

Self-Calibration in SZ surveys

Two surveys, the South Pole Telescope Survey and the Planck all sky survey (yielding > 20,000 clusters), contain enough information to constrain the interesting cosmological parameters and solve for the structure of galaxy clusters simultaneously!

Assumptions required:

- Hierarchichal structure formation is correct
 A mass-X-ray luminosity relation exists (or a mass-SZE luminosity relation exists)
- Crude redshift estimates are available for each
 cluster detected in the survey

SM & J. Mohr 2003a

N X X			NXN	$\rightarrow N \rightarrow \lambda$					
Survey	Ω_{m}	Ω_{tot}	w	σ_8	h	n	$\Omega_{ m b}$	Norm	Slope
Priors		flat			0.07	0.050	0.004		
Planck	0.017	-	0.075	0.013	0.053	0.041	0.004	24%	~2%
SPT	0.024	-	0.062	0.013	0.047	0.048	0.004	21%	~2%
	Survey Priors Planck SPT	Survey Ω _m Priors Planck 0.017 SPT 0.024	Survey Ω _m Ω _{tot} Priors flat Planck 0.017 - SPT 0.024 -	Survey Ω _m Ω _{tot} w Priors flat Planck 0.017 - 0.075 SPT 0.024 - 0.062	Survey Ω _m Ω _{tot} W σ ₈ Priors flat Planck 0.017 - 0.075 0.013 SPT 0.024 - 0.062 0.013	Survey Ωm Ωtot W σ8 h Priors flat 0.07 Planck 0.017 - 0.075 0.013 0.053 SPT 0.024 - 0.062 0.013 0.047	Survey Ωm Ωtot W σ8 h n Priors flat 0.07 0.050 Planck 0.017 - 0.075 0.013 0.053 0.041 SPT 0.024 - 0.062 0.013 0.047 0.048	Survey Ω _m Ω _{tot} w σ ₈ h n Ω _b Priors flat 0.07 0.050 0.004 Planck 0.017 - 0.075 0.013 0.053 0.041 0.004 SPT 0.024 - 0.062 0.013 0.047 0.048 0.004	Survey Ω _m Ω _{tot} w σ ₈ h n Ω _b Norm Priors flat 0.07 0.050 0.004 Planck 0.017 - 0.075 0.013 0.053 0.041 0.004 24% SPT 0.024 - 0.062 0.013 0.047 0.048 0.004 21%

$f_x(z) 4 \pi d_L^2 = A M^\beta E^2(z)$

Self-calibrating character of cluster surveys was first shown by Jose Diego et al in an analysis of local cluster data. Levine et al applied it to large temp limited cluster surveys.

Will Self-Calibration survive ? We have assumed the scaling relations to be non-evolving in redshift. What if they evolve? (for ex:, non-gravitational processes at higher redshifts can modify these relations.) If so, then mass estimate of a cluster with a particular flux at redshift z is less accurate $f_{x}(z)4\pi d_{1}^{2} = AM^{\beta}E^{2}(z)(1+z)^{\gamma}$ Net Result : Uncertainties in w' grow by factor of ~ 3-5 SM & J. Mohr, 2002a Survey h Norm Slope Ω_{m} Ω_{to} w σ_8 n $\Omega_{\rm h}$ γ Priors flat 0.07 0.050 0.004 SPT 0.024 0.068 0.013 0.062 0.048 0.004 21% ~1% 0.025 24% ~1% 55% 0.182 0.019 0.062 0.048 0.004 Planck 0.017 . 0.075 0.013 0.053 0.041 0.004 24% ~2% 0.018 -0.387 0.015 0.057 0.043 0.004 26% ~2% 50%

1σ error around w=-1, normalized over 9 other parameters									
Survey	On its own	+ P(k)	+100 clusters follow-up	+ Both					
SPT	0.18	0.16	0.06	0.035					
Planck	0.39	0.10	0.12	0.041					
		Reality:	1)scatter not acco 2) w(z) should ha 3)very sensitive t and ofcours 4)will we get all t	ounted for twe been taken o flux lims e be clusters?					

