

	Cor	npar	ison	of σ_8	me	as	ur	eme	ente
	ID	σ8	Statistic	Field	$m_{ m lim}$	CosVar	E/B	Z,	Г
	[18] Maoli et al. 01	1.03 ± 0.05	$\langle \gamma^2 \rangle$	VLT+CTIO+ WHT+CFHT	82	no	no	2	0.21
	[27] LVW et al. 01	0.88 ± 0.11	$\begin{array}{c} \langle \gamma^2 \rangle, \xi(r) \\ \langle M^2_{\mathrm{ap}} \rangle \end{array}$	CFHT 8 sq.deg.	I=24	no	no (yes)	1.1	0.21
	[22] Rhodes et al. 01	$0.91\substack{+0.25 \\ -0.29}$	$\xi(r)$	HST 0.05 sq.deg.	I=26	yes	no	0.9-1.1	0.25
<u>.</u> კ	[8] Hoekstra et al. 01	0.81 ± 0.08	$\langle \gamma^2 \rangle$	CFHT+CTIO 24 sq.deg.	R=24	yes	no	0.55	0.21
ں ا	[2] Bacon et al. 02	0.97 ± 0.13	$\xi(r)$	Keck+WHT 1.6 sq.deg.	R=25	yes	no	0.7-0.9	0.21
G,	[21] Refregier et al. 02	0.94 ± 0.17	$\langle \gamma^2 \rangle$	HST 0.36 sq.deg.	I=23.5	yes	no	0.8-1.0	0.21
o	[28] LVW et al. 02	0.94 ± 0.12	$\langle M^2_{\rm ap} \rangle$	CFHT 12 sq.deg.	I=24	yes	yes	0.78-1.08	0.1-0.4
LL_	[9] Hoekstra et al. 02	$0.91\substack{+0.05 \\ -0.12}$	$\begin{array}{c} \langle \gamma^2 \rangle, \xi(r) \\ \langle M^2_{\rm ap} \rangle \end{array}$	CFHT+CTIO 53 sq.deg.	R=24	yes	yes	0.54-0.66	0.05-0.5
	[4] Brown et al. 02	0.74 ± 0.09	$\langle \gamma^2 angle, \xi(r)$	ESO 1.25 sq.deg.	R=25.5	yes	no (yes)	0.8-0.9	-
	[6] Hamana et al. 02	$(2\sigma)0.69^{+0.35}_{-0.25}$	$\langle M^2_{\rm ap} \rangle, \xi(r)$	Subaru 2.1 sq.deg.	R=26	yes	yes	0.8-1.4	0.1-0.4
	[12] Jarvis et al. 02	$(2\sigma)0.71^{+0.12}_{-0.16}$	$\langle \gamma^2 angle, \xi(r) \ \langle M^2_{ m ap} angle$	CTIO 75 sq.deg.	R=23	yes	yes	0.66	0.15-0.5

The	future
Several large cosmic she	ar programs are planned
□ Deep Lens Survey □ CFHT Legacy Survey □ RCS2	28 square degrees (ongoing) 140 square degrees (started) 1000 square degrees (started)
□ LSST □ Pan-STARRS □ SNAP (space)	 > 10⁴ square degrees (>2008) > 10⁴ square degrees (>2012) few 100 square degrees (>2011)

Conclusions					
We (might) need to improve our kn	owledge of:				
Source redshift distribution					
photometric redshift from the su	rvey data				
□ deep (photometric) redshift surv	eys				
Non-linear power spectrum					
□ large numerical simulations					
	atric redebifts				
Observational systematic effects					
	5				
□ Detailed simulations					