂iA0, and V (x) is the interaction between the electrons.
For high magnetic fields, the electron spins are polarized along the same direction. Since the spin wave function is
totally symmetric, the Hamiltonian (22) operates on orbital wave functions which are totally antisymmetric. This
model is valid at the Coulombic energy scale of several eV ’s and has no particular symmetry or topological properties.
Since the external magnetic field breaks time reversal symmetry, an invariant tensor εij can be introduced into the
response function, and in particular, one can have a current Ji, which flows transverse to the applied electric field Ej ,
given by

Ji = ρ−1

H εijEj (24)

where ρH is defined as the Hall resistance. Since the electric field is perpendicular to the induced current, it does no
work on the electrons, and the current flow is dissipationless. The 2D electron density n in a magnetic field B is best
measured in terms of a dimensionless quantity called the filling factor ν = n/nB, where nB = B/φ0 = eB/hc is the
magnetic flux density. QHE is the remarkable fact that the coefficient of the Hall response is quantized, given by

ρH = ν−1 h

e2
(25)

when the filling fraction is near a rational number ν = p/q with odd denominator q. QHE at fractional values of ν is
referred to as the fractional QHE (FQHE).

FQHE is described by Laughlin’s celebrated wave function. There is also an alternative way to understand this
profound effect by the Chern-Simons-Landau-Ginzburg (CSLG) effective field theory(Zhang, 1992). The idea is to
perform a singular gauge transformation on (22), and turn electrons into bosons. This is only possible in 2 + 1
dimensions. Consider another Hamiltonian

H ′ =
1

2m

∑

n

[

~pn −
e

c
~A(xn) −

e

c
~a(xn)

]2

+
∑

n

eA0(xn) +
∑

n<n′

V (xn − xn′) (26)

Every symbol in H ′ has the same meaning as in H , except the new vector potential ~a, which describes a gauge
interaction among the particles and is given by

~a(xn) =
φ0

2π

θ

π

∑

n′ 6=n

~∇ αnn′ (27)

where φ0 = hc/e is the unit of flux quantum and αnn′ is the angle sustained by the vector connecting particles n and
n′ with an arbitrary vector specifying a reference direction, say the x̂ axis. The crucial difference here is while H
operates on a fully antisymmetric fermionic wave function, H ′ operates on a fully symmetric bosonic wave function.
One can prove an exact theorem which states that these two quantum eigenvalue problems are equivalent to each
other when θ/π = (2k + 1) is an odd integer. In this case, each electron is attached to an odd number of fictitious
quanta of gauge flux (cause by a), so that their exchange statistics in 2+1 dimensions becomes bosonic. These bosons,
called composite bosons(Girvin and Macdonald, 1987; Read, 1989; Zhang et al., 1989), see two different types of gauge
fields: the external magnetic field A, and an internal statistical gauge field a. The average of the internal statistical
gauge field depends on the density of the electrons. When the external magnetic field is such that the filling fraction
ν = nB/n = 1/2k + 1 is the inverse of an odd integer, we can always choose θ = (2k + 1)π so that the net field seen
by the composite bosons cancels each other on the average.
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FIG. 3 An electron just before the flux transmutation operation. (taken from the PhD thesis of D. Arovas, illustrated by Dr.
Roger Freedman).

The statistical transmutation from electrons to composite bosons can be naturally implemented in quantum field
theory through the Cherm-Simons term. The Chern-Simons Lagrangian is given by

L =
1

2

(π

θ

) 1

φ0

εµvρ aµ ∂v aρ − aµ jµ (28)

here jµ is the current of the composite boson, and µ = 0, 1, 2 is the space-time index in 2+1 dimensions. The equation
of motion for the a0 field is

εij ∂i aj(x) = φ0

θ

π
ρ(x) (29)

whose solution for ρ(x) =
∑

n δ(x − xn) exactly gives the statistical gauge field in (27).
Now we can present the key argument of the CSLG theory(Zhang, 1992) of QHE. Even though course the statistical

transformation can be performed in any 2 + 1 dimensional systems, this does not mean that the low energy limit of
any 2+1 dimensional system is given by a CS theory, since the partition function also involves the integration over the
matter fields jµ in the second term of (28). The key observation is that at the special filling factors of ν = 1/2k+1, the
combined external and statistical magnetic field seen by the composite boson vanishes, therefore, composite bosons
naturally condense into a superfluid state. This is the “magic” of the magic filling factors ν = 1/2k + 1. We already
showed in section (II.A) that the effective field theory of a 2+1 dimensional bosonic condensate is the 2+1 dimensional
Maxwell theory. Therefore, the integration over the matter fields in (28) gives the Maxwell Lagrangian, f2

µν . In 2 + 1
dimensions, the CS term contains one fewer derivative compared with the Maxwell term, it therefore dominates in
the long-wave length and low-energy limit. Therefore, the effective Hamiltonian of FQHE is just the topological CS
theory, without the matter current term in (28).

Matter degrees of freedom in the starting Hamiltonian (22) are magically turned into topological degrees of freedom
of the CS field theory. Alchemy works! Wood is turned into marble! Many people argued that a quantum theory of
gravity should be formulated independent of the background metric. The emergent CSLG theory starts from matter
degrees of freedom in a background setting, but the resulting effective field theory is independent of the background
metric. This demonstrates that in principle, background independent theory can indeed be constructed from non-
relativistic quantum many-body systems. In fact, the CSLG theory also leads to a beautiful duality symmetry based
on the discrete SL(2, Z) group, very similar to the duality symmetry in the 4D Seiberg-Witten theory. This duality
symmetry is again emergent, and it predicts the global phase diagram of the QH Hall system. The phase diagram has
a beautiful fractal structure, with one phase nested inside each other, iterated ad infinitum(Kivelson et al., 1992).

III. THE FOUR DIMENSIONAL QUANTUM HALL EFFECT

In the previous sections we saw that the collective behavior of quantum many-body systems often gives rise to novel
emergent phenomena in the low energy sector, which are described in terms of relativistic or topological quantum
field theories. Therefore, one can’t help but wonder if the Standard Model could also work this way. The problem
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is that the well-understood examples of emergent relativistic behaviors in quantum many-body systems work only
for lower dimensions, and these models do not have sufficient richness yet. In order for the Stanford Model to
appear as emergent behavior, we are led to study higher-dimensional quantum many-body systems, specially the
higher-dimensional generalizations of QHE.

A. The model

Of all the novel quantum many-body systems, QHE plays a very special role: it is the only well understood
condensed matter system whose low energy limit is a topological quantum field theory. Unlike most other emergent
phenomena, like superconductivity and magnetism, QHE works only in two spatial dimensions. There are various
ways to see this. First of all, the Hall current is non-dissipative. For the electric field to do no work on the current,
the current must flow in a direction perpendicular to the direction of the electric field. In two spatial dimensions,
given the direction of the electric field, there is an unique transverse direction for the Hall current, given by equation
(24). Since the current and the electric field both carry spatial vector indices, the response must therefore be a
rank-two tensor. But there are no natural rank-two antisymmetric tensors in higher dimensions! Secondly, both the
single-particle wave function and Laughlin’s many-body wave function make extensive use of complex coordinates of
particles, which can only be done in two spatial dimensions. This suggests that the higher-dimensional generalization
of QHE would necessarily involve a higher-dimensional generalization of complex numbers and analytic functions. In
fact, both of these considerations lead to the same higher-dimensional structure, as we shall explain below.

In higher dimensions, given a direction of the electric field, there is no unique transverse direction for the Hall
current to flow. However, this statement holds only if we consider the U(1) charge current. If the underlying particles
– and the associated currents – carry a non-abelian, e.g. SU(2) quantum number, an unique prescription for the
current can be given in four dimensions. In four dimensions, given a fixed direction of the electric field, say along the
x4 direction, there are three transverse directions. If the current carries a SU(2) isospin label, it also has three internal
isospin directions. In this case, the current can flow exactly along the direction in which the isospin is pointing. In
this prescription, no preferential direction in space or isospin is picked. The system is invariant under a combined
rotation of space and isospin. To be more precise, the mathematical generalization of (24) in four dimensions is

J i
µ = σηi

µνEν (30)

Here σ is the generalized Hall conductivity, ηi
µν is the t’ Hooft tensor, explicitly given by ηi

µν = εiµν4 + δiµδ4ν − δiνδ4µ

and J i
µ is the isospin current and Eν is the electric field. Here µ, ν = 1, 2, 3, 4 label the spatial directions and i = 1, 2, 3

label the isospin directions. From (30), we see easily that if Eν points along the x4 direction, the current flows along
the x1,2,3 directions, explicitly determined by the direction of the isospin. Therefore, the t’ Hooft tensor is exactly
the rank-two antisymmetric tensor we were looking for! The occurrence of the t’ Hooft tensor suggests that this
problem must have something to do with the SU(2) instanton(Belavin et al., 1975), where the t’ Hooft tensor was
first introduced. It is not only an invariant tensor under combined spatial and isospin rotations, it also satisfies a
self-duality condition:

ηi
µν = εµνρληi

ρλ (31)

Self-duality and anti-self-duality are the hallmarks of the SU(2) Yang-Mills instanton.
Now let us motivate the problem from the point of view of generalizing complex numbers. The natural generaliza-

tions of complex numbers are quaternionic numbers, first discovered by Hamilton. A quaternionic number is expressed
as q = q0 + q1i + q2j + q3k, where i, j, k are the three imaginary units. This again suggests that the most natural
generalization of QHE is from 2D to 4D, where quaternionic numbers can be interpreted as the coordinates of particles
in four dimensions. Unlike complex numbers, quaternionic numbers do not commute with each other. In fact, the
three imaginary units of quaternionic numbers can be identified with the three generators of the SU(2) group. This
suggests that the underlying quantum mechanics problem should involve a non-abelian SU(2) gauge field.

Our last motivation to generalize QHE comes from its geometric structure. As pointed out by Haldane(Haldane,
1983), a nice way to study QHE is by mapping it to the surface of a 2D sphere S2, with a Dirac mangnetic monopole
at its center. (see Fig. 4). The Dirac quantization condition implies that the product of the electric charge, e, and
the magnetic charge, g, is quantized, i.e. eg = S, where 2S is a integer. The number 2S + 1 is the degeneracy of the
lowest Landau level. The reason for the existence of a magnetic monopole over S2 is a coincidence between algebra
and geometry. In order for the monopole potential to be topologically non-trivial, the gauge potentials extended from
the north pole and the south pole have to match non-trivially at the equator. Since the equator, S1, and the gauge
group, U(1), are isomorphic to each other, a non-trivial winding number exists. Therefore, one may ask whether
there are other higher-dimensional spheres for which a similar monopole structure can be defined. This naturally
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leads to the requirement that the equator of a higher-dimensional sphere to be isomorphic to a mathematical group.
This coincidence occurs only for the four sphere, S4, whose equator, S3, is isomorphic to the group SU(2). This
coincidence between algebra and geometry leads to the first two Hopf maps, S3 → S2 and S7 → S4.

I

S2

g

e S4S2

FIG. 4 The 2D QHE consists of electrons e on the surface of a 2D sphere S2, with a U(1) magnetic monopole g at its center.
Similarly, the 4D QHE can be defined on the surface of a 4D sphere S4, with a SU(2) monopole I at its center. In the large I

limit, the SU(2) isospin degree of freedom is S2.

Therefore, all three considerations – the physical motivation of the transverse current, the mathematical motivation
of generalizing complex numbers to quaternionic numbers and the geometric consideration of non-trivial monopole
structures – lead to the same conclusion: A non-trivial QHE liquid can be defined in four spatial dimensions (4D)
with a SU(2) non-abelian gauge group. Recently, Hu and I (ZH) indeed succeeded in constructing such a model
for the 4D QHE(Zhang and Hu, 2001). The microscopic Hamiltonian describes a collection of N fermionic particles
moving on S4, interacting with a SU(2) background isospin gauge potential Aa. It is explicitly defined by

H =
h̄2

2MR2

∑

a<b

Λ2
ab (32)

where M is the mass of the fermionic particle, R is the radius of S4, and Λab = −i(xaDb − xbDa) is the gauge
covariant angular momentum operator. Here xa is the coordinate of the fermionic particle and Da = ∂a + Aa is the
gauge invariant momentum operator. The gauge potential Aa (a = 1, 2, 3, 4, 5) is given by

Aµ =
−i

1 + x5

ηi
µνxνIi , A5 = 0 (33)

where Ii are the generators of the SU(2) gauge group. An important parameter in this problem is I, the isospin
quantum number carried by the fermionic particle. The eigenstates and the eigenvalues of this Hamiltonian can
be solved completely, and the spectrum shares many properties with the Landau levels in the 2D QHE problem. In
particular, when I becomes large, the ground state of this problem is massively degenerate, with the degenracy scaling
like D ∼ I3. In order to keep the energy levels finite in the thermodynamical limit, one is required to take the limit
I → ∞ as R → ∞, such that

R2/2I = l2 (34)

is finite. l, called the magnetic length, defines the fundamental length scale in this problem. It gives a natural
ultraviolet cut-off in this theory, without breaking any rotational symmetries of the underlying Hamiltonian.

While the 4D QH liquid can be elegantly defined on S4, with the full isometry group as the symmetry of the
Hamiltonian, it can also be defined on R4, with more restricted symmetries. This construction has recently been
given by Elvang and Polchinski(Elvang and Polchinski, 2002).

B. Properties of the model

The 2D QH liquid has many interesting properties including incompressibility of the quantum liquid, fractional
charge and statistics of elementary excitations, a topological field theory description of the low energy physics, a
realization of non-commutative geometry and relativistic chiral excitations at the edge of the QH droplet. Most of
these properties also carry over to the QH liquid constructed by ZH. When one completely fills the massively degenerate
lowest energy ground states with fermionic particles, with filling factor ν ≡ N/D = 1, one obtains an incompressible
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quantum liquid, with a finite excitation gap towards all excited states. FQH states can also be constructed for filling
fractions ν = 1/k3, where k is a odd integer. Explicit microscopic wave functions, similar to Laughlin’s wave function
for the 2D QHE, can be constructed for these incompressible states. The elementary excitations of the FQH states
also carry fractional charge 1/k3, providing the first direct generalization of fractional charge in a higher-dimensional
quantum many-body system.

As discussed in section (II.C), the low energy physics of the 2D QHE can be described by a topological quantum
field theory, the CSLG theory. A natural question is whether the QH liquid constructed by ZH can be described by
a topological quantum field theory as well. This construction has indeed been accomplished recently, by Bernevig,
Chern, Hu, Toumbas and myself(Bernevig et al., 2002). As explained earlier, while the underlying orbital space for
our QH liquid is four dimensional, the fermionic particles also carry a large internal isospin degree of freedom I. Since
I scales like R2, the internal space is 2D, which makes the total configuration space a six-dimensional (6D) manifold.
Therefore, our QH liquid can either be viewed as a 4D QH liquid with a large internal SU(2) isospin degrees of
freedom, or equivalently, as a 6D QH liquid without any internal degree of freedom. The 6D manifold is CP3, the
complex projective space with three complex (and therefore six real) dimensions. This manifold is locally isomorphic
to S4 × S2. The deep connection between the four sphere S4 and the complex manifold CP3 was first introduced to
physics through the twistor program of Penrose(Penrose and MacCallum, 1972) and has been exploited extensively
in the mathematical literature. Sparling(Sparling, 2002) has recently pointed out the close connection between the
twistor theory and the 4D QHE. Our recent work shows that the low energy effective field theory of our QH liquid is
given by an abelian CS theory in 6 + 1 dimensions

S = ν

∫

dtd6xA ∧ dA ∧ dA ∧ dA (35)

where A is an abelian U(1) gauge field over the total configuration space CP3, and ν is the filling factor. This theory
can also be dimensionally reduced to a SU(2) non-abelian CS theory in 4 + 1 dimensions, given by

S =
4πν

3

∫

dtd4xTr

(

A ∧ dA ∧ dA −
3i

2
A ∧ A ∧ A ∧ dA −

3

5
A ∧ A ∧ A ∧ A ∧ A

)

(36)

where A is a SU(2) matrix-valued gauge field over the orbital space S4. The precise equivalence of these two models
parallels the two equivalent views of our QH liquid mentioned earlier.

An interesting property which arises from this field theory is the concept of duality. As discussed in section (II.C),
there is a natural particle-flux duality in the 2D QHE problem: An electron can be represented as a boson with an
odd number of flux quanta attached to it. In the new QH liquid, there are other extended objects, namely 2-branes
and 4-branes besides the basic fermionic particle, which can be viewed as a 0-brane. Each one of these extended
objects is dual to a generalized flux, according to the following table:

Particle ⇐⇒ 6-flux
Membrane ⇐⇒ 4-flux
4-brane ⇐⇒ 2-flux

In the 2D QH problem, the Laughlin quasi-particles obey fractional statistics in 2+1 dimensions. It is natural to ask
how fractional statistics generalize in our QH liquid. It turns out that the concept of fractional statistics of point
particles can not be generalized to higher dimensions, but fractional statistics for extended objects exist in higher
dimensions(Tze and Nam, 1989; Wu and Zee, 1988). In our case, 2-branes have non-trivial statistical interactions
which generalizes statistical interactions of Laughlin quasi-particles.

Extended objects like D-branes have been studied extensively in string theory, however, a full quantum theory
describing their interactions still needs to be developed. The advantage of our approach is that the underlying
microscopic quantum physics is completely specified. Since the extended topological objects emerge naturally from
the underlying microscopic physics, there is hope that a full quantum theory can be developed in this case.

The study of 4DQHE is partially motivated by the possibility of emergent relativistic behavior in 3+1 dimensions.
There are several ways to see the connection. First of all, the eigenstates and the eigenfunctions of the Hamiltonian (32)
have a natural interpretation in terms of the 4D Euclidean quantum field theory. If we consider a Euclidean quantum
field theory as obtained from a Wick rotation of a 3 + 1 dimensional compactified Minkowskian quantum field theory,
one is naturally lead to consider the eigenvalues and the eigenfunctions of the Euclidean Dirac, Maxwell and Einstein
operators on S4. It turns out that the these eigenvalues and eigenfunctions coincide exactly with the eigenvalues and
eigenfunctions of the 4DQHE Hamiltonian (32), where the spins of the relativistic particles are identified with the
isospin quantum number, I. The eigenvalue problems of the Dirac, Maxwell and Einstein operators can be directly
identified with the Hamiltonian eigenvalue problems for I = 1/2, 1 and 2. We mentioned earlier that the underlying
fermionic particles constituting our QH liquid have high isospin quantum numbers. However, collective excitations
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of this QH liquid, which are formed as composite particles, can have low isospin quantum numbers. It is therefore
tempting to identify the collective excitations of the QH liquid with the relativistic particles we are familiar with.
However, this equivalence is only established in Euclidean space. In order to consider the relationship to Minkowski
space, we are naturally lead to the excitations at the boundary, or the edge of our QH liquid.

Let us first review the collective excitations at the edge of a 2D QH liquid. The 2D QH liquid can be confined
by a one-body confining potential V . A density excitation is created by removing a particle from the QH liquid
and placing it outside of the QH liquid. This way, we have created a particle-hole excitation. If the particle-hole
pair moves along a direction parallel to the edge, with a center of mass momentum qx, the Lorentz force due to the
magnetic field acts oppositely on the particle-hole pair, and tries to stretch the pair in the direction perpendicular to
the edge. This Lorentz force is balanced by the electrostatic attraction due to the force of the confining potential.
Therefore, a unique dipole moment, or a finite separation y of the particle hole pair, is obtained in terms of qx:

y = l2qx (37)

On the other hand, the energy of the dipole pair is simply given by E = V ′y. Here V ′ is the derivative of the potential
evaluated at the edge. Therefore, we obtain a relativistic dispersion relation for the dipole pair

E = V ′y = l2V ′qx (38)

with the speed of light given by c = l2V ′. Since the cross product of the gradient of the potential and the magnetic
field selects a unique direction along the edge, the excitation is also chiral. In this problem, it can also be shown that
not only the dispersion, but also the full interaction is relativistic in the low energy limit. Therefore, the physics at
the edge of a 2D QH liquid provides another example of emergent relativistic behavior(Stone, 1990; Wen, 1990).

The physics of the edge excitations of a 2D QH liquid partially carries over to our 4D QH liquid(Elvang and
Polchinski, 2002; Hu and Zhang, 2002; Zhang and Hu, 2001). Here we can also introduce a confining potential, say
around the north pole of S4, and construct a droplet of the QH fluid. Since our QH liquid is incompressible, the
only low energy excitations are the volume preserving shape distortions at the surface. These surface waves can be
formed from the particle-hole excitations similar to the ones we described for the 2D QH liquid. A natural speed of
light can be introduced, and is given by c = l2V ′. Since our underlying particles carry a large isospin, I, the bosonic
composite particle-hole excitations carry all isospins, ranging from 0 to 2I. The underlying fermionic particles have a
strong coupling between their orbital and isospin degrees of freedom. This coupling translates into a relativistic spin-
orbital coupling of the bosonic collective excitations. Therefore, excitations with I = 0, 1, 2 obey the free relativistic
Klein-Gordon, Maxwell and Einstein equations. This is an encouraging sign that one might be able to construct an
emergent relativistic quantum field theory from the boundary excitations of our 4D QH liquid.

However, there are also many complications which are not yet fully understood in our approach. The most funda-
mental problem is that particles of our 4D QH liquid carry a large internal isospin, which makes the problem effectively
a 6D one. This is the basic reason for the proliferation of higher-spin particles in our theory, an “embarrassment
of riches”. In addition, there is an incoherent fermionic continuum besides the bosonic collective modes. All these
problems can only be addressed when one studies the effects of the interaction carefully. In fact, single particle states
in the lowest-Landau-level (LLL) have the full symmetry of SU(4), which is the isometry group of the six dimensional
CP3 manifold. In order to make the problem truly 4D, one needs to introduce interactions which breaks the SU(4)
symmetry to a SO(5) symmetry, the isometry group of S4. This is indeed possible. SO(5) is isomorphic to the group
Sp(4). Sp(4) differs from SU(4) by an additional reality condition, implemented through a charge conjugation matrix
R. Therefore, any interactions which involve this R matrix would break the symmetry from SU(4) to SO(5), and
the geometry of S4 would emerge naturally. In the strong coupling limit, low energy excitations are not particles
but membranes. This reduces the entropy at the edge from R3 × R2 to R3, and is the first step towards solving the
problem of “embarrassment of riches”.

C. Space, time and the quantum

The 2D QH problem gives a precise mathematical realization of the concept of non-commutative geometry(Douglas
and Nekrasov, 2001). In the limit of high magnetic field, we can take the limit of m → 0, so that all higher Landau
levels are projected out of the spectrum. In this limit, the equation of motion for a charged particle in an uniform
magnetic field B and a scalar potential V (x, y) is given by

ẋ = l2
∂V

∂y
, ẏ = −l2

∂V

∂x
(39)
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We notice that the equations for x and y look exactly like the Hamilton equations of motion for p and q. Therefore, this
equation of motion can be derived as quantum Heisenberg equations of motion if we postulate a similar commutation
relation:

[x, y] = il2 (40)

Therefore, the 2D QHE provides a physical realization of the mathematical concept of non-commutative geometry, in
which different spatial components do not commute. Early in the development of quantum field theory, this feature
has been suggested as a way to cut off the ultraviolet divergences of quantum field theory. In quantum mechanics,
the non-commutativity of q and p leads to the Heisenberg uncertainty principle and resolves the classical catastrophe
of an electron falling towards the atomic nucleus. Similarly, non-commutativity of space and time could cut off
the ultraviolet space-time fluctuations in quantum gravity(Douglas and Nekrasov, 2001). However, the problem is
that equation (40) can not be easily generalized to higher dimensions, since one needs to pick some fixed pairs of
non-commuting coordinates. Our QH liquid provides a physical realization of non-commutative geometry in four
dimensions. The generalization of equation (40) becomes

[Xµ, Xν ] = 4il2ηi
µνni (41)

where Xµ’s are the four spatial coordinates and ni is the isospin coordinate of a particle. This structure of non-
commutative geometry is invariant under a combined rotation of space and isospin and treats all these coordinates
on equal footing. It is tempting to identify l in equation (41) as the Planck length, which provides the fundamental
cutoff of the length scale according to the quantization rule (41). In our theory, however, we know what lies beyond
the Planck length: the degrees of freedom are those associated with the higher Landau levels of the Hamiltonian (32).

At this point, it would be useful to discuss the possible implications of (41) on the quantum structure of space-time.
In the 4D QH liquid, there is no concept of time. Since all eigenstates in the LLL are degenerate, there is no energy
difference which can be used to measure time according to the quantum relation ∆t = h̄/∆E. However, at the
boundary of the 4D QH liquid, an energy difference is introduced through the confining potential. The left hand side
of equation (41) involves four coordinates. Three of them are the spatial coordinates parallel to the boundary. The
fourth coordinate, perpendicular to the boundary, measures the energy difference, and therefore measures time. The
commutator among these coordinates implies a quantization procedure. The right hand side of this equation involves
the Planck length and the spin. Therefore, this simple equation seems to unify all the fundamental physical concepts:
space, time, the quantum, the Planck length and spin in a simple and elegant fashion. It would be nice to use it as a
basis to construct a fundamental physical theory.

D. Magic liquids, magic dimensions, magic convergence?

So far our philosophical point of view and our model seem to be drastically different from the approach typical of
string theory. However, after the discovery of the new QH liquid, a surprising pattern starts to emerge. Soon after
the construction of the new 4D QH liquid, Fabinger(Fabinger, 2002) found that it could be implemented as certain
solutions in string theory. Moreover, close examination of this pattern reveals remarkable mathematical similarities
not only between these two approaches, but also with other fundamental ideas in algebra, geometry, supersymmetry
and the twistor program on quantum space time. The following table summarizes the connections.

Division Algebras: Real Namubers Complex Numbers Quaternions Octonions

Hopf maps: S1 → S1 S3 → S2 S7 → S4 S15 → S8

QH liquids: Luttinger liquid? Laughlin liquid ZH liquid ?

Random matrix ensembles: Orthogonal Unitary Symplectic ?

Fractional statistics: ? particles membranes ?

Geometric phase: Z2 U(1) SU(2) ?

Non-commutative geometry: ? [Xi, Xj ] = il2εij [Xµ, Xν ] = 4il2ηi
µνni ?

Twistor transformation: SO(2, 1) = SL(2,R) SO(3, 1) = SL(2,C) SO(5, 1) = SL(2,H) SO(9, 1) = SL(2,O)

N = 1 SUSY Yang-Mills: d = 2 + 1 d = 3 + 1 d = 5 + 1 d = 9 + 1

Green-Schwarz Superstring d = 2 + 1 d = 3 + 1 d = 5 + 1 d = 9 + 1

The construction of the twistor transformation, the N = 1 supersymmetric Yang-Mills theory and the Green-
Schwarz superstring rely on certain identities of the Dirac Gamma matrices, which work only in certain magic
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dimensions. In these dimensions, there is an exact equivalence between the Lorentz group and the special linear
tranformations of the real, complex, quaternionic and octonic numbers. Our work shows that QH liquids work only in
certain magic dimensions exactly related to the division algebras as well! In fact the transverse dimensions ((D+1)−2)
of these relativistic field theories match exactly with the spatial dimensions of the quantum liquids. The missing entries
in this table strongly suggests that an octonionic version of the QH liquid should exist and may be deeply related
to the superstring theory in d = 9 + 1. QH liquids exist only in magic dimensions, have membranes and look like a
matrix theory. They may be mysteriously related to the M theory after all!

IV. CONCLUSION

Fundamental physics is faced with historically unprecedented challenges. Ever since the time of Galileo, experiments
have been the stepping stones in our intellectual quest for the fundamental laws of Nature. With our feet firmly on
the ground, there is no summit too high to reach. However, the situation is drastically different in the present day. We
are faced with a gap of 16 orders of magnitude between the energy of our experimental capabilities and the summit
of Mount Planck. Without experiments, we face the impossible mission of climbing up a waterfall!

FIG. 5 Esher’s waterfall: an alternate passage to Mount Planck?

But maybe there is an alternate passage to Mount Planck. The logical structure of physics may not be a simple one-
dimensional line, but rather has a multiply connected or braided topology, very much like Esher’s famous Waterfall.
Instead of going up in energy, we can move down in energy! Atoms, molecules and quantum liquids are made of
elementary particles at very high energies. But at low energies, they interact strongly with each other to form
quasi-particles, which look very much like the elementary particles themselves! Over the past forty years, we have
learned that the strong correlation of these matter degrees of freedom does not lead to ugliness and chaos, but rather
to extraordinary beauty and simplicity. The precision of flux quantization, Josephson frequency and quantized Hall
conductance are not properties of the basic constituents of matter, but rather are emergent properties of their collective
behavior. Therefore, by exploring the connection between elementary particle and condensed matter physics, we can
use experiments performed at low energies to understand the physics at high energies. By carrying out the profound
implications of these experiments to their necessary logical conclusions, we may learn about the ultimate mysteries
of our universe.

Throughout John Wheeler’s life, he tackled the big questions of the universe with an unorthodox vision and a poetic
flair. Lacking John’s eloquence, I simply conclude this tribute to him by reciting William Blake’s timeless lines:

To see a World in a Grain of Sand

And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand

And Eternity in an hour.



14

ACKNOWLEDGMENTS

I would like to thank A. Bernevig, C.H. Chern, J.P. Hu, R. B. Laughlin, J. Polchinski, P. SanGiorgio, L. Smolin,
L. Susskind, N. Toumbas and G. Volovik for stimulating discussions. This work is supported by the National Science
Foundation under grant number DMR-9814289.

References

Ambegaokar, V., B. I. Halperin, D. R. Nelson, and E. D. Siggia, 1980, Physical Review B 21(5), 1806.
Anderson, P. W., 1972, Science 177(4047), 393.
Balents, L., M. P. A. Fisher, and C. Nayak, 1998, International Journal of Modern Physics B 12(10), 1033.
Belavin, A. A., A. M. Polyakov, A. S. Schwartz, and Y. S. Tyupkin, 1975, Physics Letters B 59(1), 85.
Bernevig, B. A., C.-H. Chern, J.-P. Hu, N. Toumbas, and S.-C. Zhang, 2002, Annals of Physics 300, 185.
Douglas, M. R., and N. A. Nekrasov, 2001, Reviews of Modern Physics 73(4), 977.
Elvang, H., and J. Polchinski, 2002, hep-th/0209104 .
Fabinger, M., 2002, hep-th/0201016 .
Fisher, M. P. A., and D. H. Lee, 1989, Physical Review B 39(4), 2756.
Franz, M., Z. Tesanovic, and O. Vafek, 2002, cond-mat/0203333 .
Girvin, S. M., and A. H. Macdonald, 1987, Physical Review Letters 58(12), 1252.
Haldane, F. D. M., 1983, Physical Review Letters 51(7), 605.
Hu, J. P., and S. C. Zhang, 2002, Physical Review B 66, 125301.
Kivelson, S., D. H. Lee, and S. C. Zhang, 1992, Physical Review B 46(4), 2223.
Laughlin, R. B., and D. Pines, 2000, Proceedings of the National Academy of Sciences of the United States of America 97(1),

28.
Penrose, R., and M. MacCallum, 1972, Physics Reports 6(4), 241.
Read, N., 1989, Physical Review Letters 62(1), 86.
Simon, S. H., and P. A. Lee, 1997, Physical Review Letters 78(8), 1548.
Sparling, G., 2002, preprint .
Stone, M., 1990, Physical Review B 42(13), 8399.
Tze, C. H., and S. Nam, 1989, Annals of Physics 193, 419.
Volovik, G. E., 1993, Jetp Letters 58(6), 469.
Volovik, G. E., 2001, Physics Reports-Review Section of Physics Letters 351(4), 195.
Wen, X. G., 1990, Physical Review Letters 64, 2206.
Wu, Y., and A. Zee, 1988, Phys. Lett. B 207, 39.
Zhang, S. C., 1992, International Journal of Modern Physics B 6(1), 25.
Zhang, S. C., T. H. Hansson, and S. Kivelson, 1989, Physical Review Letters 62(1), 82.
Zhang, S. C., and J. P. Hu, 2001, Science 294(5543), 823.


	Anderson
	Anderson_09.03.02-darticle
	Anderson_09.03.12_Stamp 2
	Anderson_09.03.12-Stamp 1
	Arovas
	Arovas_09.03.19_ASW_1984
	Arovas_09.03.19_Haldane_1991
	Arovas_09.03.19_Wilczek_2008
	Braids, Permutations, and In Between
	Abelian Anyons
	Nonabelian Anyons
	References

	Batterman
	Batterman_09.03.12_synthese-online
	Idealization and modeling
	Abstract
	1 Introduction
	2 Idealization and the phenomena
	3 Modeling shocks
	4 Modeling drops and jets
	5 Molecular dynamics and simulations
	6 Analytical modeling versus simulation: a reconciliation?
	7 Conclusion
	Acknowledgements
	References

	Hartmann
	hartmann_09.04.09_1
	Jackiw
	jackiw_09.02.28-1306Effects
	jackiw_09.02.28-Topology
	Kadanoff
	Kadanoff_09.04.01_Ch10
	Sawatzky
	Sawatzky_HubbSpectral-PRB93
	Shankar
	Shankar_09.03.23
	Stamp
	Stamp_1991_QP-QuNos--EPL
	Stamp_2006-SHPMP-2.1
	Uffink
	Uffink_09.03.31
	Zhang
	Zhang-2002


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




