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[tunneling data from Renner et al., PRL
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Two schools of thought on the origin of pseudogap

Ascribe the pseudogap phenomenon to:

• Remnants of superconducting order

? Emery and Kivelson, Nature 374, 434 (1995).
? Franz and Millis, PRB 58, 14572 (1998)
? Balents, Fisher and Nayak, PRB 60, 1654 (1999)
? Laughlin, cond-mat/0209269
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Ascribe the pseudogap phenomenon to:

• Remnants of superconducting order

? Emery and Kivelson, Nature 374, 434 (1995).
? Franz and Millis, PRB 58, 14572 (1998)
? Balents, Fisher and Nayak, PRB 60, 1654 (1999)
? Laughlin, cond-mat/0209269

• Static or fluctuating competing order in p-h channel (SDW, CDW, DDW, . . . )

? Zhang, Science 275, 1089 (1997)
? Varma, PRL 83, 3538 (1999)
? Vojta, Zhang, and Sachdev, PRB 62, 6721 (2000)
? Chakravarty, Laughlin, Morr, and Nayak, PRB 63, 094503 (2001)

SLIDES CREATED WITH FoilTEX & PP4



QP INTERFERENCE 3

Who is right?

Experimental determination of the origin of the pseudogap phase has proven
elusive. At present believable experiments can be found to support either
scenario.
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Who is right?

Experimental determination of the origin of the pseudogap phase has proven
elusive. At present believable experiments can be found to support either
scenario.

Need a decisive “smoking gun” experiment

Our proposal: use the recently developed technique of Fourier Transform
scanning tunneling spectroscopy (FT-STS).

• Pereg-Barnea and Franz, PRB 68, 180506(R) (2003)

• Pereg-Barnea and Franz, cond-mat/0401594
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STM Basics
[http://people.ccmr.cornell.edu/ j̃cdavis/stm]

STM measures differential
conductance

n(r, ω) '
(

dI(r, eV )
dV

)
eV =ω

,

with potentially atomic resolution.

To reasonable approximation
n(r, ω) is proportional to the Local
Density of States (LDOS) of the
sample at point r directly under
the STM tip.
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Tunneling spectroscopy in cuprates

Topography of BiSCCO:
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Tunneling spectroscopy in cuprates

Topography of BiSCCO:

Spectroscopy of Ni impurities:

LDOS inhomogeneity:
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FT-STS: “Fourier Transform Scanning Tunneling
Spectroscopy”

Periodic patterns in LDOS at fixed energy
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FT-STS: “Fourier Transform Scanning Tunneling
Spectroscopy”

Periodic patterns in LDOS at fixed energy
are sometimes observed:

−→
FT

SLIDES CREATED WITH FoilTEX & PP4



QP INTERFERENCE 7

FT-STS peaks disperse as a function of applied bias

• K. McElroy et al., Nature 422, 592 (2003).

• J.E. Hoffman et al., Science 297, 1148 (2002).
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The “Octet Model”

The octet model asserts that the peaks in FT-STS are due to quasiparticle
scattering between the regions of high DOS.
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Theory vs. Experiment

T-matrix calculation [Wang and Lee, PRB 67, 020511(R) (2003)]
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But, all is different!

The octet model, although simple and appealing, is not quite right.
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But, all is different!

The octet model, although simple and appealing, is not quite right.

• DOS itself cannot explain the peaks in the FT-STS data

• The interference patterns depend crucially on the electron wavefunctions,
i.e. they are sensitive to BCS coherence factors.

• System with identical DOS but different type of electron order will exhibit
qualitatively different FT-STS patterns.

−→ IDENTIFICATION OF PSEUDOGAP ORDER
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Theory of FT-STS

STM measures the quantity

n(r, ω) = −1
π
Im[G11(r, r, ω) + G22(r, r,−ω)],

where G(r, r′, ω) is a full electron propagator. In the presence of disorder
potential V we can write

G(k,k′, ω) = G0(k, ω)δk,k′ + G0(k, ω)T̂kk′(ω)G0(k′, ω),

with G0(k, ω) = [ω − σ3εk− σ1∆k]−1 the bare Green’s function and T̂kk′(ω) the
T-matrix that satisfies the Lippman-Schwinger equation

T̂kk′(ω) = V̂kk′ +
∑
q

V̂kqG
0(q, ω)T̂qk′(ω).
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FT-STS measures n(q, ω), a spatial Fourier transform of n(r, ω).

It is useful to consider a limit of weak disorder (i.e. Born limit) in which one can
express the non-uniform part δn(q, ω)

δn(q, ω) = −1
π
|Vq|Im [Λ11(q, ω) + Λ22(q,−ω)] ,

where, for scattering in the charge channel,

Λ(q, ω) =
∑
k

G0(k, ω)σ3G
0(k− q, ω).

Λ(q, ω) is a response function of the clean system.
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FT-STS measures n(q, ω), a spatial Fourier transform of n(r, ω).

It is useful to consider a limit of weak disorder (i.e. Born limit) in which one can
express the non-uniform part δn(q, ω)

δn(q, ω) = −1
π
|Vq|Im [Λ11(q, ω) + Λ22(q,−ω)] ,

where, for scattering in the charge channel,

Λ(q, ω) =
∑
k

G0(k, ω)σ3G
0(k− q, ω).

Λ(q, ω) is a response function of the clean system.

For weak disorder FT-STS provides information about
the underlying electron order
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Nodal approximation: importance of coherence factors

One finds

Λ(q, iω) =
1
L2

∑
k

(iω + ε+)(iω + ε−)−∆+∆−

(ω2 + E2
+)(ω2 + E2

−)
,

with ε± = εk±q/2, ∆± = ∆k±q/2

and E± =
√

ε2± + ∆2
±. Linearize

near the nodes to obtain

v vvv

v

∆

∆

∆
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x

vv
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F
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−−
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+
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Q

Λlin =
1

vFv∆

∫
d2k

(2π)2
−ω2 + (k2

1 − k2
2)− (q̃2

1 − q̃2
2)

[ω2 + (k + q̃)2][ω2 + (k− q̃)2]
.
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For intranodal scattering we thus get

Re Im Re Im

a) non−magnetic b) magnetic

Magnetic and non-magnetic scattering differ only in the coherence factors,
DOS is exactly the same. Yet, the FT-STS patterns are qualitatively different!.
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The full picture

One can analyze various intra-
node processes similarly in the
linearized approximation to obtain
the full picture.
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The full picture

One can analyze various intra-
node processes similarly in the
linearized approximation to obtain
the full picture.

Alternately, one can evaluate
Λ(q, ω) exactly using numerical
techniques:
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The pseudogap state

• We have established that FT-STS patterns depend critically on the
quasiparticle coherence factors.
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The pseudogap state

• We have established that FT-STS patterns depend critically on the
quasiparticle coherence factors.

• If the pseudogap is dominated by SC fluctuations then the FT-STS patterns
above Tc should be qualitatively similar to those below Tc.

• If the pseudogap is primarily due to some p-h order the we expect a
fundamentally different patterns above Tc.

• In the following we illustrate this general thesis on the comparison between
QED3 theory of phase disordered dSC and d-density wave (DDW) scenario
for pseudogap.
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QED3

[Franz and Tešanović, PRL 87, 257003 (2001)]

This theory describes fermionic
excitations in a phase-disordered
d-wave superconductor. The electron
propagator reads

G0(k, iω) = λ−η iω + εkσ3

[ω2 + ε2k + ∆2
k]1−η/2

,

where λ is a high energy cutoff
and η is the anomalous dimension
exponent which encodes the physics
of phase fluctuations. η is a small
positive number, whose precise value
is still under debate.
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DDW
[Chakravarty, Laughlin, Morr, and Nayak PRB 63, 094503 (2001)]

Also known as the “flux phase”, this
theory describes the pseudogap as
a mean-field state with staggered
pattern of currents, breaking the
translational symmetry of the square
lattice. We have

G0(k, iω) = [(iω−ε′k)−ε′′kσ3−Dkσ2]−1,

with ε′k = 1
2(εk + εk+Q), ε′′k =

1
2(εk − εk+Q), and the DDW gap Dk =
1
2D0(cos kx − cos ky).
At half filling (µ = 0) and with nn
dispersion (t′ = 0) DDW has the
same DOS as the dSC.
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Conclusions

• By analyzing the quasiparticle interference patterns in the nodal
approximation we gained some crucial insights into FT-STS in the
superconducting state.

• FT-STS is sensitive to both the quasiparticle DOS and the coherence
factors.

• This sensitivity can be used to determine the nature of the condensate
responsible for the pseudogap phenomenon in the cuprates.

• Several experimental groups are now actively pursuing this goal.
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