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Traditional view of Yang-Mills θ-states 

L = 1
2g2FµnFµn

Fµn = ∂µAn−∂nAµ+[Aµ,An]

DµM = ∂µM +[Aµ,M]

Aµ→ Aµ+U−1DµU
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Traditional view of Yang-Mills θ-states

F∗
µnFµn is a topological term which

is related to the winding number
of map between ∂(S×R) and the
gauge group G.



Hamiltonian approachZ
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Y(Aa) = EY(Aa)

D · d
dAa

Yphys(Aa) = 0

there are gauge transformations which are not  
generated by the constraint, the so called large gauge 
transformations. 

Aµ→ Aµ+U−1DµU

General gauge transformations commute with the hamiltonian
so they change the wave function by at most a phase.



Hamiltonian

For S a 3-sphere the spatial gauge 
transformations are maps between the 3-
sphere and gauge group G.  The large ones 
form a group which is π3G =  . Z

Given a large gauge transformation gn the uni-
tary operator Ugn|phys >= e−inq|phys >



Hamiltonian
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F(Aa) = EF(Aa)

Define a new state F in the following way

F = eiW (Aa)Yphys

Z
S×R

dV
( 1
2g2FµnFµn− h̄q

16p2F∗
µnFµn

)
The action which gives this hamiltonian is



θ-states in terms of Hamiltonian 

C=A/G

The Hamiltonian is defined on the configuration space C
over the spatial surface S.

where A is the vector space of all spatial vector potentials
on S and G is the group of spatial gauge transformations.  

π1C=π1(A/G)=π0G=[S, G]= Z

assuming S is 3-sphere.  π1C is always abelian for gauge
theories.  



Math

Given any space X with p1X non-trivial, then
there exists a space X̃ such that there is an onto
map p : X̃ → X such that p(x̃) = [x̃].

x1 ∈ [x̃] if and only if x̃ = gx1 where g ∈ p1X .
X̃ is called the universal cover of X .



Examples

1. Let T n be the n-torus, then the universal cover is Rn

2. For SO(3) the universal cover is SU(2) where p : SU(2)→ SO(3) is given by p(q)x = qxq−1

where x ∈ R3. Represent, x = ai + b j + ck, q = f 1 + mi + n j + sk, i j = k, i2 = j2 = −1, q∗ =
f 1−mi−n j− sk. qq∗ = 1 iff q ∈ SU(2)



Quantization on non-simply  connected 
configuration spaces

Recall for any space with symmetry the wave 
functions are irreducible unitary representations of 
the symmetry group.

Quantizing on any non-simply connected space one can 
use the same techniques as quantizing on a space with a 
symmetry by working in the covering space. 



Basic repsentation theory
Let Q be some closed coordinate space on 
which a group acts, and y:Qfi C. Assume G is finite. 
Given y, gy gives another function on Q. Fix some y  
and act on it with all g˛ G.
 
B={y1, y2, ... , yf }  where  f ≤ |G|.  

Pick yi ‘s othronormal. 

ĝyi = Skgkiyk

gik =
Z

y∗
i ĝykdV



Reps
This set of matrices is called a representation of G. B is a basis
and f = dim B is the dimension of the representation. The gik’s
are the unitary reps.

Character of a group element is 

Once can show that H=⊕Hl with Hl=⊕Hlβ
l labels irreducible representations on G and βis the multiple 
occurrences of the representations.

c(g) = tr(ĝ)



Reps
y = SbSly

b
l

yb
l =

fb

|G|Sgtr(ĝb∗)ĝy

yb
l =

fb

|G|Sgcb(ĝ)∗ĝy



Quantum Gravity Example

C=Riem(Σ)/Diff(Σ)

For general 3-manifolds  
π1C=π1(Riem(Σ)/Diff(Σ))
is non-abelian unlike the gauge theory case.

Additionally, there are quantum states which are 
ferimonic! 

D. Witt J. Math Phys. (1986), 
J. Friedman and D. Witt Topology (1986).



Quantum Shapes
Look at a rigid rotator the configuration space 
is SO(3).  π1C= Z2

2. For SO(3) the universal cover is SU(2) where p : SU(2)→ SO(3) is given by p(q)x = qxq−1

where x ∈ R3. Represent, x = ai + b j + ck, q = f 1 + mi + n j + sk, i j = k, i2 = j2 = −1, q∗ =
f 1−mi−n j− sk. qq∗ = 1 iff q ∈ SU(2)

If the rotator has a symmetry group then H, then 
H ˝ SO(3). Hence, the configuration space for a symmetric
rotator is 

C=SO(3)/H.

such a rotator is called a shape.

 



Quntum Shape

π1C=π1 (SO(3)/H)=π1 ((SU(2)/   )/(H*/   ))

π1C=π1 (SU(2)/H*)= H*

Z2 Z2



Groups 
Finite subgroups of SU(2) are the Zm, D∗

4m, T ∗, O∗, I∗.

The groups are the cyclic, group the binary dihedral 
group, binary tetrahedral group, binary octahedral 
group, and binary icosahedral group. 

The order of the groups is m, 4m, 24, 48, and 120. 



Quantum Shapes Violating P and T

The mechanism is much the same as the one leading to P and T violation in QCD 
in the presence of the theta term(for q „ 0, p): P and T change the UIR of H* to its 
complex conjugate. 

In QCD, the analogous result is that P and T change the UIR n fi einq of Z to its 
complex conjugate, Z being the fundamental group of the gluon field configuration 
space.

It merits emphasis that P and T violation being discussed here is quantum 
mechanical. The left-right distinction found here is not the same as the distinction 
between isomeric nuclei. It cannot be seen by a classical physicist. In a similar 
way, the QCD q has no classical consequence and affects only quantum theory.



Molecules as quantum shapes

When the Born-Oppenheimer approximation or some version thereof applies 
molecules are examples of quantum shapes.

Binary dihedral groups give example symmetry violations.

C2H6 is an example of such a molecule.



In molecular physics, there is no known microscopic source of P or T violation. For 
this reason, it was speculated that in a more exact treatment, there must exist mechanisms 
mixing states mapped to each other by P and T .

A. P. Balachandran, A. Simoni, and D. Witt.  Int. J. Mod. Phys. A, 
7:2087, 1992.



Nuclear

Skyrmion Spin from B-O approximation

The spectral flow arguments can be used to strongly suggests
that there are quarks moving in the background of the Skyrme field U.
The system thus naturally lends itself to a separation into the “fast” quark
degrees of freedom, and the “slow” Skyrme degrees of freedom. It is therefore
plausible that the simplest attempt to quantize this system would be via the
Born-Oppenheimer approximation or some modified version.

The configuration space is 
C = (SO(3) · SO(3))/H. This is equivalent
written as a quotient of the covering group 

C = (SU(2)·SU(2))/K,



Conclusion

Look for quantum systems for such effects.

Extend some of the ideas back field theories


