Manganese Carboxylate Clusters as Single-Molecule Magnets (Molecular Nanomagnets)

George Christou

Department of Chemistry, University of Florida Gainesville, FL 32611-7200, USA

christou@chem.ufl.edu

Advantages of SMMs over Classical Nanoscale Magnetic Particles

- □ A collection of truly monodisperse particles of nanoscale dimensions
- Crystalline, containing highly ordered assemblies of SMMs
- □ A single, well-defined ground state spin, S
- □ A true quantum spin system
- □ Synthesis by room temperature, solution methods
- □ Enveloped in protective shell of organic groups
- **True solubility (rather than colloidal suspension) in organic liquids**
- Easy chemical modification of organic shell

from magnetization vs H and T fits								
X	Cl	Br	MeCO ₂	PhCO ₂				
<i>J</i> ₃₄ (cm ⁻¹)	-28.4	-30.1	-33.9	-28.5				
J ₃₃ (cm ⁻¹)	+8.3	+7.4	+5.4	+2.8				
J ₃₃ (cm ⁻¹)	-	-	-	+2.1				
Ground State	9/2	9/2	9/2	9/2				
<i>D</i> , cm ⁻¹ (K)	-0.53(-0.76)	-0.50(-0.72)	-0.47(-0.68)	-0.58(-0.83)				
1 st Excited State	7/2	7/2	7/2	7/2				
<i>E</i> (7/2), K	266	257	240	164				

		R= Me	R= Et	R= Et	R=Et	R=Et
		R'= H	R'= H	R'= H	R'= D	R'= t-butyl
	Sp. Group	R3bar	R3bar	R3bar	R3bar	P2 ₁ /n
	Temp(°C)	118	130	173	173	173
	Cryst. Solvent	NA2 MeCN	NA3 MeCN	CH ₂ Cl ₂ / Et ₂ O Hexanes	NA3Deut MeCN	MeCN
	(Å) CI … CI	3.739(13)	3.858(12)	3.712(10)	3.844(7)	3.884(9)
	(Å) CI … C	3.600	3.706	3.664	3.721	3.675 3.688 3.607
	(°) С-н… сі	158.15	158.00	151.94	157.36	163.32 160.03 157.72
	(Å) Mn ^{III} ···Mn ^{III}	7.630	7.788	7.622	7.750	7.750

