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1. Introduction: Josephson junction qubits:
- Coulomb blockade of Cooper pair tunneling;
- coherent oscillations of two coupled charge qubits;

2. Quantum measurement problem.
3. Linear measurements.

in Josephson junction qubits.
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- variable electrostatic transformer for controlled coupling.

4. Quadratic measurements and active suppression of dephasing
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junctions

* Superconductor can be thought of as a BEC of Cooper pairs:
one single-particle state
¥ =/ne'
occupied with macroscopic number of particles. The phase ¢

and the number of particles » are conjugate quantum variables
(Anderson, 64; Ivanchenko, Zil’berman, 65):

[, ] =1.
This relation describes dynamics of addition or removal of
particles to/from the condensate.

* This dynamics manifests itself most directly in Josephson
tunnel junctions, and was studied as an example of macroscopic
quantum dynamics (Leggett, 80).
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* If quantum fluctuations of phase ¢ become large, junction
behavior can be described as a semiclassical dynamics of charge
that leads to controlled transfer of individual Cooper pairs
(Averin, Zorin, Likharev, 1985).
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For £,<<E.and g=~1/2, the charge tunneling dynamics in an
isolated individual junction is directly reduced to the two-state

form.
Q%r2cC
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Two coupled charge qubits
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Yu. A. Pashkin et al.,
Nature 421, 823 (2003).
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Variable electrostatic transformer:
controlled coupling of charge qubits
Equivalent circuit of the Gate-controlled qubit
variable electrostatic coupling:
transformer:
Cl Cz Cgl n le Cm2 CgZ
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coupling capacitance:

C=0V,,/oq= 8250 (g, + Q)/ﬁqz D.V.A. and C. Bruder, cond-mat/0304y




Coupling strength: Charging diagram demonstra}

transition from positive to

H=vo,0.,, negative coupling

v=[g(qo+¢)+&y(qy —)—2&y(qy +)]/4, N

c=C,/Cs, qo=dg +CZ[:I.2 (g; =1/2).
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The process of quantum measurement establishes correlations
between the states of the measured system and the states of
““macroscopic’’ detector.

Ws¥p(0)= (2, a,|iD¥p 0= a [ )¥0)=
= | j0>‘Pg’ (1) with probability ‘a I ‘2 - “'wave function collapse’’
In the mesoscopic regime, both the detector and the measured
systems are of the same "'size’’. In addition, there are new

simple quantum *“paradoxes’’. For
a | 0> +p | 1> instance, measurement of the charge qubit
leads to changes in a,f3 and therefore to
transfer of charge (for weak measurements,
gradual) even if the tunneling is

completely suppressed!




Linear-response theory enables one to develop quantitative
description of the quantum measurement process with an arbitrary
detector provided that it satisfies some general conditions:
* the detector/system coupling is weak so that the detector’s
response is linear;
* the detector is in the stationary state;
* the response is instantaneous.

- D.V.A., cond-mat/00044364,

Hy |Hyy=xf| Hyp o(t) cond-mat/0010052, and to be
—° published.

S.Pilgram and M. Biittiker,

PRL 89, 200401 (2002).

H=Hg+Hp+xf A.A. Clerk, S.M. Girvin, and

A.D.Stone, cond-mat/0211001.

nA|<4x[S S, -(ReS,)?1"%,

where 4 is the linear response coefficient of the detector, S,and S,
are the low-frequency spectral densities of the, respectively, back-
action and output noise, ReS, is the classical part of their cross-
correlator.

This inequality shows that finite response coefficient implies that
that noise generated by the detector is non-vanishing. Although it
was obtained from the linear-response theory, it has broader
meaning in that it characterizes the efficiency of the trade-off
between the information acquisition by the detector and back-action
dephasing of the measured system. The detector that satisfies this
inequality as equality is called "‘ideal’’ or "“quantum-limited”’.




Qualitatively, dynamics of the measurement process consists of
information acquisition by the detector and back-action dephasing
of the measured system. The trade-off between them has the
simplest form for measurements of the static system with /7,=0. Let
x[j>=x;j>. Then we have for the back-action dephasing:

PO =pp©@e ™, Ty=n(x, —x;)’8, [0,

Information acquisition by the detector is the process of
distinguishing different levels of the output signal <o>=Ax; in the
presence of output noise S,. The signal level (and the corresponding
eigenstates of x) can be distinguished on the time scale given by the
by the measurement time 7,,:

7, =878, [[AGx; —x), 1,0, =8(x/hA)S,S, >1/2.

The trade-off between the information acquisition by the detector
and back-action dephasing manifests itself in the directly
measurable quantity in the case of measurement of coherent
quantum oscillations in a qubit.

—A2 o—

@ A
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Spectral density S, (w) of the detector output reflects coherent
quantum oscillations of the measured qubit:

27 A

4z (@* -A) +T 0
The height of the oscillation peak in the output spectrum is limited
by the link between the information and dephasing:

Simax /Sy < 4.

S,(@)=S,+




Quantum non-demolition measurements of a qubit

QND measurement avoids the
detector backaction by
employing specially designed
detector-qubit coupling which
effectively measures qubit in the
rotating frame that follows the
qubit oscillations:

H=-40,-1(0,cosQt+0,sinQt)f +H)

D.V.A., PRL 88, 207901 (2002).

Suppression of backaction should
manifest itself as more pronounced
oscillation line in the output spectrum of
detector S, when the detuning 6=A-Q is
small in comparison to the backaction
dephasing rate I':
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For flux qubits, the QND coupling can be
implemented with SFQ circuits, either
directly or as a periodic sequence of the
““single-shot” measurements.

Quadratic measurements

Quadratic detectors enable the measurements of product operators

for pairs of qubits:

t(o-zl +Gz2) = f'+(5/2) (Gzl + 0-22)2 =1 +5O_zlaz2

quadratic detector and
RSFQ control circuit

Back-action dephasing rate:

T, =1/2Gn —re)%

Spectrum of continuously measured
oscillations in two qubits:

T, (-7’4
7 (0® 4N +T 0’

S, (@)= Sq +




Basic error correction

Bit-flip errors
Errors: [¥> — ox|¥V> (ie.0< 1)

Encoding: [¥>=a/0>+B|]1> — «/000>+B|111>

|w>
0>

0>

Phase-flip errors
Errors: ¥> — oz¥>

Encoding: the same as for bit-flip errors but includes
Hadamard transform that effectively turns
phase error into bit errors: ox =H" o, H

Majority code for dephasing errors — (I)

One can correct k dephasing errors by encoding a qubit of
information into the 2k+1 physical qubits:

a|0>+B|1> — )00 ...0>+p[11...1>.

The main element of the error-correction procedure is the set of
the 2k projective measurement of operators ¢ o ("1 j=1,...2k.
These measurements reduce the state space of the qubit system to
the 2k 2x2 subspaces spanned by the states {|'V>R[¥>}, where R is
an inversion of all qubit states. Subsequent application of the error-
correcting pulses returns all the states into the initial subspace
£00 ...0>, [11...1>).

This procedure correctly reverses all error up to an order k, but
the errors of order k+1 exchange the basis states of the initial
subspace.




Code for dephasing errors —(II)

Since the period T of the error-correction is necessarily short,
quasi-continuous evolution of the density matrix in this subspace
under the error-correction transformation is governed by the
equations:

dpy /dt =T®(pyy-pyy),  dpyp/dt = T®(py-pyy).
“"Rotating’’ these equations back to the o, basis we see that they

describe the usual suppression of the off-diagonal elements of the
density matrix with the reduced dephasing rate I'®):

TO=UT T gt P oo Py

In the classical regime, and when initial dephasing rates for all
qubits are the same,

[0 =T Cky,, (I =T 4IT),
where the last equation assumes k>>1.

In the case of correlated noise, the dephasing rate of the
encoded quantum information is increased by renormalized
qubit-qubit interaction and directly by the correlations, e.g.,

for k=1:
Ir'v=1/T Zj>j’[(ij’T)2 + Pij, +2 ij,] .

The exponential decrease of the dephasing rate of the encoded
quantum information with k is limited by the inaccuracies in the
measurement/correction procedure. The most important are
inaccuracies in the measurement, which can introduce direct
dephasing with rate y.k of the encoded state:

dp,,/dt = r(k)(le'Plz) —Yikpy, -

The main, but probably obvious, conclusion is that for the

error-correction to make sense, the introduced dephasing
should be at least smaller than the original qubit dephasing.




