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Outline 
1. Introduction: Josephson junction qubits:

- Coulomb blockade of Cooper pair tunneling;
- coherent oscillations of two coupled charge qubits;
- variable electrostatic transformer for controlled coupling.

2. Quantum measurement problem. 
3. Linear measurements. 
4. Quadratic measurements and active suppression of dephasing

in Josephson junction qubits. 
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• Superconductor can be thought of as a  BEC of Cooper pairs: 
one single-particle state

Quantum dynamics of Josephson
junctions

ϕien=Ψ
occupied with macroscopic number of particles. The phase φ
and the number of particles n are conjugate quantum variables 
(Anderson, 64; Ivanchenko, Zil’berman, 65):  

[n,ϕ] =i.
This relation describes dynamics of addition or removal of 
particles to/from the condensate.  

• If quantum fluctuations of phase φ become large, junction 
behavior can be described as a semiclassical dynamics of charge 
that leads to controlled transfer of individual Cooper pairs 
(Averin, Zorin, Likharev, 1985).

• This dynamics manifests itself most directly in Josephson
tunnel junctions, and was studied as an example of macroscopic 
quantum dynamics (Leggett, 80). 
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Charge qubits

xJzC EqEH σσ )2()21( −−−=

For EJ <<EC and q≈1/2, the charge tunneling dynamics in an 
isolated individual junction is directly reduced to the two-state 
form. 
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En1n2 = Ec1(ng1–n1)² + Ec2(ng2–n2)² + 

+Em(ng1–n1)(ng2–n2), 

Em = e²Cm/(CΣ1CΣ2 – Cm
2)

Yu. A. Pashkin et al., 
Nature  421, 823 (2003).

Two coupled charge qubits
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Variable electrostatic transformer: 
controlled coupling of charge qubits
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Equivalent circuit of the 
variable electrostatic 
transformer:

Gate-controlled qubit
coupling:

2
0

2 )( qqqqVC gout ∂+∂=∂∂≡ ε

coupling capacitance:

D.V.A. and C. Bruder, cond-mat/0304166.
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Charging diagram demonstrates 
transition from positive to 
negative coupling

Coupling strength:

,4)](2)()([ 000000 cqcqcq +−−++= εεεν

,21 zzH σνσ=

,Σ= CCc m .)21(
2,10 ∑ =

−+=
i ig qcqq

Quantum measurement problem
The process of quantum measurement establishes correlations 
between the states of the measured system and the states of 
``macroscopic’’ detector. 

⇒Ψ⇒Ψ=ΨΨ ∑∑ )()0()()0( )( tjaja j
Dj jDj jDS

)()(
0

0 tj j
DΨ⇒ with probability

2

0ja - ``wave function collapse’’

simple quantum ``paradoxes’’. For 
instance, measurement of the charge qubit
leads to changes in α,β and therefore to 
transfer of charge (for weak measurements, 
gradual) even if the tunneling is  
completely suppressed!

10 βα +

In the mesoscopic regime, both the detector and the measured 
systems are of the same ``size’’. In addition, there are new  
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Linear quantum measurements

Linear-response theory enables one to develop quantitative 
description of the quantum measurement process with an arbitrary
detector provided that it satisfies some general conditions:

• the detector/system coupling is weak so that the detector’s          
response is linear;

• the detector is in the stationary state; 
• the response is instantaneous.

xfHHH DS ++=

D.V.A., cond-mat/00044364, 
cond-mat/0010052, and to be 
published.
S.Pilgram and M. Büttiker, 
PRL 89, 200401 (2002). 
A.A. Clerk, S.M. Girvin, and 
A.D.Stone, cond-mat/0211001.

FDT analog for quantum measurements

where λ is the linear response coefficient of the detector, Sf and Sq
are the low-frequency spectral densities of  the, respectively, back-
action and output noise, ReSfq is the classical part of their cross-
correlator. 

This inequality shows that finite response coefficient implies that 
that noise generated by the detector is non-vanishing. Although it 
was obtained from the linear-response theory, it has broader 
meaning in that it characterizes the efficiency of the trade-off 
between the information acquisition by the detector and back-action 
dephasing of the measured system. The detector that satisfies this 
inequality as equality is called ``ideal’’ or ``quantum-limited’’. 

,])(Re[4 2/12
fqqf SSS −≤ πλh
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Information/back-action trade-off in quantum 
measurements

Qualitatively, dynamics of the measurement process consists of  
information acquisition by the detector and back-action dephasing
of the measured system. The trade-off between them has the 
simplest form for measurements of the static system with HS=0. Let 
x|j>=xj|j>. Then we have for the back-action dephasing:

,)0()( ''
t

jjjj
det Γ−= ρρ .)( 22

' hfjjd Sxx −=Γ π

Information acquisition by the detector is the process of 
distinguishing different levels of the output signal <o>=λxj in the 
presence of output noise Sq. The signal level (and the corresponding 
eigenstates of x) can be distinguished  on the time scale given by the 
by the measurement time τm:

,)]([8 2
'jjqm xxS −= λπτ .21)(8 2 ≥=Γ fqdm SSλπτ h

Continuous monitoring of the MQC oscillations
The trade-off between the information acquisition by the detector 
and back-action dephasing manifests itself in the directly 
measurable quantity in the case of measurement of coherent 
quantum oscillations in a qubit.  

Spectral density So(ω) of the detector output reflects coherent 
quantum oscillations of the measured qubit:

Dzx HfH ++−= ∆ σσ2
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The height of the oscillation peak in the output spectrum is limited
by the link between the information and dephasing:  
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Quantum non-demolition measurements of a qubit
QND measurement avoids the 
detector  backaction by 
employing specially designed 
detector-qubit coupling which 
effectively measures qubit in the 
rotating frame that follows the 
qubit oscillations:

Dyzx HfttH +Ω+Ω−−= ∆ )sincos(2
1

2 σσσ

For flux qubits, the QND coupling can be 
implemented with SFQ circuits, either 
directly or as a  periodic sequence of the 
``single-shot’’ measurements.D.V.A., PRL 88, 207901 (2002).
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Suppression of backaction should 
manifest itself as more pronounced 
oscillation line in the output spectrum of 
detector S0 when the detuning δ=∆-Ω is 
small in comparison to the backaction
dephasing rate Γ:

Quadratic measurements

21
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Quadratic detectors enable the measurements of product operators
for pairs of qubits: 

Back-action dephasing rate:

.))(21( 2
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Spectrum of continuously measured 
oscillations in two qubits:
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Basic error correction

   Bit-flip errors 
 

Errors:       |Ψ>   →  σX|Ψ>  (i.e. 0 ↔ 1) 
 

Encoding:   |Ψ> = α|0> + β|1>   →   α|000> + β|111>
 

   Phase-flip errors  
 
Errors:       |Ψ>   →  σZ|Ψ> 

 
Encoding:   the same as for bit-flip errors but includes

Hadamard transform that effectively turns
phase error into bit errors:   σX =Η+ σZ H 

    

Majority code for dephasing errors – (I)

One can correct k dephasing errors by encoding a qubit of 
information into the 2k+1 physical qubits: 

α|0>+β|1> → α|00 …0>+β|11…1> .
The main element of the error-correction procedure is the set of 

the 2k projective measurement of operators σx
(j)σx

(j+1), j=1,…,2k. 
These measurements reduce the state space of the qubit system to 
the 2k 2×2 subspaces spanned by the states {|Ψ>,R|Ψ>}, where R is 
an inversion of all qubit states. Subsequent application of the error-
correcting pulses returns all the states into the initial subspace 
{|00 …0>, |11…1>}. 

This procedure correctly reverses all error up to an order k, but 
the errors of order k+1 exchange the basis states of the initial 
subspace. 
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Code for dephasing errors –(II)

Since the period T of the error-correction is necessarily short, 
quasi-continuous evolution of the density matrix in this subspace 
under the error-correction transformation is governed by the 
equations: 

dρ11/dt = Γ(k)(ρ22-ρ11) ,   dρ12/dt = Γ(k)(ρ21-ρ12). 
``Rotating’’ these equations back to the σz basis we see that they 
describe the usual suppression of the off-diagonal elements of the 
density matrix with the reduced dephasing rate Γ(k):

Γ(k) = 1/T ∑j1> … >jk+1 Pj1 … Pjk+1 .  
In the classical regime, and when initial dephasing rates for all 
qubits are the same, 

Γ(k) = Γ Ck
2k+1 (ΓT)k ≈ Γ (4ΓT)k ,

where the last equation assumes k>>1.

In the case of correlated noise, the dephasing rate of the 
encoded quantum information is increased by renormalized 
qubit-qubit interaction and directly by the correlations, e.g., 
for k=1:

Γ(1) = 1/T ∑j>j’[(Vjj’T)2   + PjPj’ +2 Pjj’] .

The exponential decrease of the dephasing rate of the encoded
quantum information with k is limited by the inaccuracies in the 
measurement/correction procedure. The most important are 
inaccuracies in the measurement, which can introduce direct 
dephasing with rate γik of the encoded state:

dρ12/dt = Γ(k)(ρ21-ρ12) – γikρ12 . 

The main, but probably obvious, conclusion is that for the 
error-correction to make sense, the introduced dephasing
should be at least smaller than the original qubit dephasing.  


