Collective spin dynamics in the "Coherence Window" for Quantum Nanomagnets

I.S. Tupitsyn (PITP, UBC)

Two examples: (Single-molecule magnets)

Mn₁₂ (S=10) **T < 40 K**

Hamiltonian of magnetic anisotropy

$$
H_S^{(Fe)} = -DS_z^2 + ES_x^2 + K_4^{\perp}(S_+^4 + S_-^4) - g_e \mu_B \vec{H} \vec{S}
$$

$$
H_S^{(Mn)} = -DS_z^2 - K_4^{\parallel} S_z^4 + K_4^{\perp} (S_+^4 + S_-^4) - g_e \mu_B \vec{H} \vec{S}
$$

(2S+1 states)

Low-T limit – only two lowest states are occupied If \varDelta_o << E_g (E_g is the spin-gap to the next levels)

each molecule can be modeled as a TLS: $H_{TLS} = -\Delta_o \hat{\tau}^x - \xi \hat{\tau}^z$ \varDelta - tunneling matrix element; ζ - bias. $E_{\text{un}} = 2\varepsilon$; $\varepsilon = (4e^2 + \xi^2)^{1/2}$

$$
|\hat{\parallel}\rangle = u|\hat{\uparrow}\rangle + v|\hat{\downarrow}\rangle
$$

$$
|\hat{\downarrow}\rangle = -v|\hat{\uparrow}\rangle + u|\hat{\downarrow}\rangle
$$

$$
(u, v) = [(\varepsilon \pm \xi)/2 \varepsilon]^{1/2}
$$

"Coherence Window" for nuclear spin bath and phonons

 \varDelta_o changes with transverse magnetic field H_{\perp}

Coherence window opens up at *H*⊥*c*, where the total nuclear spin bath and

phonon decoherence rate $\gamma_{\phi} = \hbar/(\Delta_{o}\tau_{\phi})$ reaches its minimum

$$
\frac{1}{\tau_{\phi}^{nu}} = \frac{E_o^2}{2\Delta_o \hbar}; \quad \frac{1}{\tau_{\phi}^{ph}} = \frac{S^2 \Omega_o^2 \Delta_o^3}{\Theta_D^4 \hbar} \coth(\Delta_o / k_B T)
$$

(*Eo* - half-width of the nuclear bias distribution; Θ*D* - Debye energy; ^Ω*o* ≈ *^Eg*)

(P.C.E. Stamp, I.S. Tupitsyn, PRB 69, 014401, (2004))

What kind of spin dynamics can then be expected in this Coherence Window at $t<\tau_{np}$ in a crystal of SMM coupled to nuclear spin bath, to phonons and to each other via dipole-dipole interactions?

$$
\tau_{np}=\min\{\tau_{\phi}^{nu},\tau_{\phi}^{ph}\}
$$

Model Hamiltonian

$$
H = \sum_{i} \left(-\Delta_i \hat{\tau}_i^x - \xi_i^{en} \hat{\tau}_i^z \right) + \frac{1}{2} \sum_{ij} \hat{V}_{dd}(\vec{r}_{ij})
$$

$$
\hat{V}_{dd}(\vec{r}_{ij}) = \frac{E_D}{|\vec{r}_{ij}|^3} \left(\hat{\vec{\tau}}_i \hat{\vec{r}}_j - 3 \frac{(\hat{\vec{\tau}}_i \vec{r}_{ij})(\hat{\vec{\tau}}_j \vec{r}_{ij})}{|\vec{r}_{ij}|^2} \right) = \sum_{\{\alpha,\beta\} = \{x,z\}} V_{dd}^{\alpha\beta}(\vec{r}_{ij}) \hat{\tau}_i^{\alpha} \hat{\tau}_j^{\beta}
$$

external and nuclear longitudinal fields contribution

$$
\xi_i^d = -g_e \mu_B S_i^z H_i^z (dip)
$$
- dipolar contribution

$$
\hat{H}_{i}^{z}(dip) = \sum_{j \neq i} \frac{F_{D}}{|\vec{r}_{ij}|^{3}} \left(3 \frac{(\hat{\tau}_{j}^{z} z_{ij} + \hat{\tau}_{j}^{x} x_{ij}) z_{ij}}{|\vec{r}_{ij}|^{2}} - \hat{\tau}_{j}^{z} \right)
$$

One needs to know the half-width W_{D} of the dipolar energies distribution in the *NPC-window*

Knowing the crystal and molecular structure and the Hamiltonian of magnetic anisotropy, both W_{D} and E_{o} can be calculated

In both systems in the *NPC-window ∆* $_{\text{o}}$ >> {W $_{\text{D}}$, E_{o} }

Multimolecular processes in the limit ∆*o >> {WD,Eo}*

Two interacting molecules

$H=H^{TLS}{}_{1}+H^{TLS}{}_{2}+\sum_{\alpha\beta}\mathsf{V}^{\alpha\beta}\;\tau^{\alpha}{}_{1}\;\tau^{\beta}{}_{2}$

Rewriting *H* in the basis { ⇑⇑, ⇑⇓, ⇓⇑, ⇓⇓ }, one finds that two "flip-flop" states $|\Uparrow\downarrow>$ and $|\Downarrow\Uparrow>$ are separated from each other by the energy gap *2 |*^ε*1* | \hat{U} → and | \hat{U} → states by the energy gaps ~ $2\Delta_0$ = Two central flip-*-* ^ε*2| <<* [∆]*o* while two remaining states are separated from the flop states can be considered as a *new Effective TLS* with parameters:

$$
\Delta_{ff} \sim |B|; \quad \xi_{ff} \approx |\varepsilon_1 - \varepsilon_2|; \quad B = -V^{zz} \frac{\Delta_1 \Delta_2}{\varepsilon_1 \varepsilon_2} + V^{xx} \frac{\xi_1 \xi_2}{\varepsilon_1 \varepsilon_2}
$$
\n
$$
(A/\xi_i \gg 1) \Rightarrow \Delta_{ff} \sim |V^{zz}_{dd}(R)| \frac{\Delta_1 \Delta_2}{\varepsilon_1 \varepsilon_2}; \quad \xi_{ff} \sim |\xi_1^2 - \xi_2^2|/2\Delta_o \ll \Delta_o
$$

If ∆*ff>* ξ*ff,* two molecules can form a *RESONANT PAIR* and if at *t=0* the pair is in state |ՈU>, the probability to find this pair at time *t* in state |UՈ> is

$$
P_{(\Downarrow \Uparrow)(\Uparrow \Downarrow)} \sim \frac{\Delta_{ff}^2}{E_{ff}^2} \sin^2(E_{ff} t/\hbar); \ E_{ff} \sim \sqrt{\xi_{ff}^2 + \Delta_{ff}^2}
$$

Two *nearest-neighbor molecules* (fastest flip-flop transitions) Δ^{nn}_{ff} ~ $V_{dd}/\Delta_1\Delta_2/\varepsilon_1\varepsilon_2$) and $\xi^{nn}_{ff} = |\varepsilon_1 - \varepsilon_2|$ (V_{dd} ~ $E_{\rm D} / (V_{\rm o}^{(1)})^{1/3}$, $\;V_{\rm o}^{(1)}$ – volume per one molecule) If ∆*nnff* >ξ*nnff,* two *nearest-neighbor molecules* are in *resonance*.

Two interacting *RESONANT PAIRS*

At $k_B T < \Delta_0(H_x)$ $(H_x \sim H_x^c)$ most of molecules are in states $|\Uparrow\rangle$ (ground state) and only $N_{ex}(\overline{T}) \sim N_o \exp(-2\Delta_o / k_B T)$ molecules are in states $|\Downarrow>$ (excited state). Consider *two resonant pairs* of *nearest-neighbor molecules* separated by the average distance

$$
R_{ex}(T) \sim (V_o^{(1)} N_o / N_{ex})^{1/3}
$$

If \varDelta^{nn} _{ff} > ζ^{nn} _{ff}, the same arguments as in the case of two molecules will lead to a conclusion about the existence of a *"second order" Effective TLS* with parameters:

$$
\Delta_{ff}^{(2)}(\vec{R}) \sim |V_{dd}^{zz}(\vec{R})| \frac{\Delta_{ff}^{nn} \Delta_{ff}^{'nn}}{E_{ff}^{nn} E_{ff}^{'nn}}; \xi_{ff}^{(2)} \sim |E_{ff}^{nn} - E_{ff}^{'nn}|
$$

If $\Delta^{(2)}_{ff}$ (R_{ex}) > $\xi^{(2)}_{ff}$, two RESONANT PAIRS are in resonance.

Resonance conditions (generic lattice)

a) Nearest - neighbor molecules in two pairs are located along different axes (with different lattice constants):

In a generic lattice with the same lattice constants resonance is also, in principle, possible

Resonance conditions (generic lattice)

From the requirement:

$$
\Delta_{ff}^{(2)}(\vec{R}) > \xi_{ff}^{(2)}
$$

one can estimate the average "resonant distance" between two pairs:

$$
R_{res}^{(2)}(H^{\perp}) \sim [V_o^{(1)} \widetilde{V}_{dd}/\widetilde{\xi}_{ff}^{(2)}(H^{\perp})]^{1/3}
$$

If $R > R_{ph}$

$$
R_{ph}(T,H^\perp)\sim [V_o^{(1)}\widetilde{V}_{dd}\tau_\phi^{ph}(T,H^\perp)/\hbar]^{1/3}
$$

phonon-assisted transitions in each molecule are faster – out of resonance

Resonance is possible only if $R < R_m = \min\{R_{res}^{(2)}, R_{ph}\}$

This happens at temperatures $T > T_{M}$:

$$
T_M = \max\{T_{res}^{(2)}, T_{ph}\}
$$

$$
k_B T_{res}^{(2)}(H^{\perp}) \sim 2\Delta_o / \ln[\widetilde{V}_{dd}/\widetilde{\xi}_{ff}^{(2)}],
$$

$$
k_B T_{ph}(H^{\perp}) \sim 2\Delta_o / \ln[\Theta_D^4 \widetilde{V}_{dd}/S^2 \Omega_o^2 \Delta_o^3]
$$

Correlated (coherent) clusters

If at *T>T_M* the average distance between excited molecules is $R_{\mathrm{ex}}(T)$ < R_{M} , all nearest - neighbor resonant pairs are able to come into resonance with each-other. If at these conditions t_c < τ_{np}

$$
t_c \sim \hbar/|V_{dd}^{zz}(R_{ex})| \sim (\hbar/\tilde{V}_{dd})(R_{ex}^3/V_o^{(1)})
$$

the whole hierarchy of correlated (coherent) flip-flop clusters can, in principle, appear *and t c is the cluster correlation time. IF RESONANT PAIRS EXIST!*

Can nearest-neighbor molecules create resonant pairs?

"Propagation" of the flip-flop transition

For excited molecule the probability to create a resonance with all of its nearest-neighbor ground state molecules is the same (at least along of one axis) [⇒] The flip-flop transition is potentially mobile [⇒] "*flipon" (a kind of magnon)*

If ∆ⁿⁿ_{ff}>ξⁿⁿ_{ff}, instead of interactions between immobile pairs of resonant molecules, one has a set of Nex (T) "mobile flip - flop transitions", flipons, diffusively propagating through the crystal (the "centers of mass" motion).

⇓

Decorrelation (dephasing)

Decorrelation

(a) Flipons motion (b) Spectral diffusion

(a) Flipons motion (motional dephasing)

Suppose that at *t=0* there is a correlated cluster of flipons, separated by the distance $R_{\mathrm{ex}}^-(T)$ (T_M < T <∆ $_{\mathrm{o}}$ / k_{B}). If at t > 0 flipons will start to move along different axes, in a generic lattice all correlations can be suppressed already at $t \gtrsim \hbar / \Delta_{ff}^{nn}$. If we consider only a quasi – 1d motion of flipons (along the same axis), we estimate the *longest motional dephasing time* τ^{m}_{d} . If τ^{m}_{d} $\geq t_{c}$, $\,$ correlated cluster with the average distance $\,$ $R_{e\chi}$ $(T) \,$ can appear. If $\, \tau^m_{\, \, d}$ $<$ $\, t_{\rm c},$ creation of correlated cluster with *Rex (T)* is virtually impossible.

We approximate the flipon motion by the discrete 1d "Random Walks" model

 $R_{\mathbf{e}\mathbf{v}} + \delta R(t) \Rightarrow \delta \Delta^{(2)}(t) = \langle (\Delta_{ff}^{(2)})^2 - \langle \Delta_{ff}^{(2)} \rangle^2 \rangle^{1/2}$ $\tau^m_d = t_f N^m_d; \hspace{0.20cm} \sum t_f \delta \Delta^{(2)}(N) \sim \hbar; \hspace{0.20cm} t_f = \hbar / \Delta^{nn}_{ff}; \hspace{0.20cm} N = t/t_f$ $N=0$ (for large values of N - $\int_0^{\tau_d^m} dt \, \delta \Delta^{(2)}(t) \sim \hbar$)

$$
\langle \Delta_{ff}^{(2)} \rangle \sim \sum_{\widetilde{r}_1, \widetilde{r}_2 = -N}^N |V_{dd}^{zz}(R_{ex} + (\widetilde{r}_1 - \widetilde{r}_2)\widetilde{a})| P_N(\widetilde{r}_1) P_N(\widetilde{r}_2)
$$

with the condition: $(R_{ex} + (\widetilde{r}_1 - \widetilde{r}_2) \widetilde{a})/R_{ex} \geq \eta(T)$ - $\eta(\mathcal{T})$ is the minimal possible (dimensionless) distance between two flipons

Generalized discrete "Random Walks" model

$$
P_N(K_r, K_l) = \frac{N! \ p^{K_r} q^{K_l} s^{N - K_r - K_l}}{K_r! K_l! (N - K_r - K_l)!}
$$

p - probability to make one jump right; *q* - one jump left; *s=1-p-q* - stay at the same site (*p+q+s=1*)

 $P_{N}(\mathsf{K}_\mathsf{r}\, , \mathsf{K}_\mathsf{p})$ - (polynom distribution) the probability to find the corresponding "walk" with K_r jumps to the right and K_f jumps to the left from total N jumps

$$
\tilde{r} = K_r - K_l
$$

$$
\langle \tilde{r} \rangle = N(p - q); \quad \langle (\Delta \tilde{r})^2 \rangle = 4Npq + Ns(1 - s)
$$

$$
\langle r^2(t) \rangle = 2D_f t; D_f = \rho \tilde{a}^2 \Delta_{ff}^{nn}/2\hbar; \quad \rho = 4pq + s(1 - s)
$$

$$
\tilde{a} \equiv (V_o^{(1)})^{1/3}
$$

The solution of the equation for τ^m_{d} can be found in the dimensionless form

$$
D_f \tau_d^m / R_{ex}^2 = \widetilde{\lambda}(\eta, \rho)
$$

If τ^m_{d} < t_c , creation of correlated cluster with average distance $R_{\mathrm{ex}}(T)$ is impossible. When τ^m_{d} ~ t_c , cluster can appear. Thus, one can solve the equation:

$$
D_f t_c(R_c)/R_c^2 = \widetilde{\lambda}(\eta_c,\rho)
$$

 $(\eta_c = \eta(R_c))$ and find the average distance R_c and the temperature T_c $k_BT_c \sim 2\Delta_o (H^{\perp})/\ln[(R_c/\tilde{a})^3-1]$

at which τ*^m d [~] tc.* For *p=q=s=1/3* one finds:

$$
R_c \sim 3\widetilde{a}; \ \ k_BT_c \sim 0.6\Delta_o(H^{\perp})
$$

At this temperature correlated cluster with average distances between flipons R c (Tc) can appear (if the scenario with p=q=s=1/3 works)

$$
\tau_d^m \sim \rho^{-1/3} \, (\text{if } s \rightarrow 1 \text{, } \rho \rightarrow 0)
$$

If flipons are essentially localized - correlated cluster can appear even at $T_M < T < T_c$

and its life-time will be limited only by $\tau_{np}.$

(b) Spectral diffusion

If Δⁿⁿ_{ff} >> ζ^{nn} _{ff} and flipons can move, the effect of spectral diffusion is much weaker than the motional dephasing effect – the spectral diffusion $\mathcal{I}_{\mathcal{A}}^{\mathcal{B}}$ is $\sim (\Delta_{ff}^{nn}/\xi_{ff}^{nn})^3$ longer than $\tau^{\prime n}_{\mathcal{A}}$

If \varDelta^{nn} _{ff} < ζ^{nn} _{ff} and there are no *flipons*, immobile "lengthy" pairs of flipflop molecules with \varDelta_{ff} (R_{ex}) ~ $\varDelta^{(2)}_{ff}$ (R_{ex}) can create correlated cluster. In this case the cluster spectral diffusion dephasing time is $\tau_{d}^{s} \sim t_{c}^{'}$, but $\zeta^{(2)}$ _{ff} is also $\sim \Delta_{ff}$ (R_{ex}) and correlations will be destroyed after the first flip - flop transition. This scenario is similar to that, known in dielectric glasses: A.L. Burin and Yu. Kagan, Sov. Phys. JETP 80, 761 (1995).

During the cluster life-time

$$
\tau_d^{ms}(T) = \min\{\tau_d^m(T), \tau_d^s(T)\}
$$

all molecules, belonging to cluster, can make $\sim \Delta_{ff}^{nn} t_c/\hbar$ coherent flip-flop oscillations

$$
P_{(\Downarrow \Uparrow)(\Uparrow \Downarrow)} \sim \frac{\Delta_{ff}^2}{E_{ff}^2} \sin^2(E_{ff}t/\hbar)
$$

During the total nuclear spin/phonon coherence period τ_{np} cluster can "reappear" $\lesssim \tau_{nn}/t_c$ times.

p=q=s=1/3: At *T ≈ 0.25 K* and at *H_x* = *3.8 T* in Fe₈ (\varDelta _o = 0.35 K) each molecule can make *~30* flip-flop oscillations and cluster can reappear *~ 50* times. In Mn₁₂ at *T ≈ 0.*25 *K* and at *H_x* = 7.*0 T* (\varDelta_{o} = *0.36 K*) one can expect *~ 10* flip-flop oscillations and *~ 50* of cluster reappearance times. These numbers were obtained without the coherenceoptimization. If flipons are localized, number of flip-flop oscillations is limited only by $Q_{\phi} \Delta_{ff}^{nn}/\Delta_o$.