Nuclear spin dynamics in the quantum regime of Mn$_{12}$-*ac* molecular magnets

Andrea MORELLO
Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
Quantum spin + environment

\[ H = -DS_z^2 + C(S^+_4 + S_-^4) + \sum \text{dip.} + \sum \text{hyp} + \text{phonons} - g\mu_B S \cdot B \]

Quantum spin
nanometer-sized

Environment
can be quite accurately calculated!

Tunable Parameter

\( B_{||} \rightarrow \text{classical} \)
\( B_{\perp} \rightarrow \text{quantum} \)

Ideal system to study environmental effects on a quantum spin at the nanometer scale
Nuclear spins in molecular magnets

- ... are an important source of decoherence

Nuclear spins in molecular magnets

- ... are an important source of decoherence
- ... provide the fluctuating bias that allows quantum tunneling

Nuclear spins in molecular magnets

- ... are an important source of decoherence
- ... provide the fluctuating bias that allows quantum tunneling
- ... are sensitive to the (quantum?) fluctuations of the cluster’s spin

A. Morello et al., cond/mat-0211209 (2002)
Magnetic structure of $\text{Mn}_{12-\text{ac}}$

- 8 Mn$^{3+}$ + 4 Mn$^{4+}$ ions
- total spin $S = 10$
- 3 groups of inequivalent Mn sites
- the hyperfine field becomes a (strong) static field when the cluster’s spin is frozen
\(^{55}\text{Mn} \text{ NMR spectra in zero applied field}\)

\[ I_{\text{nuclear}} = 5/2 \]

3 NMR lines corresponding to the 3 inequivalent Mn sites

central frequencies: 231, 277, 365 MHz

hyperfine field at the nuclear site parallel to the anisotropy axis for the electron spin

Y. Furukawa et al., PRB 64, 104401 (2001)
T. Kubo et al., PRB 65, 224425 (2002)
Nuclear relaxation: inversion recovery

\[ M(t) = A \left[ 1 - B \left( \frac{100}{63} \exp(-30Wt) + \frac{16}{45} \exp(-12Wt) + \frac{2}{35} \exp(-2Wt) \right) \right] \]

\[ W = \text{nuclear spin-lattice relaxation rate} \]

Electron spin fluctuations

Thermal activation:
\[ \tau^{-1}_{s-ph} \sim 10^7 \exp(-\Delta E / k_B T) \]

exponential \( T \) dependence

M.N. Leuenberger and D. Loss, PRB 61, 1286 (2000)
Electron spin fluctuations

Thermal activation:
\[ \tau^{-1}_{s-ph} \sim 10^7 \exp(-\Delta E/k_B T) \]
- exponential \( T \) dependence

Tunneling:
\[ \tau^{-1}_T \approx (\Delta^2/\Gamma_2) \exp(-|\xi|/\xi_0) \]
- \( T \) independent
- \( \propto (\text{tunneling splitting})^2 \)
- depends on spin diffusion \( (\Gamma_2) \)
- depends on external field and magnetization state
\[ \xi = E_D + 2g\mu_B B_z \]

M.N. Leuenberger and D. Loss, PRB \textbf{61}, 1286 (2000)
Thermally activated regime

\[ W = \frac{\gamma_N^2}{4} \int \langle h_\pm(t)h_\pm(0) \rangle \exp(i\omega_N t) dt \]

A. Morello et al., cond/mat-0211209 (2002)
Thermally activated regime

Above 1 K, the nuclear relaxation is driven by the thermal fluctuations (spin-phonon) of the $S = 10$ electronic spin

$$W = \frac{\gamma_N^2}{4} \int \langle h_\pm(t) h_\pm(0) \rangle \exp(i \omega_N t) dt$$

$$\approx \frac{\gamma_N^2}{4} \langle h_\pm^2 \rangle \frac{\tau_{s-ph}}{1 + \omega_N^2 \tau_{s-ph}^2}$$

A. Morello et al., cond/mat-0211209 (2002)
see also Y. Furukawa et al., PRB 64, 104401 (2001)
Quantum regime

The nuclear relaxation rate becomes temperature independent below $T \approx 0.8$ K. Tunneling fluctuations.

The same $T$-independent behavior is found in the magnetization loops!

A. Morello et al., cond/mat-0211209 (2002)
see also M. Ueda et al., PRB 66, 073309 (2002)

L. Bokacheva et al., PRL 85, 4803 (2000); I. Chiorescu et al., PRL 85, 4807 (2000)
External field $B_z \parallel z$

By applying an external field $B_z$, the resonance condition for tunneling is destroyed

$\downarrow$

nuclear relaxation slows down by a factor 30!
Both the zero-field value and the “linewidth” depend on the cluster’s magnetization state.

All this does not require any macroscopic change in the magnetization.
Higher temperature

At the edge of the quantum regime ($T \approx 0.7$ K):

A peak appears at $B_z \approx 0.5$ T (thermally assisted tunneling at the first level-crossing?)
"Negative" fields

$W(B_z)$ is strongly asymmetric

A peak appears at $B_z \approx -0.5$ T (first level crossing?)
The transverse spin-spin relaxation rate at low $T$ is determined by the dipolar interactions between nuclei

$$T_2 = 10 \text{ ms} \Rightarrow \text{agrees with the calculated intercluster nuclear spin diffusion!}$$

$$\frac{T_1}{T_2} \sim 10^3 = \text{the spin diffusion is fast}$$

A. Morello et al., cond/mat-0211209 (2002)
Fast-relaxing molecules

Every real sample contains minority species with one or two flipped Jahn-Teller axes

- Smaller anisotropy barrier (15 K or 35 K instead of 65 K)

Local anisotropy axis tilted \( \sim 10^\circ \) from the crystalline c-axis

An applied field breaks down the possible spin diffusion between nuclei in fast and slow molecules!

Nuclear spin temperature

Defined as the inverse of the spin echo intensity, renormalized at high $T$, recorded while cooling down the system

$$M = \frac{N \gamma^2 \hbar^2 I(I+1)}{3 \ k_B \ T} \ \mathcal{H}_{hyp}$$

$$T_{spin}(t) = T(t=0) \ M(t=0) / \ M(t)$$

Nuclear spins are “aware” of the lattice temperature!!
Conversely, we can observe the “heat wave” produced on the thermal bath by the nuclear relaxation!!
Experimental facts: summary

• the nuclear spin-lattice relaxation in the quantum regime is **surprisingly fast** (10 – 100 s)

• the field dependence of $W$ shows most of the expected features of **tunneling resonance**

• the nuclear spins are in very good contact with the **thermal bath**

• the nuclear **spin diffusion is fast** compared to the timescale of spin-lattice relaxation
Relaxation by dipolar fluctuating fields

Assuming nuclear relaxation produced by dipolar fields fluctuating *locally* at the nuclei because of tunneling in neighboring clusters:

\[
W \approx \frac{\gamma_N^2}{4} \left\langle h_{dip}^2 \right\rangle \frac{\tau_T}{1 + \omega_N^2 \tau_T^2}
\]
Relaxation by dipolar fluctuating fields

Assuming nuclear relaxation produced by dipolar fields fluctuating \textit{locally} at the nuclei because of tunneling in neighboring clusters:

\[ W \approx \frac{\gamma_N^2}{4} \left\langle h_{dip}^2 \right\rangle \frac{\tau_T}{1 + \omega_N^2 \tau_T^2} \]

\[ W \approx 0.03 \text{ s}^{-1} \]
\[ h_{dip} < 3 \text{ mT} \]
\[ \tau_T^{-1} \approx 10^5 \text{ s}^{-1} \]

Unrealistic!
Tunneling traversal time

$\hbar \Omega_0 = \text{frequency of the "small oscillations" on the bottom of the well}$

$\Omega_0^{-1}$ is the "tunneling traversal time”

Coflipping probability

The probability for the nuclear spins to “coflip” with the tunneling electron spin is \( \sim \left( \frac{\omega_N}{\Omega_0} \right)^2 \sim 10^{-6} \)

in Mn\(_{12}\)-ac:

\( \Omega_0^{-1} \sim 10^{-12} \text{ s} \)

\( \hbar \Omega_0 \approx E_9 - E_{10} \approx 3 - 14 \text{ K} \)

The nuclear spins “inside” a tunneling molecule do not coflip with it
$H_{\parallel} = \pm 21.8 \, \text{T}; \quad H_{\perp} \sim 5 \, \text{mT} \implies K << 1$

The hyperfine-split manifolds on either sides of the barrier are simply mirrored with respect to the nuclear polarization.

Unbiased case

The most probable tunneling transition (without coflipping nuclei) is between states with zero nuclear polarization.
Biased case

e.g. by dipolar coupling with “slow” neighboring clusters

Now the $\Delta M = 0$ transition requires an initial polarization (e.g. $M = 1$ here)
Nuclear flip-flops

Spin diffusion helps finding the tunneling window, but does not change the total nuclear polarization
Spin-phonon interaction
Spin-phonon interaction
Spin-phonon interaction
Spin-phonon interaction

emission of a phonon
Spin-phonon interaction
Spin-phonon interaction

Now there’s a net change in nuclear polarization (the spin temperature has been lowered!)
Spin-phonon interaction

absorption of a phonon
Spin-phonon interaction

absorption of a phonon
Spin-phonon interaction
Spin-phonon interaction
Spin-phonon interaction
Spin-phonon interaction
Detailed balance

In this picture, it’s easy to apply the condition of detailed balance to obtain the equilibrium nuclear polarization

\[ W_{\uparrow} \Delta E / k_B T \]

\[ \Delta E = \hbar \omega_N \Delta M \]

“irreversible” change in nuclear polarization

Does the bias energy (dipolar coupling) play any special role?
Low-$T$ nuclear relaxation

In the quantum regime, $W(T)$ tends to slightly increase with temperature (a factor 2 between 20 and 800 mK)
Low-\(T\) nuclear relaxation

In the quantum regime, \(W(T)\) tends to slightly increase with temperature (a factor 2 between 20 and 800 mK)

and shows a reproducible peak at \(T \approx 180\) mK, i.e. just the typical range of dipolar couplings!!
Relaxation rate

In the “fast molecules + spin diffusion” picture:

\[ W \approx c \tau_T^{-1} \]

\( c = \text{fraction of fast-relaxing molecules} \)

E.g., \( W \approx 0.03 \text{ s}^{-1} \) can be obtained with 1% molecules tunneling at \( \tau_T^{-1} \approx 3 \text{ s}^{-1} \)

Is this a realistic picture of the tunneling-driven nuclear spin-lattice relaxation?
Conclusions

The nuclear spin-lattice relaxation in Mn\textsubscript{12}-ac at millikelvin temperatures is dominated by tunneling fluctuations, and is surprisingly fast.

The nuclear spin system is in good thermal contact with the phonon bath.

We believe that any realistic description of the nuclear spin dynamics should account for spin diffusion + tunneling in fast molecules + spin-phonon coupling.
Open questions

How can we justify such a strong spin-phonon coupling as the experimental results require?

What are the consequences of the observed fast nuclear relaxation on the tunneling probability?

Is there any special interplay between intercluster dipolar coupling and lattice temperature?
Acknowledgements

dr. Oleg Bakharev

prof. dr. Jos de Jongh

prof. dr. Philip Stamp

dr. W. Wernsdorfer

prof. dr. Roberta Sessoli

acknowledges valuable discussions and support from:

(Leiden)
(Leiden)
(Utrecht)
(Vancouver)
(Grenoble)
(Firenze)
Effect of a magnetic field \(B_z \parallel z\)

In a zero-field cooled sample:

one branch shifts up, the other down, depending on whether \(B_z\) sums or subtracts to the local hyperfine field.

Y. Furukawa et al., PRB 64, 104401 (2001)
T. Kubo et al., PRB 65, 224425 (2002)
The case a fully magnetized sample

Now there is only one branch shifting up, since all the electronic spins are polarized.

The population of the branches can be used to check the magnetization state!

Y. Furukawa et al., PRB 64, 104401 (2001)
T. Kubo et al., PRB 65, 224425 (2002)