Quasiparticle interference in the *pseudogap* phase of cuprate superconductors

M. Franz
University of British Columbia
franz@physics.ubc.ca

January 31, 2004

In collaboration with: T. Pereg-Barnea (KITP & UBC)
Pseudogap: the key mystery

Pseudogap is a nonsuperconducting phase intermediate between the AF insulator and d-wave superconductor.
Pseudogap: the key mystery

Pseudogap is a nonsuperconducting phase intermediate between the AF insulator and d-wave superconductor.

Phase diagram of cuprates. [For exp. review see Timusk and Statt, Rep. Prog. Phys. 62, 61 (1999).]
Pseudogap: the key mystery

Pseudogap is a nonsuperconducting phase intermediate between the AF insulator and \(d \)-wave superconductor.

Phase diagram of cuprates. [For exp. review see Timusk and Statt, Rep. Prog. Phys. 62, 61 (1999).]

Gap in the single-particle DOS above \(T_c \) [tunneling data from Renner et al., PRL 80, 149 (1998)].
Two schools of thought on the origin of pseudogap

Ascribe the pseudogap phenomenon to:

- Remnants of superconducting order
 - Franz and Millis, PRB 58, 14572 (1998)
 - Balents, Fisher and Nayak, PRB 60, 1654 (1999)
 - Laughlin, cond-mat/0209269
Two schools of thought on the origin of pseudogap

Ascribe the pseudogap phenomenon to:

- **Remnants of superconducting order**
 - Balents, Fisher and Nayak, PRB **60**, 1654 (1999)
 - Laughlin, cond-mat/0209269

- **Static or fluctuating competing order in p-h channel (SDW, CDW, DDW, . . .)**
 - Chakravarty, Laughlin, Morr, and Nayak, PRB **63**, 094503 (2001)
Who is right?

Experimental determination of the origin of the pseudogap phase has proven elusive. At present believable experiments can be found to support either scenario.
Who is right?

Experimental determination of the origin of the pseudogap phase has proven elusive. At present believable experiments can be found to support either scenario.

Need a decisive “smoking gun” experiment
Who is right?

Experimental determination of the origin of the pseudogap phase has proven elusive. At present believable experiments can be found to support either scenario.

Need a decisive “smoking gun” experiment

Our proposal: use the recently developed technique of Fourier Transform scanning tunneling spectroscopy (FT-STS).

- Pereg-Barnea and Franz, cond-mat/0401594
STM Basics

STM measures differential conductance

\[n(r, \omega) \sim \left(\frac{dI(r, eV)}{dV} \right)_{eV=\omega} \]

with potentially atomic resolution.

To reasonable approximation \(n(r, \omega) \) is proportional to the Local Density of States (LDOS) of the sample at point \(r \) directly under the STM tip.
Tunneling spectroscopy in cuprates

Topography of BiSCCO:
Tunneling spectroscopy in cuprates

Topography of BiSCCO:

Spectroscopy of Ni impurities:
Tunneling spectroscopy in cuprates

Topography of BiSCCO:

LDOS inhomogeneity:

Spectroscopy of Ni impurities:
FT-STS: “Fourier Transform Scanning Tunneling Spectroscopy”

Periodic patterns in LDOS at fixed energy are sometimes observed:
FT-STS: “Fourier Transform Scanning Tunneling Spectroscopy”

Periodic patterns in LDOS at fixed energy are sometimes observed:

FT
FT-STS peaks disperse as a function of applied bias

The “Octet Model”

The octet model asserts that the peaks in FT-STS are due to quasiparticle scattering between the regions of high DOS.
The “Octet Model”

The octet model asserts that the peaks in FT-STS are due to quasiparticle scattering between the regions of high DOS.
Theory vs. Experiment

T-matrix calculation [Wang and Lee, PRB 67, 020511(R) (2003)]
But, all is different!

The octet model, although simple and appealing, is not quite right.
But, all is different!

The octet model, although simple and appealing, is not quite right.

- DOS itself *cannot* explain the peaks in the FT-STS data
But, all is different!

The octet model, although simple and appealing, is not quite right.

- DOS itself *cannot* explain the peaks in the FT-STS data

- The interference patterns depend crucially on the electron *wavefunctions*, i.e. they are sensitive to BCS *coherence factors*.
But, all is different!

The octet model, although simple and appealing, is not quite right.

- DOS itself *cannot* explain the peaks in the FT-STS data.
- The interference patterns depend crucially on the electron *wavefunctions*, i.e., they are sensitive to BCS *coherence factors*.
- System with *identical DOS* but different type of electron order will exhibit qualitatively different FT-STS patterns.
But, all is different!

The octet model, although simple and appealing, is not quite right.

- DOS itself \textit{cannot} explain the peaks in the FT-STS data
- The interference patterns depend crucially on the electron \textit{wavefunctions}, i.e. they are sensitive to BCS \textit{coherence factors}.
- System with \textit{identical DOS} but different type of electron order will exhibit qualitatively different FT-STS patterns.
STM measures the quantity

\[n(r, \omega) = -\frac{1}{\pi} \text{Im}[G_{11}(r, r, \omega) + G_{22}(r, r, -\omega)], \]

where \(G(r, r', \omega) \) is a full electron propagator. In the presence of disorder potential \(V \) we can write

\[G(k, k', \omega) = G^0(k, \omega)\delta_{k,k'} + G^0(k, \omega)\hat{T}_{kk'}(\omega)G^0(k', \omega), \]

with \(G^0(k, \omega) = [\omega - \sigma_3 \epsilon_k - \sigma_1 \Delta_k]^{-1} \) the bare Green's function and \(\hat{T}_{kk'}(\omega) \) the T-matrix that satisfies the Lippman-Schwinger equation

\[\hat{T}_{kk'}(\omega) = \hat{V}_{kk'} + \sum_q \hat{V}_{kq} G^0(q, \omega)\hat{T}_{qq'}(\omega). \]
FT-STS measures $n(q, \omega)$, a spatial Fourier transform of $n(r, \omega)$.

It is useful to consider a limit of weak disorder (i.e. Born limit) in which one can express the non-uniform part $\delta n(q, \omega)$

$$\delta n(q, \omega) = -\frac{1}{\pi}|V_q|\text{Im} [\Lambda_{11}(q, \omega) + \Lambda_{22}(q, -\omega)],$$

where, for scattering in the charge channel,

$$\Lambda(q, \omega) = \sum_k G^0(k, \omega)\sigma_3 G^0(k - q, \omega).$$

$\Lambda(q, \omega)$ is a response function of the clean system.
FT-STS measures $n(q, \omega)$, a spatial Fourier transform of $n(r, \omega)$.

It is useful to consider a limit of weak disorder (i.e. Born limit) in which one can express the non-uniform part $\delta n(q, \omega)$

$$\delta n(q, \omega) = -\frac{1}{\pi} |V_q| \text{Im} [\Lambda_{11}(q, \omega) + \Lambda_{22}(q, -\omega)],$$

where, for scattering in the charge channel,

$$\Lambda(q, \omega) = \sum_k G^0(k, \omega) \sigma_3 G^0(k - q, \omega).$$

$\Lambda(q, \omega)$ is a response function of the clean system.

For weak disorder FT-STS provides information about the underlying electron order.
Nodal approximation: importance of coherence factors

One finds

$$\Lambda(q, i\omega) = \frac{1}{L^2} \sum_{k} \frac{(i\omega + \epsilon_+)(i\omega + \epsilon_-) - \Delta_+\Delta_-}{(\omega^2 + E_+^2)(\omega^2 + E_-^2)},$$

with $\epsilon_\pm = \epsilon_{k\pm q/2}$, $\Delta_\pm = \Delta_{k\pm q/2}$ and $E_\pm = \sqrt{\epsilon_\pm^2 + \Delta_\pm^2}$. Linearize near the nodes to obtain

$$\Lambda_{\text{lin}} = \frac{1}{v_F v_\Delta} \int \frac{d^2k}{(2\pi)^2} \left[-\omega^2 + (k_1^2 - k_2^2) - (\tilde{q}_1^2 - \tilde{q}_2^2) \right] \left[\omega^2 + (k + \tilde{q})^2 \right] \frac{\omega^2 + (k - \tilde{q})^2}{[\omega^2 + (k + \tilde{q})^2][\omega^2 + (k - \tilde{q})^2]}.$$
For intranodal scattering we thus get

Magnetic and non-magnetic scattering differ only in the coherence factors, DOS is exactly the same. Yet, the FT-STS patterns are qualitatively different!
The full picture

One can analyze various intra-node processes similarly in the linearized approximation to obtain the full picture.
The full picture

One can analyze various intra-node processes similarly in the linearized approximation to obtain the full picture.

Alternately, one can evaluate $\Lambda(q, \omega)$ exactly using numerical techniques:
The pseudogap state

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.
The pseudogap state

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.
- If the pseudogap is dominated by SC fluctuations then the FT-STS patterns above T_c should be qualitatively similar to those below T_c.
The pseudogap state

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.

- If the pseudogap is dominated by SC fluctuations then the FT-STS patterns above T_c should be qualitatively similar to those below T_c.

- If the pseudogap is primarily due to some p-h order the we expect a fundamentally different patterns above T_c.
The pseudogap state

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.

- If the pseudogap is dominated by SC fluctuations then the FT-STS patterns above T_c should be qualitatively similar to those below T_c.

- If the pseudogap is primarily due to some p-h order the we expect a fundamentally different patterns above T_c.

- In the following we illustrate this general thesis on the comparison between QED$_3$ theory of phase disordered dSC and d-density wave (DDW) scenario for pseudogap.
This theory describes fermionic excitations in a phase-disordered \textit{d}-wave superconductor. The electron propagator reads

\[G^0(k, i\omega) = \lambda^{-\eta} \frac{i\omega + \epsilon_k \sigma_3}{\left[\omega^2 + \epsilon_k^2 + \Delta_k^2\right]^{1-\eta/2}}, \]

where \(\lambda \) is a high energy cutoff and \(\eta \) is the anomalous dimension exponent which encodes the physics of phase fluctuations. \(\eta \) is a small positive number, whose precise value is still under debate.
DDW

[Chakravarty, Laughlin, Morr, and Nayak PRB 63, 094503 (2001)]

Also known as the “flux phase”, this theory describes the pseudogap as a mean-field state with staggered pattern of currents, breaking the translational symmetry of the square lattice. We have

\[G^0(k, i\omega) = \left((i\omega - \epsilon'_k) - \epsilon''_k \sigma_3 - D_k \sigma_2 \right)^{-1}, \]

with \(\epsilon'_k = \frac{1}{2}(\epsilon_k + \epsilon_{k+Q}) \), \(\epsilon''_k = \frac{1}{2}(\epsilon_k - \epsilon_{k+Q}) \), and the DDW gap \(D_k = \frac{1}{2}D_0(\cos k_x - \cos k_y) \).

At half filling \((\mu = 0) \) and with nn dispersion \((t' = 0) \) DDW has the same DOS as the \(d\text{SC} \).
Conclusions

- By analyzing the quasiparticle interference patterns in the nodal approximation we gained some crucial insights into FT-STS in the superconducting state.

- FT-STS is sensitive to both the quasiparticle DOS and the coherence factors.

- This sensitivity can be used to determine the nature of the condensate responsible for the pseudogap phenomenon in the cuprates.

- Several experimental groups are now actively pursuing this goal.