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Mn12 (S=10)
T < 40 K

Fe8 (S=10)
T < 10 K

Two examples: (Single-molecule magnets)



Low-T limit – only two lowest states are occupied 
If ∆o << Eg (Eg is the spin-gap to the next levels) 

each molecule can be modeled 
as a TLS:

∆ - tunneling matrix element; ξ - bias.
E⇓,⇑ = 2ε; ε=(∆o

2+ξ2)1/2

|⇑> = u|↑> + v|↓>
|⇓> =-v|↑> + u|↓>

(u,v) = [(ε ± ξ)/2 ε]1/2

Energy

|⇑>

|⇓>

Eg

Hamiltonian of magnetic anisotropy

⇓

(2S+1 states)



“Coherence Window” for nuclear spin bath and phonons
∆ο changes with transverse magnetic field H⊥

Coherence window opens up at H⊥
c, where the total nuclear spin bath and  

phonon decoherence rate reaches its minimum
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(Eo - half-width of the nuclear bias distribution; ΘD - Debye energy; Ωo≈ Eg)

(P.C.E. Stamp, I.S. Tupitsyn, PRB 69, 014401, (2004))



What kind of spin dynamics can then be expected in this Coherence   
Window at t < τnp in a crystal of SMM coupled to nuclear spin bath, to         

phonons and to each other via dipole-dipole interactions?
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- external and nuclear longitudinal fields contribution

- dipolar contribution

- external and nuclear longitudinal fields contribution

- dipolar contribution

Model Hamiltonian

One needs to know the half-width WD of the dipolar energies 
distribution in the NPC-window



Knowing the crystal and molecular structure and the Hamiltonian of            
magnetic anisotropy, both WD and Eo can be calculated
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All molecules are in states | ⇑ > and | ⇓ >
Both states are obtained by solving the corresponding Hamiltonians of 

magnetic anisotropy in external magnetic field

Clusters of 503 Fe8 or Mn12 molecules (not a point dipole approximation!), arranged 
in a triclinic (Fe8) or tetragonal (Mn12) lattice arrays

In both systems in the NPC-window ∆o >> {WD,Eo}



Multimolecular processes in the limit ∆o >> {WD,Eo}
Two interacting molecules

H = HTLS
1 + HTLS

2 + Σαβ Vαβ τα
1 τβ

2

Rewriting H in the basis { ⇑⇑, ⇑⇓, ⇓⇑, ⇓⇓ }, one finds that two “flip-flop”
states | ⇑⇓ > and | ⇓⇑ > are  separated  from each other by the energy 
gap 2 |ε1 - ε2| << ∆o while two remaining states are separated from the 
| ⇑⇓ > and | ⇓⇑ > states by the energy gaps ~ 2∆o.  ⇒ Two central flip-
flop states can be considered as a new Effective TLS with parameters:

;

(∆i/ξi >> 1) ⇒ ;

If ∆ff > ξff,  two molecules can form a RESONANT PAIR and if at t=0 the
pair is in state |⇑⇓>, the probability to find this pair at time t in state |⇓⇑> is 

;



Two interacting RESONANT PAIRS
At kBT < ∆o (Hx) (Hx ~ Hx

c) most of molecules are in states  | ⇑ > (ground 
state) and only  Nex (T) ~ No exp (-2∆o / kBT) molecules are in states  | ⇓ > 
(excited state). Consider two resonant pairs of nearest-neighbor molecules

separated by the average distance

;

If ∆nn
ff > ξnn

ff, the same arguments as in the case of two molecules
will lead to a conclusion about the existence of a “second order” Effective 

TLS with parameters:  

Two nearest-neighbor molecules (fastest flip-flop transitions)

∆nn
ff ~ Vdd(∆1∆2/ε1ε2 ) and ξnn

ff = |ε1 - ε2|

(Vdd ~ ED/(Vo
(1))1/3; Vo

(1) – volume per one molecule)

If ∆nn
ff > ξnn

ff, two nearest-neighbor molecules are in resonance.

If ∆(2)
ff (Rex) > ξ(2)ff,two RESONANT PAIRS are in resonance.



Resonance conditions (generic lattice)

a) Nearest - neighbor molecules in two pairs are located along different       
axes (with different lattice constants): 

ξ(2)ff ~ ∆nn
ff >> ∆(2)

ff 
resonance might be impossible

b) Nearest-neighbor molecules in two pairs are  located along the same   
axis:

ξ(2)ff ~ Vdd (WD  / ∆o)2  << Vdd
resonance is, in principle, possible

In a generic lattice with the same lattice constants resonance is also, 
in principle, possible

a

b

b>a

a

a



Resonance conditions (generic lattice)

From the requirement:

one can estimate the average “resonant distance” between two pairs: 

If R > Rph

phonon-assisted transitions in each molecule are faster – out of resonance

Resonance is possible only if

This happens at temperatures T > TM:



Correlated (coherent) clusters
If at T>TM the average distance between excited molecules is Rex(T)<RM,
all nearest - neighbor resonant pairs are able to come into resonance with

each-other. If at these conditions tc <τnp

the whole hierarchy of correlated (coherent) flip-flop clusters can, in principle,
appear and tc is the cluster correlation time. IF RESONANT PAIRS EXIST!

Can nearest-neighbor molecules create resonant pairs?
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(∆o=0.36 K)

YES

,



“Propagation” of the flip-flop transition

→ →

For excited molecule the probability  to  create a  resonance with  all  of  its 
nearest-neighbor ground state molecules is the same (at least along of one 
axis) ⇒ The flip-flop transition is potentially mobile  ⇒ “flipon” (a kind of  
magnon)

If ∆nn
ff>ξnn

ff, instead of interactions between immobile pairs of resonant 
molecules, one has a set of  Nex (T) “mobile flip - flop transitions”, flipons,   
diffusively propagating through the crystal (the “centers of mass” motion). 

⇓

Decorrelation (dephasing)



Decorrelation
(a) Flipons motion (b) Spectral diffusion

(a) Flipons motion (motional dephasing)
Suppose that at t=0 there is a correlated cluster of flipons, separated by the
distance Rex (T) (TM < T < ∆o / kB). If at t > 0 flipons will start to move along
different axes, in a generic lattice all correlations can be suppressed already
at                     . If we consider only a quasi – 1d motion of flipons (along the 
same axis), we estimate the longest motional dephasing time τm

d. If τm
d>tc,

correlated cluster with the average distance  Rex (T) can appear. If τm
d < tc,

creation of correlated cluster with Rex (T) is virtually impossible. 

We approximate the flipon motion by the discrete 1d “Random Walks” model

(for large values of N - )

;

Rex+δR(t) ⇒



p - probability to make one jump right; q - one jump left; s=1-p-q - stay at       
the same site (p+q+s=1)

PN(Kr ,Kl) - (polynom distribution)  the probability to find the corresponding
“walk” with Kr jumps to the right and Kl jumps to the left from total N jumps

;

with the condition: - η(T) is the minimal 

possible (dimensionless) distance between two flipons
Generalized discrete “Random Walks” model



The solution of the equation for τm
d can be found in the dimensionless 

form

If τm
d < tc, creation of correlated cluster with average distance Rex(T) is 

impossible. When τm
d ~ tc, cluster can appear. Thus, one can solve the 

equation:

(ηc = η(Rc)) and find the average distance Rc and the temperature Tc

at which τm
d ~ tc. For p=q=s=1/3 one finds:

;

At this temperature correlated cluster with average distances between           
flipons Rc (Tc) can appear (if the scenario with p=q=s=1/3 works)



If flipons are essentially localized - correlated cluster can appear even at

(b) Spectral diffusion

(if             ,             )

If ∆nn
ff >>  ξnn

ff and flipons can move, the effect of spectral diffusion is 
much weaker than the motional dephasing effect – the spectral diffusion 
time τs

d is                           longer than τm
d.

If ∆nn
ff <  ξnn

ff and there are no flipons, immobile “lengthy” pairs of flip-
flop molecules with ∆ff  (Rex) ~ ∆(2)

ff  (Rex) can create correlated cluster.  
In this case the cluster spectral diffusion dephasing time is  τs

d ~ tc, but 
ξ(2)

ff is also ~ ∆ff (Rex) and correlations will be destroyed after the first 
flip - flop transition. This scenario  is  similar to  that, known  in dielectric 
glasses: A.L. Burin and Yu. Kagan, Sov. Phys. JETP 80, 761 (1995).

and its life-time will be limited only by τnp.



During the cluster life-time

During the total nuclear spin/phonon coherence period τnp cluster can 
“reappear” times.

all molecules, belonging to cluster, can  make                 coherent
flip-flop oscillations

p=q=s=1/3: At T ≈ 0.25 K and at Hx = 3.8 T in Fe8 (∆o = 0.35 K) each 
molecule can make ~30 flip-flop oscillations and cluster can reappear

~ 50 times. In Mn12 at T ≈ 0.25 K and at Hx = 7.0 T (∆o = 0.36 K) one 

can expect ~ 10 flip-flop oscillations and ~ 50 of cluster reappearance
times.   These   numbers   were   obtained    without   the   coherence
optimization. If flipons are localized, number of flip-flop oscillations  is 
limited only by                     . 


